STMICROELECTRONICS VND60013TR

VND600
®
DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE
VND600
■
RDS(on)
35mΩ
Ilim
25A
VCC
36 V
DC SHORT CIRCUIT CURRENT: 25 A
CMOS COMPATIBLE INPUTS
■ PROPORTIONAL LOAD CURRENT SENSE
■ UNDERVOLTAGE AND OVERVOLTAGEn
SHUT-DOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUT DOWN
■ CURRENT LIMITATION
■ VERY LOW STAND-BY POWER DISSIPATION
■ PROTECTION AGAINST:
n LOSS OF GROUND AND LOSS OF VCC
■ REVERSE BATTERY PROTECTION (*)
■
DESCRIPTION
The VND600 is a monolithic device made using
STMicroelectronics VIPower M0-3 technology. It
is intended for driving resistive or inductive loads
with one side connected to ground. Active VCC pin
voltage clamp protects the device against low
energy
spikes
(see
ISO7637
transient
SO-16L
ORDER CODES
PACKAGE
SO-16L
TUBE
VND600
T&R
VND60013TR
compatibility table). This device has two channels
in high side configuration; each channel has an
analog sense output on which the sensing current
is proportional (according to a known ratio) to the
corresponding load current. Built-in thermal shutdown and outputs current limitation protect the
chip from over temperature and short circuit.
Device turns off in case of ground pin
disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
VCC CLAMP
UNDERVOLTAGE
PwCLAMP 1
DRIVER 1
OUTPUT 1
ILIM1
INPUT 1
Vdslim1
LOGIC
IOUT1
INPUT 2
Ot1
CURRENT
SENSE 1
K
PwCLAMP 2
DRIVER 2
GND
Ot1
OVERTEMP. 1
OVERTEMP. 2
(*) See application schematic at page 8
July 2004
Vdslim2
Ot2
OUTPUT 2
ILIM2
IOUT2
K
Ot2
CURRENT
SENSE 2
Rev. 2
1/18
VND600
ABSOLUTE MAXIMUM RATING
Symbol
VCC
-VCC
- IGND
IOUT
IR
IIN
VESD
EMAX
Ptot
Tj
Tc
TSTG
Parameter
DC supply voltage
Reverse supply voltage
DC reverse ground pin current
Output current
Reverse output current
Input current
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
Value
41
-0.3
-200
Internally limited
-21
+/- 10
Unit
V
V
mA
A
A
mA
- INPUT
4000
V
- CURRENT SENSE
2000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy
5000
V
136
mJ
8.3
Internally limited
-40 to 150
-55 to 150
W
°C
°C
°C
(L=0.12mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A)
Power dissipation at Tc=25°C
Junction operating temperature
Case operating temperature
Storage temperature
CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C.
PINS
VCC
1
VCC
16
N.C.
OUTPUT 2
GND
OUTPUT 2
INPUT 2
OUTPUT 2
INPUT 1
OUTPUT 1
C. SENSE 1
OUTPUT 1
C. SENSE 2
OUTPUT 1
VCC
8
Connection / Pin Current Sense
N.C.
Output
X
X
Floating
Through 1KΩ
resistor
To Ground
Input
X
Through 10KΩ
resistor
X
VCC
9
SO-16L
CURRENT AND VOLTAGE CONVENTIONS
IS
VCC
IIN1
INPUT1
VIN1
OUTPUT1
VIN2
VCC
IOUT2
INPUT2
VOUT1
ISENSE1
CURRENT SENSE 1
IIN2
OUTPUT2
CURRENT SENSE 2
GROUND
IGND
(*) VFn = VCCn - VOUTn during reverse battery condition
2/18
VF1 (*)
IOUT1
VSENSE1
VOUT2
ISENSE2
VSENSE2
VND600
THERMAL DATA
Symbol
Rthj-lead
Rthj-amb
Parameter
Thermal resistance junction-lead
Thermal resistance junction-ambient
(MAX)
(MAX)
Value
15
65 (*)
Unit
°C/W
°C/W
48 (**)
(*) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air
flow.
(**) When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air
flow.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified)
(Per each channel)
POWER
Symbol
VCC (**)
VUSD (**)
VOV (**)
RON
Vclamp
IS (**)
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Parameter
Operating supply voltage
Undervoltage shutdown
Overvoltage shutdown
Test Conditions
Min
5.5
3
36
IOUT=5A; Tj=25°C
35
Unit
V
V
V
mΩ
On state resistance
IOUT=5A; Tj=150°C
70
mΩ
Clamp voltage
IOUT=3A; VCC=6V
ICC=20 mA (see note 1)
Off State; VCC=13V; VIN=VOUT =0V
48
12
120
55
40
mΩ
V
µA
Supply current
Off State; VCC=13V; VIN=VOUT =0V; Tj=25°C
12
25
µA
6
50
0
5
3
mA
µA
µA
µA
µA
Max
70
Unit
A
70
A
200
°C
41
Typ
13
4
On state; VIN=5V; VCC=13V; IOUT=0A;
RSENSE=3.9kΩ
Off state output current
Off State Output Current
Off State Output Current
Off State Output Current
VIN=VOUT=0V
VIN=0V; VOUT=3.5V
VIN=VOUT=0V; VCC=13V; Tj =125°C
VIN=VOUT=0V; VCC=13V; Tj =25°C
0
-75
Max
36
5.5
(**) Per device.
