STMICROELECTRONICS VN920PEP-E

VN920PEP-E
SINGLE CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Figure 1. Package
TYPE
RDS(on)
IOUT
VCC
VN920PEP-E
15mΩ
30 A
36 V
CMOS COMPATIBLE INPUT
PROPORTIONAL LOAD CURRENT SENSE
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUTDOWN
■ CURRENT LIMITATION
■
■
PROTECTION AGAINST LOSS OF GROUND
AND LOSS VCC
■ VERY LOW STAND-BY POWER DISSIPATION
■ REVERSE BATTERY PROTECTION (*)
■ IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECTIVE
■
PowerSSO-24™
DESCRIPTION
The VN920PEP-E is a monolithic device designed
in STMicroelectronics VIPower M0-3 Technology,
intended for driving any kind of load with one side
connected to ground. Active VCC pin voltage
clamp protects the device against low energy
spikes (see ISO7637 transient compatibility table).
Active current limitation combined with thermal
shutdown and automatic restart protect the device
against overload. The device integrates an analog
current sense output which delivers a current
proportional to the load current. Device
automatically turns off in case of ground pin
disconnection.
Table 2. Order Codes
Package
PowerSSO-24
Tube
Tape and Reel
VN920PEP-E
VN920PEPTR-E
Note: (*) See application schematic at page 10
Rev. 5
March 2005
1/18
VN920PEP-E
Figure 2. Block Diagram
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
OUTPUT
LOGIC
INPUT
CURRENT LIMITER
VDS LIMITER
IOUT
CURRENT
SENSE
K
OVERTEMPERATURE
DETECTION
Table 3. Absolute Maximum Ratings
Symbol
VCC
Parameter
DC Supply Voltage
Value
Unit
41
V
- VCC
Reverse DC Supply Voltage
- 0.3
V
- IGND
DC Reverse Ground Pin Current
- 200
mA
Internally Limited
A
- 40
A
+/- 10
mA
-3
V
+15
V
- INPUT
4000
V
- CURRENT SENSE
2000
V
- OUTPUT
5000
V
- VCC
5000
V
(L=0.3mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC;
IL=45A)
462
mJ
Power Dissipation TC≤25°C
96
W
Internally limited
°C
IOUT
- IOUT
IIN
VCSENSE
DC Output Current
Reverse DC Output Current
DC Input Current
Current Sense Maximum Voltage
Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
VESD
Maximum Switching Energy
EMAX
Ptot
Tj
Junction Operating Temperature
Tc
Case Operating Temperature
- 40 to 150
°C
Storage Temperature
- 55 to 150
°C
TSTG
2/18
VN920PEP-E
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins
VCC
GND
NC
NC
INPUT
NC
CURRENT SENSE
NC
NC
NC
NC
VCC
1
2
3
4
5
6
24
23
22
21
20
19
7
8
9
10
11
12
18
17
16
15
14
13
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
TAB = VCC
Connection / Pin Current Sense
Floating
Through 1KΩ
To Ground
resistor
N.C.
X
Output
X
X
Input
X
Through 10KΩ
resistor
Figure 4. Current and Voltage Conventions
IS
VCC
VCC
VF
IOUT
OUTPUT
IIN
VOUT
INPUT
VIN
ISENSE
CURRENT SENSE
VSENSE
GND
IGND
Table 4. Thermal Data
Symbol
Rthj-case
Parameter
Thermal Resistance Junction-case
Rthj-amb
Thermal Resistance Junction-ambient
Max
Max
Value
1.3
55 (1)
Unit
°C/W
40 (2)
°C/W
Note: (1) When mounted on a standard single-sided FR-4 board with 0.5cm 2 of Cu (at least 35µm thick).
Note: (2) When mounted on a standard single-sided FR-4 board with 8cm 2 of Cu (at least 35µm thick).
3/18
VN920PEP-E
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
Table 5. Power
Symbol
Parameter
VCC
Min.
Typ.
Max.
Unit
Operating Supply Voltage
5.5
13
36
V
VUSD
Undervoltage Shut-down
3
4
5.5
V
VOV
Overvoltage Shut-down
36
RON
Vclamp
IS
On State Resistance
Clamp Voltage
Supply Current
Test Conditions
V
IOUT=10A; Tj =25°C
15
mΩ
IOUT=10A
30
mΩ
IOUT=3A; VCC=6V
50
mΩ
48
55
V
10
25
µA
10
20
µA
5
mA
50
µA
5
µA
3
µA
Max.
Unit
ICC=20mA (See note 1)
41
Off State; VCC=13V; VIN=VOUT=0V
Off State; VCC=13V; Tj=25°C;
VIN=VOUT=0V
On State; VCC=13V; VIN=5V; IOUT=0;
RSENSE=3.9KΩ
IL(off1)
Off State Output Current
VIN=VOUT=VSENSE=0V
IL(off3)
Off State Output Current
VIN=VOUT=VSENSE=0V;
VCC=13V;Tj=125°C
IL(off4)
Off State Output Current
0
VIN=VOUT=VSENSE=0V; VCC=13V;
Tj=25°C
Note: 1. Vclamp and VOV are correlated. Typical difference is 5V.
