VN920PEP ® SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY TARGET SPECIFICATION TYPE VN920PEP RDS(on) 15mΩ IOUT 30 A VCC 36 V CMOS COMPATIBLE INPUT ■ PROPORTIONAL LOAD CURRENT SENSE ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ OVERVOLTAGE CLAMP ■ THERMAL SHUTDOWN ■ CURRENT LIMITATION ■ PowerSSO-24 ORDER CODES PACKAGE PowerSSO-24 PROTECTION AGAINST LOSS OF GROUND AND LOSS VCC ■ VERY LOW STAND-BY POWER DISSIPATION ■ REVERSE BATTERY PROTECTION (*) ■ DESCRIPTION The VN920PEP is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy TUBE VN920PEP T&R VN920PEP13TR spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown and automatic restart protect the device against overload. The device integrates an analog current sense output which delivers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection. BLOCK DIAGRAM VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER INPUT OUTPUT LOGIC CURRENT LIMITER VDS LIMITER IOUT K CURRENT SENSE OVERTEMPERATURE DETECTION (*) See application schematic at page 8 March 2004 - Revision 1.5 (Working document) This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice. 1/10 VN920PEP ABSOLUTE MAXIMUM RATING Symbol VCC - VCC - IGND IOUT - IOUT IIN VCSENSE Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Current Sense Maximum Voltage Value 41 - 0.3 - 200 Internally Limited - 40 +/- 10 -3 Unit V V mA A A mA V +15 V - INPUT 4000 V - CURRENT SENSE 2000 V - OUTPUT 5000 V 5000 96 Internally limited - 40 to 150 - 55 to 150 V W °C °C °C Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) VESD - VCC Ptot Tj Tc TSTG Power Dissipation TC≤25°C Junction Operating Temperature Case Operating Temperature Storage Temperature CONNECTION DIAGRAM (TOP VIEW) VCC GND NC NC INPUT NC CURRENT SENSE NC NC NC NC VCC 1 2 3 4 5 6 24 23 22 21 20 19 7 8 9 10 11 12 18 17 16 15 14 13 OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT TAB = VCC CURRENT AND VOLTAGE CONVENTIONS IS VCC VCC IOUT OUTPUT IIN VOUT INPUT VIN ISENSE CURRENT SENSE VSENSE GND IGND 2/10 VN920PEP THERMAL DATA Symbol Rthj-case Parameter Thermal Resistance Junction-case Rthj-amb Thermal Resistance Junction-ambient Max Max Value 1.3 Unit °C/W 60 (*) °C/W (*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at least 35µm thick). ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) POWER Symbol VCC VUSD VOV RON Vclamp IS IL(off1) IL(off2) IL(off3) IL(off4) Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance Test Conditions Min 5.5 3 36 Typ 13 4 IOUT=10A; Tj =25°C 15 Unit V V V mΩ IOUT=10A 30 mΩ 50 55 25 mΩ V µA 20 µA 5 mA 50 0 5 3 µA µA µA µA Typ 50 50 See relative diagram See relative diagram Max Unit µs µs Typ Max 1.25 Clamp Voltage IOUT=3A; VCC=6V ICC=20mA (See note 1) Off State; VCC=13V; VIN=VOUT=0V 48 10 Supply Current Off State; VCC=13V; Tj=25°C; VIN=VOUT=0V 10 41 On State; VCC=13V; VIN=5V; IOUT=0; RSENSE=3.9KΩ Off State Output Current Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=VSENSE=0V VIN=VSENSE=0V; VOUT=3.5V VIN=VOUT=VSENSE=0V; VCC=13V;Tj=125°C VIN=VOUT=VSENSE=0V; VCC=13V; Tj =25°C 0 -75 Test Conditions RL=1.3Ω (see figure 2) RL=1.3Ω (see figure 2) Min Max 36 5.5 SWITCHING (VCC=13V) Symbol td(on) td(off) Parameter Turn-on Delay Time Turn-off Delay Time dVOUT/dt(on) Turn-on Voltage Slope RL=1.3Ω (see figure 2) dVOUT/dt(off) Turn-off Voltage Slope RL=1.3Ω (see figure 2) V/µs V/µs LOGIC INPUT Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN=1.25V Min 1 3.25 VIN=3.25V IIN=1mA IIN=-1mA 10 0.5 6 6.8 -0.7 8 Unit V µA V µA V V V Note 1: Vclamp and VOV are correlated. Typical difference is 5V. 3/10 1 VN920PEP ELECTRICAL CHARACTERISTICS (continued) CURRENT SENSE (9V≤VCC≤16V) (See Fig. 1) Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 ISENSEO VSENSE VSENSEH RVSENSEH tDSENSE Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Analog Sense Leakage Current Test Conditions IOUT=1A; VSENSE=0.5V; Tj= -40°C...150°C IOUT=1A; VSENSE=0.5V; Tj= -40°C...