PROTECTIONS (Per each channel) (See note 1)
Symbol
Ilim
TTSD
TR
Parameter
DC short circuit current
Test Conditions
VCC=13V
Typ
40
5.5V<VCC<36V
Thermal shut-down
150
temperature
Thermal reset
175
135
THYST
temperature
Thermal hysteresis
Vdemag
Turn-off output voltage
clamp
IOUT=2A; VIN=0V; L=6mH
Output voltage drop
IOUT=0.5A
limitation
Tj= -40°C...+150°C
VON
Min
25
7
°C
15
°C
VCC-41 VCC-48 VCC-55
V
50
mV
Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used
together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
VCC - OUTPUT DIODE
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT =2.3A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
3/18
1
VND600
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE (9V≤VCC≤16V) (See fig. 1)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
VSENSE1,2
Parameter
IOUT /ISENSE
Current Sense Ratio Drift
IOUT /ISENSE
Current Sense Ratio Drift
IOUT /ISENSE
Current Sense Ratio Drift
Max analog sense
output voltage
Analog sense output
VSENSEH voltage in overtemperature
condition
Analog Sense Output
RVSENSEH Impedance in
Overtemperature Condition
Current sense delay
tDSENSE
response
Test Conditions
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= -40°C...150°C
IOUT1 or IOUT2=0.5A; VSENSE=0.5V;
other channels open; Tj= -40°C...150°C
Min
Typ
Max
3300
4400
6000
-10
+10
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C
4200
4900
6000
Tj=25°C...150°C
4400
4900
5750
IOUT1 or IOUT2=5A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
-6
+6
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C
4200
4900
5500
Tj=25°C...150°C
4400
4900
5250
IOUT1 or IOUT2=15A; VSENSE=4V; other
channels open; Tj=-40°C...150°C
VCC=5.5V; IOUT1,2=2.5A; RSENSE=10kΩ
VCC>8V, IOUT1,2=5A; RSENSE=10kΩ
-6
+6
Unit
%
%
%
2
V
4
V
VCC=13V; RSENSE=3.9kΩ
VCC=13V; Tj>TTSD; All channels Open
5.5
V
400
Ω
500
µs
Max
1.25
Unit
V
µA
V
µA
V
V
to 90% ISENSE (see note 2)
LOGIC INPUT (Channels 1,2)
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input low level voltage
Low level input current
Input high level voltage
High level input current
Input hysteresis voltage
Input clamp voltage
Test Conditions
VIN=1.25V
Min
Typ
1
3.25
VIN=3.25V
IIN=1mA
10
0.5
6
IIN=-1mA
6.8
8
-0.7
V
Note 1: V clamp and VOV are correlated. Typical difference is 5V.
Note 2: current sense signal delay after positive input slope.
SWITCHING (V CC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on delay time
Turn-on delay time
Test Conditions
RL=2.6Ω (see figure 1)
RL=2.6Ω (see figure 1)
(dVOUT/dt)on Turn-on voltage slope
RL=2.6Ω (see figure 1)
(dVOUT/dt)off Turn-off voltage slope
RL=2.6Ω (see figure 1)
4/18
2
Min
Typ
30
30
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
V/µs
V/µs
VND600
TRUTH TABLE (per channel)
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
5/18
INPUT
OUTPUT
SENSE
0
Nominal
L
L
H
L
H
L
H
L
L
L
VSENSEH
0
H
L
L
L
0
0
H
L
L
L
0
0
H
L
(Tj<TTSD) 0
H
L
L
H
(Tj>TTSD) VSENSEH
0
H
H
< Nominal
L
L
0
0
VND600
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
E
II
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
IV
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
I
C
C
C
C
C
C
1
2
3a
3b
4
5
CLASS
C
I
TEST LEVELS
III
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
Figure 1: Switching Characteristics (Resistive load R L=2.6Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
6/18
VND600
Figure 2: Waveforms
NORMAL OPERATION
INPUTn
LOAD CURRENTn
SENSEn
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUTn
LOAD CURRENTn
SENSEn
OVERVOLTAGE
VOV
VCC
VCC < VOV
VCC > VOV
INPUTn
LOAD CURRENTn
SENSEn
SHORT TO GROUND
INPUTn
LOAD CURRENTn
LOAD VOLTAGEn
SENSEn
SHORT TO VCC
INPUTn
LOAD VOLTAGEn
LOAD CURRENTn
SENSEn
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUTn
LOAD CURRENTn
SENSEn
7/18
ISENSE=
VSENSEH
RSENSE
VND600
APPLICATION SCHEMATIC
+5V
Rprot
INPUT1
VCC
Dld
µC
Rprot
CURRENT SENSE1
Rprot
INPUT2
Rprot
CURRENT SENSE2
OUTPUT1
GND
RSENSE1
GND PROTECTION
REVERSE BATTERY
RSENSE2
NETWORK
VGND
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / IS(on)max.
