VND600 ® DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY TYPE VND600 ■ RDS(on) 35mΩ Ilim 25A VCC 36 V DC SHORT CIRCUIT CURRENT: 25 A CMOS COMPATIBLE INPUTS ■ PROPORTIONAL LOAD CURRENT SENSE ■ UNDERVOLTAGE AND OVERVOLTAGEn SHUT-DOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUT DOWN ■ CURRENT LIMITATION ■ VERY LOW STAND-BY POWER DISSIPATION ■ PROTECTION AGAINST: n LOSS OF GROUND AND LOSS OF VCC ■ REVERSE BATTERY PROTECTION (*) ■ DESCRIPTION The VND600 is a monolithic device made using STMicroelectronics VIPower M0-3 technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient SO-16L ORDER CODES PACKAGE SO-16L TUBE VND600 T&R VND60013TR compatibility table). This device has two channels in high side configuration; each channel has an analog sense output on which the sensing current is proportional (according to a known ratio) to the corresponding load current. Built-in thermal shutdown and outputs current limitation protect the chip from over temperature and short circuit. Device turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE VCC CLAMP UNDERVOLTAGE PwCLAMP 1 DRIVER 1 OUTPUT 1 ILIM1 INPUT 1 Vdslim1 LOGIC IOUT1 INPUT 2 Ot1 CURRENT SENSE 1 K PwCLAMP 2 DRIVER 2 GND Ot1 OVERTEMP. 1 OVERTEMP. 2 (*) See application schematic at page 8 July 2004 Vdslim2 Ot2 OUTPUT 2 ILIM2 IOUT2 K Ot2 CURRENT SENSE 2 Rev. 2 1/18 VND600 ABSOLUTE MAXIMUM RATING Symbol VCC -VCC - IGND IOUT IR IIN VESD EMAX Ptot Tj Tc TSTG Parameter DC supply voltage Reverse supply voltage DC reverse ground pin current Output current Reverse output current Input current Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) Value 41 -0.3 -200 Internally limited -21 +/- 10 Unit V V mA A A mA - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V - VCC Maximum Switching Energy 5000 V 136 mJ 8.3 Internally limited -40 to 150 -55 to 150 W °C °C °C (L=0.12mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=40A) Power dissipation at Tc=25°C Junction operating temperature Case operating temperature Storage temperature CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS VCC 1 VCC 16 N.C. OUTPUT 2 GND OUTPUT 2 INPUT 2 OUTPUT 2 INPUT 1 OUTPUT 1 C. SENSE 1 OUTPUT 1 C. SENSE 2 OUTPUT 1 VCC 8 Connection / Pin Current Sense N.C. Output X X Floating Through 1KΩ resistor To Ground Input X Through 10KΩ resistor X VCC 9 SO-16L CURRENT AND VOLTAGE CONVENTIONS IS VCC IIN1 INPUT1 VIN1 OUTPUT1 VIN2 VCC IOUT2 INPUT2 VOUT1 ISENSE1 CURRENT SENSE 1 IIN2 OUTPUT2 CURRENT SENSE 2 GROUND IGND (*) VFn = VCCn - VOUTn during reverse battery condition 2/18 VF1 (*) IOUT1 VSENSE1 VOUT2 ISENSE2 VSENSE2 VND600 THERMAL DATA Symbol Rthj-lead Rthj-amb Parameter Thermal resistance junction-lead Thermal resistance junction-ambient (MAX) (MAX) Value 15 65 (*) Unit °C/W °C/W 48 (**) (*) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. (**) When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow. ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C; unless otherwise specified) (Per each channel) POWER Symbol VCC (**) VUSD (**) VOV (**) RON Vclamp IS (**) IL(off1) IL(off2) IL(off3) IL(off4) Parameter Operating supply voltage Undervoltage shutdown Overvoltage shutdown Test Conditions Min 5.5 3 36 IOUT=5A; Tj=25°C 35 Unit V V V mΩ On state resistance IOUT=5A; Tj=150°C 70 mΩ Clamp voltage IOUT=3A; VCC=6V ICC=20 mA (see note 1) Off State; VCC=13V; VIN=VOUT =0V 48 12 120 55 40 mΩ V µA Supply current Off State; VCC=13V; VIN=VOUT =0V; Tj=25°C 12 25 µA 6 50 0 5 3 mA µA µA µA µA Max 70 Unit A 70 A 200 °C 41 Typ 13 4 On state; VIN=5V; VCC=13V; IOUT=0A; RSENSE=3.9kΩ Off state output current Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj =125°C VIN=VOUT=0V; VCC=13V; Tj =25°C 0 -75 Max 36 5.5 (**) Per device. PROTECTIONS (Per each channel) (See note 1) Symbol Ilim TTSD TR Parameter DC short circuit current Test Conditions VCC=13V Typ 40 5.5V<VCC<36V Thermal shut-down 150 temperature Thermal reset 175 135 THYST temperature Thermal hysteresis Vdemag Turn-off output voltage clamp IOUT=2A; VIN=0V; L=6mH Output voltage drop IOUT=0.5A limitation Tj= -40°C...