PIC32MX5XX/6XX/7XX Family Data Sheet High-Performance, USB, CAN and Ethernet 32-Bit Flash Microcontrollers 2010 Microchip Technology Inc. Preliminary DS61156C Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-037-9 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS61156C-page 2 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX High-Performance, USB, CAN and Ethernet 32-Bit Flash Microcontrollers High-Performance 32-Bit RISC CPU: Peripheral Features (Continued): • MIPS32® M4K™ 32-bit core with 5-stage pipeline • 80 MHz maximum frequency • 1.56 DMIPS/MHz (Dhrystone 2.1) performance at zero Wait state Flash access • Single-cycle multiply and high-performance divide unit • MIPS16e™ mode for up to 40% smaller code size • Two sets of 32 core register files (32-bit) to reduce interrupt latency • Prefetch Cache module to speed execution from Flash • Internal 8 MHz and 32 kHz oscillators • Six UART modules with: - RS-232, RS-485 and LIN 1.2 support - IrDA® with on-chip hardware encoder and decoder • Up to four SPI modules • Up to five I2C™ modules • Separate PLLs for CPU and USB clocks • Parallel Master and Slave Port (PMP/PSP) with 8-bit and 16-bit data, and up to 16 address lines • Hardware Real-Time Clock/Calendar (RTCC) • Five 16-bit Timers/Counters (two 16-bit pairs combine to create two 32-bit timers) • Five Capture inputs • Five Compare/PWM outputs • Five external interrupt pins • High-speed I/O pins capable of toggling at up to 80 MHz • High-current sink/source (18 mA/18 mA) on all I/O pins • Configurable open-drain output on digital I/O pins Microcontroller Features: • Operating voltage range of 2.3V to 3.6V • 256K to 512K Flash memory (plus an additional 12 KB of Boot Flash) • 64K to 128K SRAM memory • Pin-compatible with most PIC24/dsPIC® devices • Multiple power management modes • Multiple interrupt vectors with individually programmable priority • Fail-Safe Clock Monitor mode • Configurable Watchdog Timer with on-chip Low-Power RC oscillator for reliable operation Peripheral Features: • Atomic Set, Clear and Invert operation on select peripheral registers • 8-channel hardware DMA with automatic data size detection • USB 2.0-compliant full-speed device and On-The-Go (OTG) controller: - Dedicated DMA channels • 10/100 Mbps Ethernet MAC with MII and RMII interface: - Dedicated DMA channels • CAN module: - 2.0B Active with DeviceNet™ addressing support - Dedicated DMA channels • 3 MHz to 25 MHz crystal oscillator 2010 Microchip Technology Inc. Debug Features: • Two programming and debugging Interfaces: - 2-wire interface with unintrusive access and real-time data exchange with application - 4-wire MIPS® standard enhanced JTAG interface • Unintrusive hardware-based instruction trace • IEEE Standard 1149.2 compatible (JTAG) boundary scan Analog Features: • Up to 16-channel, 10-bit Analog-to-Digital Converter: - 1 Msps conversion rate - Conversion available during Sleep and Idle • Two Analog Comparators • 5V tolerant input pins (digital pins only) Preliminary DS61156C-page 3 PIC32MX5XX/6XX/7XX Pins Program Memory (KB) Data Memory (KB) USB Ethernet CAN Timers/Capture/Compare DMA Channels (Programmable/ Dedicated) UART(2,3) SPI(3) I2C™(3) 10-Bit 1 Msps ADC (Channels) Comparators PMP/PSP JTAG Trace Packages(4) PIC32MX FEATURES Device TABLE 1: PIC32MX575F256H 64 256 + 12(1) 64 1 0 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX675F256H 64 256 + 12(1) 64 1 1 0 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX775F256H 64 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX575F512H 64 512 + 12(1) 64 1 0 1 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX675F512H 64 512 + 12(1) 64 1 1 0 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX695F512H 64 512 + 12(1) 128 1 1 0 5/5/5 8/4 6 3 4 16 2 Yes Yes No PT, MR PIC32MX775F512H 64 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX795F512H 64 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 3 4 16 2 Yes Yes No PT, MR PIC32MX575F256L 100 256 + 12(1) 64 1 0 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX675F256L 100 256 + 12(1) 64 1 1 0 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX775F256L 100 256 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX575F512L 100 512 + 12(1) 64 1 0 1 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX675F512L 100 512 + 12(1) 64 1 1 0 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX695F512L 100 128 1 1 0 5/5/5 8/4 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX775F512L 100 512 + 12(1) 64 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG PIC32MX795F512L 100 512 + 12(1) 128 1 1 2 5/5/5 8/8 6 4 5 16 2 Yes Yes Yes PT, PF, BG Legend: Note 1: 2: 3: 4: 512 + 12(1) PF, PT = TQFP MR = QFN BG = XBGA This device features 12 KB boot Flash memory. CTS and RTS pins may not be available for all UART modules. Refer to the “Pin Diagrams” section for more information. Some pins between the UART, SPI and I2C modules may be shared. Refer to the “Pin Diagrams” section for more information. Refer to Section 32.0 “Packaging Information” for detailed information. DS61156C-page 4 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams 64-Pin QFN C1TX/RF1 C1RX/RF0 VDD VCAP/VDDCORE CN16/RD7 CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL1A/SDO1A/U1ATX/OC4/RD3 SDA1A/SDI1A/U1ARX/OC3/RD2 SCK1A/U1BTX/U1ARTS/OC2/RD1 PMD4/RE4 PMD3/RE3 PMD2/RE2 PMD1/RE1 PMD0/RE0 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PMD5/RE5 PMD6/RE6 PMD7/RE7 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 MCLR SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC32MX575F256H PIC32MX575F512H 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 IC4/PMCS1/PMA14/INT4/RD11 SCL1/IC3/PMCS2/PMA15/INT3/RD10 SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 RTCC/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS3A/U3BRX/U3ACTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AC1RX/SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. 2010 Microchip Technology Inc. Preliminary DS61156C-page 5 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin QFN ETXEN/PMD5/RE5 1 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 2 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 4 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 5 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 6 MCLR 7 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 8 SDA1A/SDI1A/U1ARX/OC3/RD2 EMDIO/AEMDIO/SCK1A/U1BTX/U1ARTS/OC2/RD1 SCL1A/SDO1A/U1ATX/OC4/RD3 OC5/IC5/PMWR/CN13/RD4 PMRD/CN14/RD5 AETXEN/ETXERR/CN15/RD6 ETXCLK/AERXERR/CN16/RD7 VDD VCAP/VDDCORE AETXD0/ERXD2/RF1 AETXD1/ERXD3/RF0 ERXD1/PMD0/RE0 ERXD0/PMD1/RE1 ERXDV/ECRSDV/PMD2/RE2 ERXCLK/EREFCLK/PMD3/RE3 ERXERR/PMD4/RE4 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 3 VSS 9 VDD 10 AN5/C1IN+/VBUSON/CN7/RB5 11 AN4/C1IN-/CN6/RB4 12 AN3/C2IN+/CN5/RB3 13 AN2/C2IN-/CN4/RB2 14 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 15 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 16 PIC32MX675F256H PIC32MX675F512H PIC32MX695F512H SOSCO/T1CK/CN0/RC14 47 SOSCI/CN1/RC13 46 OC1/INT0/RD0 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 43 AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 41 Vss 40 OSC2/CLKO/RC15 39 OSC1/CLKI/RC12 38 VDD 37 D+/RG2 36 D-/RG3 35 VUSB 34 VBUS 33 USBID/RF3 Note: SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AN14/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 TDI/AN13/PMA10/RB13 VDD TCK/AN12/PMA11/RB12 VSS TDO/AN11/PMA12/RB11 TMS/AN10/CVREFOUT/PMA13/RB10 AN9/C2OUT/PMA7/RB9 AN8/SS3A/U3BRX/U3ACTS/C1OUT/RB8 AVSS AVDD PGED2/AN7/RB7 PGEC2/AN6/OCFA/RB6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS61156C-page 6 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin QFN ETXEN/PMD5/RE5 1 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 2 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 4 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 5 6 MCLR 7 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 8 VSS 9 VDD 10 AN5/C1IN+/VBUSON/CN7/RB5 11 AN4/C1IN-/CN6/RB4 12 AN3/C2IN+/CN5/RB3 13 AN2/C2IN-/CN4/RB2 14 Note: EMDIO/AEMDIO/SCK1A/U1BTX/U1ARTS/OC2/RD1 SDA1A/SDI1A/U1ARX/OC3/RD2 SCL1A/SDO1A/U1ATX/OC4/RD3 OC5/IC5/PMWR/CN13/RD4 PMRD/CN14/RD5 AETXEN/ETXERR/CN15/RD6 ETXCLK/AERXERR/CN16/RD7 VCAP/VDDCORE VDD C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 ERXD1/PMD0/RE0 ERXD0/PMD1/RE1 PIC32MX775F256H PIC32MX775F512H PIC32MX795F512H SOSCO/T1CK/CN0/RC14 47 SOSCI/CN1/RC13 46 OC1/INT0/RD0 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 43 AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 41 Vss 40 OSC2/CLKO/RC15 39 OSC1/CLKI/RC12 USBID/RF3 AC1RX/SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 AC1TX/SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AN14/C2RX/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 TDI/AN13/PMA10/RB13 TCK/AN12/PMA11/RB12 VDD VSS TDO/AN11/PMA12/RB11 VBUS TMS/AN10/CVREFOUT/PMA13/RB10 VUSB 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 AN9/C2OUT/PMA7/RB9 D-/RG3 35 AN8/C2TX/SS3A/U3BRX/U3ACTS/C1OUT/RB8 36 AVSS D+/RG2 AVDD VDD 37 PGED2/AN7/RB7 38 PGEC2/AN6/OCFA/RB6 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 ERXDV/ECRSDV/PMD2/RE2 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 3 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 ERXCLK/EREFCLKPMD3/RE3 ERXERR/PMD4/RE4 = Pins are up to 5V tolerant The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. 2010 Microchip Technology Inc. Preliminary DS61156C-page 7 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) = Pins are up to 5V tolerant C1TX/RF1 C1RX/RF0 VDD VCAP/VDDCORE CN16/RD7 CN15/RD6 PMRD/CN14/RD5 OC5/IC5/PMWR/CN13/RD4 SCL1A/SDO1A/U1ATX/OC4/RD3 SDA1A/SDI1A/U1ARX/OC3/RD2 SCK1A/U1BTX/U1ARTS/OC2/RD1 PMD4/RE4 PMD3/RE3 PMD2/RE2 PMD1/RE1 PMD0/RE0 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PMD5/RE5 PMD6/RE6 PMD7/RE7 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 MCLR SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 VSS VDD AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC32MX575F256H PIC32MX575F512H 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 OC1/INT0/RD0 IC4/PMCS1/PMA14/INT4/RD11 SCL1/IC3/PMCS2/PMA15/INT3/RD10 SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 RTCC/IC1/INT1/RD8 Vss OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD D+/RG2 D-/RG3 VUSB VBUS USBID/RF3 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 AVDD AVSS AN8/SS3A/U3BRX/U3ACTS/C1OUT/RB8 AN9/C2OUT/PMA7/RB9 TMS/AN10/CVREFOUT/PMA13/RB10 TDO/AN11/PMA12/RB11 VSS VDD TCK/AN12/PMA11/RB12 TDI/AN13/PMA10/RB13 AN14/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 AC1TX/SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AC1RX/SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DS61156C-page 8 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin TQFP EMDIO/AEMDIO/SCK1A/U1BTX/U1ARTS/OC2/RD1 SDA1A/SDI1A/U1ARX/OC3/RD2 SCL1A/SDO1A/U1ATX/OC4/RD3 OC5/IC5/PMWR/CN13/RD4 PMRD/CN14/RD5 AETXEN/ETXERR/CN15/RD6 ETXCLK/AERXERR/CN16/RD7 VCAP/VDDCORE VDD AETXD0/ERXD2/RF1 AETXD1/ERXD3/RF0 ERXD1/PMD0/RE0 ERXD0/PMD1/RE1 ERXDV/ECRSDV/PMD2/RE2 ERXCLK/EREFCLK/PMD3/RE3 ERXERR/PMD4/RE4 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ETXEN/PMD5/RE5 1 ETXD0/PMD6/RE6 ETXD1/PMD7/RE7 2 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 4 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 5 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 6 MCLR 7 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 8 3 VSS 9 VDD 10 AN5/C1IN+/VBUSON/CN7/RB5 11 AN4/C1IN-/CN6/RB4 12 AN3/C2IN+/CN5/RB3 13 AN2/C2IN-/CN4/RB2 14 PGEC1/AN1/VREF-/CVREF-/CN3/RB1 15 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 16 PIC32MX675F256H PIC32MX675F512H PIC32MX695F512H 48 SOSCO/T1CK/CN0/RC14 47 SOSCI/CN1/RC13 46 OC1/INT0/RD0 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 43 AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 41 Vss 40 OSC2/CLKO/RC15 39 OSC1/CLKI/RC12 38 VDD 37 D+/RG2 36 D-/RG3 35 VUSB 34 VBUS 33 USBID/RF3 2010 Microchip Technology Inc. Preliminary SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AN14/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 TDI/AN13/PMA10/RB13 TCK/AN12/PMA11/RB12 VDD VSS TDO/AN11/PMA12/RB11 TMS/AN10/CVREFOUT/PMA13/RB10 AN9/C2OUT/PMA7/RB9 AN8/SS3A/U3BRX/U3ACTS/C1OUT/RB8 AVSS AVDD PGED2/AN7/RB7 PGEC2/AN6/OCFA/RB6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 DS61156C-page 9 PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 64-Pin TQFP EMDIO/AEMDIO/SCK1A/U1BTX/U1ARTS/OC2/RD1 SDA1A/SDI1A/U1ARX/OC3/RD2 SCL1A/SDO1A/U1ATX/OC4/RD3 OC5/IC5/PMWR/CN13/RD4 PMRD/CN14/RD5 AETXEN/ETXERR/CN15/RD6 ETXCLK/AERXERR/CN16/RD7 VDD VCAP/VDDCORE C1TX/AETXD0/ERXD2/RF1 C1RX/AETXD1/ERXD3/RF0 ERXD1/PMD0/RE0 ERXD0/PMD1/RE1 ERXDV/ECRSDV/PMD2/RE2 ERXCLK/EREFCLK/PMD3/RE3 ERXERR/PMD4/RE4 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ETXEN/PMD5/RE5 1 48 SOSCO/T1CK/CN0/RC14 ETXD0/PMD6/RE6 2 47 SOSCI/CN1/RC13 ETXD1/PMD7/RE7 3 46 OC1/INT0/RD0 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 4 45 ECRS/AEREFCLK/IC4/PMCS1/PMA14/INT4/RD11 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 5 44 ECOL/AECRSDV/SCL1/IC3/PMCS2/PMA15/INT3/RD10 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 6 43 AERXD0/ETXD2/SS1A/U1BRX/U1ACTS/SDA1/IC2/INT2/RD9 MCLR 7 42 RTCC/AERXD1/ETXD3/IC1/INT1/RD8 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 8 VSS 9 PIC32MX775F256H PIC32MX775F512H PIC32MX795F512H 41 Vss 40 OSC2/CLKO/RC15 VDD 10 39 OSC1/CLKI/RC12 AN5/C1IN+/VBUSON/CN7/RB5 11 38 VDD AN4/C1IN-/CN6/RB4 12 37 D+/RG2 AN3/C2IN+/CN5/RB3 13 36 D-/RG3 AN2/C2IN-/CN4/RB2 14 35 VUSB PGEC1/AN1/VREF-/CVREF-/CN3/RB1 15 34 VBUS 16 33 USBID/RF3 PGED1/AN0/VREF+/CVREF+/PMA6/CN2/RB0 DS61156C-page 10 Preliminary AC1TX/SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 AC1RX/SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 AN15/EMDC/AEMDC/OCFB/PMALL/PMA0/CN12/RB15 AN14/C2RX/SCK3A/U3BTX/U3ARTS/PMALH/PMA1/RB14 TDI/AN13/PMA10/RB13 VDD TCK/AN12/PMA11/RB12 VSS TDO/AN11/PMA12/RB11 TMS/AN10/CVREFOUT/PMA13/RB10 AN9/C2OUT/PMA7/RB9 AN8/C2TX/SS3A/U3BRX/U3ACTS/C1OUT/RB8 AVSS AVDD PGED2/AN7/RB7 PGEC2/AN6/OCFA/RB6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) = Pins are up to 5V tolerant 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 PMD8/RG0 PMD9/RG1 C1TX/PMD10/RF1 C1RX/PMD11/RF0 VDD VCAP/VDDCORE PMD15/CN16/RD7 PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 PMD13/CN19/RD13 IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP RG15 1 75 VSS VDD 2 74 SOSCO/T1CK/CN0/RC14 PMD5/RE5 3 73 SOSCI/CN1/RC13 PMD6/RE6 4 72 SDO1/OC1/INT0/RD0 PMD7/RE7 5 71 IC4/PMCS1/PMA14/RD11 T2CK/RC1 6 70 SCK1/IC3/PMCS2/PMA15/RD10 T3CK/RC2 7 69 SS1/IC2/RD9 T4CK/RC3 8 68 RTCC/IC1/RD8 T5CK/SDI1/RC4 9 67 SDA1/INT4/RA15 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 10 66 SCL1/INT3/RA14 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 11 65 VSS SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 12 64 OSC2/CLKO/RC15 63 OSC1/CLKI/RC12 62 VDD 61 TDO/RA5 MCLR 13 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 14 VSS 15 VDD 16 60 TDI/RA4 TMS/RA0 17 59 SDA2/RA3 INT1/RE8 18 58 SCL2/RA2 INT2/RE9 19 57 D+/RG2 AN5/C1IN+/VBUSON/CN7/RB5 20 56 D-/RG3 AN4/C1IN-/CN6/RB4 21 55 VUSB AN3/C2IN+/CN5/RB3 22 54 VBUS AN2/C2IN-/CN4/RB2 23 53 SCL1A/SDO1A/U1ATX/RF8 PGEC1/AN1/CN3/RB1 24 52 SDA1A/SDI1A/U1ARX/RF2 PGED1/AN0/CN2/RB0 25 51 USBID/RF3 2010 Microchip Technology Inc. Preliminary SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/PMA7/RA9 VREF+/CVREF+/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/PMA12/RB11 VSS VDD TCK/RA1 AC1TX/SCK3A/U3BTX/U3ARTS/RF13 AC1RX/SS3A/U3BRX/U3ACTS/RF12 AN12/PMA11/RB12 AN13/PMA10/RB13 AN14/PMALH/PMA1/RB14 AN15/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD SS1A/U1BRX/U1ACTS/CN20/RD14 SCK1A/U1BTX/U1ARTS/CN21/RD15 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PIC32MX575F512L PIC32MX575F256L DS61156C-page 11 PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 PMD8/RG0 ETXERR/PMD9/RG1 ETXD0/PMD10/RF1 ETXD1/PMD11/RF0 VDD VCAP/VDDCORE ETXCLK/PMD15/CN16/RD7 ETXEN/PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 ETXD3/PMD13/CN19/RD13 ETXD2/IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 PIC32MX675F256L PIC32MX675F512L PIC32MX695F512L 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 = Pins are up to 5V tolerant 2010 Microchip Technology Inc. PGED2/AN7/RB7 VREF-/CVREF-/AERXD2/PMA7/RA9 VREF+/CVREF+/AERXD3/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/ERXERR/AETXERR/PMA12/RB11 VSS VDD TCK/RA1 SCK3A/U3BTX/U3ARTS/RF13 SS3A/U3BRX/U3ACTS/RF12 AN12/ERXD0/AECRS/PMA11/RB12 AN13/ERXD1/AECOL/PMA10/RB13 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14 AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 Preliminary AERXERR/RG15 VDD PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/RC2 T4CK/RC3 T5CK/SDI1/RC4 ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 MCLR ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 AERXD0/INT1/RE8 AERXD1/INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 100-Pin TQFP VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/EMDIO/AEMDIO/IC1/RD8 AETXEN/SDA1/INT4/RA15 AETXCLK/SCL1/INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKI/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 D+/RG2 D-/RG3 VUSB VBUS SCL1A/SDO1A/U1ATX/RF8 SDA1A/SDI1A/U1ARX/RF2 USBID/RF3 PIC32MX5XX/6XX/7XX DS61156C-page 12 Pin Diagrams (Continued) PMD4/RE4 PMD3/RE3 PMD2/RE2 TRD0/RG13 TRD1/RG12 TRD2/RG14 PMD1/RE1 PMD0/RE0 TRD3/RA7 TRCLK/RA6 C2RX/PMD8/RG0 C2TX/ETXERR/PMD9/RG1 C1TX/ETXD0/PMD10/RF1 C1RX/ETXD1/PMD11/RF0 VDD VCAP/VDDCORE ETXCLK/PMD15/CN16/RD7 ETXEN/PMD14/CN15/RD6 PMRD/CN14/RD5 OC5/PMWR/CN13/RD4 ETXD3/PMD13/CN19/RD13 ETXD2/IC5/PMD12/RD12 OC4/RD3 OC3/RD2 OC2/RD1 PMD5/RE5 PMD6/RE6 PMD7/RE7 T2CK/RC1 T3CK/AC2TX/RC2 T4CK/AC2RX/RC3 T5CK/SDI1/RC4 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 MCLR ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 VSS VDD TMS/RA0 AERXD0/INT1/RE8 AERXD1/INT2/RE9 AN5/C1IN+/VBUSON/CN7/RB5 AN4/C1IN-/CN6/RB4 AN3/C2IN+/CN5/RB3 AN2/C2IN-/CN4/RB2 PGEC1/AN1/CN3/RB1 PGED1/AN0/CN2/RB0 19 20 21 22 23 24 25 73 72 71 70 69 PIC32MX775F256L PIC32MX775F512L PIC32MX795F512L 68 67 66 65 64 VSS SOSCO/T1CK/CN0/RC14 SOSCI/CN1/RC13 SDO1/OC1/INT0/RD0 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 SCK1/IC3/PMCS2/PMA15/RD10 SS1/IC2/RD9 RTCC/EMDIO/AEMDIO/IC1/RD8 AETXEN/SDA1/INT4/RA15 AETXCLK/SCL1/INT3/RA14 VSS 63 OSC2/CLKO/RC15 OSC1/CLKI/RC12 62 VDD 61 TDO/RA5 TDI/RA4 60 59 58 SDA2/RA3 SCL2/RA2 57 D+/RG2 56 55 D-/RG3 VUSB 54 53 VBUS SCL1A/SDO1A/U1ATX/RF8 52 SDA1A/SDI1A/U1ARX/RF2 51 USBID/RF3 DS61156C-page 13 PIC32MX5XX/6XX/7XX Preliminary ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 75 74 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VDD PGEC2/AN6/OCFA/RB6 PGED2/AN7/RB7 VREF-/CVREF-/AERXD2/PMA7/RA9 VREF+/CVREF+/AERXD3/PMA6/RA10 AVDD AVSS AN8/C1OUT/RB8 AN9/C2OUT/RB9 AN10/CVREFOUT/PMA13/RB10 AN11/ERXERR/AETXERR/PMA12/RB11 VSS VDD TCK/RA1 AC1TX/SCK3A/U3BTX/U3ARTS/RF13 AC1RX/SS3A/U3BRX/U3ACTS/RF12 AN12/ERXD0/AECRS/PMA11/RB12 AN13/ERXD1/AECOL/PMA10/RB13 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 VSS VDD AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14 AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15 AERXERR/RG15 = Pins are up to 5V tolerant SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 100-Pin TQFP 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 2010 Microchip Technology Inc. Pin Diagrams (Continued) PIC32MX5XX/6XX/7XX Pin Diagrams (Continued) 121-Pin XBGA(1) = Pins are up to 5V tolerant PIC32MX575F256L PIC32MX675F256L PIC32MX775F256L PIC32MX575F512L PIC32MX675F512L PIC32MX695F512L PIC32MX775F512L PIC32MX795F512L A B C D E F G H J K L 1 2 3 4 5 6 7 8 9 10 11 RE4 RE3 RG13 RE0 RG0 RF1 VDD VSS RD12 RD2 RD1 NC RG15 RE2 RE1 RA7 RF0 VCAP/ VDDCORE RD5 RD3 VSS RC14 RE6 VDD RG12 RG14 RA6 NC RD7 RD4 VDD RC13 RD11 RC1 RE7 RE5 VSS VSS NC RD6 RD13 RD0 NC RD10 RC4 RC3 RG6 RC2 VDD RG1 VSS RA15 RD8 RD9 RA14 MCLR RG8 RG9 RG7 VSS NC NC VDD RC12 VSS RC15 RE8 RE9 RA0 NC VDD VSS VSS NC RA5 RA3 RA4 RB5 RB4 VSS VDD NC VDD NC VBUS VUSB RG2 RA2 RB3 RB2 RB7 AVDD RB11 RA1 RB12 NC NC RF8 RG3 RB1 RB0 RA10 RB8 NC RF12 RB14 VDD RD15 RF3 RF2 RB6 RA9 AVSS RB9 RB10 RF13 RB13 RB15 RD14 RF4 RF5 Note 1: Refer to Table 2, Table 3 and Table 4 for full pin names. DS61156C-page 14 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 2: PIN NAMES: PIC32MX575F256L AND PIC32MX575F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 SCL1/INT3/RA14 A5 PMD8/RG0 F1 MCLR A6 C1TX/PMD10/RF1 F2 SCL2A/SDO2A/U2ATX/PMA3/CN10/RG8 A7 VDD F3 SS2A/U2BRX/U2ACTS/PMA2/CN11/RG9 A8 VSS F4 SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 A9 IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 INT1/RE8 B6 C1RX/PMD11/RF0 G2 INT2/RE9 B7 VCAP/VDDCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) C2 VDD G9 TDO/RA5 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) VBUS D1 T2CK/RC1 H8 D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 SCL2/RA2 D4 VSS H11 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 PMD13/CN19/RD13 J4 AVDD D9 SDO1/OC1/INT0/RD0 J5 AN11/PMA12/RB11 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/RC3 J9 No Connect (NC) E3 SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 J10 SCL1A/SDO1A/U1ATX/RF8 E4 T3CK/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/PMA6/RA10 2010 Microchip Technology Inc. Preliminary DS61156C-page 15 PIC32MX5XX/6XX/7XX TABLE 2: PIN NAMES: PIC32MX575F256L AND PIC32MX575F512L DEVICES (CONTINUED) Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 AVSS K5 No Connect (NC) L4 AN9/C2OUT/RB9 K6 AC1RX/SS3A/U3BRX/U3ACTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/PMALH/PMA1/RB14 L6 AC1TX/SCK3A/U3BTX/U3ARTS/RF13 K8 VDD L7 AN13/PMA10/RB13 K9 SCK1A/U1BTX/U1ARTS/CN21/RD15 L8 AN15/OCFB/PMALL/PMA0/CN12/RB15 SS1A/U1BRX/U1ACTS/CN20/RD14 K10 USBID/RF3 L9 K11 SDA1A/SDI1A/U1ARX/RF2 L10 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 L2 VREF-/CVREF-/PMA7/RA9 DS61156C-page 16 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 3: PIN NAMES: PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 AETXEN/SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 AETXCLK/SCL1/INT3/RA14 A5 PMD8/RG0 F1 MCLR A6 ETXD0/PMD10/RF1 F2 ERXDV/AERXDV/ECRSDV/AECRSDV//SCL2A/SDO2A/ U2ATX/PMA3/CN10/RG8 A7 VDD F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK//SS2A/U2BRX/ U2ACTS/PMA2/CN11/RG9 ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 A8 VSS F4 A9 ETXD2/IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 AERXERR/RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 AERXD0/INT1/RE8 B6 ETXD1/PMD11/RF0 G2 AERXD1/INT2/RE9 B7 VCAP/VDDCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) C2 VDD G9 TDO/RA5 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 ETXCLK/PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD C9 VDD H5 No Connect (NC) C10 SOSCI/CN1/RC13 H6 VDD C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) D1 T2CK/RC1 H8 VBUS D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 D4 VSS H11 SCL2/RA2 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 ETXEN/PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 ETXD3/PMD13/CN19/RD13 J4 AVDD D9 SDO1/OC1/INT0/RD0 J5 AN11/ERXERR/AETXERR/PMA12/RB11 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/ERXD0/AECRS/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/RC3 J9 No Connect (NC) E3 ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 J10 SCL1A/SDO1A/U1ATX/RF8 E4 T3CK/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 EXTERR/PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/AERXD3/PMA6/RA10 2010 Microchip Technology Inc. Preliminary DS61156C-page 17 PIC32MX5XX/6XX/7XX TABLE 3: PIN NAMES: PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 AVSS K5 No Connect (NC) L4 AN9/C2OUT/RB9 K6 SS3A/U3BRX/U3ACTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 L6 SCK3A/U3BTX/U3ARTS/RF13 K8 VDD L7 AN13/ERXD1/AECOL/PMA10/RB13 K9 AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K10 USBID/RF3 L9 AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14 K11 SDA1A/SDI1A/U1ARX/RF2 L10 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 L2 VREF-/CVREF-/AERXD2/PMA7/RA9 DS61156C-page 18 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 4: PIN NAMES: PIC32MX775F256L, PIC32MX775F512L, PIC32MX795F512L AND DEVICES Pin Number Full Pin Name Pin Number Full Pin Name A1 PMD4/RE4 E8 AETXEN/SDA1/INT4/RA15 A2 PMD3/RE3 E9 RTCC/EMDIO/AEMDIO/IC1/RD8 A3 TRD0/RG13 E10 SS1/IC2/RD9 A4 PMD0/RE0 E11 AETXCLK/SCL1/INT3/RA14 A5 C2RX/PMD8/RG0 F1 MCLR A6 C1TX/ETXD0/PMD10/RF1 F2 ERXDV/AERXDV/ECRSDV/AECRSDV/SCL2A/SDO2A/ U2ATX/PMA3/CN10/RG8 A7 VDD F3 ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2A/U2BRX/ U2ACTS/PMA2/CN11/RG9 A8 VSS F4 ECRS/SDA2A/SDI2A/U2ARX/PMA4/CN9/RG7 A9 ETXD2/IC5/PMD12/RD12 F5 VSS A10 OC3/RD2 F6 No Connect (NC) A11 OC2/RD1 F7 No Connect (NC) B1 No Connect (NC) F8 VDD B2 AERXERR/RG15 F9 OSC1/CLKI/RC12 B3 PMD2/RE2 F10 VSS B4 PMD1/RE1 F11 OSC2/CLKO/RC15 B5 TRD3/RA7 G1 AERXD0/INT1/RE8 B6 C1RX/ETXD1/PMD11/RF0 G2 AERXD1/INT2/RE9 B7 VCAP/VDDCORE G3 TMS/RA0 B8 PMRD/CN14/RD5 G4 No Connect (NC) B9 OC4/RD3 G5 VDD B10 VSS G6 VSS B11 SOSCO/T1CK/CN0/RC14 G7 VSS C1 PMD6/RE6 G8 No Connect (NC) TDO/RA5 C2 VDD G9 C3 TRD1/RG12 G10 SDA2/RA3 C4 TRD2/RG14 G11 TDI/RA4 C5 TRCLK/RA6 H1 AN5/C1IN+/VBUSON/CN7/RB5 C6 No Connect (NC) H2 AN4/C1IN-/CN6/RB4 C7 ETXCLK/PMD15/CN16/RD7 H3 VSS C8 OC5/PMWR/CN13/RD4 H4 VDD No Connect (NC) C9 VDD H5 C10 SOSCI/CN1/RC13 H6 VDD C11 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11 H7 No Connect (NC) VBUS D1 T2CK/RC1 H8 D2 PMD7/RE7 H9 VUSB D3 PMD5/RE5 H10 D+/RG2 SCL2/RA2 D4 VSS H11 D5 VSS J1 AN3/C2IN+/CN5/RB3 D6 No Connect (NC) J2 AN2/C2IN-/CN4/RB2 D7 ETXEN/PMD14/CN15/RD6 J3 PGED2/AN7/RB7 D8 ETXD3/PMD13/CN19/RD13 J4 AVDD D9 SDO1/OC1/INT0/RD0 J5 AN11/ERXERR/AETXERR/PMA12/RB11 D10 No Connect (NC) J6 TCK/RA1 D11 SCK1/IC3/PMCS2/PMA15/RD10 J7 AN12/ERXD0/AECRS/PMA11/RB12 E1 T5CK/SDI1/RC4 J8 No Connect (NC) E2 T4CK/AC2RX/RC3 J9 No Connect (NC) E3 ECOL/SCK2A/U2BTX/U2ARTS/PMA5/CN8/RG6 J10 SCL1A/SDO1A/U1ATX/RF8 E4 T3CK/AC2TX/RC2 J11 D-/RG3 E5 VDD K1 PGEC1/AN1/CN3/RB1 E6 C2TX/EXTERR/PMD9/RG1 K2 PGED1/AN0/CN2/RB0 E7 VSS K3 VREF+/CVREF+/AERXD3/PMA6/RA10 2010 Microchip Technology Inc. Preliminary DS61156C-page 19 PIC32MX5XX/6XX/7XX TABLE 4: PIN NAMES: PIC32MX775F256L, PIC32MX775F512L, PIC32MX795F512L AND DEVICES Pin Number Full Pin Name Pin Number Full Pin Name K4 AN8/C1OUT/RB8 L3 AVSS K5 No Connect (NC) L4 AN9/C2OUT/RB9 K6 AC1RX/SS3A/U3BRX/U3ACTS/RF12 L5 AN10/CVREFOUT/PMA13/RB10 K7 AN14/ERXD2/AETXD3/PMALH/PMA1/RB14 L6 AC1TX/SCK3A/U3BTX/U3ARTS/RF13 K8 VDD L7 AN13/ERXD1/AECOL/PMA10/RB13 K9 AETXD1/SCK1A/U1BTX/U1ARTS/CN21/RD15 L8 AN15/ERXD3/AETXD2/OCFB/PMALL/PMA0/CN12/RB15 K10 USBID/RF3 L9 AETXD0/SS1A/U1BRX/U1ACTS/CN20/RD14 K11 SDA1A/SDI1A/U1ARX/RF2 L10 SDA3A/SDI3A/U3ARX/PMA9/CN17/RF4 L1 PGEC2/AN6/OCFA/RB6 L11 SCL3A/SDO3A/U3ATX/PMA8/CN18/RF5 L2 VREF-/CVREF-/AERXD2/PMA7/RA9 DS61156C-page 20 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Table of Contents 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 Device Overview ........................................................................................................................................................................ 