+150°C IOUT=10A; VSENSE=4V; Tj=-40°C Tj=25°C...150°C IOUT=10A; VSENSE=4V; Tj=-40°C...+150°C IOUT=30A; VSENSE=4V; Tj=-40°C Tj=25°C...150°C IOUT=30A; VSENSE=4V; Tj=-40°C...+150°C VCC=6...16V; IOUT=0A;VSENSE=0V; Tj=-40°C...+150°C Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ Voltage VCC>8V; IOUT=10A; RSENSE=10KΩ Sense Voltage in Overtemperature VCC=13V; RSENSE=3.9KΩ conditions Analog sense output impedance in VCC=13V; Tj>TTSD; Output Open overtemperature condition Current sense delay to 90% I SENSE (see note 2) response Min Typ Max 3300 4400 6000 -10 +10 4200 4900 6000 4400 4900 5750 -8 +8 4200 4900 5500 4400 4900 5250 Unit % % -6 +6 % 0 10 µA 2 V 4 V 5.5 V 400 Ω 500 µs Typ 175 Max 200 15 45 75 Unit °C °C °C A 75 A PROTECTIONS Symbol TTSD TR Thyst Ilim Vdemag VON Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis DC Short Circuit Current Turn-off Output Clamp Voltage Output Voltage Drop Limitation Test Conditions VCC=13V Min 150 135 7 30 5V<VCC<36V IOUT=2A; VIN=0V; L=6mH VCC-41 VCC-48 VCC-55 V 50 mV IOUT=1A; Tj=-40°C....+150°C VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=5.5A; Tj=150°C Note 2: current sense signal delay after positive input slope Note: Sense pin doesn’t have to be left floating. 4/10 2 Min Typ Max 0.7 Unit V VN920PEP Figure 1: IOUT/I SENSE versus IOUT IOUT/I SENSE 6500 6000 max.Tj=-40°C 5500 max.Tj=25...150°C 5000 typical value min.Tj=25...150°C 4500 min.Tj=-40°C 4000 3500 3000 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 IOUT (A) Figure 2: Switching Characteristics (Resistive load RL=1.3Ω) VOUT 90% 80% dVOUT/dt(off) dVOUT /dt(on) tr 10% tf t ISENSE 90% INPUT t tDSENSE td(on) td(off) t 5/10 VN920PEP TRUTH TABLE CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage Short circuit to GND Short circuit to VCC Negative output voltage clamp INPUT OUTPUT SENSE L L H L H L 0 Nominal H L L L VSENSEH 0 H L L L 0 0 H L L L 0 0 H L (Tj<TTSD) 0 H L L H (Tj>TTSD) VSENSEH 0 H L H L 0 < Nominal 0 ELECTRICAL TRANSIENT REQUIREMENTS ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E 6/10 I II TEST LEVELS III IV -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V I C C C C C C TEST LEVELS RESULTS II III C C C C C C C C C C E E Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. VN920PEP Figure 3: Waveforms NORMAL OPERATION INPUT LOAD CURRENT SENSE UNDERVOLTAGE VCC VUSDhyst VUSD INPUT LOAD CURRENT SENSE OVERVOLTAGE VOV VCC VCC > VUSD VOVhyst INPUT LOAD CURRENT SENSE SHORT TO GROUND INPUT LOAD CURRENT LOAD VOLTAGE SENSE SHORT TO VCC INPUT LOAD VOLTAGE LOAD CURRENT SENSE <Nominal <Nominal OVERTEMPERATURE Tj TTSD TR INPUT LOAD CURRENT SENSE ISENSE= VSENSEH RSENSE 7/10 VN920PEP APPLICATION SCHEMATIC +5V VCC Rprot INPUT Dld µC Rprot OUTPUT CURRENT SENSE RSENSE GND VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. RGND DGND This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot ) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 8/10 1 1 VN920PEP mm. DIM. MIN. A2 1.9 a1 0 b 0.34 c 0.23 D 10.2 E 7.4 e H L 0.4 0.46 0.32 10.4 7.6 8.8 10.1 PR EL h 0.07 IM G1 2.15 0.8 e3 G MAX. 2.22 A 1.9 IN A TYP RY PowerSSO-24™ MECHANICAL DATA 0.55 N 0.1 0.06 10.5 0.4 0.85 10º X 3.9 4.3 Y 6.1 6.5 9/10 VN920PEP Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 10/10