+150°C VON Min 25 7 °C 15 °C VCC-41 VCC-48 VCC-55 V 50 mV Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT =2.3A; Tj=150°C Min Typ Max 0.6 Unit V 3/18 1 VND600 ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V≤VCC≤16V) (See fig. 1) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 VSENSE1,2 Parameter IOUT /ISENSE Current Sense Ratio Drift IOUT /ISENSE Current Sense Ratio Drift IOUT /ISENSE Current Sense Ratio Drift Max analog sense output voltage Analog sense output VSENSEH voltage in overtemperature condition Analog Sense Output RVSENSEH Impedance in Overtemperature Condition Current sense delay tDSENSE response Test Conditions IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40°C...150°C Min Typ Max 3300 4400 6000 -10 +10 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C 4200 4900 6000 Tj=25°C...150°C 4400 4900 5750 IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40°C...150°C -6 +6 IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C 4200 4900 5500 Tj=25°C...150°C 4400 4900 5250 IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40°C...150°C VCC=5.5V; IOUT1,2=2.5A; RSENSE=10kΩ VCC>8V, IOUT1,2=5A; RSENSE=10kΩ -6 +6 Unit % % % 2 V 4 V VCC=13V; RSENSE=3.9kΩ VCC=13V; Tj>TTSD; All channels Open 5.5 V 400 Ω 500 µs Max 1.25 Unit V µA V µA V V to 90% ISENSE (see note 2) LOGIC INPUT (Channels 1,2) Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input low level voltage Low level input current Input high level voltage High level input current Input hysteresis voltage Input clamp voltage Test Conditions VIN=1.25V Min Typ 1 3.25 VIN=3.25V IIN=1mA 10 0.5 6 IIN=-1mA 6.8 8 -0.7 V Note 1: V clamp and VOV are correlated. Typical difference is 5V. Note 2: current sense signal delay after positive input slope. SWITCHING (V CC=13V) Symbol td(on) td(off) Parameter Turn-on delay time Turn-on delay time Test Conditions RL=2.6Ω (see figure 1) RL=2.6Ω (see figure 1) (dVOUT/dt)on Turn-on voltage slope RL=2.6Ω (see figure 1) (dVOUT/dt)off Turn-off voltage slope RL=2.6Ω (see figure 1) 4/18 2 Min Typ 30 30 See relative diagram See relative diagram Max Unit µs µs V/µs V/µs VND600 TRUTH TABLE (per channel) CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp 5/18 INPUT OUTPUT SENSE 0 Nominal L L H L H L H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H H < Nominal L L 0 0 VND600 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse E II -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω TEST LEVELS RESULTS II III C C C C C C C C C C E E I C C C C C C 1 2 3a 3b 4 5 CLASS C I TEST LEVELS III IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Figure 1: Switching Characteristics (Resistive load R L=2.6Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 6/18 VND600 Figure 2: Waveforms NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC VUSDhyst VUSD INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE VOV VCC VCC < VOV VCC > VOV INPUTn LOAD CURRENTn SENSEn SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUTn LOAD CURRENTn SENSEn 7/18 ISENSE= VSENSEH RSENSE VND600 APPLICATION SCHEMATIC +5V Rprot INPUT1 VCC Dld µC Rprot CURRENT SENSE1 Rprot INPUT2 Rprot CURRENT SENSE2 OUTPUT1 GND RSENSE1 GND PROTECTION REVERSE BATTERY RSENSE2 NETWORK VGND AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / IS(on)max. 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. RGND OUTPUT2 DGND If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input thresholds and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. 