23 Guidelines for Getting Started with 32-Bit Microcontrollers........................................................................................................ 35 PIC32MX MCU........................................................................................................................................................................... 39 Memory Organization ................................................................................................................................................................. 45 Flash Program Memory............................................................................................................................................................ 105 Resets ...................................................................................................................................................................................... 107 Interrupt Controller ................................................................................................................................................................... 109 Oscillator Configuration ............................................................................................................................................................ 113 Prefetch Cache......................................................................................................................................................................... 115 Direct Memory Access (DMA) Controller ................................................................................................................................ 117 USB On-The-Go (OTG)............................................................................................................................................................ 119 I/O Ports ................................................................................................................................................................................... 121 Timer1 ...................................................................................................................................................................................... 123 Timer2/3, Timer4/5 ................................................................................................................................................................... 125 Input Capture............................................................................................................................................................................ 127 Output Compare....................................................................................................................................................................... 129 Serial Peripheral Interface (SPI)............................................................................................................................................... 131 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 133 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 135 Parallel Master Port (PMP) ...................................................................................................................................................... 137 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 139 10-Bit Analog-to-Digital Converter (ADC)................................................................................................................................. 141 Controller Area Network (CAN) ................................................................................................................................................ 143 Ethernet Controller ................................................................................................................................................................... 145 Comparator .............................................................................................................................................................................. 147 Comparator Voltage Reference (CVref) ................................................................................................................................... 149 Power-Saving Features ........................................................................................................................................................... 151 Special Features ...................................................................................................................................................................... 153 Instruction Set .......................................................................................................................................................................... 165 Development Support............................................................................................................................................................... 167 Electrical Characteristics .......................................................................................................................................................... 171 Packaging Information.............................................................................................................................................................. 213 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at [email protected] or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. 2010 Microchip Technology Inc. Preliminary DS61156C-page 21 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 22 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 1.0 DEVICE OVERVIEW This document contains device-specific information for PIC32MX5XX/6XX/7XX devices. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Figure 1-1 shows a general block diagram of the core and peripheral modules in the PIC32MX5XX/6XX/7XX family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. BLOCK DIAGRAM(1,2) FIGURE 1-1: OSC2/CLKO OSC1/CLKI VCAP/VDDCORE OSC/SOSC Oscillators Power-up Timer FRC/LPRC Oscillators Voltage Regulator PLL Oscillator Start-up Timer PLL-USB Watchdog Timer USBCLK SYSCLK PBCLK Timing Generation Brown-out Reset Peripheral Bus Clocked by SYSCLK CN1-22 PORTA PORTC IS 32 DS 32 32 32 32 32 32 32 32 PORTD Bus Matrix 32 32 IC1-5 SPI1,1A,2A,3A I2C1,2,1A, 2A,3A 32 PORTE Prefetch Module PWM OC1-5 Peripheral Bus Clocked by PBCLK USB MIPS32® M4K™ CPU Core ICD INT PORTB DMAC EJTAG Timer1-5 ETHERNET Priority Interrupt Controller CAN1, CAN2 JTAG BSCAN MCLR Power-on Reset Precision Band Gap Reference Dividers VDD, VSS 32 Data RAM Peripheral Bridge PMP 10-Bit ADC PORTF 128-Bit Wide Program Flash Memory PORTG Flash Controller 128 UART1A,1B,2A, 2B,3A,3B RTCC Comparators Note 1: 2: Some features are not available on all device variants. BOR functionality is provided when the on-board voltage regulator is enabled. 2010 Microchip Technology Inc. Preliminary DS61156C-page 23 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type AN0 16 25 K2 I Analog AN1 15 24 K1 I Analog AN2 14 23 J2 I Analog AN3 13 22 J1 I Analog AN4 12 21 H2 I Analog AN5 11 20 H1 I Analog AN6 17 26 L1 I Analog AN7 18 27 J3 I Analog AN8 21 32 K4 I Analog AN9 22 33 L4 I Analog AN10 23 34 L5 I Analog AN11 24 35 J5 I Analog AN12 27 41 J7 I Analog AN13 28 42 L7 I Analog AN14 29 43 K7 I Analog AN15 30 44 L8 I Analog CLKI 39 63 F9 I CLKO 40 64 F11 O OSC1 39 63 F9 I OSC2 40 64 F11 I/O SOSCI 47 73 C10 I SOSCO 48 74 B11 O Description Analog input channels. ST/CMOS External clock source input. Always associated with OSC1 pin function. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. — 32.768 kHz low-power oscillator crystal output. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156C-page 24 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 121-Pin XBGA Pin Type Buffer Type 64-Pin QFN/TQFP 100-Pin TQFP CN0 48 74 B11 I ST CN1 47 73 C10 I ST CN2 16 25 K2 I ST CN3 15 24 K1 I ST CN4 14 23 J2 I ST CN5 13 22 J1 I ST CN6 12 21 H2 I ST CN7 11 20 H1 I ST CN8 4 10 E3 I ST CN9 5 11 F4 I ST CN10 6 12 F2 I ST CN11 8 14 F3 I ST CN12 30 44 L8 I ST CN13 52 81 C8 I ST CN14 53 82 B8 I ST CN15 54 83 D7 I ST CN16 55 84 C7 I ST CN17 31 49 L10 I ST CN18 32 50 L11 I ST CN19 — 80 D8 I ST CN20 — 47 L9 I ST CN21 — 48 K9 I ST IC1 42 68 E9 I ST IC2 43 69 E10 I ST IC3 44 70 D11 I ST IC4 45 71 C11 I ST Description Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. Capture Inputs 1-5. IC5 52 79 A9 I ST OCFA 17 26 L1 I ST Output Compare Fault A input. OC1 46 72 D9 O — Output Compare Output 1. OC2 49 76 A11 O — Output Compare Output 2 OC3 50 77 A10 O — Output Compare Output 3. OC4 51 78 B9 O — Output Compare Output 4. OC5 52 81 C8 O — Output Compare Output 5. OCFB 30 44 L8 I ST Output Compare Fault B input. INT0 46 72 D9 I ST External Interrupt 0. INT1 42 18 G1 I ST External Interrupt 1. INT2 43 19 G2 I ST External Interrupt 2. INT3 44 66 E11 I ST External Interrupt 3. INT4 45 67 E8 I ST External Interrupt 4. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 25 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type RA0 — 17 G3 I/O ST RA1 — 38 J6 I/O ST RA2 — 58 H11 I/O ST RA3 — 59 G10 I/O ST RA4 — 60 G11 I/O ST RA5 — 61 G9 I/O ST RA6 — 91 C5 I/O ST RA7 — 92 B5 I/O ST RA9 — 28 L2 I/O ST RA10 — 29 K3 I/O ST RA14 — 66 E11 I/O ST RA15 — 67 E8 I/O ST RB0 16 25 K2 I/O ST RB1 15 24 K1 I/O ST RB2 14 23 J2 I/O ST RB3 13 22 J1 I/O ST RB4 12 21 H2 I/O ST RB5 11 20 H1 I/O ST RB6 17 26 L1 I/O ST RB7 18 27 J3 I/O ST RB8 21 32 K4 I/O ST RB9 22 33 L4 I/O ST RB10 23 34 L5 I/O ST RB11 24 35 J5 I/O ST RB12 27 41 J7 I/O ST RB13 28 42 L7 I/O ST RB14 29 43 K7 I/O ST RB15 30 44 L8 I/O ST RC1 — 6 D1 I/O ST RC2 — 7 E4 I/O ST RC3 — 8 E2 I/O ST RC4 — 9 E1 I/O ST RC12 39 63 F9 I/O ST RC13 47 73 C10 I/O ST RC14 48 74 B11 I/O ST RC15 40 64 F11 I/O ST Description PORTA is a bidirectional I/O port. PORTB is a bidirectional I/O port. PORTC is a bidirectional I/O port. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156C-page 26 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 121-Pin XBGA Pin Type Buffer Type 64-Pin QFN/TQFP 100-Pin TQFP RD0 46 72 D9 I/O ST RD1 49 76 A11 I/O ST RD2 50 77 A10 I/O ST RD3 51 78 B9 I/O ST RD4 52 81 C8 I/O ST RD5 53 82 B8 I/O ST RD6 54 83 D7 I/O ST RD7 55 84 C7 I/O ST RD8 42 68 E9 I/O ST RD9 43 69 E10 I/O ST RD10 44 70 D11 I/O ST RD11 45 71 C11 I/O ST RD12 — 79 A9 I/O ST RD13 — 80 D8 I/O ST RD14 — 47 L9 I/O ST RD15 — 48 K9 I/O ST RE0 60 93 A4 I/O ST RE1 61 94 B4 I/O ST RE2 62 98 B3 I/O ST RE3 63 99 A2 I/O ST RE4 64 100 A1 I/O ST RE5 1 3 D3 I/O ST RE6 2 4 C1 I/O ST RE7 3 5 D2 I/O ST RE8 — 18 G1 I/O ST RE9 — 19 G2 I/O ST RF0 58 87 B6 I/O ST RF1 59 88 A6 I/O ST RF2 — 52 K11 I/O ST RF3 33 51 K10 I/O ST RF4 31 49 L10 I/O ST RF5 32 50 L11 I/O ST RF8 — 53 J10 I/O ST RF12 — 40 K6 I/O ST RF13 — 39 L6 I/O ST Description PORTD is a bidirectional I/O port. PORTE is a bidirectional I/O port. PORTF is a bidirectional I/O port. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 27 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type Description RG0 — 90 A5 I/O ST RG1 — 89 E6 I/O ST PORTG is a bidirectional I/O port. RG6 4 10 E3 I/O ST RG7 5 11 F4 I/O ST RG8 6 12 F2 I/O ST RG9 8 14 F3 I/O ST RG12 — 96 C3 I/O ST RG13 — 97 A3 I/O ST RG14 — 95 C4 I/O ST RG15 — 1 B2 I/O ST RG2 37 57 H10 I ST RG3 36 56 J11 I ST T1CK 48 74 B11 I ST Timer1 external clock input. T2CK — 6 D1 I ST Timer2 external clock input. T3CK — 7 E4 I ST Timer3 external clock input. T4CK — 8 E2 I ST Timer4 external clock input. PORTG input pins. T5CK — 9 E1 I ST Timer5 external clock input. U1ACTS 43 47 L9 I ST UART1A clear to send. U1ARTS 49 48 K9 O — UART1A ready to send. U1ARX 50 52 K11 I ST UART1A receive. U1ATX 51 53 J10 O — UART1A transmit. U2ACTS 8 14 F3 I ST UART2A clear to send. U2ARTS 4 10 E3 O — UART2A ready to send. U2ARX 5 11 F4 I ST UART2A receive. U2ATX 6 12 F2 O — UART2A transmit. U3ACTS 21 40 K6 I ST UART3A clear to send. U3ARTS 29 39 L6 O — UART3A ready to send. U3ARX 31 49 L10 I ST UART3A receive. U3ATX 32 50 L11 O — UART3A transmit. U1BRX 43 47 L9 I ST UART1B receive. U1BTX 49 48 K9 O — UART1B transmit. ST UART2B receive. U2BRX 8 14 F3 I U2BTX 4 10 E3 O — UART2B transmit. U3BRX 21 40 K6 I ST UART3B receive. U3BTX 29 39 L6 O — UART3B transmit. SCK1 — 70 D11 I/O ST Synchronous serial clock input/output for SPI1. SDI1 — 9 E1 I ST SPI1 data in. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156C-page 28 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 121-Pin XBGA Pin Type Buffer Type Description 64-Pin QFN/TQFP 100-Pin TQFP SDO1 — 72 D9 O — SPI1 data out. SS1 — 69 E10 I/O ST SPI1 slave synchronization or frame pulse I/O. SCK1A 49 48 K9 I/O ST Synchronous serial clock input/output for SPI1A. SDI1A 50 52 K11 I ST SPI1A data in. SDO1A 51 53 J10 O — SPI1A data out. SS1A 43 47 L9 I/O ST SPI1A slave synchronization or frame pulse I/O. SCK2A 4 10 E3 I/O ST Synchronous serial clock input/output for SPI2A. SDI2A 5 11 F4 I ST SPI2A data in. SDO2A 6 12 F2 O — SPI2A data out. SS2A 8 14 F3 I/O ST SPI2A slave synchronization or frame pulse I/O. SCK3A 29 39 L6 I/O ST Synchronous serial clock input/output for SPI3A. SDI3A 31 49 L10 I ST SPI3A data in. SDO3A 32 50 L11 O — SPI3A data out. SS3A 21 40 K6 I/O ST SPI3A slave synchronization or frame pulse I/O. SCL1 44 66 E11 I/O ST Synchronous serial clock input/output for I2C1. SDA1 43 67 E8 I/O ST Synchronous serial data input/output for I2C1. SCL1A 51 53 J10 I/O ST Synchronous serial clock input/output for I2C1A. SDA1A 50 52 K11 I/O ST Synchronous serial data input/output for I2C1A. SCL2 — 58 H11 I/O ST Synchronous serial clock input/output for I2C2. SDA2 — 59 G10 I/O ST Synchronous serial data input/output for I2C2. SCL2A 6 12 F2 I/O ST Synchronous serial clock input/output for I2C2A. SDA2A 5 11 F4 I/O ST Synchronous serial data input/output for I2C2A. SCL3A 32 50 L11 I/O ST Synchronous serial clock input/output for I2C3A. SDA3A 31 49 L10 I/O ST Synchronous serial data input/output for I2C3A. TMS 23 17 G3 I ST JTAG Test mode select pin. TCK 27 38 J6 I ST JTAG test clock input pin. TDI 28 60 G11 I ST JTAG test data input pin. TDO 24 61 G9 O — JTAG test data output pin. RTCC 42 68 E9 O — Real-Time Clock alarm output. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 29 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA Pin Type Buffer Type Description CVREF- 15 28 L2 I Analog Comparator Voltage Reference (low). CVREF+ 16 29 K3 I Analog Comparator Voltage Reference (high). CVREFOUT 23 34 L5 O Analog Comparator Voltage Reference output. C1IN- 12 21 H2 I Analog Comparator 1 negative input. C1IN+ 11 20 H1 I Analog C1OUT 21 32 K4 O — Comparator 1 positive input. Comparator 1 output. C2IN- 14 23 J2 I Analog Comparator 2 negative input. C2IN+ 13 22 J1 I Analog Comparator 2 positive input. C2OUT 22 33 L4 O — PMA0 — 44 L8 I/O TTL/ST Parallel Master Port Address Bit 0 input (Buffered Slave modes) and output (Master modes). PMA1 — 43 K7 I/O TTL/ST Parallel Master Port Address Bit 1 input (Buffered Slave modes) and output (Master modes). Parallel Master Port address (Demultiplexed Master modes). PMA2 8 14 F3 O — PMA3 6 12 F2 O — PMA4 5 11 F4 O — PMA5 4 10 E3 O — PMA6 16 29 K3 O — PMA7 22 28 L2 O — PMA8 32 50 L11 O — PMA9 31 49 L10 O — PMA10 28 42 L7 O — PMA11 27 41 J7 O — PMA12 24 35 J5 O — PMA13 23 34 L5 O — PMA14 45 71 C11 O — Comparator 2 output. PMA15 44 70 D11 O — PMCS1 45 71 C11 O — Parallel Master Port Chip Select 1 strobe. PMCS2 44 70 D11 O — Parallel Master Port Chip Select 2 strobe. Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156C-page 30 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name Pin Type Buffer Type 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA PMD0 60 93 A4 I/O TTL/ST PMD1 61 94 B4 I/O TTL/ST PMD2 62 98 B3 I/O TTL/ST PMD3 63 99 A2 I/O TTL/ST PMD4 64 100 A1 I/O TTL/ST PMD5 1 3 D3 I/O TTL/ST PMD6 2 4 C1 I/O TTL/ST PMD7 3 5 D2 I/O TTL/ST PMD8 — 90 A5 I/O TTL/ST PMD9 — 89 E6 I/O TTL/ST PMD10 — 88 A6 I/O TTL/ST PMD11 — 87 B6 I/O TTL/ST Description Parallel Master Port data (Demultiplexed Master mode) or address/data (Multiplexed Master modes). PMD12 — 79 A9 I/O TTL/ST PMD13 — 80 D8 I/O TTL/ST PMD14 — 83 D7 I/O TTL/ST PMD15 — 84 C7 I/O TTL/ST PMALL 30 44 L8 O — Parallel Master Port address latch enable low byte (Multiplexed Master modes). PMALH 29 43 K7 O — Parallel Master Port address latch enable high byte (Multiplexed Master modes). PMRD 53 82 B8 O — Parallel Master Port read strobe. PMWR 52 81 C8 O — Parallel Master Port write strobe. VBUS 34 54 H8 I Analog VUSB 35 55 H9 P — USB internal transceiver supply. VBUSON 11 20 H1 O — USB Host and OTG bus power control output. D+ 37 57 H10 I/O Analog USB D+. D- 36 56 J11 I/O Analog USB D-. USBID 33 51 K10 I ST USB OTG ID detect. C1RX 58 87 B6 I ST CAN1 bus receive pin. C1TX 59 88 A6 O — CAN1 bus transmit pin. AC1RX 32 40 K6 I ST Alternate CAN1 bus receive pin. USB bus power monitor. AC1TX 31 39 L6 O — Alternate CAN1 bus transmit pin. C2RX 29 90 A5 I ST CAN2 bus receive pin. C2TX 21 89 E6 O — CAN2 bus transmit pin. AC2RX — 8 E2 1 ST Alternate CAN2 bus receive pin. AC2TX — 7 E4 O — Alternate CAN2 bus transmit pin. ERXD0 61 41 J7 I ST Ethernet Receive Data 0.(2) ERXD1 60 42 L7 I ST Ethernet Receive Data 1.(2) ERXD2 59 43 K7 I ST Ethernet Receive Data 2.(2) Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 31 PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Type Buffer Type L8 I ST Ethernet Receive Data 3.(2) 35 J5 I ST Ethernet receive error input.(2) 62 12 F2 I ST Ethernet receive data valid.(2) ECRSDV 61 12 F2 I ST Ethernet carrier sense data valid.(2) ERXCLK 63 14 F3 I ST Ethernet receive clock.(2) EREFCLK 63 14 F3 I ST Ethernet reference clock.(2) ETXD0 2 88 A6 O — Ethernet Transmit Data 0.(2) ETXD1 3 87 B6 O — Ethernet Transmit Data 1.(2) ETXD2 43 79 A9 O — Ethernet Transmit Data 2.(2) ETXD3 42 80 D8 O — Ethernet Transmit Data 3.(2) ETXERR 54 89 E6 O — Ethernet transmit error.(2) ETXEN 1 83 D7 O — Ethernet transmit enable.(2) ETXCLK 55 84 C7 I ST Ethernet transmit clock.(2) ECOL 44 10 E3 I ST Ethernet collision detect.(2) ECRS 45 11 F4 I ST Ethernet carrier sense.(2) EMDC 30 71 C11 O — Ethernet management data clock.(2) EMDIO 49 68 E9 I/O — Ethernet management data.(2) AERXD0 43 18 G1 I ST Alternate Ethernet Receive Data 0.(2) AERXD1 42 19 G2 I ST Alternate Ethernet Receive Data 1.(2) AERXD2 — 28 L2 I ST Alternate Ethernet Receive Data 2.(2) AERXD3 — 29 K3 I ST Alternate Ethernet Receive Data 3.(2) AERXERR 55 1 B2 I ST Alternate Ethernet receive error input.(2) AERXDV 44 — — I ST Alternate Ethernet receive data valid.(2) AECRSDV 44 — — I ST Alternate Ethernet carrier sense data valid.(2) AERXCLK 45 — — I ST Alternate Ethernet receive clock.(2) AEREFCLK 45 — — I ST Alternate Ethernet reference clock.(2) AETXD0 59 47 L9 O — Alternate Ethernet Transmit Data 0.(2) AETXD1 58 48 K9 O — Alternate Ethernet Transmit Data 1.(2) AETXD2 — 44 L8 O — Alternate Ethernet Transmit Data 2.(2) AETXD3 — 43 K7 O — Alternate Ethernet Transmit Data 3.(2) AETXERR — 35 J5 O — Alternate Ethernet transmit error.(2) AETXEN 54 67 E8 O — Alternate Ethernet transmit enable.(2) AETXCLK — 66 E11 I ST Alternate Ethernet transmit clock.(2) AECOL — 42 L7 I ST Alternate Ethernet collision detect.(2) AECRS — 41 J7 I ST Alternate Ethernet carrier sense.(2) TRCLK — 91 C5 O — Trace clock. Pin Name 64-Pin QFN/TQFP 100-Pin TQFP 121-Pin XBGA ERXD3 58 44 ERXERR 64 ERXDV Description Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. DS61156C-page 32 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Number(1) Pin Name Buffer Type Description 100-Pin TQFP TRD0 — 97 A3 O — TRD1 — 96 C3 O — TRD2 — 95 C4 O — TRD3 — 92 B5 O — PGED1 16 25 K2 I/O ST Data I/O pin for Programming/Debugging Communication Channel 1. PGEC1 15 24 K1 I ST Clock input pin for Programming/Debugging Communication Channel 1. PGED2 18 27 J3 I/O ST Data I/O pin for Programming/Debugging Communication Channel 2. PGEC2 17 26 L1 I ST Clock input pin for Programming/Debugging Communication Channel 2. MCLR 7 13 F1 I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. AVDD 19 30 J4 P P Positive supply for analog modules. This pin must be connected at all times. AVSS 20 31 L3 P P Ground reference for analog modules. A7, C2, C9, E5, K8, F8, G5, H4, H6 P — Positive supply for peripheral logic and I/O pins. VDD VCAP/ VDDCORE 10, 26, 38, 2, 16, 37, 57 46, 62, 86 121-Pin XBGA Pin Type 64-Pin QFN/TQFP Trace Data Bits 0-3. 56 85 B7 P — CPU logic filter capacitor connection. 9, 25, 41 15, 36, 45, 65, 75 A8, B10, D4, D5, E7, F5, F10, G6, G7, H3 P — Ground reference for logic and I/O pins. This pin must be connected at all times. VREF+ 16 29 K3 I Analog Analog voltage reference (high) input. VREF- 15 28 L2 I Analog Analog voltage reference (low) input. VSS Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power ST = Schmitt Trigger input with CMOS levels O = Output I = Input TTL = TTL input buffer Note 1: Pin numbers are provided for reference only. See the “Pin Diagrams” section for device pin availability. 2: See Section 24.0 “Ethernet Controller” for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 33 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 34 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS 2.2 Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32) 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements Getting started with the PIC32MX5XX/6XX/7XX family of 32-bit Microcontrollers (MCU) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins–even if the ADC module is not used (see Section 2.2 “Decoupling Capacitors”) • VCAP/VDDCORE pin (see Section 2.3 “Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins–used for In-Circuit Serial Programming (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins–when external oscillator source is used (see Section 2.8 “External Oscillator Pins”) Decoupling Capacitors The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: A value of 0.1 µF (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within onequarter inch (6 mm) in length. • Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance. The following pin may be required, as well: VREF+/VREF- pins–used when external voltage reference for ADC module is implemented Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source. 2010 Microchip Technology Inc. Preliminary DS61156C-page 35 PIC32MX5XX/6XX/7XX FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic CBP R1 MCLR C VDD VCAP/VDDCORE R PIC32MX VSS 10 2.2.1 VDD 0.1 µF Ceramic CBP VSS VDD AVSS VDD AVDD 0.1 µF Ceramic CBP VSS 0.1 µF Ceramic CBP 0.1 µF Ceramic CBP 2.3.1 The MCLR pin provides for two specific device functions: Pulling The MCLR pin low generates a device Reset. Figure 2-2 shows a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations. Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. BULK CAPACITORS The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 µF to 47 µF. This capacitor should be located as close to the device as possible. 2.3 Master Clear (MCLR) Pin • Device Reset • Device programming and debugging VSS CEFC VDD 2.4 FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS VDD Capacitor on Internal Voltage Regulator (VCAP/VDDCORE) R R1 INTERNAL REGULATOR MODE A low-ESR (1 ohm) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the internal voltage regulator output. The VCAP/VDDCORE pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to Section 31.0 "Electrical Characteristics" for additional information on CEFC specifications. DS61156C-page 36 JP MCLR PIC32MX C Note 1: R 10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1 470 will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. 