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
RGND
OUTPUT2
DGND
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSDs. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input thresholds and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
8/18
VND600
µC I/Os PROTECTION:
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
If a ground protection network is used and negative
transient are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
Figure 3: IOUT/ISENSE versus IOUT
IOUT/ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
4000
min.Tj=-40°C
3500
3000
0
2
4
6
8
IOUT (A)
9/18
10
12
14
16
VND600
High Level Input Current
Off State Output Current
IL(off1) (uA)
Iih (uA)
5
5
4.5
4.5
Off state
Vcc=36V
Vin=Vout=0V
4
3.5
Vin=3.25V
4
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (°C)
Input High Level
Input Clamp Voltage
Vih (V)
Vicl (V)
3.6
8
7.8
3.4
Iin=1mA
7.6
3.2
7.4
3
7.2
2.8
7
6.8
2.6
6.6
2.4
6.4
2.2
6.2
2
6
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
Tc (°C)
Tc (°C)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
1.5
1.4
2.4
1.3
2.2
1.2
2
1.1
1
1.8
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
10/18
VND600
ILIM Vs Tcase
Overvoltage Shutdown
Vov (V)
Ilim (A)
50
80
48
70
Vcc=13V
46
60
44
50
42
40
40
38
30
36
20
34
10
32
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
100
125
150
175
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
750
500
700
450
Vcc=13V
Rl=2.6Ohm
650
Vcc=13V
Rl=2.6Ohm
400
600
350
550
300
500
250
450
200
400
150
350
100
300
50
250
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
Tc (ºC)
On State Resistance Vs Tcase
On State Resistance Vs V CC
Ron (mOhm)
Ron (mOhm)
100
80
90
70
Iout=5A
Vcc=8V & 36V
80
Iout=5A
Tc= 150°C
60
70
50
60
50
40
40
Tc= 25°C
30
30
20
20
Tc= - 40°C
10
10
0
0
-75
-50
-25
0
25
50
Tc (°C)
11/18
75
100
125
150
175
5
10
15
20
25
Vcc (V)
30
35
40
VND600
SO-16L Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
1
L(mH)
10
100
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/18
VND600
SO-16L THERMAL DATA
SO-16L PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2).
Rthj-amb Vs PCB copper area in open box free air condition
70
RTH j-amb (°C/W)
65
60
55
50
45
40
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)
13/18
VND600
SO-16L Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
100
Footprint
6 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of a double channel HSD
in SO-16L
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj_1
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd1
Tj_2
C1
C2
R1
R2
Pd2
T_amb
14/18
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.05
0.3
2.2
12
15
37
0.001
5.00E-03
0.02
0.3
1
3
6
22
5
VND600
SO-16L MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
2.65
0.104
0.1
0.2
b
0.35
0.49
0.014
b1
0.23
0.32
0.009
a2
0.004
0.008
2.45
C
MAX.
0.096
0.5
0.019
0.012
0.020
c1
45° (typ.)
D
10.1
E
10.0
10.5
0.397
10.65
0.393
0.413
0.419
e
1.27
0.050
e3
8.89
0.350
F
7.4
7.6
0.291
0.300
L
0.5
1.27
0.020
0.050
M
S
0.75
0.029
8° (max.)
15/18
VND600
SO-16L TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
B
50
1000
532
3.5
13.8
0.6
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
16.4
60
22.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
12
1.5
1.5
7.5
6.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
16/18
1
VND600
REVISION HISTORY
Date
Revision
Description of Changes
- Current and voltage convention update (page 2).
- “Configuration diagram (top view) & suggested connections for unused and n.c.
pins” insertion (page 2).
July 2004
1
- 6cm2 Cu condition insertion in Thermal Data table (page 3).
- VCC - OUTPUT DIODE section update (page 3).
- PROTECTIONS note insertion (page 3).
- Revision History table insertion (page 17).
July 2004
2
- Disclaimers update (page 18).
- Suggested connections for unused and n.c.pins” correction (page 2).
17/18
1
VND600
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners
 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com
18/18