Table 6. Switching (VCC =13V)
Symbol
Parameter
Test Conditions
Min.
Typ.
td(on)
Turn-on Delay Time
RL=1.3Ω (see figure 2)
50
µs
td(off)
Turn-off Delay Time
RL=1.3Ω (see figure 2)
50
µs
dVOUT/
dt(on)
Turn-on Voltage Slope
RL=1.3Ω (see figure 2)
See
relative
diagram
V/µs
dVOUT/
dt(off)
Turn-off Voltage Slope
RL=1.3Ω (see figure 2)
See
relative
diagram
V/µs
Table 7. Logic Input
Symbol
Parameter
VIL
Input Low Level
IIL
Low Level Input Current
VIH
Input High Level
IIH
High Level Input Current
VI(hyst)
Input Hysteresis Voltage
VICL
4/18
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min.
Typ.
Max.
Unit
1.25
V
1
µA
3.25
V
VIN=3.25V
10
0.5
IIN=1mA
IIN=-1mA
6
µA
V
6.8
-0.7
8
V
V
VN920PEP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 8. Current Sense (9V≤VCC≤16V) (See figure 5)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
Parameter
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
Test Conditions
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...+150°C
Min
Typ
Max
3300
4400
6000
-10
+10
IOUT=10A; VSENSE=4V; Tj=-40°C
4200
4900
6000
Tj=25°C...150°C
4400
4900
5750
IOUT=10A; VSENSE=4V;
Tj=-40°C...+150°C
-8
+8
IOUT=30A; VSENSE=4V; Tj=-40°C
4200
4900
5500
Tj=25°C...150°C
4400
4900
5250
IOUT=30A; VSENSE=4V;
Tj=-40°C...+150°C
VCC=6...16V; IOUT=0A;VSENSE=0V;
Unit
%
%
-6
+6
%
0
10
µA
ISENSEO
Analog Sense Leakage
Current
Tj=-40°C...+150°C
VSENSE
Max Analog Sense Output
Voltage
VCC=5.5V; IOUT=5A; RSENSE=10KΩ
2
V
VCC>8V; IOUT=10A; RSENSE=10KΩ
4
V
Sense Voltage in
Overtemperature
conditions
VCC=13V; RSENSE=3.9KΩ
5.5
V
RVSENSEH
Analog sense output
impedance in
overtemperature
condition
VCC=13V; Tj>TTSD; Output Open
400
Ω
tDSENSE
Current sense delay
response
to 90% ISENSE (see note 2)
VSENSEH
500
µs
Note: 2. Current sense signal delay after positive input slope
Table 9. Protections (See note 3)
Symbol
Parameter
TTSD
Min.
Typ.
Max.
Unit
Shut-down Temperature
150
175
200
°C
TR
Reset Temperature
135
Thyst
Thermal Hysteresis
7
15
30
45
Ilim
Vdemag
VON
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Output Voltage Drop
Limitation
Test Conditions
VCC=13V
°C
5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
IOUT=1A; Tj=-40°C....+150°C
VCC-41
VCC-48
50
°C
75
A
75
A
VCC-55
V
mV
Note: 3. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration
and number of activation cycles.
5/18
VN920PEP-E
ELECTRICAL CHARACTERISTICS (continued)
Table 10. VCC - Output Diode
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT=5.3A; Tj=150°C
Min
Typ
Max
0.6
Figure 5. IOUT/ISENSE versus IOUT
IOUT/ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
min.Tj=-40°C
4000
3500
3000
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
IOUT (A)
Figure 6. Switching Characteristics (Resistive load RL=1.3Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
6/18
30
32
Unit
V
VN920PEP-E
Table 11. Truth Table
CONDITIONS
INPUT
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage
clamp
OUTPUT
SENSE
0
Nominal
L
L
H
H
L
L
0
H
L
VSENSEH
L
L
0
H
L
0
L
L
0
H
L
0
L
L
0
H
L
(Tj<TTSD) 0
H
L
(Tj>TTSD) VSENSEH
L
H
0
H
H
< Nominal
L
L
0
Figure 7. Switching time Waveforms
VOUTn
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VINn
td(on)
td(off)
t
7/18
VN920PEP-E
Table 12. Electrical Transient Requirements on VCC Pin
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
8/18
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
VN920PEP-E
Figure 8. Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
LOAD CURRENT
SENSE
OVERVOLTAGE
VOV
VCC
VCC > VUSD
VOVhyst
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
VSENSEH
RSENSE
9/18
VN920PEP-E
Figure 9. Application Schematic
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large
resistor or several devices have to share the same
resistor then the ST suggests to utilize Solution 2 (see
below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
10/18
RGND
DGND
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent
that, during battery voltage transient, the current exceeds
the Absolute Maximum Rating.