3: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 2.5 ICSP Pins 2.6 The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 2, MPLAB ICD 3, or MPLAB REAL ICE™. For more information on ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site. • “MPLAB® ICD 2 In-Circuit Debugger User's Guide” DS51331 • “Using MPLAB® ICD 2” (poster) DS51265 • “MPLAB® ICD 2 Design Advisory” DS51566 • “Using MPLAB® ICD 3” (poster) DS51765 • “MPLAB® ICD 3 Design Advisory” DS51764 • “MPLAB® REAL ICE™ In-Circuit Debugger User's Guide” DS51616 • “Using MPLAB® REAL ICE™ Emulator” (poster) DS51749 2010 Microchip Technology Inc. JTAG The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. 2.7 Trace The trace pins can be connected to a hardware-traceenabled programmer to provide a compress real time instruction trace. When used for trace the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 ohm series resistor between the trace pins and the trace connector. Preliminary DS61156C-page 37 PIC32MX5XX/6XX/7XX 2.8 External Oscillator Pins 2.9 Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 8.0 "Oscillator Configuration" for details). The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT Oscillator Secondary Guard Trace Guard Ring Main Oscillator DS61156C-page 38 Configuration of Analog and Digital Pins During ICSP Operations If MPLAB ICD 2, ICD 3, or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as “digital” pins by setting all bits in the ADPCFG register. The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module. When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality. 2.10 Unused I/Os Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state. Alternatively, inputs can be reserved by connecting the pin to VSS through a 1k to 10k resistor and configuring the pin as an input. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX PIC32MX MCU Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. “MCU” (DS61113) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Resources for the MIPS32® M4K® Processor Core are available at http://www.mips.com. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The MCU module is the heart of the PIC32MX5XX/6XX/7XX family processor. The MCU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations. 3.1 • • • • Features • 5-Stage Pipeline • 32-Bit Address and Data Paths • MIPS32 Enhanced Architecture (Release 2) - Multiply-Accumulate and Multiply-Subtract instructions - Targeted Multiply instruction - Zero/One Detect instructions - WAIT instruction - Conditional Move instructions (MOVN, MOVZ) - Vectored interrupts - Programmable exception vector base FIGURE 3-1: • • - Atomic interrupt enable/disable - GPR shadow registers to minimize latency for interrupt handlers - Bit field manipulation instructions MIPS16e™ Code Compression - 16-bit encoding of 32-bit instructions to improve code density - Special PC-relative instructions for efficient loading of addresses and constants - SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines - Improved support for handling 8 and 16-bit data types Simple Fixed Mapping Translation (FMT) mechanism Simple Dual Bus Interface - Independent 32-bit address and data busses - Transactions can be aborted to improve interrupt latency Autonomous Multiply/Divide Unit - Maximum issue rate of one 32x16 multiply per clock - Maximum issue rate of one 32x32 multiply every other clock - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (rs) sign extension-dependent) Power Control - Minimum frequency: 0 MHz - Low-Power mode (triggered by WAIT instruction) - Extensive use of local gated clocks EJTAG Debug and Instruction Trace - Support for single stepping - Virtual instruction and data address/value - Breakpoints - PC tracing with trace compression MCU BLOCK DIAGRAM MCU EJTAG MDU Execution Core (RF/ALU/Shift) System Coprocessor 2010 Microchip Technology Inc. Trace TAP FMT Bus Interface Trace I/F Off-Chip Debug I/F Dual Bus I/F Bus Matrix 3.0 Power Management Preliminary DS61156C-page 39 PIC32MX5XX/6XX/7XX 3.2 Architecture Overview 3.2.2 The PIC32MX5XX/6XX/7XX family core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core: • • • • • • • • Execution Unit Multiply/Divide Unit (MDU) System Control Coprocessor (CP0) Fixed Mapping Translation (FMT) Dual Internal Bus interfaces Power Management MIPS16e Support Enhanced JTAG (EJTAG) Controller 3.2.1 EXECUTION UNIT The PIC32MX5XX/6XX/7XX family core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline. The execution unit includes: • 32-bit adder used for calculating the data address • Address unit for calculating the next instruction address • Logic for branch determination and branch target address calculation • Load aligner • Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results • Leading Zero/One detect unit for implementing the CLZ and CLO instructions • Arithmetic Logic Unit (ALU) for performing bitwise logical operations • Shifter and store aligner DS61156C-page 40 MULTIPLY/DIVIDE UNIT (MDU) The PIC32MX5XX/6XX/7XX family core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions. The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represents the rs operand. The second number (‘16’ of 32x16) represents the rt operand. The PIC32MX core only checks the value of the latter (rt) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice. The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit wide rs, 15 iterations are skipped and for a 24-bit wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed. Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32MX core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 3-1: PIC32MX5XX/6XX/7XX FAMILY CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES Opcode Operand Size (mul rt) (div rs) Latency Repeat Rate MULT/MULTU, MADD/MADDU, MSUB/MSUBU 16 bits 1 1 32 bits 2 2 MUL 16 bits 2 1 32 bits 3 2 DIV/DIVU 8 bits 12 11 16 bits 19 18 24 bits 26 25 32 bits 33 32 The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and MoveFrom-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file. In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased. 3.2.3 SYSTEM CONTROL COPROCESSOR (CP0) In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor’s diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2. Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms. 2010 Microchip Technology Inc. Preliminary DS61156C-page 41 PIC32MX5XX/6XX/7XX TABLE 3-2: COPROCESSOR 0 REGISTERS Register Number 0-6 Register Name Function Reserved Reserved in the PIC32MX5XX/6XX/7XX family core. 7 HWREna Enables access via the RDHWR instruction to selected hardware registers. 8 BadVAddr(1) Reports the address for the most recent address-related exception. 9 Count(1) Processor cycle count. 10 Reserved 11 Compare 12 Status(1) (1) Reserved in the PIC32MX5XX/6XX/7XX family core. Timer interrupt control. Processor status and control. (1) 12 IntCtl 12 SRSCtl(1) Interrupt system status and control. Shadow register set status and control. 12 SRSMap(1) Provides mapping from vectored interrupt to a shadow set. 13 Cause(1) Cause of last general exception. (1) 14 EPC Program counter at last exception. 15 PRId Processor identification and revision. 15 EBASE Exception vector base register. 16 Config Configuration register. 16 Config1 Configuration Register 1. 16 Config2 Configuration Register 2. 16 Config3 Configuration Register 3. Reserved Reserved in the PIC32MX5XX/6XX/7XX family core. 17-22 (2) Debug control and exception status. 23 Debug 24 DEPC(2) Program counter at last debug exception. Reserved Reserved in the PIC32MX5XX/6XX/7XX family core. ErrorEPC(1) Program counter at last error. 25-29 30 31 Note 1: 2: (2) DESAVE Debug handler scratchpad register. Registers used in exception processing. Registers used during debug. DS61156C-page 42 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including alignment errors in data, external events or program errors. Table 3-3 lists the exception types in order of priority. TABLE 3-3: PIC32MX5XX/6XX/7XX FAMILY CORE EXCEPTION TYPES Exception Description Reset Assertion MCLR or a Power-on Reset (POR). DSS EJTAG debug single step. DINT EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register. NMI Assertion of NMI signal. Interrupt Assertion of unmasked hardware or software interrupt signal. DIB EJTAG debug hardware instruction break matched. AdEL Fetch address alignment error. Fetch reference to protected address. IBE Instruction fetch bus error. DBp EJTAG breakpoint (execution of SDBBP instruction). Sys Execution of SYSCALL instruction. Bp Execution of BREAK instruction. RI Execution of a reserved instruction. CpU Execution of a coprocessor instruction for a coprocessor that is not enabled. CEU Execution of a CorExtend instruction when CorExtend is not enabled. Ov Execution of an arithmetic instruction that overflowed. Tr Execution of a trap (when trap condition is true). DDBL/DDBS EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value). AdEL Load address alignment error. Load reference to protected address. AdES Store address alignment error. Store to protected address. DBE Load or store bus error. DDBL EJTAG data hardware breakpoint matched in load data compare. 2010 Microchip Technology Inc. Preliminary DS61156C-page 43 PIC32MX5XX/6XX/7XX 3.3 Power Management 3.4 The PIC32MX5XX/6XX/7XX family core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or Halting the clocks, which reduces system power consumption during Idle periods. 3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 27.0 “Power-Saving Features”. 3.3.2 LOCAL CLOCK GATING The majority of the power consumed by the PIC32MX5XX/6XX/7XX family core is in the clock tree and clocking registers. The PIC32MX family uses extensive use of local gated clocks to reduce this dynamic power consumption. DS61156C-page 44 EJTAG Debug Support The PIC32MX5XX/6XX/7XX family core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the PIC32MX5XX/6XX/7XX family core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, singlestep exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine. The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the PIC32MX5XX/6XX/7XX family core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define which registers are selected and how they are used. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 4.0 Note: MEMORY ORGANIZATION 4.1 This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. For detailed information, refer to Section 3. “Memory Organization” (DS61115) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX5XX/6XX/7XX devices to execute from data memory. Key features include: • 32-bit native data width • Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space • Flexible program Flash memory partitioning • Flexible data RAM partitioning for data and program space • Separate boot Flash memory for protected code • Robust bus exception handling to intercept runaway code • Simple memory mapping with Fixed Mapping Translation (FMT) unit • Cacheable (KSEG0) and non-cacheable (KSEG1) address regions 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Memory Layout PIC32MX5XX/6XX/7XX microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU. The memory maps for the PIC32MX5XX/6XX/7XX devices are shown in Figure 4-1, Figure 4-2 and Figure 4-3. 4.1.1 PERIPHERAL REGISTERS LOCATIONS Table 4-1 through Table 4-44 contain the peripheral address maps for the PIC32MX5XX/6XX/7XX devices. Peripherals located on the PB bus are mapped to 512-byte boundaries. Peripherals on the FPB bus are mapped to 4-Kbyte boundaries. Preliminary DS61156C-page 45 PIC32MX5XX/6XX/7XX FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX575F256H, PIC32MX575F256L, PIC32MX675F256H, PIC32MX675F256L, PIC32MX775F256H AND PIC32MX775F256L DEVICES(1) Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD040000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD03FFFF Program Flash(2) 0xBD000000 0xA0010000 Reserved 0xA000FFFF RAM(2) 0xA0000000 0x9FC02FF0 0x9FC02FFF 0x9FC02FEF 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 Reserved 0x9D040000 0x9D03FFFF Program Flash(2) KSEG0 0x1F8FFFFF SFRs 0x1F800000 Reserved 0x9D000000 0x80008000 0x1D040000 0x1D03FFFF Reserved Program Flash(2) 0x1D000000 0x80007FFF RAM(2) Reserved 0x80000000 0x00000000 Note 1: 2: DS61156C-page 46 RAM(2) Reserved 0x00010000 0x0000FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 4-2: MEMORY MAP ON RESET FOR PIC32MX575F512H, PIC32MX575F512L, PIC32MX675F512H, PIC32MX675F512L, PIC32MX775F512H AND PIC32MX775F512L DEVICES Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD080000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD07FFFF Program Flash(2) 0xBD000000 0xA0010000 Reserved 0xA000FFFF RAM(2) 0xA0000000 0x9FC02FF0 0x9FC02FFF 0x9FC02FEF 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 Reserved 0x9D080000 0x9D07FFFF Program Flash(2) KSEG0 0x1F8FFFFF SFRs 0x1F800000 Reserved 0x9D000000 0x80010000 0x1D080000 0x1D07FFFF Reserved Program Flash(2) 0x1D000000 0x8000FFFF RAM(2) Reserved 0x80000000 0x00000000 Note 1: 2: Reserved RAM (2) 0x00010000 0x0000FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). 2010 Microchip Technology Inc. Preliminary DS61156C-page 47 PIC32MX5XX/6XX/7XX FIGURE 4-3: MEMORY MAP ON RESET FOR PIC32MX695F512H, PIC32MX695F512L, PIC32MX795F512H AND PIC32MX795F512L DEVICES Virtual Memory Map 0xFFFFFFFF 0xBFC03000 0xBFC02FFF 0xBFC02FF0 Physical Memory Map 0xFFFFFFFF Reserved Device Configuration Registers 0xBFC02FEF Boot Flash 0xBFC00000 0xBF900000 Reserved SFRs 0xBF800000 0xBD080000 Reserved KSEG1 0xBF8FFFFF Reserved 0xBD07FFFF Program Flash(2) 0xBD000000 0xA0020000 Reserved 0xA001FFFF RAM(2) 0xA0000000 0x9FC02FF0 0x9FC02FFF 0x9FC02FEF 0x1FC03000 Device Configuration Registers Reserved Device Configuration Registers 0x1FC02FFF 0x1FC02FF0 0x1FC02FEF Boot Flash 0x9FC02FEF 0x1FC00000 Boot Flash Reserved 0x9FC00000 0x1F900000 Reserved 0x9D080000 0x9D07FFFF KSEG0 0x1F8FFFFF Program Flash(2) SFRs 0x1F800000 Reserved 0x9D000000 0x80020000 0x1D080000 0x1D07FFFF Reserved Program Flash(2) 0x1D000000 0x8001FFFF RAM(2) Reserved 0x80000000 0x00000000 Note 1: 2: DS61156C-page 48 RAM(2) Reserved 0x00020000 0x0001FFFF 0x00000000 Memory areas are not shown to scale. The size of this memory region is programmable (see Section 3. “Memory Organization” (DS61115)) and can be changed by initialization code provided by end user development tools (refer to the specific development tool documentation for information). Preliminary 2010 Microchip Technology Inc. 2000 BMXCON(1) 2010 BMXDKPBA(1) 2020 BMXDUDBA(1) 2030 BMXDUPBA(1) 2040 BMXDRMSZ 2060 BMXPFMSZ 2070 BMXBOOTSZ 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — BMXCHEDMA — — — — — 15:0 — — — — — — — — — BMXWSDRM — — — 31:16 — — — — — — — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — 15:0 31:16 15:0 16/0 BMXERRIXI BMXERRICD BMXERRDMA BMXERRDS BMXERRIS 001F BMXARB<2:0> — — 0040 — — — — — 0000 0000 — — — — — — — — — — — — 0000 0000 0000 0000 xxxx BMXDRMSZ<31:0> 15:0 31:16 17/1 BMXDUPBA<15:0> 31:16 15:0 18/2 BMXDUDBA<15:0> 15:0 31:16 19/3 BMXDKPBA<15:0> 15:0 31:16 20/4 All Resets Bits xxxx — — — — — — — — — — BMXPUPBA<15:0> BMXPFMSZ<31:0> — — BMXPUPBA<19:16> 0000 0000 xxxx xxxx BMXBOOTSZ<31:0> 0000 3000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. DS61156C-page 49 PIC32MX5XX/6XX/7XX Preliminary 2050 BMXPUPBA(1) BUS MATRIX REGISTER MAP Bit Range Register Name Virtual Address (BF88_#) 2010 Microchip Technology Inc. TABLE 4-1: Virtual Address (BF88_#) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — Preliminary 1040 IFS0 IFS1 1060 1070 IFS2 IEC0 IEC1 — 2010 Microchip Technology Inc. IEC2 1090 IPC0 10A0 IPC1 22/6 21/5 — — — — — — — — — — — — INT4EP INT3EP INT2EP INT1EP — — — — — — — — — — — RIPL<2:0> 20/4 19/3 18/2 17/1 16/0 SS0 0000 INT0EP 0000 — VEC<5:0> 0000 0000 0000 IPTMR<31:0> 15:0 0000 31:16 I2C1MIF I2CSIF I2CBIF U1ARXIF U1AEIF SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1AMIF I2C1ASIF — — — OC5IF IC5IF T5IF INT4IF OC4IF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF 31:16 IC3EIF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF 15:0 RTCCIF FSCMIF — — — CMP2IF CMP1IF PMPIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF 31:16 — — — — — — — — — — 15:0 — — — — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1ATXIE U1ARXIE U1AEIE — — — OC5IE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE I2C1AMIE I2C1ASIE IC4IF T4IF 0000 CS0IF CTIF 0000 I2C1ABIF DMA1IF DMA0IF 0000 AD1IF CNIF 0000 — 0000 I2C2ABIF — — U1BTXIF U1BRXIF IC5IE T5IE — — — U1BEIF PMPEIF IC5EIF INT4IE OC4IE IC4IE T4IE 0000 CS0IE CTIE 0000 IC4EIF 0000 I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE 15:0 RTCCIE FSCMIE — — — CMP2IE CMP1IE PMPIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE 1080 23/7 TPC<2:0> I2C3AMIF 1050 24/8 31:16 U1ATXIF 1030 25/9 All Resets Register Name Bit Range Bits I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE DMA1IE DMA0IE 0000 AD1IE CNIE 0000 — 0000 I2C2ABIE 31:16 — — — — — — — — — — 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 — — U1BTXIE U1BRXIE — — — U1BEIE PMPEIE IC5EIE IC4EIE 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX DS61156C-page 50 INTERRUPT REGISTER MAP FOR THE PIC32MX575F256H AND PIC32MX575F512H DEVICES(1) TABLE 4-2: Virtual Address (BF88_#) Register Name 10B0 IPC2 10C0 IPC3 10D0 IPC4 10E0 IPC5 10F0 IPC6 1130 1140 1150 23/7 22/6 21/5 31:16 — — — INT2IP<2:0> 15:0 — — — IC2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 31:16 — — — 0000 INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 15:0 — — 0000 — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 31:16 — 0000 — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 15:0 0000 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 31:16 IPC8 1120 29/13 15:0 IPC7 1110 30/14 IPC10 IPC11 IPC12 — — — — — 27/11 — 26/10 — I2C1IP<2:0> — 25/9 — 24/8 — I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — 20/4 — — — — 19/3 18/2 17/1 16/0 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 IPC9 — 28/12 — — — — — — — — — — — 0000 DS61156C-page 51 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — — — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — U2BIP<2:0> U2BIS<1:0> 0000 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — — 0000 — — — — — — — — Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX Preliminary 1100 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. INTERRUPT REGISTER MAP FOR THE PIC32MX575F256H AND PIC32MX575F512H DEVICES(1) (CONTINUED) TABLE 4-2: Virtual Address (BF88_#) INTERRUPT REGISTER MAP FOR THE PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES(1) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — IFS0 Preliminary 1040 IFS1 — IFS2 1060 IEC0 1070 IEC1 23/7 22/6 21/5 — — — — — — — — — SS0 0000 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — — — — I2C1MIF I2CSIF I2CBIF U1ARXIF 2010 Microchip Technology Inc. IEC2 1090 IPC0 10A0 IPC1 10B0 IPC2 10C0 IPC3 18/2 17/1 16/0 VEC<5:0> SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1AMIF I2C1ASIF 0000 0000 0000 0000 U1AEIF — — — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 I2C1ABIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000 U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 15:0 RTCCIF FSCMIF — — — SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF 31:16 — — 15:0 — — — I2C1SIE I2C1BIE 31:16 I2C1MIE I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF — — — — — — — — — — — — 0000 — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000 U1ATXIE U1ARXIE U1AEIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 SPI1ATXIE SPI1ARXIE SPI1AEIE I2C1AMIE I2C1ASIE I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000 U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 15:0 RTCCIE FSCMIE — — — SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE I2C3ASIE 1080 19/3 IPTMR<31:0> 15:0 31:16 — RIPL<2:0> I2C3AMIF 1050 24/8 31:16 U1ATXIF 1030 25/9 TPC<2:0> 20/4 All Resets Bit Range Register Name Bits I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 52 TABLE 4-3: Virtual Address (BF88_#) Register Name 10D0 IPC4 INTERRUPT REGISTER MAP FOR THE PIC32MX675F256H, PIC32MX675F512H AND PIC32MX695F512H DEVICES(1) (CONTINUED) 10E0 IPC5 10F0 IPC6 1100 1120 1130 IPC10 1140 IPC11 1150 IPC12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 — — — — — — — — I2C1IP<2:0> — — — I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — — — — — 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 IPC9 28/12 15:0 31:16 IPC8 29/13 — — — — — — — — — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — — — — — 15:0 — — — USBIP<2:0> USBIS<1:0> — — — 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — — — — — — — FCEIP<2:0> — — — 0000 FCEIS<1:0> 0000 U2BIP<2:0> U2BIS<1:0> 0000 ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156C-page 53 PIC32MX5XX/6XX/7XX Preliminary 1110 30/14 31:16 15:0 IPC7 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-3: Virtual Address (BF88_#) INTERRUPT REGISTER MAP FOR PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — IFS0 Preliminary 1040 IFS1 — IFS2 1060 IEC0 1070 IEC1 23/7 22/6 21/5 — — — — — — — — — SS0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — 0000 — — — I2C1MIF I2CSIF I2CBIF U1ARXIF IEC2 2010 Microchip Technology Inc. 1090 IPC0 10A0 IPC1 10B0 IPC2 10C0 IPC3 18/2 17/1 16/0 VEC<5:0> SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1AMIF I2C1ASIF 0000 0000 0000 0000 U1AEIF — — — OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 I2C1ABIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF CAN2IF CAN1IF USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000 U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 15:0 RTCCIF FSCMIF — — — SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000 U1ATXIE U1ARXIE U1AEIE — — — OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 31:16 I2C1MIE I2C1SIE I2C1BIE SPI1ATXIE SPI1ARXIE SPI1AEIE I2C1AMIE I2C1ASIE I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE CAN1IE USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000 U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 0000 15:0 RTCCIE FSCMIE — — — SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE I2C3ASIE 1080 19/3 IPTMR<31:0> 15:0 31:16 — RIPL<2:0> I2C3AMIF 1050 24/8 31:16 U1ATXIF 1030 25/9 TPC<2:0> 20/4 All Resets Bit Range Register Name Bits I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 31:16 — — — INT0IS<1:0> — — — INT0IP<2:0> CS1IP<2:0> 0000 CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 54 TABLE 4-4: Virtual Address (BF88_#) Register Name 10D0 IPC4 INTERRUPT REGISTER MAP FOR PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) (CONTINUED) 10E0 IPC5 10F0 IPC6 1100 IPC7 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 15:0 31:16 — — — — — — — — I2C1IP<2:0> — — — I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — — — — — 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 — — — — — — — — — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — CAN2IP<2:0> CAN2IS<1:0> — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — U2BIP<2:0> U2BIS<1:0> 0000 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156C-page 55 PIC32MX5XX/6XX/7XX Preliminary 1110 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-4: Virtual Address (BF88_#) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — IFS0 1040 IFS1 — Preliminary IFS2 1060 IEC0 1070 IEC1 23/7 22/6 21/5 — — — — — — — — — SS0 0000 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — — — — IEC2 1090 IPC0 2010 Microchip Technology Inc. 10A0 IPC1 10B0 IPC2 10C0 IPC3 10D0 IPC4 18/2 17/1 16/0 VEC<5:0> I2C1MIF I2CSIF I2CBIF U1ARXIF I2C1ASIF 0000 U1AEIF SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1AMIF 0000 0000 0000 SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 I2C1ABIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF — — CAN1IF USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000 U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000 U1ATXIE U1ARXIE U1AEIE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 SPI1ATXIE SPI1ARXIE SPI1AEIE I2C1AMIE I2C1ASIE I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 31:16 IC3EIE IC2EIE IC1EIE — — CAN1IE USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000 U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE I2C3ASIE I2C3ASIE I2C2AMIE I2C2ASIE 1080 19/3 IPTMR<31:0> 15:0 31:16 — RIPL<2:0> I2C3AMIF 1050 24/8 31:16 U1ATXIF 1030 25/9 TPC<2:0> 20/4 All Resets Bit Range Register Name Bits I2C2ABIE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 31:16 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 15:0 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 56 INTERRUPT REGISTER MAP FOR THE PIC32MX575F512L AND PIC32MX575F256L DEVICES(1) TABLE 4-5: Virtual Address (BF88_#) Register Name 10E0 IPC5 10F0 IPC6 1100 IPC7 1110 IPC8 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 15:0 31:16 — — — — — I2C1IP<2:0> — I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — — — — — 