STMICROELECTRONICS VN920PEP13TR

VN920PEP
®
SINGLE CHANNEL HIGH SIDE SOLID STATE RELAY
TARGET SPECIFICATION
TYPE
VN920PEP
RDS(on)
15mΩ
IOUT
30 A
VCC
36 V
CMOS COMPATIBLE INPUT
■ PROPORTIONAL LOAD CURRENT SENSE
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUTDOWN
■ CURRENT LIMITATION
■
PowerSSO-24
ORDER CODES
PACKAGE
PowerSSO-24
PROTECTION AGAINST LOSS OF GROUND
AND LOSS VCC
■ VERY LOW STAND-BY POWER DISSIPATION
■ REVERSE BATTERY PROTECTION (*)
■
DESCRIPTION
The VN920PEP is a monolithic device designed in
STMicroelectronics VIPower M0-3 Technology,
intended for driving any kind of load with one side
connected to ground. Active VCC pin voltage
clamp protects the device against low energy
TUBE
VN920PEP
T&R
VN920PEP13TR
spikes (see ISO7637 transient compatibility
table). Active current limitation combined with
thermal shutdown and automatic restart protect
the device against overload. The device
integrates an analog current sense output which
delivers a current proportional to the load current.
Device automatically turns off in case of ground
pin disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
VDS LIMITER
IOUT
K
CURRENT
SENSE
OVERTEMPERATURE
DETECTION
(*) See application schematic at page 8
March 2004 - Revision 1.5 (Working document)
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.
1/10
VN920PEP
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
VCSENSE
Parameter
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
Current Sense Maximum Voltage
Value
41
- 0.3
- 200
Internally Limited
- 40
+/- 10
-3
Unit
V
V
mA
A
A
mA
V
+15
V
- INPUT
4000
V
- CURRENT SENSE
2000
V
- OUTPUT
5000
V
5000
96
Internally limited
- 40 to 150
- 55 to 150
V
W
°C
°C
°C
Electrostatic Discharge (Human Body Model: R=1.5KΩ;
C=100pF)
VESD
- VCC
Ptot
Tj
Tc
TSTG
Power Dissipation TC≤25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
CONNECTION DIAGRAM (TOP VIEW)
VCC
GND
NC
NC
INPUT
NC
CURRENT SENSE
NC
NC
NC
NC
VCC
1
2
3
4
5
6
24
23
22
21
20
19
7
8
9
10
11
12
18
17
16
15
14
13
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
TAB = VCC
CURRENT AND VOLTAGE CONVENTIONS
IS
VCC
VCC
IOUT
OUTPUT
IIN
VOUT
INPUT
VIN
ISENSE
CURRENT SENSE
VSENSE
GND
IGND
2/10
VN920PEP
THERMAL DATA
Symbol
Rthj-case
Parameter
Thermal Resistance Junction-case
Rthj-amb
Thermal Resistance Junction-ambient
Max
Max
Value
1.3
Unit
°C/W
60 (*)
°C/W
(*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at least 35µm thick).
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
Vclamp
IS
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Overvoltage Shut-down
On State Resistance
Test Conditions
Min
5.5
3
36
Typ
13
4
IOUT=10A; Tj =25°C
15
Unit
V
V
V
mΩ
IOUT=10A
30
mΩ
50
55
25
mΩ
V
µA
20
µA
5
mA
50
0
5
3
µA
µA
µA
µA
Typ
50
50
See
relative
diagram
See
relative
diagram
Max
Unit
µs
µs
Typ
Max
1.25
Clamp Voltage
IOUT=3A; VCC=6V
ICC=20mA (See note 1)
Off State; VCC=13V; VIN=VOUT=0V
48
10
Supply Current
Off State; VCC=13V; Tj=25°C; VIN=VOUT=0V
10
41
On State; VCC=13V; VIN=5V; IOUT=0;
RSENSE=3.9KΩ
Off State Output Current
Off State Output Current
Off State Output Current
Off State Output Current
VIN=VOUT=VSENSE=0V
VIN=VSENSE=0V; VOUT=3.5V
VIN=VOUT=VSENSE=0V; VCC=13V;Tj=125°C
VIN=VOUT=VSENSE=0V; VCC=13V; Tj =25°C
0
-75
Test Conditions
RL=1.3Ω (see figure 2)
RL=1.3Ω (see figure 2)
Min
Max
36
5.5
SWITCHING (VCC=13V)
Symbol
td(on)
td(off)
Parameter
Turn-on Delay Time
Turn-off Delay Time
dVOUT/dt(on) Turn-on Voltage Slope
RL=1.3Ω (see figure 2)
dVOUT/dt(off) Turn-off Voltage Slope
RL=1.3Ω (see figure 2)
V/µs
V/µs
LOGIC INPUT
Symbol
VIL
IIL
VIH
IIH
VI(hyst)
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
Test Conditions
VIN=1.25V
Min
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
10
0.5
6
6.8
-0.7
8
Unit
V
µA
V
µA
V
V
V
Note 1: Vclamp and VOV are correlated. Typical difference is 5V.