Safest configuration for unused INPUT pin is to leave it
unconnected, while unused SENSE pin has to be
connected to Ground pin.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating.
The same applies if the device will be subject to
transients on the VCC line that are greater than the ones
shown in the ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up
limit of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
VN920PEP-E
Figure 10. Off State Output Current
Figure 11. High Level Input Current
Iih (uA)
Il (off1) (µA)
5
4
4.5
3.5
Vin=3.25V
4
3
3.5
2.5
3
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
100
125
150
175
150
175
Tc (°C)
Tc (°C)
Figure 12. Input Clamp Voltage
Figure 14. Input High Level
Vicl (V)
Vih (V)
10
5
9.5
4.5
Iin=1mA
9
4
8.5
3.5
8
7.5
3
7
2.5
6.5
2
6
1.5
5.5
1
5
0.5
4.5
4
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
Tc (°C)
Figure 13. Input Low Level
Figure 15. Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.6
16
2.4
14
2.2
12
2
10
1.8
8
1.6
6
1.4
4
1.2
2
1
0
-50
-25
0
25
50
75
Tc (°C)
100
125
150
175
-50
-25
0
25
50
75
100
125
Tc (°C)
11/18
VN920PEP-E
Figure 16. Overvoltage Shutdown
Figure 19. ILIM Vs Tcase
Vov (V)
Ilim (A)
60
100
57
90
54
80
Vcc=13V
51
70
48
60
45
50
42
40
39
30
36
20
33
10
0
30
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
150
175
Tc (°C)
Tc (°C)
Figure 17. Turn-on Voltage Slope
Figure 20. Turn-off Voltage Slope
dVout/dt (on)(V/ms)
dVout/dt (off)(V/ms)
1.6
1
0.9
1.4
Vcc=13V
Rl=1.3Ohm
0.8
Vcc=13V
Rl=1.3Ohm
1.2
0.7
1
0.6
0.8
0.5
0.4
0.6
0.3
0.4
0.2
0.2
0.1
0
0
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
Ron (mOhm)
60
54
Vcc=13V
Iout=10A
42
36
30
24
18
12
6
0
-50
-25
0
25
50
75
Tc (°C)
12/18
-25
0
25
50
75
Tc (°C)
Figure 18. On State Resistance Vs Tcase
48
-50
100
125
150
175
100
125
VN920PEP-E
PowerSSO-24 Thermal Data
Figure 21. PowerSSO-24 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 78mm x 78mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8cm2).
Figure 22. Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb(°C/W)
60
55
50
45
40
35
30
0
1
2
3
4
5
6
7
8
9
PCB Cu heatsink area (cm^2)
13/18
VN920PEP-E
Figure 23. Maximum turn off current versus load inductance
ILMAX (A)
100
A
B
C
10
1
0.01
0.1
1
10
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, Tjstart (at beginning of
each demagnetization) of every pulse must not
exceed the temperature specified above for
curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/18
VN920PEP-E
Figure 24. PowerSSO-24 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
100
Footprint
8 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
10
100
1000
Time (s)
Figure 25. Thermal Fitting Model of a Single
Channel HSD in PowerSSO-24
Pulse Calculation Formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Table 13. Thermal Parameter
Area/island (cm2)
R1(°C/W)
R2(°C/W)
R3( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1(W.s/°C)
C2(W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
Footprint
0.012
0.05
0.65
4
13.5
37
0.0004
0.005
0.022
0.08
0.7
3
8
22
5
15/18
VN920PEP-E
PACKAGE MECHANICAL
Table 14. PowerSSO-24™ Mechanical Data
Symbol
millimeters
Min
Max
A
2.15
2.47
A2
2.15
2.40
a1
0
0.075
b
0.33
0.51
c
0.23
0.32
D
10.10
10.50
E
7.4
7.6
e
0.8
e3
8.8
G
0.1
G1
0.06
H
10.1
h
L
10.5
0.4
0.55
N
0.85
10deg
X
4.1
4.7
Y
6.5
7.1
Figure 26. PowerSSO-24™ Package Dimensions
16/18
Typ
VN920PEP-E
REVISION HISTORY
Table 15. Revision History
Date
Revision
Description of Changes
Oct. 2004
1
- First Issue.
Nov. 2004
2
- Mechanical data updating.
- PowerSSO-24 Thermal Charact. insertion
Dec. 2004
3
- PC Board copper area correction.
Dec. 2004
4
- IL(off2) removal.
Mar. 2005
5
- Maximum Switching Energy value insertion.
- Maximum turn off current versus load inductance curve insertion.
- Minor changes.
17/18
VN920PEP-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
18/18