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — — — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — U2BIP<2:0> U2BIS<1:0> 0000 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — — — — — — — — — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156C-page 57 PIC32MX5XX/6XX/7XX Preliminary 1120 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. INTERRUPT REGISTER MAP FOR THE PIC32MX575F512L AND PIC32MX575F256L DEVICES(1) (CONTINUED) TABLE 4-5: Virtual Address (BF88_#) INTERRUPT REGISTER MAP FOR PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES(1) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — IFS0 Preliminary 1040 IFS1 — IFS2 1060 IEC0 1070 IEC1 23/7 22/6 21/5 — — — — — — — — — SS0 0000 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — — — — I2C1MIF I2CSIF I2CBIF U1ARXIF IEC2 2010 Microchip Technology Inc. 1090 IPC0 10A0 IPC1 10B0 IPC2 10C0 IPC3 18/2 17/1 16/0 VEC<5:0> SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1AMIF I2C1ASIF 0000 0000 0000 0000 U1AEIF SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 I2C1ABIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 31:16 IC3EIF IC2EIF IC1EIF ETHIF — — USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000 U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 15:0 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000 U1ATXIE U1ARXIE U1AEIE SPI1ATXIE SPI1ARXIE SPI1AEIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 31:16 I2C1MIE I2C1SIE I2C1BIE I2C1AMIE I2C1ASIE I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 31:16 IC3EIE IC2EIE IC1EIE ETHIE — — USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000 U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 0000 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE I2C3ASIE 1080 19/3 IPTMR<31:0> 15:0 31:16 — RIPL<2:0> I2C3AMIF 1050 24/8 31:16 U1ATXIF 1030 25/9 TPC<2:0> 20/4 All Resets Register Name Bit Range Bits I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 31:16 — — — INT0IS<1:0> — — — INT0IP<2:0> CS1IP<2:0> 0000 CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 58 TABLE 4-6: Virtual Address (BF88_#) Register Name 10D0 IPC4 INTERRUPT REGISTER MAP FOR PIC32MX675F256L, PIC32MX675F512L AND PIC32MX695F512L DEVICES(1) (CONTINUED) 10E0 IPC5 10F0 IPC6 1100 1120 1130 IPC10 1140 IPC11 1150 IPC12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — INT4IP<2:0> INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 — — — IC4IP<2:0> IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 31:16 — — — SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 15:0 — — — IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 31:16 — — — AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 — — — — — I2C1IP<2:0> — I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — — — — — 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 IPC9 28/12 15:0 31:16 IPC8 29/13 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — — — — — 15:0 — — — USBIP<2:0> USBIS<1:0> — — — 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — — — — — — — FCEIP<2:0> — — — 0000 FCEIS<1:0> 0000 U2BIP<2:0> U2BIS<1:0> 0000 ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156C-page 59 PIC32MX5XX/6XX/7XX Preliminary 1110 30/14 31:16 15:0 IPC7 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-6: Virtual Address (BF88_#) INTERRUPT REGISTER MAP FOR PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 1000 INTCON 1010 INTSTAT 1020 IPTMR 31/15 30/14 29/13 28/12 27/11 26/10 — 31:16 — — — — — 15:0 — FRZ — MVEC — 31:16 — — — — — 15:0 — — — — — Preliminary 1040 — 1060 IEC0 1070 IEC1 — — — — — — — — — SS0 0000 — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 — — — — — — — — — — — I2C1MIF I2CSIF I2CBIF U1ARXIF 2010 Microchip Technology Inc. IEC2 1090 IPC0 10A0 IPC1 10B0 IPC2 10C0 IPC3 18/2 17/1 16/0 VEC<5:0> SPI1ATXIF SPI1ARXIF SPI1AEIF I2C1ASIF 0000 0000 0000 0000 U1AEIF SPI1TXIF SPI1RXIF SPI1EIF OC5IF IC5IF T5IF INT4IF OC4IF IC4IF T4IF 0000 I2C1ABIF 15:0 INT3IF OC3IF IC3IF T3IF INT2IF OC2IF IC2IF T2IF INT1IF OC1IF IC1IF T1IF INT0IF CS1IF CS0IF CTIF 0000 IC3EIF IC2EIF IC1EIF ETHIF CAN2IF CAN1IF USBIF FCEIF DMA7IF DMA6IF DMA5IF DMA4IF DMA3IF DMA2IF DMA1IF DMA0IF 0000 U3ATXIF U3ARXIF U3AEIF U2ATXIF U2ARXIF U2AEIF CMP2IF CMP1IF PMPIF AD1IF CNIF 0000 RTCCIF FSCMIF I2C2MIF I2C2SIF I2C2BIF SPI3ATXIF SPI3ARXIF SPI3AEIF SPI2ATXIF SPI2ARXIF SPI2AEIF I2C3ASIF I2C3ASIF I2C2AMIF I2C2ASIF I2C2ABIF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIF U3BRXIF U3BEIF U2BTXIF U2BRXIF U2BEIF U1BTXIF U1BRXIF U1BEIF PMPEIF IC5EIF IC4EIF 0000 U1ATXIE U1ARXIE U1AEIE 31:16 I2C1MIE I2C1SIE I2C1BIE SPI1TXIE SPI1RXIE SPI1EIE OC5IE IC5IE T5IE INT4IE OC4IE IC4IE T4IE 0000 SPI1ATXIE SPI1ARXIE SPI1AEIE I2C1AMIE I2C1ASIE I2C1ABIE 15:0 INT3IE OC3IE IC3IE T3IE INT2IE OC2IE IC2IE T2IE INT1IE OC1IE IC1IE T1IE INT0IE CS1IE CS0IE CTIE 0000 31:16 IC3EIE IC2EIE IC1EIE ETHIE CAN2IE CAN1IE USBIE FCEIE DMA7IE DMA6IE DMA5IE DMA4IE DMA3IE DMA2IE DMA1IE DMA0IE 0000 U3ATXIE U3ARXIE U3AEIE U2ATXIE U2ARXIE U2AEIE CMP2IE CMP1IE PMPIE AD1IE CNIE 0000 15:0 RTCCIE FSCMIE I2C2MIE I2C2SIE I2C2BIE SPI3ATXIE SPI3ARXIE SPI3AEIE SPI2ATXIE SPI2ARXIE SPI2AEIE I2C3AMIE I2C3ASIE 1080 — 19/3 31:16 15:0 IFS2 21/5 RIPL<2:0> I2C3AMIF 1050 22/6 IPTMR<31:0> I2C1AMIF IFS1 23/7 15:0 31:16 IFS0 24/8 31:16 U1ATXIF 1030 25/9 TPC<2:0> 20/4 All Resets Bit Range Register Name Bits I2C3ASIE I2C2AMIE I2C2ASIE I2C2ABIE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — U3BTXIE U3BRXIE U3BEIE U2BTXIE U2BRXIE U2BEIE U1BTXIE U1BRXIE U1BEIE PMPEIE IC5EIE IC4EIE 0000 31:16 — — — INT0IP<2:0> INT0IS<1:0> — — — CS1IP<2:0> CS1IS<1:0> 0000 15:0 — — — CS0IP<2:0> CS0IS<1:0> — — — CTIP<2:0> CTIS<1:0> 0000 31:16 — — — INT1IP<2:0> INT1IS<1:0> — — — OC1IP<2:0> OC1IS<1:0> 0000 15:0 — — — IC1IP<2:0> IC1IS<1:0> — — — T1IP<2:0> T1IS<1:0> 0000 31:16 — — — INT2IP<2:0> INT2IS<1:0> — — — OC2IP<2:0> OC2IS<1:0> 0000 15:0 — — — IC2IP<2:0> IC2IS<1:0> — — — T2IP<2:0> T2IS<1:0> 0000 31:16 — — — INT3IP<2:0> INT3IS<1:0> — — — OC3IP<2:0> OC3IS<1:0> 0000 15:0 — — — IC3IP<2:0> IC3IS<1:0> — — — T3IP<2:0> T3IS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 60 TABLE 4-7: Virtual Address (BF88_#) Register Name 10D0 IPC4 10E0 IPC5 INTERRUPT REGISTER MAP FOR PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 10F0 IPC6 1100 IPC7 IPC8 1120 IPC9 1130 IPC10 1140 IPC11 1150 IPC12 30/14 29/13 31:16 — — — INT4IP<2:0> 15:0 — — — IC4IP<2:0> 31:16 — — — 15:0 — — — 31:16 — — — 15:0 31:16 — — — — — — 28/12 27/11 23/7 22/6 21/5 INT4IS<1:0> — — — OC4IP<2:0> OC4IS<1:0> 0000 IC4IS<1:0> — — — T4IP<2:0> T4IS<1:0> 0000 SPI1IP<2:0> SPI1IS<1:0> — — — OC5IP<2:0> OC5IS<1:0> 0000 IC5IP<2:0> IC5IS<1:0> — — — T5IP<2:0> T5IS<1:0> 0000 AD1IP<2:0> AD1IS<1:0> — — — CNIP<2:0> CNIS<1:0> 0000 U1AIP<2:0> U1AIS<1:0> SPI1AIP<2:0> SPI1AIS<1:0> I2C1AIP<2:0> I2C1AIS<1:0> CMP2IP<2:0> CMP2IS<1:0> 0000 I2C1IP<2:0> 26/10 25/9 24/8 I2C1IS<1:0> U2AIP<2:0> U2AIS<1:0> SPI2AIP<2:0> SPI2AIS<1:0> I2C2AIP<2:0> I2C2AIS<1:0> — — — — — — 20/4 19/3 18/2 17/1 16/0 0000 15:0 — — — CMP1IP<2:0> CMP1IS<1:0> — — — PMPIP<2:0> PMPIS<1:0> 0000 31:16 — — — RTCCIP<2:0> RTCCIS<1:0> — — — FSCMIP<2:0> FSCMIS<1:0> 0000 U3AIP<2:0> U3AIS<1:0> SPI3AIP<2:0> SPI3AIS<1:0> I2C3AIP<2:0> I2C3AIS<1:0> 15:0 — — — I2C2IP<2:0> I2C2IS<1:0> — — — 0000 31:16 — — — DMA3IP<2:0> DMA3IS<1:0> — — — DMA2IP<2:0> DMA2IS<1:0> 0000 15:0 — — — DMA1IP<2:0> DMA1IS<1:0> — — — DMA0IP<2:0> DMA0IS<1:0> 0000 31:16 — — — DMA7IP<2:0> DMA7IS<1:0> — — — DMA6IP<2:0> DMA6IS<1:0> 0000 15:0 — — — DMA5IP<2:0> DMA5IS<1:0> — — — DMA4IP<2:0> DMA4IS<1:0> 0000 31:16 — — — CAN2IP<2:0> CAN2IS<1:0> — — — CAN1IP<2:0> CAN1IS<1:0> 0000 15:0 — — — USBIP<2:0> USBIS<1:0> — — — FCEIP<2:0> FCEIS<1:0> 0000 31:16 — — — U3BIP<2:0> U3BIS<1:0> — — — U2BIP<2:0> U2BIS<1:0> 0000 15:0 — — — U1BIP<2:0> U1BIS<1:0> — — — ETHIP<2:0> ETHIS<1:0> 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DS61156C-page 61 PIC32MX5XX/6XX/7XX Preliminary 1110 31/15 All Resets Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-7: Virtual Address (BF80_#) 0600 T1CON 0610 TMR1 0620 TMR2 0820 Preliminary TMR3 TMR4 TMR5 2010 Microchip Technology Inc. PR5 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — 0000 FRZ SIDL TWDIS TWIP — — — TGATE — TCKPS<1:0> — TSYNC TCS — 0000 31:16 — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 T32 — TCS — 0000 15:0 TMR1<15:0> — — — — — — — — 31:16 — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — 15:0 — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — TCKPS<2:0> — — — — — — — 0000 — — — — — — — — 0000 — — — — — — — 0000 — — TCS — 0000 0000 PR2<15:0> 15:0 FFFF TCKPS<2:0> — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 T32 — TCS — 0000 TMR3<15:0> — — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — — 0000 PR3<15:0> 15:0 FFFF TCKPS<2:0> — — — — — — — 0000 — — — — — — — 0000 — — — — — — — 0000 — — TCS — 0000 TMR4<15:0> — — — — — — — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — — — TGATE 31:16 — — — — — — — — — — 0000 PR4<15:0> 15:0 15:0 FFFF TMR2<15:0> — 31:16 0000 PR1<15:0> 15:0 0E00 T5CON 0E20 24/8 — 31:16 PR4 0E10 25/9 15:0 0C00 T4CON 0C20 26/10 ON 31:16 PR3 0C10 27/11 15:0 0A00 T3CON 0A20 28/12 15:0 31:16 PR2 0A10 29/13 15:0 0800 T2CON 0810 30/14 31:16 31:16 PR1 31/15 All Resets Register Name Bit Range Bits FFFF TCKPS<2:0> — — — — — — — 0000 — — — — — — — 0000 TMR5<15:0> — — — — — — — — — PR5<15:0> 0000 FFFF Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 62 TIMER1-TIMER5 REGISTER MAP(1) TABLE 4-8: Virtual Address (BF80_#) Register Name 2000 IC1CON(1) IC1BUF 2200 IC2CON(1) 2210 IC2BUF IC3CON 2410 IC3BUF IC4CON (1) 2610 IC4BUF 2800 IC5CON(1) 2810 IC5BUF 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 — — 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 18/2 — — — ICOV ICBNE 17/1 16/0 — — ICM<2:0> 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 xxxx xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR 31:16 xxxx xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 31:16 — — — — — — — — — 15:0 ON FRZ SIDL — — — FEDGE C32 ICTMR xxxx xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> 0000 0000 xxxx xxxx — — ICI<1:0> — — ICOV ICBNE — — — ICM<2:0> IC5BUF<31:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 IC4BUF<31:0> 15:0 0000 0000 IC3BUF<31:0> 15:0 0000 0000 IC2BUF<31:0> 15:0 15:0 19/3 IC1BUF<31:0> 15:0 31:16 ICI<1:0> 20/4 0000 0000 xxxx xxxx DS61156C-page 63 PIC32MX5XX/6XX/7XX Preliminary 2600 (1) 31/15 All Resets Bits 2010 2400 INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP Bit Range 2010 Microchip Technology Inc. TABLE 4-9: Virtual Address (BF80_#) 3000 OC1CON 3010 OC1R 3020 OC1RS 3200 OC2CON 3210 OC2R 3220 OC2RS Preliminary 3400 OC3CON 3410 OC3R 3420 OC3RS 3600 OC4CON 3610 OC4R 3620 OC4RS 3800 OC5CON 3810 OC5R 2010 Microchip Technology Inc. 3820 OC5RS 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 31:16 xxxx xxxx — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 xxxx xxxx xxxx OC2RS<31:0> 15:0 xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 15:0 xxxx xxxx xxxx OC3RS<31:0> xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL 31:16 — — — OCM<2:0> 31:16 15:0 xxxx xxxx xxxx OC4RS<31:0> xxxx 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL — — — — — — — OC32 OCFLT OCTSEL OC5R<31:0> OC5RS<31:0> 0000 0000 OC4R<31:0> 15:0 0000 0000 OC3R<31:0> 15:0 0000 0000 OC2R<31:0> 15:0 0000 0000 xxxx — 15:0 — xxxx 31:16 31:16 — OCM<2:0> OC1RS<31:0> 15:0 15:0 16/0 OC1R<31:0> 15:0 31:16 17/1 All Resets Bit Range Register Name Bits — — OCM<2:0> — 0000 0000 xxxx xxxx xxxx xxxx Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: PIC32MX5XX/6XX/7XX DS61156C-page 64 OUTPUT COMPARE 1-OUTPUT COMPARE 5 REGISTER MAP(1) TABLE 4-10: Virtual Address (BF80_#) 5000 I2C1ACON 5010 I2C1ASTAT 5020 I2C1AADD 5030 I2C1AMSK 5040 I2C1ABRG 5050 I2C1ATRN 5100 I2C2ACON 5110 I2C2ASTAT 5120 I2C2AADD 5130 I2C2AMSK 5140 I2C2ABRG I2C2ATRN 5160 I2C2ARCV 5200 I2C3ACON 5210 I2C3ASTAT 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 0000 — — — — — I2CT1DATA<7:0> — 0000 0000 I2C1BRG<11:0> — 0000 0000 — — 0000 0000 — — — I2CR1DATA<7:0> 0000 0000 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 0000 — — — — — I2CT1DATA<7:0> — 0000 0000 I2C1BRG<11:0> — 0000 0000 — — 0000 0000 — — — I2CR1DATA<7:0> 0000 0000 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 DS61156C-page 65 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range 31/15 0000 PIC32MX5XX/6XX/7XX Preliminary 5060 I2C1ARCV 5150 I2C1, I2C1A, I2C2A AND I2C3A REGISTER MAP(1) Bits Register Name 2010 Microchip Technology Inc. TABLE 4-11: Virtual Address (BF80_#) 5230 I2C3AMSK 5240 I2C3ABRG I2C3ATRN 5260 I2C3ARCV Preliminary 5300 I2C1CON 5310 I2C1STAT 5320 I2C1ADD 5330 I2C1MSK 5340 I2C1BRG 5350 I2C1TRN 5360 I2C1RCV 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — I2CR1DATA<7:0> 0000 0000 31:16 — — — — — — — — — — — — — — — — 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 0000 15:0 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 0000 — — — — — I2CT1DATA<7:0> — 0000 0000 I2C1BRG<11:0> — 0000 0000 — — 0000 0000 — — — I2CR1DATA<7:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 I2CT1DATA<7:0> — 0000 0000 I2C1BRG<11:0> — 0000 0000 MSK<9:0> — All Resets Bit Range Register Name Bits 5220 I2C3AADD 5250 I2C1, I2C1A, I2C2A AND I2C3A REGISTER MAP(1) (CONTINUED) 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 66 TABLE 4-11: 2010 Microchip Technology Inc. Virtual Address (BF80_#) I2C2 REGISTER MAP FOR PIC32MX575F512L, PIC32MX575F256L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 5400 I2C2CON 5410 I2C2STAT 5420 I2C2ADD 5430 I2C2MSK 5440 I2C2BRG 5450 I2C2TRN 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL SCLREL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 0000 31:16 — — — — — — — — — — — — — — — — 0000 TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P S R/W RBF TBF 0000 — — — — — — — — — — 15:0 ACKSTAT 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — — — 31:16 — — — — — — 15:0 — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — ADD<9:0> — — — — — — — — — — MSK<9:0> — — — — — — — — — — — — — — 0000 0000 — — — — — I2CT1DATA<7:0> — 0000 0000 I2C2BRG<11:0> — 0000 0000 — — 0000 0000 — — — I2CR1DATA<7:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets 31/15 0000 0000 DS61156C-page 67 PIC32MX5XX/6XX/7XX Preliminary 5460 I2C2RCV Bit Range Bits Register Name 2010 Microchip Technology Inc. TABLE 4-12: Virtual Address (BF80_#) U1ASTA (1) 6020 U1ATXREG 6030 U1ARXREG 6040 U1ABRG (1) (1) Preliminary U1BSTA(1) 6220 U1BTXREG 6230 U1BRXREG 6240 U1BBRG(1) 6400 U2AMODE 6410 U2ASTA (1) (1) 6420 U2ATXREG 6430 U2ARXREG 2010 Microchip Technology Inc. 6440 U2ABRG 6600 6610 (1) U2BMODE(1) U2BSTA 30/14 29/13 28/12 27/11 26/10 25/9 24/8 — — 31:16 — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — UEN<1:0> 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 15:0 6200 U1BMODE 6210 31/15 (1) 6620 U2BTXREG 23/7 22/6 21/5 20/4 19/3 18/2 17/1 — — — — — — — WAKE LPBACK ABAUD RXINV BRGH PDSEL<1:0> 16/0 — 0000 STSEL 0000 ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 0000 31:16 15:0 — — — — — — — — — — — — — ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 — — — — — — — — — — — — — — — — — — — — — — 0000 WAKE LPBACK ABAUD RXINV BRGH STSEL 0000 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> UEN<1:0> 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 — — — — — — — TX8 15:0 Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> — — 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — — 0000 Transmit Register Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Register Name Bit Range Bits 6000 U1AMODE(1) 6010 UART1A, UART1B, UART2A, UART2B, UART3A AND UART3B REGISTER MAP 0000 PIC32MX5XX/6XX/7XX DS61156C-page 68 TABLE 4-13: Virtual Address (BF80_#) 6640 U2BBRG (1) (1) U3ASTA(1) 6820 U3ATXREG 6830 U3ARXREG U3BSTA (1) (1) 6A20 U3BTXREG 6A30 U3BRXREG 6A40 U3BBRG 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — 15:0 — — — — — — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — 15:0 ON FRZ SIDL IREN RTSMD — 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — (1) 20/4 19/3 18/2 17/1 16/0 — — — — — 0000 0000 Receive Register — 0000 — — — — — — — — — — — — — — — 0000 WAKE LPBACK ABAUD RXINV BRGH STSEL 0000 BRG<15:0> UEN<1:0> 0000 ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 0000 — — — — — — — — — — — — — — — — — 0000 STSEL 0000 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 ON FRZ SIDL IREN — — — — WAKE LPBACK ABAUD RXINV BRGH 31:16 — — — — — — — ADM_EN 15:0 UTXISEL<1:0> UTXINV URXEN UTXBRK UTXEN UTXBF TRMT 31:16 — — — — — — — — 15:0 PDSEL<1:0> Transmit Register — — 0000 Receive Register 0000 BRG<15:0> 15:0 — — — — — — — TX8 31:16 — — — — — — — — 15:0 — — — — — — — RX8 31:16 — — — — — — — — 15:0 0000 PDSEL<1:0> ADDR<7:0> URXISEL<1:0> 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 — — — — — 0000 — — — 0000 — — — 0000 — — — — — — — — — Transmit Register — — 0000 Receive Register — — 0000 BRG<15:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 DS61156C-page 69 PIC32MX5XX/6XX/7XX Preliminary U3ABRG(1) 6A00 U3BMODE 6A10 30/14 15:0 6800 U3AMODE 6840 31/15 All Resets Bit Range 6630 U2BRXREG 6810 UART1A, UART1B, UART2A, UART2B, UART3A AND UART3B REGISTER MAP (CONTINUED) Bits Register Name 2010 Microchip Technology Inc. TABLE 4-13: Virtual Address (BF80_#) 5800 SPI1ACON 5810 SPI1ASTAT 5820 SPI1ABUF 5830 SPI1ABRG 5A00 SPI2ACON 5A10 SPI2ASTAT Preliminary 5A20 SPI2ABUF 5A30 SPI2ABRG 5C00 SPI3ACON 5C10 SPI3ASTAT 5C20 SPI3ABUF 5C30 SPI3ABRG 31/15 30/14 29/13 31:16 FRMEN 15:0 ON FRMSYNC FRMPOL FRZ SIDL 31:16 — — — 15:0 — — — 28/12 27/11 26/10 MSSEN FRMSYPW DISSDO MODE32 25/9 SMP — CKE SSEN — — — SRMT SPIROV SPIRBE RXBUFELM<4:0> — SPIBUSY — — SPITUR 22/6 21/5 20/4 19/3 18/2 17/1 — — CKP MSTEN — — — SPIFE — STXISEL<1:0> 16/0 ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — SPITBE — — 15:0 — 31:16 FRMEN — — — — FRMSYNC FRMPOL 15:0 ON FRZ SIDL 31:16 — — — 15:0 — — — — — — — — — MSSEN FRMSYPW DISSDO MODE32 — — SPITBF SPIRBF — SPIBUSY 0000 — — — — — — MODE16 SMP SSEN CKP MSTEN — — — — — 31:16 SRMT SPIROV SPIRBE — — — — — — — SPIFE — STXISEL<1:0> — BRG<8:0> CKE RXBUFELM<4:0> SPITUR 0000 SRXISEL<1:0> TXBUFELM<4:0> — — 15:0 — 31:16 FRMEN — — — — FRMSYNC FRMPOL 15:0 ON FRZ SIDL 31:16 — — — 15:0 — — — — — — — — — MSSEN FRMSYPW DISSDO MODE32 — — SPITBE — SPITBF SPIRBF MODE16 SMP CKE — SPIBUSY — — 31:16 SPITUR — — — — — SSEN CKP MSTEN — — — SRMT SPIROV SPIRBE — — — — — — — SPIFE — STXISEL<1:0> — 0000 SRXISEL<1:0> TXBUFELM<4:0> — 31:16 — — — — — — — 15:0 — — — — — — — — — SPITBE — 0000 0000 SPITBF SPIRBF 0000 0000 0000 — — — — — — — BRG<8:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 ENHBUF 0000 DATA<31:0> 15:0 0000 0000 — BRG<8:0> RXBUFELM<4:0> 0000 0000 0000 — FRMCNT<2:0> 0000 ENHBUF 0000 DATA<31:0> 15:0 0000 0000 — FRMCNT<2:0> 0000 0000 DATA<31:0> 15:0 31:16 23/7 FRMCNT<2:0> MODE16 31:16 31:16 24/8 All Resets Bit Range Register Name Bits 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 70 SPI1A, SPI2A AND SPI3A REGISTER MAP(1) TABLE 4-14: 2010 Microchip Technology Inc. Register Name 5E10 SPI1STAT SPI1BUF 5E30 SPI1BRG 31/15 30/14 29/13 31:16 FRMEN 15:0 ON FRMSYNC FRMPOL FRZ SIDL 31:16 — — — 15:0 — — — 28/12 27/11 26/10 MSSEN FRMSYPW DISSDO MODE32 25/9 24/8 23/7 — CKE SSEN — — — SRMT SPIROV SPIRBE FRMCNT<2:0> MODE16 SMP RXBUFELM<4:0> — SPIBUSY — — 31:16 SPITUR 22/6 21/5 20/4 19/3 18/2 17/1 — — CKP MSTEN — — — SPIFE — STXISEL<1:0> 16/0 ENHBUF 0000 SRXISEL<1:0> TXBUFELM<4:0> — SPITBE — 31:16 — — — — — — — 15:0 — — — — — — — — — SPITBF SPIRBF 0000 0000 0000 — — — — — — — BRG<8:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 DATA<31:0> 15:0 All Resets Bits 5E00 SPI1CON 5E20 SPI1 REGISTER MAP FOR PIC32MX575F512L, PIC32MX575F256L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bit Range Virtual Address (BF80_#) 2010 Microchip Technology Inc. TABLE 4-15: 0000 0000 DS61156C-page 71 PIC32MX5XX/6XX/7XX Preliminary Register Name 31/15 30/14 29/13 28/12 27/11 26/10 — 25/9 24/8 23/7 — — — 22/6 21/5 — — 31:16 — — — — — 15:0 ON FRZ SIDL — — 9010 AD1CON2 (1) 31:16 — — — — — — — — — — 15:0 VCFG2 VCFG1 VCFG0 OFFCAL — CSCNA — — BUFS — 9020 AD1CON3 (1) 31:16 — — — — — — — — — 9000 AD1CON1(1) 9040 AD1CHS(1) 9060 AD1PCFG(1) 9050 AD1CSSL (1) Preliminary 9070 ADC1BUF0 9080 ADC1BUF1 9090 ADC1BUF2 90A0 ADC1BUF3 90B0 ADC1BUF4 90C0 ADC1BUF5 90D0 ADC1BUF6 90E0 ADC1BUF7 2010 Microchip Technology Inc. 90F0 ADC1BUF8 9100 ADC1BUF9 9110 ADC1BUFA 9120 ADC1BUFB 15:0 ADRC — — 31:16 CH0NB — — — 15:0 — — — — 18/2 17/1 16/0 — — — — — — ASAM SAMP DONE 0000 — — — — — — 0000 BUFM ALTS 0000 — — — — — 0000 CH0NA — — — — — — — SSRC<2:0> SMPI<3:0> — — ADCS<7:0> CH0SB<3:0> — 19/3 CLRASAM FORM<2:0> SAMC<4:0> — 20/4 — — — 0000 0000 CH0SA<3:0> — — 0000 — 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 ADC Result Word 0 (ADC1BUF0<31:0>) ADC Result Word 1 (ADC1BUF1<31:0>) ADC Result Word 2 (ADC1BUF2<31:0>) ADC Result Word 3 (ADC1BUF3<31:0>) ADC Result Word 4 (ADC1BUF4<31:0>) ADC Result Word 5 (ADC1BUF5<31:0>) ADC Result Word 6 (ADC1BUF6<31:0>) ADC Result Word 7 (ADC1BUF7<31:0>) ADC Result Word 8 (ADC1BUF8<31:0>) ADC Result Word 9 (ADC1BUF9<31:0>) ADC Result Word A (ADC1BUFA<31:0>) ADC Result Word B (ADC1BUFB<31:0>) Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bits Bit Range Virtual Address (BF80_#) ADC REGISTER MAP 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 72 TABLE 4-16: ADC REGISTER MAP (CONTINUED) Register Name 9130 ADC1BUFC 9140 ADC1BUFD 9150 ADC1BUFE 9160 ADC1BUFF 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 ADC Result Word C (ADC1BUFC<31:0>) ADC Result Word D (ADC1BUFD<31:0>) ADC Result Word E (ADC1BUFE<31:0>) ADC Result Word F (ADC1BUFF<31:0>) Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bits Bit Range Virtual Address (BF80_#) 2010 Microchip Technology Inc. TABLE 4-16: 0000 0000 0000 0000 0000 0000 0000 0000 DS61156C-page 73 PIC32MX5XX/6XX/7XX Preliminary Virtual Address (BF88_#) DMASTAT 3020 DMAADDR 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ — SUSPEND BUSY — — — — — — — — — — — 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — — RDWR 31:16 DMACH<2:0> 0000 0000 DMAADDR<31:0> 15:0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: DMA CRC REGISTER MAP(1) 3030 DCRCCON 3040 DCRCDATA 3050 DCRCXOR 31/15 30/14 31:16 — — 15:0 — — 31:16 15:0 31:16 15:0 29/13 28/12 BYTO<1:0> — 27/11 WBO 26/10 25/9 24/8 — — BITO PLEN<4:0> 23/7 22/6 21/5 20/4 19/3 18/2 — — — — — — CRCEN CRCAPP CRCTYP — — 17/1 16/0 — — CRCCH<2:0> DCRCDATA<31:0> DCRCXOR<31:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits Register Name Preliminary Virtual Address (BF88_#) TABLE 4-18: All Resets Bit Range Register Name Bits 3000 DMACON(1) 3010 DMA GLOBAL REGISTER MAP 0000 0000 0000 0000 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 74 TABLE 4-17: 2010 Microchip Technology Inc. Virtual Address (BF88_#) 3060 DCH0CON 3070 DCH0ECON 3080 3090 DCH0INT DCH0SSA 30A0 DCH0DSA 30B0 DCH0SSIZ 30D0 DCH0SPTR 30E0 DCH0DPTR 30F0 DCH0CSIZ 3100 DCH0CPTR DCH0DAT 3120 DCH1CON 3130 DCH1ECON 3140 3150 DCH1INT DCH1SSA DS61156C-page 75 3160 DCH1DSA 3170 DCH1SSIZ 24/8 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 0000 CHSIRQ<7:0> 15:0 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — CHCHN CHAEN — — — — — CHEDET CHPRI<1:0> CHAIRQ<7:0> 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 31:16 31:16 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — 0000 — — 0000 — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — CHCPTR<15:0> 0000 0000 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 0000 CHSIRQ<7:0> 15:0 — 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 — CHSPTR<15:0> 15:0 31:16 — CHDSIZ<15:0> 15:0 31:16 0000 CHSSIZ<15:0> 15:0 31:16 0000 CHDSA<31:0> 15:0 0000 0000 CHSSA<31:0> 15:0 31:16 0000 0000 00FF CHPDAT<7:0> — — CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 15:0 0000 0000 CHDSA<31:0> 15:0 31:16 — — — — — — — — — 0000 0000 CHSSA<31:0> 15:0 31:16 0000 0000 00FF 31:16 31:16 0000 0000 0000 — — — — — — — CHSSIZ<15:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range 31/15 0000 0000 PIC32MX5XX/6XX/7XX Preliminary 30C0 DCH0DSIZ 3110 DMA CHANNELS 0-7 REGISTER MAP(1) Bits Register Name 2010 Microchip Technology Inc. TABLE 4-19: Virtual Address (BF88_#) 3190 DCH1SPTR 31A0 DCH1DPTR 31B0 DCH1CSIZ 31C0 DCH1CPTR 31D0 DCH1DAT Preliminary 31E0 DCH2CON 31F0 DCH2ECON 3200 DCH2INT 3210 DCH2SSA 3220 DCH2DSA 3230 DCH2SSIZ 3240 DCH2DSIZ 3250 DCH2SPTR 2010 Microchip Technology Inc. 3260 DCH2DPTR 3270 DCH2CSIZ 3280 DCH2CPTR DCH2DAT 31:16 31/15 30/14 29/13 28/12 27/11 26/10 25/9 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — 0000 0000 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF CHSIRQ<7:0> 15:0 31:16 — — — — — — — 15:0 — — — — — — — 31:16 15:0 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 0000 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — 0000 0000 0000 0000 — — — — — — — — — — — — — — CHCPTR<15:0> 31:16 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 — 0000 0000 00FF CHSPTR<15:0> 15:0 31:16 CHAIRQ<7:0> CHDSIZ<15:0> 15:0 31:16 — CHPRI<1:0> CHSSIZ<15:0> 15:0 31:16 — CHDSA<31:0> 15:0 0000 0000 CHSSA<31:0> 31:16 31:16 CHPDAT<7:0> 0000 0000 CHPDAT<7:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 CHCPTR<15:0> — 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 