3/10
1
VN920PEP
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE (9V≤VCC≤16V) (See Fig. 1)
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
ISENSEO
VSENSE
VSENSEH
RVSENSEH
tDSENSE
Parameter
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
IOUT/ISENSE
Current Sense Ratio Drift
Analog Sense Leakage
Current
Test Conditions
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...150°C
IOUT=1A; VSENSE=0.5V;
Tj= -40°C...+150°C
IOUT=10A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=10A; VSENSE=4V;
Tj=-40°C...+150°C
IOUT=30A; VSENSE=4V; Tj=-40°C
Tj=25°C...150°C
IOUT=30A; VSENSE=4V;
Tj=-40°C...+150°C
VCC=6...16V; IOUT=0A;VSENSE=0V;
Tj=-40°C...+150°C
Max Analog Sense Output VCC=5.5V; IOUT=5A; RSENSE=10KΩ
Voltage
VCC>8V; IOUT=10A; RSENSE=10KΩ
Sense Voltage in
Overtemperature
VCC=13V; RSENSE=3.9KΩ
conditions
Analog sense output
impedance in
VCC=13V; Tj>TTSD; Output Open
overtemperature condition
Current sense delay
to 90% I SENSE (see note 2)
response
Min
Typ
Max
3300
4400
6000
-10
+10
4200
4900
6000
4400
4900
5750
-8
+8
4200
4900
5500
4400
4900
5250
Unit
%
%
-6
+6
%
0
10
µA
2
V
4
V
5.5
V
400
Ω
500
µs
Typ
175
Max
200
15
45
75
Unit
°C
°C
°C
A
75
A
PROTECTIONS
Symbol
TTSD
TR
Thyst
Ilim
Vdemag
VON
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Output Voltage Drop
Limitation
Test Conditions
VCC=13V
Min
150
135
7
30
5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
VCC-41 VCC-48 VCC-55
V
50
mV
IOUT=1A; Tj=-40°C....+150°C
VCC - OUTPUT DIODE
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT=5.5A; Tj=150°C
Note 2: current sense signal delay after positive input slope
Note: Sense pin doesn’t have to be left floating.
4/10
2
Min
Typ
Max
0.7
Unit
V
VN920PEP
Figure 1: IOUT/I SENSE versus IOUT
IOUT/I SENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
min.Tj=-40°C
4000
3500
3000
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
IOUT (A)
Figure 2: Switching Characteristics (Resistive load RL=1.3Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT /dt(on)
tr
10%
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
5/10
VN920PEP
TRUTH TABLE
CONDITIONS
Normal operation
Overtemperature
Undervoltage
Overvoltage
Short circuit to GND
Short circuit to VCC
Negative output voltage clamp
INPUT
OUTPUT
SENSE
L
L
H
L
H
L
0
Nominal
H
L
L
L
VSENSEH
0
H
L
L
L
0
0
H
L
L
L
0
0
H
L
(Tj<TTSD) 0
H
L
L
H
(Tj>TTSD) VSENSEH
0
H
L
H
L
0
< Nominal
0
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
6/10
I
II
TEST LEVELS
III
IV
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
I
C
C
C
C
C
C
TEST LEVELS RESULTS
II
III
C
C
C
C
C
C
C
C
C
C
E
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
IV
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
VN920PEP
Figure 3: Waveforms
NORMAL OPERATION
INPUT
LOAD CURRENT
SENSE
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUT
LOAD CURRENT
SENSE
OVERVOLTAGE
VOV
VCC
VCC > VUSD
VOVhyst
INPUT
LOAD CURRENT
SENSE
SHORT TO GROUND
INPUT
LOAD CURRENT
LOAD VOLTAGE
SENSE
SHORT TO VCC
INPUT
LOAD VOLTAGE
LOAD CURRENT
SENSE
<Nominal
<Nominal
OVERTEMPERATURE
Tj
TTSD
TR
INPUT
LOAD CURRENT
SENSE
ISENSE=
VSENSEH
RSENSE
7/10
VN920PEP
APPLICATION SCHEMATIC
+5V
VCC
Rprot
INPUT
Dld
µC
Rprot
OUTPUT
CURRENT SENSE
RSENSE
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on how many devices are ON in the case of
several high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT line is also required to prevent
that, during battery voltage transient, the current exceeds
the Absolute Maximum Rating.
Safest configuration for unused INPUT pin is to leave it
unconnected, while unused SENSE pin has to be
connected to Ground pin.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot )
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
8/10
1
1
VN920PEP
mm.
DIM.
MIN.
A2
1.9
a1
0
b
0.34
c
0.23
D
10.2
E
7.4
e
H
L
0.4
0.46
0.32
10.4
7.6
8.8
10.1
PR
EL
h
0.07
IM
G1
2.15
0.8
e3
G
MAX.
2.22
A
1.9
IN
A
TYP
RY
PowerSSO-24™ MECHANICAL DATA
0.55
N
0.1
0.06
10.5
0.4
0.85
10º
X
3.9
4.3
Y
6.1
6.5
9/10
VN920PEP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners
 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com
10/10