8/18 VND600 µC I/Os PROTECTION: -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. Figure 3: IOUT/ISENSE versus IOUT IOUT/ISENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value min.Tj=25...150°C 4500 4000 min.Tj=-40°C 3500 3000 0 2 4 6 8 IOUT (A) 9/18 10 12 14 16 VND600 High Level Input Current Off State Output Current IL(off1) (uA) Iih (uA) 5 5 4.5 4.5 Off state Vcc=36V Vin=Vout=0V 4 3.5 Vin=3.25V 4 3.5 3 3 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 100 125 150 175 Tc (°C) Input High Level Input Clamp Voltage Vih (V) Vicl (V) 3.6 8 7.8 3.4 Iin=1mA 7.6 3.2 7.4 3 7.2 2.8 7 6.8 2.6 6.6 2.4 6.4 2.2 6.2 2 6 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 Tc (°C) Tc (°C) Input Low Level Input Hysteresis Voltage Vil (V) Vhyst (V) 2.6 1.5 1.4 2.4 1.3 2.2 1.2 2 1.1 1 1.8 0.9 1.6 0.8 1.4 0.7 1.2 0.6 1 0.5 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 Tc (°C) 10/18 VND600 ILIM Vs Tcase Overvoltage Shutdown Vov (V) Ilim (A) 50 80 48 70 Vcc=13V 46 60 44 50 42 40 40 38 30 36 20 34 10 32 30 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 100 125 150 175 Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 750 500 700 450 Vcc=13V Rl=2.6Ohm 650 Vcc=13V Rl=2.6Ohm 400 600 350 550 300 500 250 450 200 400 150 350 100 300 50 250 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 Tc (ºC) On State Resistance Vs Tcase On State Resistance Vs V CC Ron (mOhm) Ron (mOhm) 100 80 90 70 Iout=5A Vcc=8V & 36V 80 Iout=5A Tc= 150°C 60 70 50 60 50 40 40 Tc= 25°C 30 30 20 20 Tc= - 40°C 10 10 0 0 -75 -50 -25 0 25 50 Tc (°C) 11/18 75 100 125 150 175 5 10 15 20 25 Vcc (V) 30 35 40 VND600 SO-16L Maximum turn off current versus load inductance ILMAX (A) 100 A B C 10 1 0.01 0.1 1 L(mH) 10 100 A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 12/18 VND600 SO-16L THERMAL DATA SO-16L PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2). Rthj-amb Vs PCB copper area in open box free air condition 70 RTH j-amb (°C/W) 65 60 55 50 45 40 0 1 2 3 4 5 6 7 PCB Cu heatsink area (cm^2) 13/18 VND600 SO-16L Thermal Impedance Junction Ambient Single Pulse ZT H (°C/W) 1000 100 Footprint 6 cm2 10 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 T ime (s) Thermal fitting model of a double channel HSD in SO-16L 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj_1 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd1 Tj_2 C1 C2 R1 R2 Pd2 T_amb 14/18 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) Footprint 0.05 0.3 2.2 12 15 37 0.001 5.00E-03 0.02 0.3 1 3 6 22 5 VND600 SO-16L MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 2.65 0.104 0.1 0.2 b 0.35 0.49 0.014 b1 0.23 0.32 0.009 a2 0.004 0.008 2.45 C MAX. 0.096 0.5 0.019 0.012 0.020 c1 45° (typ.) D 10.1 E 10.0 10.5 0.397 10.65 0.393 0.413 0.419 e 1.27 0.050 e3 8.89 0.350 F 7.4 7.6 0.291 0.300 L 0.5 1.27 0.020 0.050 M S 0.75 0.029 8° (max.) 15/18 VND600 SO-16L TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 50 1000 532 3.5 13.8 0.6 All dimensions are in mm. A TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 12 1.5 1.5 7.5 6.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 16/18 1 VND600 REVISION HISTORY Date Revision Description of Changes - Current and voltage convention update (page 2). - “Configuration diagram (top view) & suggested connections for unused and n.c. pins” insertion (page 2). July 2004 1 - 6cm2 Cu condition insertion in Thermal Data table (page 3). - VCC - OUTPUT DIODE section update (page 3). - PROTECTIONS note insertion (page 3). - Revision History table insertion (page 17). July 2004 2 - Disclaimers update (page 18). - Suggested connections for unused and n.c.pins” correction (page 2). 17/18 1 VND600 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 18/18