22/6 CHSPTR<15:0> 15:0 31:16 23/7 CHDSIZ<15:0> 15:0 31:16 24/8 All Resets Bit Range Register Name Bits 3180 DCH1DSIZ 3290 DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED) 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 76 TABLE 4-19: Virtual Address (BF88_#) 32A0 DCH3CON 32B0 DCH3ECON 32C0 DCH3INT 32D0 DCH3SSA 32E0 DCH3DSA 32F0 DCH3SSIZ 3310 DCH3SPTR 3320 DCH3DPTR 3330 DCH3CSIZ 3340 DCH3CPTR DCH3DAT 3360 DCH4CON 3370 DCH4ECON 3380 3390 DCH4INT DCH4SSA DS61156C-page 77 33A0 DCH4DSA 33B0 DCH4SSIZ 24/8 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 CHSIRQ<7:0> 15:0 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — CHCHN CHAEN — — — — — CHEDET CHPRI<1:0> CHAIRQ<7:0> 0000 0000 00FF 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 31:16 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — 0000 — — 0000 — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — CHCPTR<15:0> 0000 0000 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 0000 15:0 CHSIRQ<7:0> — 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 — CHSPTR<15:0> 15:0 31:16 — CHDSIZ<15:0> 15:0 31:16 0000 CHSSIZ<15:0> 15:0 31:16 0000 CHDSA<31:0> 15:0 31:16 0000 CHSSA<31:0> 15:0 CHPDAT<7:0> — — CHPRI<1:0> CHAIRQ<7:0> — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 31:16 31:16 15:0 0000 0000 CHDSA<31:0> 15:0 — — — — — — — — — 0000 0000 CHSSA<31:0> 15:0 0000 0000 00FF 31:16 31:16 0000 0000 0000 — — — — — — — CHSSIZ15:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range 31/15 0000 0000 PIC32MX5XX/6XX/7XX Preliminary 3300 DCH3DSIZ 3350 DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED) Bits Register Name 2010 Microchip Technology Inc. TABLE 4-19: Virtual Address (BF88_#) 33D0 DCH4SPTR 33E0 DCH4DPTR 33F0 DCH4CSIZ 3400 DCH4CPTR DCH4DAT Preliminary 3420 DCH5CON 3430 DCH5ECON 3440 DCH5INT 3450 DCH5SSA 3460 DCH5DSA 3470 DCH5SSIZ 3480 DCH5DSIZ 3490 DCH5SPTR 2010 Microchip Technology Inc. 34A0 DCH5DPTR 34B0 DCH5CSIZ 34C0 DCH5CPTR 34D0 DCH5DAT 31:16 31/15 30/14 29/13 28/12 27/11 26/10 25/9 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — 0000 0000 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF CHSIRQ<7:0> 15:0 31:16 — — — — — — — 15:0 — — — — — — — 31:16 15:0 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 0000 0000 — — — — — — — 0000 — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — 0000 0000 0000 0000 — — — — — — — — — — — — — — CHCPTR<15:0> 31:16 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 — 0000 0000 00FF CHSPTR<15:0> 15:0 31:16 CHAIRQ<7:0> CHDSIZ<15:0> 15:0 31:16 — CHPRI<1:0> CHSSIZ<15:0> 15:0 31:16 — CHDSA<31:0> 15:0 0000 0000 CHSSA<31:0> 31:16 31:16 CHPDAT<7:0> 0000 0000 CHPDAT<7:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 CHCPTR<15:0> — 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 22/6 CHSPTR<15:0> 15:0 31:16 23/7 CHDSIZ<15:0> 15:0 31:16 24/8 All Resets Bit Range Register Name Bits 33C0 DCH4DSIZ 3410 DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED) 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 78 TABLE 4-19: Virtual Address (BF88_#) 34E0 DCH6CON 34F0 DCH6ECON 3500 3510 DCH6INT DCH6SSA 3520 DCH6DSA 3530 DCH6SSIZ 3550 DCH6SPTR 3560 DCH6DPTR 3570 DCH6CSIZ 3580 DCH6CPTR DCH6DAT 35A0 DCH7CON 35B0 DCH7ECON 35C0 DCH7INT 35D0 DCH7SSA DS61156C-page 79 35E0 DCH7DSA 35F0 DCH7SSIZ 24/8 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 0000 CHSIRQ<7:0> 15:0 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — CHCHN CHAEN — — — — — CHEDET CHPRI<1:0> CHAIRQ<7:0> 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 31:16 31:16 31:16 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — — — — — — — 0000 — — — — — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — 0000 — — 0000 — — — — — — — — — — — — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — CHCPTR<15:0> 0000 0000 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — 15:0 CHBUSY — — — — — — CHCHNS CHEN CHAED CHCHN CHAEN — CHEDET 31:16 — — — — — — — — CFORCE CABORT PATEN SIRQEN AIRQEN — — — FF00 15:0 CHSIRQ<7:0> — 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 0000 — CHSPTR<15:0> 15:0 31:16 — CHDSIZ<15:0> 15:0 31:16 — CHSSIZ<15:0> 15:0 31:16 0000 0000 CHDSA<31:0> 15:0 0000 0000 CHSSA<31:0> 15:0 0000 0000 00FF CHPDAT<7:0> 0000 0000 — — CHPRI<1:0> CHAIRQ<7:0> 0000 0000 00FF 31:16 — — — — — — — — CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE 0000 15:0 — — — — — — — — CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF 0000 31:16 31:16 15:0 0000 0000 CHDSA<31:0> 15:0 31:16 0000 CHSSA<31:0> 15:0 — — — — — — — — — 0000 — — — — — — — CHSSIZ<15:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range 31/15 0000 0000 PIC32MX5XX/6XX/7XX Preliminary 3540 DCH6DSIZ 3590 DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED) Bits Register Name 2010 Microchip Technology Inc. TABLE 4-19: Virtual Address (BF88_#) 3610 DCH7SPTR 3620 DCH7DPTR 3630 DCH7CSIZ 3640 DCH7CPTR DCH7DAT 31:16 31/15 30/14 29/13 28/12 27/11 26/10 25/9 — — — — — — — 15:0 31:16 — — — — — — — — — — — — — — 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — 0000 0000 — — — — — — — — — — — — — — 0000 0000 CHPDAT<7:0> Preliminary Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 CHCPTR<15:0> 31:16 0000 0000 CHCSIZ<15:0> 15:0 0000 0000 CHDPTR<15:0> 15:0 31:16 22/6 CHSPTR<15:0> 15:0 31:16 23/7 CHDSIZ<15:0> 15:0 31:16 24/8 All Resets Bit Range Register Name Bits 3600 DCH7DSIZ 3650 DMA CHANNELS 0-7 REGISTER MAP(1) (CONTINUED) 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 80 TABLE 4-19: 2010 Microchip Technology Inc. Virtual Address (BF80_#) A000 CM1CON A010 CM2CON CMSTAT 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 — 31:16 — — — — — — — — 15:0 ON COE CPOL — — — — COUT 31:16 — — — — — — — — 20/4 19/3 18/2 17/1 16/0 — — — — — — — EVPOL<1:0> — CREF — — — — — — — — CCH<1:0> — — CCH<1:0> 0000 0000 15:0 ON COE CPOL — — — — COUT EVPOL<1:0> — CREF — — — — — — — — — — — — — — — — — — 0000 15:0 — FRZ SIDL — — — — — — — — — — — C2OUT C1OUT 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 0000 COMPARATOR VOLTAGE REFERENCE REGISTER MAP(1) TABLE 4-21: Register Name Bit Range Bits 9800 CVRCON 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 31:16 — — — — — — — — — — 15:0 ON — — — — — — — — CVROE 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — CVRR CVRSS CVR<3:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 0000 DS61156C-page 81 PIC32MX5XX/6XX/7XX Preliminary Virtual Address (BF80_#) 0000 31:16 Legend: 1: All Resets 31/15 All Resets A060 Bit Range Bits Register Name 2010 Microchip Technology Inc. COMPARATOR REGISTER MAP(1) TABLE 4-20: Virtual Address (BF80_#) FLASH CONTROLLER REGISTER MAP F400 NVMCON(1) F410 NVMKEY (1) F420 NVMADDR F430 NVMDATA F440 NVMSRC ADDR 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — 31:16 — — — — — — — — — — — — 15:0 WR WREN WRERR LVDERR LVDSTAT — — — — — — — 31:16 NVMOP<3:0> 31:16 0000 0000 0000 NVMADDR<31:0> 15:0 31:16 0000 0000 NVMDATA<31:0> 15:0 31:16 0000 0000 NVMSRCADDR<31:0> 15:0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Virtual Address (BF80_#) F000 OSCCON OSCTUN 0000 WDTCON 2010 Microchip Technology Inc. F600 RCON F610 RSWRST 31/15 30/14 29/13 28/12 27/11 26/10 31:16 — — 15:0 — 31:16 — — — — — — — 15:0 — — — — — — — 31:16 — — — — — — PLLODIV<2:0> COSC<2:0> — 25/9 24/8 21/5 20/4 19/3 18/2 23/7 22/6 RCDIV<2:0> — SOSCRDY — NOSC<2:0> CLKLOCK ULOCK LOCK SLPEN CF UFRCEN SOSCEN OSWEN 0000 — — — — — — — — — 0000 — — — — — — — — — — 0000 PBDIV<1:0> 17/1 All Resets(2) Bit Range Bits Register Name Preliminary SYSTEM CONTROL REGISTER MAP(1,2) TABLE 4-23: F010 0000 0000 NVMKEY<31:0> 15:0 All Resets Register Name Bit Range Bits 16/0 PLLMULT<2:0> 0000 TUN<5:0> — — — SWDTPS<4:0> 0000 15:0 ON — — — — — — — — — WDTCLR 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — CM VREGS EXTR SWR — WDTO SLEEP IDLE BOR POR 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — — — — — SWRST 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values are dependent on the DEVCFGx Configuration bits and the type of Reset. 1: 2: PIC32MX5XX/6XX/7XX DS61156C-page 82 TABLE 4-22: Virtual Address (BF88_#) Register Name 6000 TRISA 6020 LATA 6030 ODCA 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RA15 RA14 — — — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx — — — — — — — — — — — — — — — — 0000 15:0 LATA15 LATA14 — — — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCA15 ODCA14 — — — ODCA10 ODCA9 — ODCA7 ODCA6 ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Virtual Address (BF88_#) Register Name TRISB 6050 PORTB 6060 LATB 6070 ODCB PORTB REGISTER MAP(1) Bits 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCB15 ODCB14 ODCB13 ODCB12 ODCB11 ODCB10 ODCB9 ODCB8 ODCB7 ODCB6 ODCB5 ODCB4 ODCB3 ODCB2 ODCB1 ODCB0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 DS61156C-page 83 PIC32MX5XX/6XX/7XX Preliminary TABLE 4-25: 6040 0000 31:16 Legend: 1: All Resets Bit Range PORTA 31/15 All Resets 6010 PORTA REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-24: Virtual Address (BF88_#) Register Name 6080 TRISC PORTC 60A0 LATC 60B0 ODCC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — — — — — — F000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RC15 RC14 RC13 RC12 — — — — — — — — — — — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATC15 LATC14 LATC13 LATC12 — — — — — — — — — — — — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCC15 ODCC14 ODCC13 ODCC12 — — — — — — — — — — — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Virtual Address (BF88_#) Register Name TRISC 6090 PORTC 2010 Microchip Technology Inc. 60A0 60B0 PORTC REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bits Bit Range Preliminary TABLE 4-27: 6080 All Resets Bit Range Bits LATC ODCC 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISC15 TRISC14 TRISC13 TRISC12 — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F00F 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RC15 RC14 RC13 RC12 — — — — — — — RC4 RC3 RC2 RC1 — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATC15 LATC14 LATC13 LATC12 — — — — — — — LATC4 LATC3 LATC2 LATC1 — xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCC15 ODCC14 ODCC13 ODCC12 — — — — — — — ODCC4 ODCC3 ODCC2 ODCC1 — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets 6090 PORTC REGISTER MAP FOR PIC32MX575F256H, PIC32MX675F256H, PIC32MX575F512H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) PIC32MX5XX/6XX/7XX DS61156C-page 84 TABLE 4-26: Virtual Address (BF88_#) Register Name 60C0 TRISD 60D0 PORTD 60E0 LATD 60F0 ODCD PORTD REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 0FFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Register Name TRISD PORTD REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 60D0 PORTD 60E0 LATD 60F0 ODCD 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LAT15 LAT14 LAT13 LAT12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 DS61156C-page 85 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX Preliminary TABLE 4-29: 60C0 All Resets Bit Range Bits Virtual Address (BF88_#) 2010 Microchip Technology Inc. TABLE 4-28: Virtual Address (BF88_#) Register Name 6100 TRISE PORTE REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 6110 PORTE 6120 LATE 6130 ODCE 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — — — TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 00FF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx — — — — — — — — — — — — — — — — 0000 xxxx 15:0 — — — — — — — — LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Virtual Address (BF88_#) Register Name TRISE 6110 PORTE 6120 LATE 6130 ODCE PORTE REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31/15 30/14 29/13 28/12 27/11 26/10 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 03FF 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — ODCE9 ODCE8 ODCE7 0DCE6 ODCE5 ODCE4 ODCE3 ODCE2 ODCE1 ODCE0 0000 DS61156C-page 86 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bits PIC32MX5XX/6XX/7XX Preliminary TABLE 4-31: 6100 0000 31:16 Legend: 1: All Resets Bit Range Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-30: Virtual Address (BF88_#) Register Name 6140 TRISF PORTF REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 6150 PORTF 6160 LATF 6170 ODCF 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — — — TRISF5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — — — RF5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — — — LATF5 31:16 — — — — — — — — — — — 15:0 — — — — — — — — — — ODCF5 20/4 17/1 16/0 19/3 18/2 — — — — — 0000 TRISF4 TRISF3 — TRISF1 TRISF0 003B — — — — — 0000 RF4 RF3 — RF1 RF0 xxxx — — — — — 0000 LATF4 LATF3 — LATF1 LATF0 xxxx — — — — — 0000 ODCF4 ODCF3 — ODCF1 ODCF0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Register Name 6140 TRISF 6150 PORTF 6160 LATF 6170 ODCF PORTF REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 31/15 30/14 31:16 — — 15:0 — — 31:16 — — 29/13 28/12 27/11 26/10 25/9 — — — — TRISF13 TRISF12 — — — — — 21/5 20/4 19/3 18/2 17/1 16/0 24/8 23/7 22/6 — — — — — — — — — — — TRISF8 — — TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 313F — — — — — — — — — — — 0000 0000 15:0 — — RF13 RF12 — — — RF8 — — RF5 RF4 RF3 RF2 RF1 RF0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — LATF13 LATF12 — — — LATF8 — — LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — ODCF13 ODCF12 — — — ODCF8 — — ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 0000 DS61156C-page 87 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Bits PIC32MX5XX/6XX/7XX Preliminary TABLE 4-33: All Resets Bit Range Bits Virtual Address (BF88_#) 2010 Microchip Technology Inc. TABLE 4-32: Virtual Address (BF88_#) Register Name 6180 TRISG 61A0 LATG ODCG 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 31:16 — — — — — — — — 15:0 — — — — — — TRISG9 TRISG8 — — — — TRISG7 TRISG6 — — 31:16 — — — — — — — — — — — — 15:0 — — — — — — RG9 RG8 RG7 RG6 — 31:16 — — — — — — — — — — 15:0 — — — — — — LATG9 LATG8 LATG7 31:16 — — — — — — — — 15:0 — — — — — — ODCG9 ODCG8 19/3 18/2 17/1 16/0 — — — — 0000 TRISG3 TRISG2 — — 03CC — — — — 0000 — RG3 RG2 — — xxxx — — — — — — 0000 LATG6 — — LATG3 LATG2 — — xxxx — — — — — — — — 0000 ODCG7 ODCG6 — — ODCG3 ODCG2 — — 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: Virtual Address (BF88_#) Register Name 6180 TRISG PORTG REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 6190 PORTG 2010 Microchip Technology Inc. 61A0 LATG 61B0 ODCG 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF 31:16 — — — — — — — — — — — — — — — — 0000 0000 15:0 RG15 RG14 RG13 RG12 — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RG0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 LATG15 LATG14 LATG13 LATG12 — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 LATG1 LATG0 xxxx 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ODCG15 ODCG14 ODCG13 ODCG12 — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 ODCG1 ODCG0 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bits Bit Range Preliminary TABLE 4-35: All Resets Bit Range Bits 6190 PORTG 61B0 PORTG REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) PIC32MX5XX/6XX/7XX DS61156C-page 88 TABLE 4-34: Virtual Address (BF88_#) CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256L, PIC32MX575F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX695F512L, PIC32MX775F256L, PIC32MX775F512 AND PIC32MX795F512L DEVICES(1) 61C0 CNCON 61D0 CNEN 61E0 CNPUE 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL — — — — — — — — — — — — — 0000 31:16 — — — — — — — — — — CNEN21 CNEN20 CNEN19 CNEN18 CNEN17 CNEN16 0000 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 31:16 — — — — — — — — — — CNPUE21 CNPUE20 CNPUE19 CNPUE18 CNPUE17 CNPUE16 0000 CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE2 CNPUE1 CNPUE0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: 0000 CHANGE NOTICE AND PULL-UP REGISTER MAP FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H AND PIC32MX795F512H DEVICES(1) 61C0 CNCON 61D0 CNEN 61E0 CNPUE 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 0000 15:0 ON FRZ SIDL — — — — — — — — — — — — — 0000 31:16 — — — — — — — — — — — — — CNEN18 CNEN17 CNEN16 0000 15:0 CNEN15 CNEN14 CNEN13 CNEN12 CNEN11 CNEN10 CNEN9 CNEN8 CNEN7 CNEN6 CNEN5 CNEN4 CNEN3 CNEN2 CNEN1 CNEN0 0000 31:16 — — — — — — — — — — — — — CNPUE9 CNPUE8 CNPUE7 CNPUE6 CNPUE5 CNPUE4 CNPUE3 15:0 CNPUE15 CNPUE14 CNPUE13 CNPUE12 CNPUE11 CNPUE10 CNPUE18 CNPUE17 CNPUE16 0000 CNPUE2 CNPUE1 CNPUE0 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 1: All Resets Bit Range Register Name Bits 0000 DS61156C-page 89 PIC32MX5XX/6XX/7XX Preliminary TABLE 4-37: Virtual Address (BF88_#) All Resets Bit Range Bits Register Name 2010 Microchip Technology Inc. TABLE 4-36: Virtual Address (BF80_#) Register Name 7000 PMCON 7010 PMMODE 7020 PMADDR 7030 PMDOUT PMDIN 7050 PMAEN PMSTAT 29/13 31:16 — — — 15:0 ON FRZ SIDL 31:16 — — — 15:0 BUSY 31:16 — IRQM<1:0> — — 28/12 27/11 — — ADRMUX<1:0> — — INCM<1:0> — — 26/10 25/9 24/8 23/7 22/6 — — — — — PMPTTL PTWREN PTRDEN — — — MODE16 — — MODE<1:0> — — — — — 20/4 19/3 18/2 17/1 16/0 — — — — — — 0000 ALP CS2P CS1P — WRSP RDSP 0000 — — — — — — 0000 WAITB<1:0> 15:0 CS2EN/A15 CS1EN/A14 WAITM<3:0> — — — WAITE<1:0> — — — ADDR<13:0> 31:16 31:16 — — — — — — — — 31:16 — — — — — — — — 15:0 IBF IBOV — — IB3F IB2F IB1F IB0F 15:0 — 0000 0000 0000 — — — — — — — — — — — — — — — 0000 OBE OBUF — — OB3E OB2E OB1E OB0E 0080 PTEN<15:0> Note All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. TABLE 4-39: PROGRAMMING AND DIAGNOSTICS REGISTER MAP Bit Range Register Name Bits F200 DDPCON 2010 Microchip Technology Inc. Legend: 0000 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1: 0000 0000 DATAIN<31:0> 15:0 0000 0000 DATAOUT<31:0> 15:0 31:16 CSF<1:0> 21/5 All Resets 30/14 Legend: Virtual Address (BF80_#) Preliminary 7060 31/15 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 31:16 — — — — — — — — — — — — 15:0 — — — — — — — — — — — — x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 19/3 All Resets 7040 Bit Range Bits 18/2 17/1 16/0 — — — — 0000 JTAGEN TROEN — — 0008 PIC32MX5XX/6XX/7XX DS61156C-page 90 PARALLEL MASTER PORT REGISTER MAP(1) TABLE 4-38: Virtual Address (BF88_#) PREFETCH REGISTER MAP 4000 CHECON(1,2) 4010 CHEACC (1) 4020 CHETAG(1) 4030 CHEMSK(1) 4040 CHEW0 4050 CHEW1 CHEW2 4070 CHEW3 4080 CHELRU 4090 CHEHIT 40A0 CHEMIS 40C0 CHEPFABT 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 31:16 — — — — — — — — — 15:0 — — — — — — — — — — — — — — — — — — — — — — — — — — — — 31:16 CHEWEN 15:0 — 31:16 LTAGBOOT 15:0 31:16 DCSZ<1:0> — — — — — — — 31:16 31:16 31:16 31:16 15:0 — — — PREFEN<1:0> — — — — — — — — — — — — CHECOH 0000 PFMWS<2:0> — — 0000 — CHEIDX<3:0> LTAG<23:16> — — — — — — — — — — 00xx LVALID LLOCK LTYPE — xxx0 — — — — — 0000 — — — — — 0000 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx CHELRU<24:16> 0000 CHELRU<15:0> 0000 CHEHIT<31:0> xxxx CHEMIS<31:0> CHEPFABT<31:0> Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Note This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset value is dependent on DEVCFGx configuration. 1: 2: 0000 0000 CHEW3<31:0> 15:0 15:0 — — 16/0 CHEW2<31:0> 15:0 31:16 — 17/1 CHEW1<31:0> 15:0 15:0 18/2 CHEW0<31:0> 15:0 31:16 19/3 LMASK<15:5> 31:16 15:0 20/4 LTAG<15:4> 15:0 31:16 21/5 xxxx xxxx xxxx xxxx xxxx DS61156C-page 91 PIC32MX5XX/6XX/7XX Preliminary 4060 31/15 All Resets Bit Range Bits Register Name 2010 Microchip Technology Inc. TABLE 4-40: Virtual Address (BF80_#) Register Name 0200 RTCCON 0210 RTCALRM 0220 RTCTIME 0230 RTCDATE 0240 ALRMTIME 0250 ALRMDATE Legend: 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — 15:0 ON FRZ SIDL — — — — — 31:16 — — — — — — — — 15:0 ALRMEN CHIME PIV ALRMSYNC HR01<3:0> 15:0 SEC10<3:0> SEC01<3:0> 31:16 YEAR10<3:0> YEAR01<3:0> 15:0 DAY10<3:0> DAY01<3:0> 31:16 HR10<3:0> HR01<3:0> 15:0 SEC10<3:0> SEC01<3:0> — — — DAY10<3:0> — 21/5 RTSECSEL RTCCLKON — — 20/4 19/3 18/2 17/1 16/0 — — — 0000 — — — — AMASK<3:0> HR10<3:0> 15:0 22/6 CAL<9:0> 31:16 31:16 23/7 RTCWREN RTCSYNC HALFSEC — — — RTCOE 0000 — 0000 ARPT<7:0> MIN10<3:0> — — — — — — — — — — MIN10<3:0> — DAY01<3:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — — xxxx — — — xx00 MONTH01<3:0> xxxx WDAY01<3:0> xx00 MIN01<3:0> — MONTH10<3:0> — 0000 MIN01<3:0> MONTH10<3:0> — All Resets Bit Range Bits — — xxxx — xx00 MONTH01<3:0> 00xx WDAY01<3:0> xx0x Preliminary PIC32MX5XX/6XX/7XX DS61156C-page 92 RTCC REGISTER MAP(1) TABLE 4-41: 2010 Microchip Technology Inc. DEVCFG: DEVICE CONFIGURATION WORD SUMMARY 2FF0 DEVCFG3 2FF4 DEVCFG2 2FF8 DEVCFG1 2FFC DEVCFG0 Legend: 31/15 30/14 31:16 FVBUSIO FUSBIDIO 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 FSCMIO — — FCANIO FETHIO FMIIEN — — — — — FSRSSEL<2:0> xxxx — — — — FPLLODIV<2:0> xxxx 15:0 18/2 17/1 16/0 USERID<15:0> 31:16 — — — — — 15:0 FUPLLEN — — — — 31:16 — — — — — — — — — — FWDTEN — — FUPLLIDIV<2:0> — xxxx — — FPLLMULT<2:0> — 15:0 FCKSM<1:0> FPBDIV<1:0> — OSCIOFNC IESO — FSOSCEN — — — — — — BWP — — — — — — — — — — — — 23/7 22/6 21/5 20/4 15:0 CP PWP<3:0> POSCMOD<1:0> FPLLIDIV<2:0> xxxx WDTPS<4:0> 31:16 — All Resets Bit Range Bits Register Name — xxxx FNOSC<2:0> xxxx PWP<7:4> ICESEL — xxxx DEBUG<1:0> xxxx x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Register Name F220 DEVID DEVICE AND REVISION ID SUMMARY(1) Legend: Note 1: 31:16 15:0 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 VER<3:0> 19/3 DEVID<27:16> DEVID<15:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset values are dependent on the device variant. Refer to the “PIC32MX5XX/6XX/7XX Family Silicon Errata and Data Sheet Clarification” (DS80480) for more information. 18/2 17/1 16/0 All Resets Bits xxxx xxxx DS61156C-page 93 PIC32MX5XX/6XX/7XX Preliminary Virtual Address (BF80_#) TABLE 4-43: Bit Range Virtual Address (BFC0_#) 2010 Microchip Technology Inc. TABLE 4-42: Virtual Address (BF88_#) Register Name 5040 U1OTGIR 5050 U1OTGIE 5070 U1OTGCON 5080 U1PWRC 5200 U1IR Preliminary 5220 5230 5240 5250 U1IE U1EIR U1EIE U1STAT U1CON 2010 Microchip Technology Inc. 5260 U1ADDR 5270 U1BDTP1 5280 U1FRML 5290 U1FRMH 52A0 U1TOK Legend: 23/7 22/6 21/5 — — 20/4 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — — — — 15:0 — — — — — — — — IDIF 31:16 — — — — — — — — — 15:0 — — — — — — — — IDIE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — ID — LSTATE — SESVD SESEND — VBUSVD 0000 31:16 — — — — — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — 15:0 — — — — — — — — UACTPND — — 31:16 — — — — — — — — — — — — T1MSECIF LSTATEIF — ACTVIF — 18/2 17/1 — — — SESVDIF SESENDIF — T1MSECIE LSTATEIE 19/3 — ACTVIE — — — — — — — — — STALLIF 31:16 — — — — — — — — — 15:0 — — — — — — — — STALLIE 31:16 — — — — — — — — — — — — — ATTACHIE RESUMEIE — — — — 0000 — 0000 VBUSVDIE 0000 — — — 0000 VBUSCHG VBUSDIS 0000 — — — — — VBUSVDIF 0000 OTGEN — USLPGRD USBBUSY ATTACHIF RESUMEIF — SESVDIE SESENDIE DPPULUP DMPULUP DPPULDWN DMPULDWN VBUSON 15:0 — 16/0 All Resets Bit Range Bits 5060 U1OTGSTAT 5210 USB REGISTER MAP USUSPEND USBPWR — — IDLEIF TRNIF SOFIF UERRIF — — — — IDLEIE TRNIE SOFIE UERRIE — — — — 15:0 — — — — — — — — BTSEF BMXEF DMAEF BTOEF DFN8EF CRC16EF 31:16 — — — — — — — — — — — — — — CRC5EF EOFEF — CRC5EE 0000 0000 — 0000 URSTIF 0000 DETACHIF 0000 — 0000 URSTIE 0000 DETACHIE 0000 — PIDEF — 0000 0000 0000 0000 0000 15:0 — — — — — — — — BTSEE BMXEE DMAEE BTOEE DFN8EE CRC16EE 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — DIR PPBI — — 0000 31:16 — — — — — — — — — — — — — — 0000 USBEN 0000 SOFEN 0000 ENDPT<3:0> — PKTDIS — 15:0 — — — — — — — — JSTATE SE0 31:16 — — — — — — — — — — 15:0 — — — — — — — — LSPDEN 31:16 — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — — 31:16 — — — — — — — — — — — — — 15:0 — — — — — — — — x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TOKBUSY — EOFEE USBRST HOSTEN RESUME PPBRST — — — — — DEVADDR<6:0> — — — — — — — — — — 0000 — — — 0000 — 0000 — FRML<7:0> PID<3:0> 0000 0000 BDTPTRL<7:1> — PIDEE 0000 0000 — — — FRMH<2:0> — — EP<3:0> 0000 0000 — 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 94 TABLE 4-44: Register Name DS61156C-page 95 52B0 U1SOF 52C0 U1BDTP2 52D0 U1BDTP3 52E0 U1CNFG1 5300 U1EP0 5310 U1EP1 5320 U1EP2 5330 U1EP3 5340 U1EP4 5350 U1EP5 5360 U1EP6 5370 U1EP7 5380 U1EP8 5390 U1EP9 53A0 U1EP10 53B0 U1EP11 53C0 U1EP12 53D0 U1EP13 Legend: USB REGISTER MAP (CONTINUED) All Resets Bit Range Bits 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — — 31:16 — — — — — — — — — — — — — — — 15:0 — — — — — — — — UTEYE UOEMON USBFRZ USBSIDL — — — 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — LSPD RETRYDIS — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. CNT<7:0> — — — — — — — — BDTPTRH<7:0> — — — — 0000 0000 — 0000 0000 — — — BDTPTRU<7:0> 0000 0000 — 0000 UASUSPND 0001 PIC32MX5XX/6XX/7XX Preliminary Virtual Address (BF88_#) 2010 Microchip Technology Inc. TABLE 4-44: Virtual Address (BF88_#) Register Name 53E0 U1EP14 53F0 U1EP15 Legend: USB REGISTER MAP (CONTINUED) 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — EPCONDIS EPRXEN EPTXEN EPSTALL EPHSHK 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 20/4 19/3 18/2 17/1 16/0 All Resets Bit Range Bits Preliminary PIC32MX5XX/6XX/7XX DS61156C-page 96 TABLE 4-44: 2010 Microchip Technology Inc. Virtual Address (BF88_#) Register Name B000 C1CON B010 C1CFG C1INT B030 B060 C1TREC C1FSTAT C1RXOVF B070 B080 B090 B0A0 B0B0 C1TMR C1RXM0 C1RXM1 C1RXM2 C1RXM3 B0C0 C1FLTCON0 B0D0 C1FLTCON1 B0E0 C1FLTCON2 DS61156C-page 97 B0F0 C1FLTCON3 B100 C1FLTCON4 Legend: Note 1: 30/14 31:16 — 15:0 ON 31:16 — 15:0 SEG2PHTS 29/13 28/12 — — — ABAT — SIDLE — BUSY — — — — — — SAM 27/11 26/10 25/9 24/8 23/7 — — — — — — — — WAKFIL — REQOP<2:0> SEG1PH<2:0> 22/6 21/5 OPMOD<2:0> PRSEG<2:0> 20/4 19/3 CANCAP — 18/2 17/1 16/0 — — — DNCNT<4:0> — — SJW<1:0> 0400 0000 SEG2PH<2:0> 0000 BRP<5:0> 0000 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — 31:16 — — — — — — — — — — TXBO TXBP TXWARN RXWARN FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 FIFOIP7 FIFOIP6 FIFOIP1 15:0 FILHIT<4:0> — ICOD<6:0> TEC<7:0> 0000 EWARN 0000 REC<7:0> 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 15:0 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP15 RXBP FIFOIP8 FIFOIP5 FIFOIP4 0000 0000 FIFOIP3 FIFOIP2 FIFOIP0 0000 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF8 RXOVF7 31:16 RXOVF9 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000 CANTS<15:0> 15:0 0000 CANTSPRE<15:0> 31:16 0000 SID<10:0> 15:0 -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 xxxx MSEL2<1:0> FSEL2<4:0> 0000 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 0000 15:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 31:16 FLTEN15 15:0 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000 FLTEN13 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000 31:16 FLTEN19 15:0 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 15:0 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0: 0000 FLTEN17 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX Preliminary B050 C1VEC 31/15 All Resets Bits B020 B040 CAN1 REGISTER SUMMARY FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX575F256L, PIC32MX575F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bit Range 2010 Microchip Technology Inc. TABLE 4-45: Virtual Address (BF88_#) B120 C1FLTCON6 B130 C1FLTCON7 B340 C1RXFn (n = 0-31) C1FIFOBA 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 20/4 19/3 18/2 17/1 16/0 MSEL23<1:0> FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> FLTEN21 MSEL21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0> 0000 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 15:0 0000 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 15:0 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> FLTEN29 31:16 SID<10:0> -— 15:0 Preliminary — — — — FRESET UINC DONLY — 31:16 — — — — — TXNFULLIE TXHALFIE TXEMPTYIE 15:0 — — — — — TXNFULLIF TXHALFIF TXEMPTYIF C1FIFOUAn 31:16 (n = 0-31) 15:0 B380 C1FIFOCIn 31:16 (n = 0-31) 15:0 — 0000 EID<17:16> xxxx xxxx 0000 C1FIFOBA<31:0> 15:0 B370 EXID EID<15:0> 31:16 — Legend: Note 1: 21/5 15:0 — C1FIFOINTn (n = 0-31) 22/6 31:16 FLTEN23 C1FIFOCONn 31:16 B350 (n = 0-31) 15:0 B360 23/7 All Resets Bit Range Register Name Bits B110 C1FLTCON5 B140 CAN1 REGISTER SUMMARY FOR PIC32MX575F256H, PIC32MX575F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX575F256L, PIC32MX575F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 0000 — — — — — — FSIZE<4:0> — — — TXEN TXABAT TXLARB TXERR — — — — RXOVFLIE RXFULLIE RXHALFIE RXN 0000 EMPTYIE — — — — RXOVFLIF RXFULLIF RXHALFIF RXN 0000 EMPTYIF TXREQ RTREN 0000 TXPRI<1:0> 0000 0000 C1FIFOUA<31:0> 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — C1FIFOCI<4:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 98 TABLE 4-45: 2010 Microchip Technology Inc. Virtual Address (BF88_#) Register Name C000 C2CON C010 C2CFG C040 C060 C070 C080 C0A0 C0B0 C0B0 C2VEC C2TREC C2FSTAT C2RXOVF C2TMR C2RXM0 C2RXM1 C2RXM2 C2RXM3 C0C0 C2FLTCON0 C0D0 C2FLTCON1 C0E0 C2FLTCON2 DS61156C-page 99 C0F0 C2FLTCON3 Legend: Note 1: 30/14 31:16 — 15:0 ON 31:16 — 15:0 SEG2PHTS 29/13 28/12 — — — ABAT — SIDLE — BUSY — — — — — — SAM 27/11 26/10 25/9 24/8 23/7 — — — — — — — — WAKFIL — REQOP<2:0> SEG1PH<2:0> 22/6 21/5 OPMOD<2:0> PRSEG<2:0> 20/4 19/3 CANCAP — 18/2 17/1 16/0 — — — DNCNT<4:0> — — SJW<1:0> 0400 0000 SEG2PH<2:0> 0000 BRP<5:0> 0000 31:16 IVRIE WAKIE CERRIE SERRIE RBOVIE — — — — — — — MODIE CTMRIE RBIE TBIE 15:0 IVRIF WAKIF CERRIF SERRIF RBOVIF — — — — — — — MODIF CTMRIF RBIF TBIF 0000 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — 31:16 — — — — — — — — — — TXBO TXBP TXWARN RXWARN EWARN 0000 FIFOIP24 FIFOIP23 FIFOIP22 FIFOIP21 FIFOIP20 FIFOIP19 FIFOIP18 FIFOIP17 FIFOIP16 0000 FIFOIP7 FIFOIP6 FIFOIP5 FIFOIP4 FIFOIP3 FIFOIP2 FIFOIP1 15:0 FILHIT<4:0> — ICOD<6:0> TEC<7:0> 0000 REC<7:0> 31:16 FIFOIP31 FIFOIP30 FIFOIP29 FIFOIP28 FIFOIP27 FIFOIP26 FIFOIP25 15:0 FIFOIP14 FIFOIP13 FIFOIP12 FIFOIP11 FIFOIP10 FIFOIP9 FIFOIP15 RXBP FIFOIP8 0000 0000 FIFOIP0 0000 31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 15:0 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF8 RXOVF7 31:16 RXOVF9 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 CANTS<15:0> 15:0 0000 CANTSPRE<15:0> 31:16 0000 SID<10:0> 15:0 -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx -— MIDE — EID<17:16> xxxx EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 EID<15:0> 31:16 xxxx SID<10:0> 15:0 0000 EID<15:0> xxxx 31:16 FLTEN3 MSEL3<1:0> FSEL3<4:0> FLTEN2 MSEL2<1:0> FSEL2<4:0> 0000 15:0 FLTEN1 MSEL1<1:0> FSEL1<4:0> FLTEN0 MSEL0<1:0> FSEL0<4:0> 0000 31:16 FLTEN7 MSEL7<1:0> FSEL7<4:0> FLTEN6 MSEL6<1:0> FSEL6<4:0> 0000 15:0 FLTEN5 MSEL5<1:0> FSEL5<4:0> FLTEN4 MSEL4<1:0> FSEL4<4:0> 0000 31:16 FLTEN11 MSEL11<1:0> FSEL11<4:0> FLTEN10 MSEL10<1:0> FSEL10<4:0> 0000 15:0 FLTEN9 MSEL9<1:0> FSEL9<4:0> FLTEN8 MSEL8<1:0> FSEL8<4:0> 0000 31:16 FLTEN15 MSEL15<1:0> FSEL15<4:0> FLTEN14 MSEL14<1:0> FSEL14<4:0> 0000 15:0 MSEL13<1:0> FSEL13<4:0> FLTEN12 MSEL12<1:0> FSEL12<4:0> 0000 FLTEN13 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. PIC32MX5XX/6XX/7XX Preliminary C050 C2INT 31/15 All Resets Bits C020 C030 CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) Bit Range 2010 Microchip Technology Inc. TABLE 4-46: Virtual Address (BF88_#) C110 C2FLTCON5 C120 C2FLTCON6 C130 C2FLTCON7 Preliminary C340 C2RXFn (n = 0-31) C2FIFOBA 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 20/4 19/3 18/2 17/1 16/0 MSEL19<1:0> FSEL19<4:0> FLTEN18 MSEL18<1:0> FSEL18<4:0> 0000 FLTEN17 MSEL17<1:0> FSEL17<4:0> FLTEN16 MSEL16<1:0> FSEL16<4:0: 0000 31:16 FLTEN23 MSEL23<1:0> FSEL23<4:0> FLTEN22 MSEL22<1:0> FSEL22<4:0> 0000 15:0 FLTEN21 MSEL21<1:0> FSEL21<4:0> FLTEN20 MSEL20<1:0> FSEL20<4:0> 0000 31:16 FLTEN27 MSEL27<1:0> FSEL27<4:0> FLTEN26 MSEL26<1:0> FSEL26<4:0> 0000 15:0 FLTEN25 MSEL25<1:0> FSEL25<4:0> FLTEN24 MSEL24<1:0> FSEL24<4:0> 0000 31:16 FLTEN31 MSEL31<1:0> FSEL31<4:0> FLTEN30 MSEL30<1:0> FSEL30<4:0> 0000 15:0 MSEL29<1:0> FSEL29<4:0> FLTEN28 MSEL28<1:0> FSEL28<4:0> FLTEN29 31:16 SID<10:0> -— 15:0 31:16 15:0 0000 — FRESET UINC DONLY — 31:16 — — — — — TXNFULLIE TXHALFIE TXEMPTYIE 15:0 — — — — — TXNFULLIF TXHALFIF TXEMPTYIF C380 xxxx 0000 — C2FIFOCIn 31:16 (n = 0-31) 15:0 0000 EID<17:16> C2FIFOBA<31:0> — C2FIFOUAn 31:16 (n = 0-31) 15:0 — xxxx — C370 EXID EID<15:0> — Legend: Note 1: 21/5 15:0 — C2FIFOINTn (n = 0-31) 22/6 31:16 FLTEN19 C2FIFOCONn 31:16 C350 (n = 0-31) 15:0 C360 23/7 All Resets Bit Range Register Name Bits C100 C2FLTCON4 C140 CAN2 REGISTER SUMMARY FOR PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) — — — — — — FSIZE<4:0> — — — TXEN TXABAT TXLARB TXERR — — — — RXOVFLIE RXFULLIE RXHALFIE RXN 0000 EMPTYIE — — — — RXOVFLIF RXFULLIF RXHALFIF RXN 0000 EMPTYIF TXREQ RTREN 0000 TXPRI<1:0> 0000 0000 C2FIFOUA<31:0> 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — C2FIFOCI<4:0> x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. 0000 0000 PIC32MX5XX/6XX/7XX DS61156C-page 100 TABLE 4-46: 2010 Microchip Technology Inc. Virtual Address (BF88_#) Register Name 9000 ETHCON1 9010 ETHCON2 9020 9030 9040 Preliminary 9050 9060 9070 9080 9090 90A0 ETHTXST ETHRXST ETHHT0 ETHHT1 ETHPMM0 ETHPMM1 ETHPMCS ETHPMO ETHRXFC 2010 Microchip Technology Inc. 90D0 ETHIEN ETHIRQ Legend: Note 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 15:0 ON FRZ SIDL — — — TXRTS RXEN 31:16 — — — — — — — — 15:0 — — — — — 31:16 21/5 20/4 19/3 18/2 17/1 AUTOFC — — MANFC — — — 16/0 — — — — — — — — 0000 — — — — 0000 — — — — 0000 RXBUFSZ<6:0> BUFCDEC 0000 TXSTADDR<31:16> 15:0 0000 TXSTADDR<15:2> 31:16 RXSTADDR<31:16> 15:0 31:16 0000 0000 HT<63:32> 15:0 31:16 0000 0000 PMM<31:0> 15:0 31:16 0000 0000 PMM<63:32> 15:0 — — — — — — — 15:0 — — 0000 — — — — — — — — — — — — — — — — — — — — — — 0000 CRC ERREN CRC OKEN RUNT ERREN RUNTEN UCEN NOT MEEN MCEN BCEN 0000 PMCS<15:0> — — — — — — — 15:0 — — — — — 0000 0000 31:16 — — — — 15:0 HTEN MPEN — NOTPM 31:16 — — — — — — — — RXFWM<7:0> 15:0 — — — — — — — — RXEWM<7:0> 31:16 — — — — — — — — — — — RX BUSEIE FW MARKIE RX DONEIE PK TPENDIE PMMODE<3:0> 0000 0000 PMO<15:0> — 0000 0000 HT<31:0> 15:0 0000 0000 RXSTADDR<15:2> 31:16 31:16 22/6 PTV<15:0> 31:16 31:16 23/7 All Resets Bit Range Bits 90B0 ETHRXWM 90C0 ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) 0000 0000 — — — — RX ACTIE — TX DONEIE TX ABORTIE RX BUFNAIE 15:0 — TX BUSEIE — — — EW MARKIE 31:16 — — — — — — — — — — — — — — — 15:0 — TXBUSE RXBUSE — — — EWMARK FWMARK RXDONE PKTPEND RXACT — TXDONE TXABORT RXBUFNA — 0000 RX 0000 OVFLWIE — 0000 RXOVFLW 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1: 2: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. PIC32MX5XX/6XX/7XX DS61156C-page 101 TABLE 4-47: Virtual Address (BF88_#) Register Name 90E0 ETHSTAT ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) Preliminary 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 31:16 — — — — — — — — 15:0 — — — — — — — 9100 31:16 ETH RXOVFLOW 15:0 — — — — — — — 9110 31:16 ETH FRMTXOK 15:0 — 9120 31:16 ETH SCOLFRM 15:0 — 9130 31:16 ETH MCOLFRM 15:0 — 9140 31:16 ETH FRMRXOK 15:0 — 31:16 — 9150 9160 ETH FCSERR 23/7 22/6 21/5 20/4 — BUSY TXBUSY RXBUSY — — — — — — 18/2 17/1 16/0 — — — — 0000 — — — — — 0000 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — RXPAUSE PASSALL — — BUFCNT<7:0> — — — — — — — — 0000 FRMTXOKCNT<15:0> — — — — — — — — SCOLFRMCNT<15:0> — — — — — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — 31:16 — — — — — — — — — — — 15:0 SOFT RESET SIM RESET — — RESET RMCS RESET RFUN RESET TMCS RESET TFUN — — — 31:16 — — — — — — — — — — — — 15:0 — EXCESS DFR BP NOBKOFF NOBKOFF — — LONGPRE PUREPRE AUTOPAD VLANPAD PAD ENABLE CRC ENABLE — — — ALGNERRCNT<15:0> 2010 Microchip Technology Inc. 9210 EMACx CFG2 9220 EMACx IPGT 31:16 — — — — — — — — — 15:0 — — — — — — — — — 9230 EMACx IPGR 31:16 — — — — — — — — — 15:0 — 9240 EMACx CLRT 31:16 — — 15:0 — — 9250 EMACx MAXF 31:16 — — NB2BIPKTGP1<6:0> — — — — — CWINDOW<5:0> — — — — — 15:0 — LOOPBACK TXPAUSE — — — — — — — — — — — — — — — 0000 DELAYCRC HUGEFRM LENGTHCK FULLDPLX 4082 — — — — — — — — — — — — 0000 0C12 RETX<3:0> — 0000 0012 NB2BIPKTGP2<6:0> — 0000 RXENABLE 800D B2BIPKTGP<6:0> — MACMAXF<15:0> 0000 0000 — — 0000 0000 — 9200 0000 0000 FCSERRCNT<15:0> — 0000 0000 FRMRXOKCNT<15:0> — 0000 0000 MCOLFRMCNT<15:0> — 0000 0000 31:16 ETH ALGNERR 15:0 Legend: 0000 RXOVFLWCNT<15:0> EMACx CFG1 Note 19/3 All Resets Bit Range Bits — — 0000 370F — 0000 05EE x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1: 2: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. PIC32MX5XX/6XX/7XX DS61156C-page 102 TABLE 4-47: Virtual Address (BF88_#) Register Name 9260 EMACx SUPP ETHERNET CONTROLLER REGISTER SUMMARY FOR PIC32MX675F256H, PIC32MX675F512H, PIC32MX695F512H, PIC32MX775F256H, PIC32MX775F512H, PIC32MX795F512H, PIC32MX695F512L, PIC32MX675F256L, PIC32MX675F512L, PIC32MX775F256L, PIC32MX775F512L AND PIC32MX795F512L DEVICES(1) (CONTINUED) 31/15 30/14 29/13 28/12 27/11 26/10 25/9 31:16 — — — 15:0 — — — — — — — RESET RMII — 31:16 — — — — — 15:0 — — — — 31:16 — — — All Resets Bits Bit Range 2010 Microchip Technology Inc. TABLE 4-47: 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 — — — — — — — — — — 0000 — SPEED RMII — — — — — — — — 1000 — — — — — — — — — — — 0000 — — — — — — — — — TESTBP — — — — — — — — — — — EMACx TEST 9280 EMACx MCFG 15:0 RESET MGMT — — — — — — — — — 9290 EMACx MCMD 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — — — — — — — — — SCAN READ 0000 92A0 EMACx MADR 31:16 — — — — — — — — — — — — — — — — 0000 15:0 — — — — — — 92B0 EMACx MWTD 31:16 — — — — — — — — — — — 92C0 EMACx MRDD 31:16 — — — — — — — 92D0 EMACx MIND 31:16 — — — — — — — — — — — — — — — — 15:0 — — — — — — — — — — — — LINKFAIL NOTVALID SCAN 9300 EMACx SA0(2) 31:16 — — — — — — — — — — — — — — — — 9310 EMACx SA1(2) 31:16 — — — 9320 EMACx SA2(2) 31:16 — — — Legend: Note PHYADDR<4:0> — — — — 15:0 CLKSEL<3:0> — NOPRE — — — — — — — — — — REGADDR<4:0> 0100 — — 15:0 — — — — — — — STNADDR4<7:0> — — — — — — — — STNADDR2<7:0> — — — — — — STNADDR1<7:0> xxxx xxxx STNADDR3<7:0> — 0000 MIIMBUSY 0000 STNADDR5<7:0> — 0000 0000 STNADDR6<7:0> — 0000 0000 MRDD<15:0> 15:0 0000 SCANINC 0020 MWTD<15:0> 15:0 15:0 — TESTPAUSE SHRTQNTA 0000 xxxx xxxx xxxx xxxx x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1: 2: All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 “CLR, SET and INV Registers” for more information. Reset values default to the factory programmed value. DS61156C-page 103 PIC32MX5XX/6XX/7XX Preliminary 9270 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 104 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 5.0 FLASH PROGRAM MEMORY Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. “Flash Program Memory” (DS61121) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. PIC32MX5XX/6XX/7XX devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory: 1. 2. 3. Run-Time Self Programming (RTSP) EJTAG Programming In-Circuit Serial Programming™ (ICSP™) RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in Section 5. “Flash Program Memory” (DS61121) in the “PIC32MX Family Reference Manual”. EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer. ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP. The EJTAG and ICSP methods are described in the “PIC32MX Flash Programming Specification” (DS61145), which can be downloaded from the Microchip web site. 2010 Microchip Technology Inc. Preliminary DS61156C-page 105 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 106 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 6.0 RESETS Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. “Resets” (DS61118) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 6-1: The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources: • • • • • • POR: Power-on Reset MCLR: Master Clear Reset Pin SWR: Software Reset WDTR: Watchdog Timer Reset BOR: Brown-out Reset CMR: Configuration Mismatch Reset A simplified block diagram of the Reset module is shown in Figure 6-1. SYSTEM RESET BLOCK DIAGRAM MCLR Glitch Filter Sleep or Idle WDTR WDT Time-out Voltage Regulator Enabled VDD MCLR Power-up Timer POR Brown-out Reset BOR SYSRST VDD Rise Detect Configuration Mismatch Reset CMR SWR Software Reset 2010 Microchip Technology Inc. Preliminary DS61156C-page 107 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 108 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 7.0 INTERRUPT CONTROLLER The PIC32MX5XX/6XX/7XX interrupt module includes the following features: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. “Interrupt Controller” (DS61108) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. PIC32MX5XX/6XX/7XX devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. • • • • • Up to 96 Interrupt Sources Up to 64 Interrupt Vectors Single and Multi-Vector mode Operations Five External Interrupts with Edge Polarity Control Interrupt Proximity Timer Module Freeze in Debug mode Seven User-Selectable Priority Levels for each Vector Four User-Selectable Subpriority Levels within each Priority Dedicated Shadow Set for User-Selectable Priority Level Software can Generate any Interrupt User-Configurable Interrupt Vector Table Location User-Configurable Interrupt Vector Spacing INTERRUPT CONTROLLER MODULE Interrupt Requests FIGURE 7-1: • • • • • • • Vector Number Interrupt Controller Priority Level CPU Core Shadow Set Number 2010 Microchip Technology Inc. Preliminary DS61156C-page 109 PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION Interrupt Source(1) IRQ Vector Number Interrupt Bit Location Flag Enable Priority Sub-Priority IEC0<0> IPC0<4:2> IPC0<1:0> Highest Natural Order Priority CT – Core Timer Interrupt 0 0 IFS0<0> CS0 – Core Software Interrupt 0 1 1 IFS0<1> IEC0<1> IPC0<12:10> IPC0<9:8> CS1 – Core Software Interrupt 1 2 2 IFS0<2> IEC0<2> IPC0<20:18> IPC0<17:16> INT0 – External Interrupt 0 3 3 IFS0<3> IEC0<3> IPC0<28:26> IPC0<25:24> T1 – Timer1 4 4 IFS0<4> IEC0<4> IPC1<4:2> IPC1<1:0> IC1 – Input Capture 1 5 5 IFS0<5> IEC0<5> IPC1<12:10> IPC1<9:8> OC1 – Output Compare 1 6 6 IFS0<6> IEC0<6> IPC1<20:18> IPC1<17:16> INT1 – External Interrupt 1 7 7 IFS0<7> IEC0<7> IPC1<28:26> IPC1<25:24> T2 – Timer2 8 8 IFS0<8> IEC0<8> IPC2<4:2> IPC2<1:0> IC2 – Input Capture 2 9 9 IFS0<9> IEC0<9> IPC2<12:10> IPC2<9:8> OC2 – Output Compare 2 10 10 IFS0<10> IEC0<10> IPC2<20:18> IPC2<17:16> INT2 – External Interrupt 2 11 11 IFS0<11> IEC0<11> IPC2<28:26> IPC2<25:24> T3 – Timer3 12 12 IFS0<12> IEC0<12> IPC3<4:2> IPC3<1:0> IC3 – Input Capture 3 13 13 IFS0<13> IEC0<13> IPC3<12:10> IPC3<9:8> OC3 – Output Compare 3 14 14 IFS0<14> IEC0<14> IPC3<20:18> IPC3<17:16> INT3 – External Interrupt 3 15 15 IFS0<15> IEC0<15> IPC3<28:26> IPC3<25:24> T4 – Timer4 16 16 IFS0<16> IEC0<16> IPC4<4:2> IPC4<1:0> IC4 – Input Capture 4 17 17 IFS0<17> IEC0<17> IPC4<12:10> IPC4<9:8> OC4 – Output Compare 4 18 18 IFS0<18> IEC0<18> IPC4<20:18> IPC4<17:16> INT4 – External Interrupt 4 19 19 IFS0<19> IEC0<19> IPC4<28:26> IPC4<25:24> T5 – Timer5 20 20 IFS0<20> IEC0<20> IPC5<4:2> IPC5<1:0> IC5 – Input Capture 5 21 21 IFS0<21> IEC0<21> IPC5<12:10> IPC5<9:8> OC5 – Output Compare 5 22 22 IFS0<22> IEC0<22> IPC5<20:18> IPC5<17:16> SPI1E – SPI1 Fault 23 23 IFS0<23> IEC0<23> IPC5<28:26> IPC5<25:24> SPI1RX – SPI1 Receive Done 24 23 IFS0<24> IEC0<24> IPC5<28:26> IPC5<25:24> SPI1TX – SPI1 Transfer Done 25 23 IFS0<25> IEC0<25> IPC5<28:26> IPC5<25:24> 26 24 IFS0<26> IEC0<26> IPC6<4:2> IPC6<1:0> 27 24 IFS0<27> IEC0<27> IPC6<4:2> IPC6<1:0> 28 24 IFS0<28> IEC0<28> IPC6<4:2> IPC6<1:0> U1AE – UART1A Error SPI1AE – SPI1A Fault I2C1AB – I2C1A Bus Collision Event U1ARX – UART1A Receiver SPI1ARX – SPI1A Receive Done I2C1AS – I2C1A Slave Event U1ATX – UART1A Transmitter SPI1ATX – SPI1A Transfer Done I2C1AM – I2C1A Master Event I2C1B – I2C1 Bus Collision Event 29 25 IFS0<29> IEC0<29> IPC6<12:10> IPC6<9:8> I2C1S – I2C1 Slave Event 30 25 IFS0<30> IEC0<30> IPC6<12:10> IPC6<9:8> I2C1M – I2C1 Master Event 31 25 IFS0<31> IEC0<31> IPC6<12:10> IPC6<9:8> CN – Input Change Interrupt 32 26 IFS1<0> IEC1<0> IPC6<20:18> IPC6<17:16> AD1 – ADC1 Convert Done 33 27 IFS1<1> IEC1<1> IPC6<28:26> IPC6<25:24> PMP – Parallel Master Port 34 28 IFS1<2> IEC1<2> IPC7<4:2> IPC7<1:0> Note 1: Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals. DS61156C-page 110 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Number Flag Enable Priority CMP1 – Comparator Interrupt 35 29 IFS1<3> IEC1<3> IPC7<12:10> IPC7<9:8> CMP2 – Comparator Interrupt 36 30 IFS1<4> IEC1<4> IPC7<20:18> IPC7<17:16> U2AE – UART2A Error SPI2AE – SPI2A Fault I2C2AB – I2C2A Bus Collision Event 37 31 IFS1<5> IEC1<5> IPC7<28:26> IPC7<25:24> U2ARX – UART2A Receiver SPI2ARX – SPI2A Receive Done I2C2AS – I2C2A Slave Event 38 31 IFS1<6> IEC1<6> IPC7<28:26> IPC7<25:24> U2ATX – UART2A Transmitter SPI2ATX – SPI2A Transfer Done IC2AM – I2C2A Master Event 39 31 IFS1<7> IEC1<7> IPC7<28:26> IPC7<25:24> U3AE – UART3A Error SPI3AE – SPI3A Fault I2C3AB – I2C3A Bus Collision Event 40 32 IFS1<8> IEC1<8> IPC8<4:2> IPC8<1:0> U3ARX – UART3A Receiver SPI3ARX – SPI3A Receive Done I2C3AS – I2C3A Slave Event 41 32 IFS1<9> IEC1<9> IPC8<4:2> IPC8<1:0> U3ATX – UART3A Transmitter SPI3ATX – SPI3A Transfer Done IC3AM – I2C3A Master Event 42 32 IFS1<10> IEC1<10> IPC8<4:2> IPC8<1:0> Interrupt Source(1) Sub-Priority I2C2B – I2C2 Bus Collision Event 43 33 IFS1<11> IEC1<11> IPC8<12:10> IPC8<9:8> I2C2S – I2C2 Slave Event 44 33 IFS1<12> IEC1<12> IPC8<12:10> IPC8<9:8> I2C2M – I2C2 Master Event 45 33 IFS1<13> IEC1<13> IPC8<12:10> IPC8<9:8> FSCM – Fail-Safe Clock Monitor 46 34 IFS1<14> IEC1<14> IPC8<20:18> IPC8<17:16> RTCC – Real-Time Clock 47 35 IFS1<15> IEC1<15> IPC8<28:26> IPC8<25:24> DMA0 – DMA Channel 0 48 36 IFS1<16> IEC1<16> IPC9<4:2> IPC9<1:0> DMA1 – DMA Channel 1 49 37 IFS1<17> IEC1<17> IPC9<12:10> IPC9<9:8> DMA2 – DMA Channel 2 50 38 IFS1<18> IEC1<18> IPC9<20:18> IPC9<17:16> DMA3 – DMA Channel 3 51 39 IFS1<19> IEC1<19> IPC9<28:26> IPC9<25:24> DMA4 – DMA Channel 4 52 40 IFS1<20> IEC1<20> IPC10<4:2> IPC10<1:0> DMA5 – DMA Channel 5 53 41 IFS1<21> IEC1<21> IPC10<12:10> DMA6 – DMA Channel 6 54 42 IFS1<22> IEC1<22> IPC10<20:18> IPC10<17:16> DMA7 – DMA Channel 7 55 43 IFS1<23> IEC1<23> IPC10<28:26> IPC10<25:24> FCE – Flash Control Event 56 44 IFS1<24> IEC1<24> IPC11<4:2> IPC10<9:8> IPC11<1:0> USB – USB Interrupt 57 45 IFS1<25> IEC1<25> IPC11<12:10> CAN1 – Control Area Network 1 58 46 IFS1<26> IEC1<26> IPC11<20:18> IPC11<17:16> CAN2 – Control Area Network 2 59 47 IFS1<27> IEC1<27> IPC11<28:26> IPC11<25:24> ETH – Ethernet Interrupt 60 48 IFS1<28> IEC1<28> IPC12<4:2> IPC12<1:0> IC1E – Input Capture 1 Error 61 5 IFS1<29> IEC1<29> IPC1<12:10> IPC1<9:8> IC2E – Input Capture 2 Error 62 9 IFS1<30> IEC1<30> IPC2<12:10> IPC2<9:8> IC3E – Input Capture 3 Error 63 13 IFS1<31> IEC1<31> IPC3<12:10> IPC3<9:8> IC4E – Input Capture 4 Error 64 17 IFS2<0> IEC2<0> IPC4<12:10> IPC4<9:8> IC4E – Input Capture 5 Error 65 21 IFS2<1> IEC2<1> IPC5<12:10> IPC5<9:8> PMPE – Parallel Master Port Error 66 28 IFS2<2> IEC2<2> IPC7<4:2> IPC7<1:0> U1BE – UART1B Error 67 49 IFS2<3> IEC2<3> IPC12<12:10> IPC12<9:8> Note 1: IPC11<9:8> Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals. 2010 Microchip Technology Inc. Preliminary DS61156C-page 111 PIC32MX5XX/6XX/7XX TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) Interrupt Bit Location IRQ Vector Number Flag Enable Priority U1BRX – UART1B Receiver 68 49 IFS2<4> IEC2<4> IPC12<12:10> IPC12<9:8> U1BTX – UART1B Transmitter 69 49 IFS2<5> IEC2<5> IPC12<12:10> IPC12<9:8> Interrupt Source(1) Sub-Priority U2BE – UART2B Error 70 50 IFS2<6> IEC2<6> IPC12<20:18> IPC12<17:16> U2BRX – UART2B Receiver 71 50 IFS2<7> IEC2<7> IPC12<20:18> IPC12<17:16> U2BTX – UART2B Transmitter 72 50 IFS2<8> IEC2<8> IPC12<20:18> IPC12<17:16> U3BE – UART3B Error 73 51 IFS2<9> IEC2<9> IPC12<28:26> IPC12<25:24> U3BRX – UART3B Receiver 74 51 IFS2<10> IEC2<10> IPC12<28:26> IPC12<25:24> U3BTX – UART3B Transmitter 75 51 IFS2<11> IEC2<11> IPC12<28:26> IPC12<25:24> (Reserved) — — — — — — Lowest Natural Order Priority Note 1: Not all interrupt sources are available on all devices. See Table 1 for the list of available peripherals. DS61156C-page 112 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 8.0 OSCILLATOR CONFIGURATION The PIC32MX5XX/6XX/7XX oscillator system has the following modules and features: • A Total of Four External and Internal Oscillator Options as Clock Sources • On-Chip PLL with User-Selectable Input Divider, Multiplier and Output Divider to Boost Operating Frequency on Select Internal and External Oscillator Sources • On-Chip User-Selectable Divisor Postscaler on Select Oscillator Sources • Software-Controllable Switching Between Various Clock Sources • A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 6. “Oscillator Configuration” (DS61112) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 8-1: • Dedicated On-Chip PLL for USB Peripheral PIC32MX5XX/6XX/7XX FAMILY CLOCK DIAGRAM USB PLL UFIN div x OSC1 C1(3) C2(3) OSC2(4) UFRCEN FUPLLEN XT, HS, EC To Internal Logic 4 MHz FIN 5 MHz XTPLL, HSPLL, FIN ECPLL, FRCPLL div x div y PLL Enable RS(1) div 2 UFIN 4 MHz FUPLLDIV<2:0> Primary Oscillator (POSC) RF(2) XTAL USB Clock (48 MHz) PLL x24 div 2 PLL Input Divider FPLLIDIV<2:0> ADC FRC Oscillator 8 MHz typical div 16 TUN<5:0> Postscaler LPRC Oscillator PBDIV<2:0> PLL Output Divider PLLODIV<2:0> PLL Multiplier PLLMULT<2:0> COSC<2:0> FRCDIV<2:0> Postscaler Peripherals div x PBCLK FRC CPU and Select Peripherals FRC/16 FRCDIV LPRC 31.25 kHz typical Secondary Oscillator (SOSC) SOSCO 32.768 kHz SOSC SOSCEN and FSOSCEN Clock Control Logic Fail-Safe Clock Monitor SOSCI Notes: 1. 2. 3. 4. A series resistor, RS, may be required for AT strip cut crystals. The internal feedback resistor, RF, is typically in the range of 2 to 10 M Refer to Section 6. “Oscillator Configuration” (DS61112) in the “PIC32MX Family Reference Manual” for help in determining the best oscillator components. PBCLK out is available on the OSC2 pin in certain clock modes. 2010 Microchip Technology Inc. Preliminary FSCM INT FSCM Event NOSC<2:0> COSC<2:0> OSWEN FSCMEN<1:0> WDT, PWRT Timer1, RTCC DS61156C-page 113 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 114 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX PREFETCH CACHE Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. “Prefetch Cache” (DS61119) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 9-1: 9.1 • • • • • • • • 16 Fully Associative Lockable Cache Lines 16-Byte Cache Lines Up to Four Cache Lines Allocated to Data Two Cache Lines with Address Mask to Hold Repeated Instructions Pseudo LRU Replacement Policy All Cache Lines are Software Writable 16-Byte Parallel Memory Fetch Predictive Instruction Prefetch CTRL Tag Logic CTRL Features PREFETCH MODULE BLOCK DIAGRAM FSM BMX/CPU Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching. Cache Line Bus Ctrl BMX/CPU 9.0 Cache Ctrl Prefetch Ctrl Cache Line Address Encode Hit LRU Miss LRU RDATA Hit Logic PreFetch Prefetch Pre-Fetch CTRL RDATA PreFetch Prefetch Pre-Fetch Tag PFM 2010 Microchip Technology Inc. Preliminary DS61156C-page 115 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 116 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. “Direct Memory Access (DMA) Controller” (DS61117) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32MX Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32MX (such as Peripheral Bus (PBUS) devices: SPI, UART, I2C™, etc.) or memory itself. Following are some of the key features of the DMA controller module: • Four Identical Channels, each Featuring: - Auto-Increment Source and Destination Address registers - Source and Destination Pointers - Memory to memory and memory to peripheral transfers FIGURE 10-1: DMA BLOCK DIAGRAM INT Controller Peripheral Bus • Automatic Word-Size Detection: - Transfer granularity, down to byte level - Bytes need not be word-aligned at source and destination • Fixed Priority Channel Arbitration • Flexible DMA Channel Operating modes: - Manual (software) or automatic (interrupt) DMA requests - One-Shot or Auto-Repeat Block Transfer modes - Channel-to-channel chaining • Flexible DMA Requests: - A DMA request can be selected from any of the peripheral interrupt sources - Each channel can select any (appropriate) observable interrupt as its DMA request source - A DMA transfer abort can be selected from any of the peripheral interrupt sources - Pattern (data) match transfer termination • Multiple DMA Channel Status Interrupts: - DMA channel block transfer complete - Source empty or half empty - Destination full or half full - DMA transfer aborted due to an external event - Invalid DMA address generated • DMA Debug Support Features: - Most recent address accessed by a DMA channel - Most recent DMA channel to transfer data • CRC Generation Module: - CRC module can be assigned to any of the available channels - CRC module is highly configurable System IRQ Address Decoder SE L Channel 0 Control I0 Channel 1 Control I1 Y Bus Interface Device Bus + Bus Arbitration I2 Global Control (DMACON) Channel n Control In L SE Channel Priority Arbitration 2010 Microchip Technology Inc. Preliminary DS61156C-page 117 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 118 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 11.0 USB ON-THE-GO (OTG) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. “USB OnThe-Go (OTG)” (DS61126) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller. The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32MX USB OTG module is presented in Figure 11-1. 2010 Microchip Technology Inc. The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32MX USB module includes the following features: • • • • • • • • • USB Full-Speed Support for Host and Device Low-Speed Host Support USB OTG Support Integrated Signaling Resistors Integrated Analog Comparators for VBUS Monitoring Integrated USB Transceiver Transaction Handshaking Performed by Hardware Endpoint Buffering Anywhere in System RAM Integrated DMA to Access System RAM and Flash Note: Preliminary IMPORTANT! The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations. DS61156C-page 119 PIC32MX5XX/6XX/7XX FIGURE 11-1: PIC32MX5XX/6XX/7XX FAMILY USB INTERFACE DIAGRAM USBEN FRC Oscillator 8 MHz Typical USB Suspend CPU Clock Not POST Sleep TUN<5:0>(4) Primary Oscillator (POST) Div x OSC1 UFIN(5) Div 2 FUPLLEN(6) FUPLLIDIV(6) UFRCEN(3) To Clock Generator for Core and Peripherals USB Suspend OSC2 (PB Out)(1) Sleep or Idle USB Module USB Voltage Comparators SRP Charge Bus PLL SRP Discharge 48 MHz USB Clock(7) Full Speed Pull-up D+(2) Registers and Control Interface Host Pull-down SIE Transceiver Low Speed Pull-up D-(2) DMA System RAM Host Pull-down ID Pull-up ID(8) Vibes(8) VUSB Note 1: 2: 3: 4: 5: 6: 7: 8: DS61156C-page 120 Transceiver Power 3.3V PB clock is only available on this pin for select EC modes. Pins can be used as digital inputs when USB is not enabled. This bit field is contained in the OSCCON register. This bit field is contained in the OSCTRM register. USB PLL UFIN requirements: 4 MHz. This bit field is contained in the DEVCFG2 register. A 48 MHz clock is required for proper USB operation. Pins can be used as GPIO when the USB module is disabled. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 12.0 I/O PORTS General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. “I/O Ports” (DS61120) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Following are some of the key features of this module: • Individual Output Pin Open-Drain Enable/Disable • Individual Input Pin Weak Pull-up Enable/Disable • Monitor Selective Inputs and Generate Interrupt when Change in Pin State is Detected • Operation during CPU Sleep and Idle modes • Fast Bit Manipulation using CLR, SET and INV Registers Figure 12-1 shows a block diagram of a typical multiplexed I/O port. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE Peripheral Module Peripheral Module Enable Peripheral Output Enable Peripheral Output Data PIO Module RD ODC Data Bus SYSCLK D Q ODC CK EN Q WR ODC 1 RD TRIS 0 IO Cell 0 1 D Q 1 TRIS CK EN Q WR TRIS Output Multiplexers D WR LAT WR PORT 0 Q IO Pin LAT CK EN Q RD LAT 1 RD PORT 0 Sleep Q Q D CK Q Q D CK SYSCLK Synchronization Peripheral Input Legend: Note: R Peripheral Input Buffer R = Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details. This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure for any specific port/peripheral combination may be different than it is shown here. 2010 Microchip Technology Inc. Preliminary DS61156C - page 121 PIC32MX5XX/6XX/7XX 12.1 Parallel I/O (PIO) Ports 12.1.2 All port pins have three registers (TRIS, LAT and PORT) that are directly associated with their operation. TRIS is a Data Direction or Tri-State Control register that determines whether a digital pin is an input or an output. Setting a TRISx register bit = 1 configures the corresponding I/O pin as an input; setting a TRISx register bit = 0 configures the corresponding I/O pin as an output. All port I/O pins are defined as inputs after a device Reset. Certain I/O pins are shared with analog peripherals and default to analog inputs after a device Reset. PORT is a register used to read the current state of the signal applied to the port I/O pins. Writing to a PORTx register performs a write to the port’s latch, LATx register, latching the data to the port’s I/O pins. LAT is a register used to write data to the port I/O pins. The LATx Latch register holds the data written to either the LATx or PORTx registers. Reading the LATx Latch register reads the last value written to the corresponding PORT or Latch register. Not all port I/O pins are implemented on some devices, therefore, the corresponding PORTx, LATx and TRISx register bits will read as zeros. 12.1.1 CLR, SET AND INV REGISTERS Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as ‘1’ are modified. Bits specified as ‘0’ are not modified. Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read. To set PORTC bit 0, write to the LATSET register: LATCSET = 0x0001; To clear PORTC bit 0, write to the LATCLR register: LATCCLR = 0x0001; To toggle PORTC bit 0, write to the LATINV register: LATCINV = 0x0001; Note: Using a PORTxINV register to toggle a bit is recommended because the operation is performed in hardware atomically, using fewer instructions, as compared to the traditional read-modify-write method shown below: PORTC ^= 0x0001; DS61156C - page 122 DIGITAL INPUTS Pins are configured as digital inputs by setting the corresponding TRIS register bits = 1. When configured as inputs, they are either TTL buffers or Schmitt Triggers. Several digital pins share functionality with analog inputs and default to the analog inputs at POR. Setting the corresponding bit in the AD1PCFG register = 1 enables the pin as a digital pin. The maximum input voltage allowed on the input pins is the same as the maximum VIH specification. Refer to Section 31.0 “Electrical Characteristics” for VIH specification details. Note: 12.1.3 Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications. ANALOG INPUTS Certain pins can be configured as analog inputs used by the ADC and comparator modules. Setting the corresponding bits in the AD1PCFG register = 0 enables the pin as an analog input pin and must have the corresponding TRIS bit set = 1 (input). If the TRIS bit is cleared = 0 (output), the digital output level (VOH or VOL) will be converted. Any time a port I/O pin is configured as analog, its digital input is disabled and the corresponding PORTx register bit will read ‘0’. The AD1PCFG register has a default value of ‘0x0000’; therefore, all pins that share ANx functions are analog (not digital) by default. 12.1.4 DIGITAL OUTPUTS Pins are configured as digital outputs by setting the corresponding TRIS register bits = 0. When configured as digital outputs, these pins are CMOS drivers or can be configured as open-drain outputs by setting the corresponding bits in the ODCx Open-Drain Configuration register. The open-drain feature allows generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification. See the “Pin Diagrams” section for the available pins and their functionality. 12.1.5 ANALOG OUTPUTS Certain pins can be configured as analog outputs, such as the CVREF output voltage used by the comparator module. Configuring the comparator reference module to provide this output will present the analog output voltage on the pin, independent of the TRIS register setting for the corresponding pin. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 13.0 TIMER1 This family of PIC32MX devices features one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (SOSC) for Real-Time Clock (RTC) applications. The following modes are supported: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Timers” (DS61105) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. Synchronous Internal Timer Synchronous Internal Gated Timer Synchronous External Timer Asynchronous External Timer 13.1 Additional Supported Features • Selectable Clock Prescaler • Timer Operation during CPU Idle and Sleep mode • Fast Bit Manipulation using CLR, SET and INV registers • Asynchronous mode can be used with the SOSC to Function as a Real-Time Clock (RTC). TIMER1 BLOCK DIAGRAM(1) FIGURE 13-1: PR1 Equal 16-Bit Comparator TSYNC (T1CON<2>) 1 Sync TMR1 Reset 0 T1IF Event Flag 0 Q 1 TGATE (T1CON<7>) D Q TGATE (T1CON<7>) TCS (T1CON<1>) ON (T1CON<15>) SOSCO/T1CK x1 SOSCEN SOSCI Gate Sync PBCLK 10 00 Prescaler 1, 8, 64, 256 2 TCKPS<1:0> (T1CON<5:4>) Note 1: The default state of the SOSCEN (OSCCON<1>) during a device Reset is controlled by the FSOSCEN bit in Configuration Word, DEVCFG1. 2010 Microchip Technology Inc. Preliminary DS61156C-page 123 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 124 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 14.0 TIMER2/3, TIMER4/5 Two 32-bit synchronous timers are available by combining Timer2 with Timer3 and Timer4 with Timer5. The 32-bit timers can operate in three modes: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. “Timers” (DS61105) of the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • Synchronous Internal 32-Bit Timer • Synchronous Internal 32-Bit Gated Timer • Synchronous External 32-Bit Timer Note: 2: Some registers and associated bits described in this section may not be available on all devices. Refer to 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 14.1 In this chapter, references to registers, TxCON, TMRx and PRx, use ‘x’ to represent Timer2 through 5 in 16-bit modes. In 32-bit modes, ‘x’ represents Timer2 or 4; ‘y’ represents Timer3 or 5. Additional Supported Features • Selectable Clock Prescaler • Timers Operational during CPU Idle • Time Base for Input Capture and Output Compare modules (Timer2 and Timer3 only) • ADC Event Trigger (Timer3 only) • Fast Bit Manipulation using CLR, SET and INV registers This family of PIC32MX devices features four synchronous 16-bit timers (default) that can operate as a free-running interval timer for various timing applications and counting external events. The following modes are supported: • Synchronous Internal 16-Bit Timer • Synchronous Internal 16-Bit Gated Timer • Synchronous External 16-Bit Timer FIGURE 14-1: TIMER2, 3, 4, 5 BLOCK DIAGRAM (16-BIT) Sync TMRx ADC Event Trigger(1) Equal Comparator x 16 PRx Reset TxIF Event Flag 0 1 TGATE (TxCON<7>) Q TGATE (TxCON<7>) D Q TCS (TxCON<1>) ON (TxCON<15>) TxCK(2) x1 Gate Sync PBCLK 10 00 Prescaler 1, 2, 4, 8, 16, 32, 64, 256 3 TCKPS (TxCON<6:4>) Note 1: ADC event trigger is available on Timer3 only. 2: TxCK pins are not available on 64-pin devices. 2010 Microchip Technology Inc. Preliminary DS61156C-page 125 PIC32MX5XX/6XX/7XX FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)(1) Reset TMRy MS Half Word ADC Event Trigger(3) Equal Sync LS Half Word 32-Bit Comparator PRy TyIF Event Flag TMRx PRx 0 1 TGATE (TxCON<7>) Q D TGATE (TxCON<7>) Q TCS (TxCON<1>) ON (TxCON<15>) TxCK(2) x1 Gate Sync PBCLK 10 00 Prescaler 1, 2, 4, 8, 16, 32, 64, 256 3 TCKPS (TxCON<6:4>) Note 1: In this diagram, the use of “x’ in registers, TxCON, TMRx, PRx, TxCK, refers to either Timer2 or Timer4; the use of ‘y’ in registers, TyCON, TMRy, PRy, TyIF, refers to either Timer3 or Timer5. 2: TxCK pins are not available on 64-pin devices. 3: ADC event trigger is available only on the Timer2/3 pair. DS61156C-page 126 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 15.0 INPUT CAPTURE 2. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. “Input Capture” (DS61122) of the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 3. 4. Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. Other operational features include: The input capture module is useful in applications requiring frequency (period) and pulse measurement. The input capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events: 1. Capture timer value on every edge (rising and falling) Capture timer value on every edge (rising and falling), specified edge first. Prescaler Capture Event modes - Capture timer value on every 4th rising edge of input at ICx pin - Capture timer value on every 16th rising edge of input at ICx pin • Device Wake-up from Capture Pin during CPU Sleep and Idle modes • Interrupt on Input Capture Event • 4-Word FIFO Buffer for Capture Values Interrupt Optionally Generated after 1, 2, 3 or 4 Buffer Locations are Filled • Input Capture can also be used to Provide Additional Sources of External Interrupts Simple Capture Event modes - Capture timer value on every falling edge of input at ICx pin - Capture timer value on every rising edge of input at ICx pin FIGURE 15-1: INPUT CAPTURE BLOCK DIAGRAM ICx Input Timer3 Timer2 ICTMR 0 1 C32 FIFO Control ICxBUF<31:16> Prescaler 1, 4, 16 ICM<2:0> ICxBUF<15:0> Edge Detect ICM<2:0> FEDGE ICBNE ICOV ICxCON ICI<1:0> Interrupt Event Generation Data Space Interface Interrupt 2010 Microchip Technology Inc. Preliminary Peripheral Data Bus DS61156C-page 127 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 128 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 16.0 OUTPUT COMPARE The Output Compare module (OCMP) is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the OCMP module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the OCMP module generates an event based on the selected mode of operation. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. “Output Capture” (DS61111) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). The following are some of the key features: • Multiple Output Compare Modules in a Device • Programmable Interrupt Generation on Compare Event • Single and Dual Compare modes • Single and Continuous Output Pulse Generation • Pulse-Width Modulation (PWM) mode • Hardware-Based PWM Fault Detection and Automatic Output Disable • Programmable Selection of 16-Bit or 32-Bit Time Bases • Can Operate from Either of Two Available 16-Bit Time Bases or a Single 32-Bit Time Base 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM Set Flag bit OCxIF(1) OCxRS(1) Output Logic OCxR(1) 3 OCM<2:0> Mode Select Comparator 0 OCTSEL 1 16 0 S R Q OCx(1) Output Enable OCFA or OCFB(2) 1 16 TMR Register Inputs from Time Bases(3) Period Match Signals from Time Bases(3) Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels, 1 through 5. 2: The OCFA pin controls the OC1-OC4 channels. The OCFB pin controls the OC5 channel. 3: Each output compare channel can use one of two selectable 16-bit time bases or a single 32-bit timer base. 2010 Microchip Technology Inc. Preliminary DS61156C-page 129 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 130 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 17.0 SERIAL PERIPHERAL INTERFACE (SPI) The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The PIC32MX SPI module is compatible with Motorola® SPI and SIOP interfaces. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. “Serial Peripheral Interface (DS61106) in the “PIC32MX (SPI)” Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). Following are some of the key features of this module: • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. • • • • FIGURE 17-1: Master and Slave modes Support Four Different Clock Formats Enhanced Framed SPI Protocol Support User-Configurable 8-Bit, 16-Bit and 32-Bit Data Width Separate SPI FIFO Buffers for Receive and Transmit - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width Programmable Interrupt Event on Every 8-Bit, 16-Bit and 32-Bit Data Transfer Operation during CPU Sleep and Idle mode Fast Bit Manipulation using CLR, SET and INV Registers SPI MODULE BLOCK DIAGRAM Internal Data Bus SPIxBUF Read Write SPIxRXB FIFO FIFOs Share Address SPIxBUF SPIxTXB FIFO Transmit Receive SPIxSR SDIx bit 0 SDOx SSx/FSYNC Slave Select and Frame Sync Control Shift Control Clock Control Edge Select PBCLK Baud Rate Generator SCKx Enable Master Clock Note: Access SPIxTXB and SPIxRXB FIFOs via SPIxBUF register. 2010 Microchip Technology Inc. Preliminary DS61156C-page 131 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 132 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 18.0 INTER-INTEGRATED CIRCUIT (I2C™) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. “InterIntegrated Circuit” (DS61116) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2010 Microchip Technology Inc. The I2C module provides complete hardware support for both Slave and Multi-Master modes of the I2C serial communication standard. Figure 18-1 shows the I2C module block diagram. Each I2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data. Each I2C module offers the following key features: • I2C Interface Supporting both Master and Slave Operation • I2C Slave mode Supports 7 and 10-Bit Address • I2C Master mode Supports 7 and 10-Bit Address • I2C Port allows Bidirectional Transfers between Master and Slaves • Serial Clock Synchronization for I2C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control) • I2C Supports Multi-Master Operation; Detects Bus Collision and Arbitrates Accordingly • Provides Support for Address Bit Masking Preliminary DS61156C-page 133 PIC32MX5XX/6XX/7XX FIGURE 18-1: I2C™ BLOCK DIAGRAM (X = 1 OR 2) Internal Data Bus I2CxRCV SCLx Read Shift Clock I2CxRSR LSB SDAx Address Match Match Detect Write I2CxMSK Write Read I2CxADD Read Start and Stop Bit Detect Write Start and Stop Bit Generation Control Logic I2CxSTAT Collision Detect Read Write I2CxCON Acknowledge Generation Read Clock Stretching Write I2CxTRN LSB Read Shift Clock Reload Control Write BRG Down Counter I2CxBRG Read PBCLK DS61156C-page 134 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 19.0 Note UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART) 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. “Universal Asynchronous Receiver Transmitter (DS61107) in the “PIC32MX (UART)” Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The UART module is one of the serial I/O modules available in PIC32MX5XX/6XX/7XX family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN 1.2 and IrDA®. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder. FIGURE 19-1: The primary features of the UART module are: • • • • • • • • • • • • • Full-Duplex, 8-Bit or 9-Bit Data Transmission Even, Odd or No Parity Options (for 8-bit data) One or Two Stop Bits Hardware Auto-Baud Feature Hardware Flow Control Option Fully Integrated Baud Rate Generator (BRG) with 16-Bit Prescaler Baud Rates Ranging from 76 bps to 20 Mbps at 80 MHz 8-Level Deep First-In-First-Out (FIFO) Transmit Data Buffer 8-Level Deep FIFO Receive Data Buffer Parity, Framing and Buffer Overrun Error Detection Support for Interrupt Only on Address Detect (9th bit = 1) Separate Transmit and Receive Interrupts Loopback mode for Diagnostic Support • LIN 1.2 Protocol Support • IrDA Encoder and Decoder with 16x Baud Clock Output for External IrDA Encoder/Decoder Support Figure 19-1 shows a simplified block diagram of the UART. UART SIMPLIFIED BLOCK DIAGRAM Baud Rate Generator IrDA® BCLKx UxRTS Hardware Flow Control Note: UxCTS UARTx Receiver UxRX UARTx Transmitter UxTX Not all pins are available for all UART modules. Refer to the device-specific pin diagram for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 135 PIC32MX5XX/6XX/7XX Figure 19-2 and Figure 19-3 illustrate typical receive and transmit timing for the UART module. FIGURE 19-2: UART RECEPTION Char 1 Char 2-4 Char 5-10 Char 11-13 Read to UxRXREG UxRX Start 1 Stop Start 2 Start 5 Stop 4 Stop 10 Start 11 Stop 13 RIDLE Cleared by Software OERR Cleared by Software UxRXIF URXISEL = 00 Cleared by Software UxRXIF URXISEL = 01 UxRXIF URXISEL = 10 FIGURE 19-3: TRANSMISSION (8-BIT OR 9-BIT DATA) 8 into TxBUF Write to UxTXREG TSR Pull from Buffer BCLK/16 (Shift Clock) UxTX Start Bit 0 Bit 1 Stop Start Bit 1 UxTXIF UTXISEL = 00 UxTXIF UTXISEL = 01 UxTXIF UTXISEL = 10 DS61156C-page 136 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 20.0 PARALLEL MASTER PORT (PMP) Key features of the PMP module include: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. “Parallel Master Port (PMP)” (DS61128) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. FIGURE 20-1: • • • • • • • • • • • • 8-Bit, 16-Bit Interface Up to 16 Programmable Address Lines Up to Two Chip Select Lines Programmable Strobe Options - Individual read and write strobes, or - Read/write strobe with enable strobe Address Auto-Increment/Auto-Decrement Programmable Address/Data Multiplexing Programmable Polarity on Control Signals Parallel Slave Port Support - Legacy addressable - Address support - 4-byte deep auto-incrementing buffer Programmable Wait States Operates during CPU Sleep and Idle modes Fast Bit Manipulation using CLR, SET and INV Registers Freeze Option for In-Circuit Debugging Note: On 64-pin devices, data pins, PMD<15:8>, are not available. PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES Address Bus Data Bus PIC32MX5XX/6XX/7XX Parallel Master Port Control Lines PMA<0> PMALL PMA<1> PMALH Flash EEPROM SRAM Up to 16-Bit Address PMA<13:2> PMA<14> PMCS1 PMA<15> PMCS2 PMRD PMRD/PMWR Microcontroller PMWR PMENB PMD<7:0> PMD<15:8>(1) Note 1: LCD FIFO Buffer 16/8-Bit Data (with or without multiplexed addressing) On 64-pin devices, data pins, PMD<15:8>, are not available in 16-Bit Master modes. 2010 Microchip Technology Inc. Preliminary DS61156C-page 137 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 138 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 21.0 REAL-TIME CLOCK AND CALENDAR (RTCC) Following are some of the key features of this module: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. “Real-Time Clock and Calendar (RTCC)” (DS61125) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32MX RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. FIGURE 21-1: • • • • • • • • • • • • • • • • • Time: Hours, Minutes and Seconds 24-Hour Format (Military Time) Visibility of One Half Second Period Provides Calendar: Weekday, Date, Month and Year Alarm Intervals are Configurable for Half of a Second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year Alarm Repeat with Decrementing Counter Alarm with Indefinite Repeat: Chime Year Range: 2000 to 2099 Leap Year Correction BCD Format for Smaller Firmware Overhead Optimized for Long-Term Battery Operation Fractional Second Synchronization User Calibration of the Clock Crystal Frequency with Auto-Adjust Calibration Range: 0.66 Seconds Error per Month Calibrates up to 260 ppm of Crystal Error Requirements: External 32.768 kHz Clock Crystal Alarm Pulse or Seconds Clock Output on RTCC Pin RTCC BLOCK DIAGRAM 32.768 kHz Input from Secondary Oscillator (SOSC) RTCC Prescalers 0.5s YEAR, MTH, DAY RTCVAL RTCC Timer Alarm Event WKDAY HR, MIN, SEC Comparator MTH, DAY Compare Registers with Masks ALRMVAL WKDAY HR, MIN, SEC Repeat Counter RTCC Interrupt RTCC Interrupt Logic Alarm Pulse Seconds Pulse RTCC Pin RTCOE 2010 Microchip Technology Inc. Preliminary DS61156C-page 139 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 140 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 22.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. “10-Bit Analog-to-Digital Converter (ADC)” (DS61104) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The PIC32MX5XX/6XX/7XX 10-bit Analog-to-Digital (A/D) Converter (or ADC) includes the following features: • Successive Approximation Register (SAR) Conversion • Up to 1 Msps Conversion Speed • Up to 16 Analog Input Pins • External Voltage Reference Input Pins FIGURE 22-1: • One Unipolar, Differential Sample and Hold Amplifier (SHA) • Automatic Channel Scan mode • Selectable Conversion Trigger Source • 16-word Conversion Result Buffer • Selectable Buffer Fill modes • Eight Conversion Result Format Options • Operation during CPU Sleep and Idle modes A block diagram of the 10-bit ADC is shown in Figure 22-1. The 10-bit ADC has up to 16 analog input pins, designated AN0-AN15. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references. The analog inputs are connected through two multiplexers (MUXs) to one SHA. The analog input MUXs can be switched between two sets of analog inputs between conversions. Unipolar differential conversions are possible on all channels, other than the pin used as the reference, using a reference input pin (see Figure 22-1). The Analog Input Scan mode sequentially converts user-specified channels. A control register specifies which analog input channels will be included in the scanning sequence. The 10-bit ADC is connected to a 16-word result buffer. Each 10-bit result is converted to one of eight 32-bit output formats when it is read from the result buffer. ADC1 MODULE BLOCK DIAGRAM VREF+(1) AVDD VREF-(1) AVSS VCFG<2:0> AN0 ADC1BUF0 ADC1BUF1 AN15 S/H Channel Scan VREFH VREFL ADC1BUF2 + CH0SB<4:0> CH0SA<4:0> SAR ADC - CSCNA AN1 ADC1BUFE VREFL ADC1BUFF CH0NA CH0NB Alternate Input Selection Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs. 2010 Microchip Technology Inc. Preliminary DS61156C-page 141 PIC32MX5XX/6XX/7XX FIGURE 22-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM ADRC FRC Div 2 0 TAD ADCS<7:0> 1 8 TPB ADC Conversion Clock Multiplier 2, 4,..., 512 DS61156C-page 142 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 23.0 CONTROLLER AREA NETWORK (CAN) Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. “Controller Area Network (CAN)” in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Controller Area Network (CAN) module supports the following key features: • Standards Compliance: - Full CAN 2.0B compliance - Programmable bit rate up to 1 Mbps • Message Reception and Transmission: - 32 message FIFOs - Each FIFO can have up to 32 messages for a total of 1024 messages - FIFO can be a transmit message FIFO or a receive message FIFO - User-defined priority levels for message FIFOs used for transmission - 32 acceptance filters for message filtering - Four acceptance filter mask registers for message filtering - Automatic response to remote transmit request - DeviceNet™ addressing support • Additional Features: - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring - Low-power operating modes - CAN module is a bus master on the PIC32MX system bus - Use of DMA is not required - Dedicated time-stamp timer - Dedicated DMA channels - Data Only Message Reception mode Figure 23-1 illustrates the general structure of the CAN module. FIGURE 23-1: PIC32MX CAN MODULE BLOCK DIAGRAM CxTX 32 Filters 4 Masks CPU CxRX CAN Module Up to 32 Message Buffers System Bus Message Buffer Size 2 or 4 Words System RAM Message Buffer 31 Message Buffer 31 Message Buffer 31 Message Buffer 1 Message Buffer 0 Message Buffer 1 Message Buffer 0 Message Buffer 1 Message Buffer 0 FIFO1 FIFO31 FIFO0 CAN Message FIFO (up to 32 FIFOs) 2010 Microchip Technology Inc. Preliminary DS61156C-page 143 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 144 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 24.0 ETHERNET CONTROLLER Following are some of the key features of this module: Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. “Ethernet Controller” in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). • • • • • • • • 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system. Figure 24-1 shows a block diagram of the Ethernet controller. ETHERNET CONTROLLER BLOCK DIAGRAM TX FIFO FIGURE 24-1: • • Supports 10/100 Mbps Data Transfer Rates Supports Full-Duplex and Half-Duplex Operation Supports RMII and MII PHY Interface Supports MIIM PHY Management Interface Supports both Manual and Automatic Flow Control RAM Descriptor-Based DMA Operation for Both Receive and Transmit Path Fully Configurable Interrupts Configurable Receive Packet Filtering - CRC Check - 64-Byte Pattern Match - Broadcast, Multicast and Unicast packets - Magic Packet™ - 64-Bit Hash Table - Runt Packet Supports Packet Payload Checksum Calculation Supports Various Hardware Statistics Counters TX DMA TX BM TX Bus Master TX Function TX Flow Control System Bus MII/RMII IF RX FIFO RX DMA RX Flow Control RX BM External PHY MAC RX Bus Master RX Filter RX Function Checksum Fast Peripheral Bus DMA Control Registers Ethernet DMA MIIM IF MAC Control and Configuration Registers Host IF Ethernet Controller 2010 Microchip Technology Inc. Preliminary DS61156C-page 145 PIC32MX5XX/6XX/7XX Table 24-1, Table 24-2, Table 24-3 and Table 24-4 show four interfaces and the associated pins that can be used with the Ethernet Controller. TABLE 24-1: MII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 1) Pin Name Pin Name Description EMDC Management Clock EMDIO Management IO ETXCLK Transmit Clock ETXEN Transmit Enable ETXD0 Transmit Data ETXD1 Transmit Data ETXD2 Transmit Data ETXD3 Transmit Data ETXERR Transmit Error ERXCLK Receive Clock ERXDV Receive Data Valid ERXD0 Receive Data ERXD1 Receive Data ERXD2 Receive Data ERXD3 Receive Data ERXERR Receive Error ECRS Carrier Sense ECOL Collision Indication TABLE 24-3: Management Clock AEMDIO Management IO AETXCLK Transmit Clock AETXEN Transmit Enable AETXD0 Transmit Data AETXD1 Transmit Data AETXD2 Transmit Data AETXD3 Transmit Data AETXERR Transmit Error AERXCLK Receive Clock AERXDV Receive Data Valid AERXD0 Receive Data AERXD1 Receive Data AERXD2 Receive Data AERXD3 Receive Data AERXERR Receive Error AECRS Carrier Sense AECOL Collision Indication Note 1: RMII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 1) Pin Name MII Alternate Interface is not available on 64-pin devices. Pin Name Description Description AEMDC TABLE 24-4: TABLE 24-2: MII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 0)(1) AEMDC RMII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 0) Description Management Clock EMDC Management Clock AEMDIO Management IO EMDIO Management IO AETXEN Transmit Enable ETXEN Transmit Enable AETXD0 Transmit Data ETXD0 Transmit Data AETXD1 Transmit Data ETXD1 Transmit Data AEREFCLK Reference Clock EREFCLK Reference Clock AECRSDV Carrier Sense – Receive Data Valid ECRSDV Carrier Sense – Receive Data Valid AERXD0 Receive Data ERXDV Receive Data Valid AERXD1 Receive Data ERXD0 Receive Data AERXERR Receive Error ERXD1 Receive Data ERXERR Receive Error DS61156C-page 146 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 25.0 COMPARATOR Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. “Comparator” (DS61110) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 25-1: The PIC32MX5XX/6XX/7XX analog comparator module contains two comparators that can be configured in a variety of ways. Following are some of the key features of this module: • Selectable Inputs Available Include: - Analog inputs multiplexed with I/O pins - On-chip internal absolute Voltage Reference (IVREF) - Comparator Voltage Reference (CVREF) • Outputs can be Inverted • Selectable Interrupt Generation A block diagram of the comparator module is shown in Figure 25-1. COMPARATOR BLOCK DIAGRAM Comparator 1 CREF ON C1IN+(1) CPOL COUT (CM1CON) C1OUT (CMSTAT) CVREF(2) C1OUT CCH<1:0> C1 C1IN- COE C1IN+ C2IN+ IVREF(2) Comparator 2 CREF ON C2IN+ CPOL COUT (CM2CON) C2OUT (CMSTAT) CVREF(2) C2OUT CCH<1:0> C2 C2IN- COE C2IN+ C1IN+ IVREF(2) Note 1: 2: On devices with a USB module, and when the module is enabled, this pin is controlled by the USB module, and therefore, is not available as a comparator input. Internally connected. 2010 Microchip Technology Inc. Preliminary DS61156C-page 147 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 148 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 26.0 COMPARATOR VOLTAGE REFERENCE (CVREF) The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them. Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. “Comparator Voltage (DS61109) in the Reference (CVREF)” “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). A block diagram of the module is shown in Figure 26-1. The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module’s supply reference can be provided from either device VDD/VSS or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 26-1: VREF+ AVDD The comparator voltage reference has the following features: • High and low range selection • Sixteen output levels available for each range • Internally connected to comparators to conserve device pins • Output can be connected to a pin COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM CVRSS = 1 8R CVRSS = 0 CVR<3:0> R CVREN CVREF R R 16-to-1 MUX R 16 Steps R CVREFOUT CVRCON<CVROE> R R CVRR VREFAVSS 2010 Microchip Technology Inc. 8R CVRSS = 1 CVRSS = 0 Preliminary DS61156C-page 149 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 150 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 27.0 POWER-SAVING FEATURES Note 1: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. “Power-Saving Features” (DS61130) in the “PIC32MX Family Reference Manual”, which is available from the Microchip web site (www.microchip.com/PIC32). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. This section describes power-saving features for the PIC32MX5XX/6XX/7XX. The PIC32MX devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power saving is controlled by software. 27.1 Power Saving with CPU Running When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories: • FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers. • LPRC Run mode: the CPU is clocked from the LPRC clock source. • SOSC Run mode: the CPU is clocked from the SOSC clock source. In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK). 27.2 CPU Halted Methods The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below: • POSC Idle mode: the system clock is derived from the POSC. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled. • FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled. 2010 Microchip Technology Inc. • SOSC Idle mode: the system clock is derived from the SOSC. Peripherals continue to operate, but can optionally be individually disabled. • LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running. • Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device. 27.3 Power-Saving Operation Peripherals and the CPU can be Halted or disabled to further reduce power consumption. 27.3.1 SLEEP MODE Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep. Sleep mode includes the following characteristics: • The CPU is Halted. • The system clock source is typically shut down. See Section 27.3.3 “Peripheral Bus Scaling Method” for specific information. • There can be a wake-up delay based on the oscillator selection. • The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode. • The BOR circuit, if enabled, remains operative during Sleep mode. • The WDT, if enabled, is not automatically cleared prior to entering Sleep mode. • Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture). • I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep. • The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details. • Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption. Preliminary DS61156C-page 151 PIC32MX5XX/6XX/7XX The processor will exit, or ‘wake-up’, from Sleep on one of the following events: The processor will wake or exit from Idle mode on the following events: • On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority. • On any form of device Reset. • On a WDT time-out. If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode. • On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode. • On any form of device Reset • On a WDT time-out interrupt 27.3.2 27.3.3 IDLE MODE In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active. Notes: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a POSC of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio. Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from POSC to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to POSC, the appropriate PLL and or oscillator start-up/lock delays would be applied. The device enters Idle mode when the SLPEN (OSCCON<4>) bit is clear and a WAIT instruction is executed. DS61156C-page 152 PERIPHERAL BUS SCALING METHOD Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals, such as the interrupt controller, DMA, bus matrix and prefetch cache, are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes. Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as USB, interrupt controller, DMA, bus matrix and prefetch cache are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes Changing the PBCLK divisor affects: • The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs. • The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals. To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.0 SPECIAL FEATURES Note: This data sheet summarizes the features of the PIC32MX5XX/6XX/7XX family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the “PIC32MX Family Reference Manual” (DS61132), which is available from the Microchip web site (www.microchip.com/PIC32). PIC32MX5XX/6XX/7XX devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are: • • • • Flexible Device Configuration Watchdog Timer JTAG Interface In-Circuit Serial Programming™ (ICSP™) 28.1 Configuration Bits The Configuration bits can be programmed to select various device configurations. REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 r-0 r-1 r-1 R/P-1 r-1 r-1 r-1 R/P-1 — — — CP — — — BWP bit 31 bit 24 r-1 r-1 r-1 r-1 — — — — R/P-1 R/P-1 R/P-1 R/P-1 PWP<7:4> bit 23 bit 16 R/P-1 R/P-1 R/P-1 R/P-1 PWP<3:0> r-1 r-1 r-1 r-1 — — — — bit 15 bit 8 r-1 r-1 r-1 r-1 R/P-1 r-1 — — — — ICESEL — R/P-1 R/P-1 DEBUG<1:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit P = Programmable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) r = Reserved bit bit 31 Reserved: Write ‘0’ bit 30-29 Reserved: Write ‘1’ bit 28 CP: Code-Protect bit Prevents boot and program Flash memory from being read or modified by an external programming device. 1 = Protection is disabled 0 = Protection is enabled bit 27-25 Reserved: Write ‘1’ bit 24 BWP: Boot Flash Write-Protect bit Prevents boot Flash memory from being modified during code execution. 1 = Boot Flash is writable 0 = Boot Flash is not writable bit 23-20 Reserved: Write ‘1’ 2010 Microchip Technology Inc. Preliminary DS61156C-page 153 PIC32MX5XX/6XX/7XX REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED) bit 19-12 PWP<7:0>: Program Flash Write-Protect bits Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one’s compliment of the number of write-protected program Flash memory pages. 11111111 = Disabled 11111110 = 0xBD00_0FFF 11111101 = 0xBD00_1FFF 11111100 = 0xBD00_2FFF 11111011 = 0xBD00_3FFF 11111010 = 0xBD00_4FFF 11111001 = 0xBD00_5FFF 11111000 = 0xBD00_6FFF 11110111 = 0xBD00_7FFF 11110110 = 0xBD00_8FFF 11110101 = 0xBD00_9FFF 11110100 = 0xBD00_AFFF 11110011 = 0xBD00_BFFF 11110010 = 0xBD00_CFFF 11110001 = 0xBD00_DFFF 11110000 = 0xBD00_EFFF 11101111 = 0xBD00_FFFF • • • 01111111 = 0xBD07_FFFF bit 11-4 Reserved: Write ‘1’ bit 3 ICESEL: In-Circuit Emulator/Debugger Communication Channel Select bit 1 = PGEC2/PGED2 pair is used 0 = PGEC1/PGED1 pair is used bit 2 Reserved: Write ‘1’ bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ‘11’ if code-protect is enabled) 11 = Debugger is disabled 10 = Debugger is enabled 01 = Reserved (same as ‘11’ setting) 00 = Reserved (same as ‘11’ setting) DS61156C-page 154 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 — — — — — — — — bit 31 bit 24 R/P-1 r-1 r-1 FWDTEN — — R/P-1 R/P-1 R/P-1 R/P-1 R/P-1 WDTPS<4:0> bit 23 bit 16 R/P-1 R/P-1 R/P-1 FCKSM<1:0> R/P-1 FPBDIV<1:0> r-1 R/P-1 — OSCIOFNC R/P-1 R/P-1 POSCMOD<1:0> bit 15 bit 8 R/P-1 r-1 R/P-1 r-1 r-1 IESO — FSOSCEN — — R/P-1 R/P-1 R/P-1 FNOSC<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) P = Programmable bit bit 31-24 Reserved: Write ‘1’ bit 23 FWDTEN: Watchdog Timer Enable bit 1 = The WDT is enabled and cannot be disabled by software 0 = The WDT is not enabled; it can be enabled in software bit 22-21 Reserved: Write ‘1’ bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits 10100 = 1:1048576 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:64 00101 = 1:32 00100 = 1:16 00011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1 All other combinations not shown result in operation = 10100 r = Reserved bit Note 1: Do not disable POSC (POSCMOD = 11) when using this oscillator source. 2010 Microchip Technology Inc. Preliminary DS61156C-page 155 PIC32MX5XX/6XX/7XX REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 bit 11 Reserved: Write ‘1’ bit 10 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output signal active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00) 0 = CLKO output disabled bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits 11 = Primary oscillator disabled 10 = HS Oscillator mode selected 01 = XT Oscillator mode selected 00 = External Clock mode selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) bit 6 Reserved: Write ‘1’ bit 5 FSOSCEN: Secondary Oscillator Enable bit 1 = Enable Secondary Oscillator 0 = Disable Secondary Oscillator bit 4-3 Reserved: Write ‘1’ bit 2-0 FNOSC<2:0>: Oscillator Selection bits 000 = Fast RC Oscillator (FRC) 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL) 010 = Primary Oscillator (XT, HS, EC)(1) 011 = Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL) 100 = Secondary Oscillator (SOSC) 101 = Low-Power RC Oscillator (LPRC) 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler 111 = Fast RC Oscillator with divide-by-N (FRCDIV) Note 1: Do not disable POSC (POSCMOD = 11) when using this oscillator source. DS61156C-page 156 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 r-1 r-1 r-1 r-1 r-1 r-1 r-1 r-1 — — — — — — — — bit 31 bit 24 r-1 r-1 r-1 r-1 r-1 — — — — — R/P-1 R/P-1 R/P-1 FPLLODIV<2:0> bit 23 bit 16 R/P-1 r-1 r-1 r-1 r-1 UPLLEN — — — — R/P-1 R/P-1 R/P-1 UPLLIDIV<2:0> bit 15 bit 8 r-1 R/P-1 — R/P-1 R/P-1 r-1 FPLLMULT<2:0> R/P-1 — R/P-1 R/P-1 FPLLIDIV<2:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit P = Programmable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) bit 31-19 Reserved: Write ‘1’ bit 18-16 FPLLODIV<2:0>: Default Postscaler for PLL bits 111 = PLL output divided by 256 110 = PLL output divided by 64 101 = PLL output divided by 32 100 = PLL output divided by 16 011 = PLL output divided by 8 010 = PLL output divided by 4 001 = PLL output divided by 2 000 = PLL output divided by 1 bit 15 UPLLEN: USB PLL Enable bit 1 = Enable USB PLL 0 = Disable and bypass USB PLL bit 14-11 Reserved: Write ‘1’ bit 10-8 UPLLIDIV<2:0>: PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider bit 7 Reserved: Write ‘1’ 2010 Microchip Technology Inc. Preliminary r = Reserved bit DS61156C-page 157 PIC32MX5XX/6XX/7XX REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED) bit 6-4 FPLLMULT<2:0>: PLL Multiplier bits 111 = 24x multiplier 110 = 21x multiplier 101 = 20x multiplier 100 = 19x multiplier 011 = 18x multiplier 010 = 17x multiplier 001 = 16x multiplier 000 = 15x multiplier bit 3 Reserved: Write ‘1’ bit 2-0 FPLLIDIV<2:0>: PLL Input Divider bits 111 = 12x divider 110 = 10x divider 101 = 6x divider 100 = 5x divider 011 = 4x divider 010 = 3x divider 001 = 2x divider 000 = 1x divider DS61156C-page 158 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX REGISTER 28-4: DEVCFG3: DEVICE CONFIGURATION WORD 3 R/P-1 R/P-1 r-1 r-1 r-1 R/P-1 R/P-1 R/P-1 FVBUSONIO FUSBIDIO — — — FCANIO FETHIO FMIIEN bit 31 bit 24 r-1 r-1 r-1 r-1 r-1 — — — — — R/P-1 R/P-1 R/P-1 FSRSSEL<2:0> bit 23 bit 16 R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x USERID<15:8> bit 15 bit 8 R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x R/P-x USERID<7:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) P = Programmable bit r = Reserved bit bit 31 FVBUSONIO: USB VBUS_ON Selection bit 1 = VBUSON pin is controlled by the USB module 0 = VBUSON pin is controlled by the port function bit 30 FUSBIDIO: USB USBID Selection bit 1 = USBID pin is controlled by the USB module 0 = USBID pin is controlled by the port function bit 29-27 Reserved: Write ‘1’ bit 26 FCANIO: CAN I/O Pin Selection bit 1 = Default CAN I/O Pins 0 = Alternate CAN I/O Pins bit 25 FETHIO: Ethernet I/O Pin Selection bit 1 = Default Ethernet I/O Pins 0 = Alternate Ethernet I/O Pins bit 24 FMIIEN: Ethernet MII Enable bit 1 = MII is enabled 0 = RMII is enabled bit 23-19 Reserved: Write ‘1’ bit 18-16 FSRSSEL<2:0>: SRS Select bits 111 = Assign Interrupt Priority 7 to a shadow register set 110 = Assign Interrupt Priority 6 to a shadow register set • • • 001 = Assign Interrupt Priority 1 to a shadow register set 000 = All interrupt priorities are assigned to a shadow register set bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG 2010 Microchip Technology Inc. Preliminary DS61156C-page 159 PIC32MX5XX/6XX/7XX REGISTER 28-5: R DEVID: DEVICE AND REVISION ID REGISTER R R R R VER<3:0>(1) R R DEVID<27:24> R (1) bit 31 bit 24 R R R R R R R R (1) DEVID<23:16> bit 23 bit 16 R R R R R DEVID<15:8> R R R (1) bit 15 bit 8 R R R R R R R R DEVID<7:0>(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) P = Programmable bit bit 31-28 VER<3:0>: Revision Identifier bits(1) bit 27-0 DEVID<27:0>: Device ID(1) Note 1: r = Reserved bit See the “PIC32MX Flash Programming Specification” (DS61145) for a list of Revision and Device ID values. DS61156C-page 160 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.2 Watchdog Timer (WDT) This section describes the operation of the WDT and Power-up Timer of the PIC32MX5XX/6XX/7XX. The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode. FIGURE 28-1: The following are some of the key features of the WDT module: • Configuration or software controlled • User-configurable time-out period • Can wake the device from Sleep or Idle WATCHDOG AND POWER-UP TIMER BLOCK DIAGRAM PWRT Enable WDT Enable LPRC Control PWRT Enable 1:64 Output LPRC Oscillator PWRT 1 Clock 25-Bit Counter WDTCLR = 1 WDT Enable Wake WDT Enable Reset Event 25 0 1 WDT Counter Reset Device Reset NMI (Wake-up) Power Save Decoder FWDTPS<4:0>(DEVCFG1<20:16>) 2010 Microchip Technology Inc. Preliminary DS61156C-page 161 PIC32MX5XX/6XX/7XX 28.3 On-Chip Voltage Regulator 28.3.3 POWER-UP REQUIREMENTS All PIC32MX5XX/6XX/7XX devices’ core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX5XX/6XX/7XX family incorporate an on-chip regulator providing the required core logic voltage from VDD. The on-chip regulator is designed to meet the power-up requirements for the device. If the application does not use the regulator, then strict power-up conditions must be adhered to. While powering up, VDDCORE must never exceed VDD by 0.3 volts. A low-ESR capacitor (such as tantalum) must be connected to the VCAP/VDDCORE pin (see Figure 28-2). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Section 31.1 “DC Characteristics”. FIGURE 28-2: Note: 28.3.1 3.3V(1) PIC32MX VDD It is important that the low-ESR capacitor is placed as close as possible to the VCAP/VDDCORE pin. VCAP/VDDCORE ON-CHIP REGULATOR AND POR It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode. CEFC(2) (10 F typ) Note 1: If the regulator is disabled, a separate Power-up Timer (PWRT) is automatically enabled. The PWRT adds a fixed delay of TPWRT at device start-up. See Section 31.0 “Electrical Characteristics” for more information on TPU AND TPWRT. 28.3.2 CONNECTIONS FOR THE ON-CHIP REGULATOR 2: VSS These are typical operating voltages. Refer to Section 31.1 “DC Characteristics” for the full operating ranges of VDD and VDDCORE. It is important that the low-ESR capacitor is placed as close as possible to the VCAP/VDDCORE pin. ON-CHIP REGULATOR AND BOR PIC32MX5XX/6XX/7XX devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in Section 31.1 “DC Characteristics”. DS61156C-page 162 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 28.4 Programming and Diagnostics PIC32MX5XX/6XX/7XX devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include: • Simplified field programmability using two-wire In-Circuit Serial Programming™ (ICSP™) interfaces • Debugging using ICSP • Programming and debugging capabilities using the EJTAG extension of JTAG • JTAG boundary scan testing for device and board diagnostics FIGURE 28-3: PIC32MX devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer. BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS PGEC1 PGED1 ICSP™ Controller PGEC2 PGED2 ICESEL TDI TDO JTAG Controller TCK Core TMS JTAGEN DEBUG<1:0> TRCLK TRD0 TRD1 Instruction Trace Controller TRD2 TRD3 DEBUG<1:0> 2010 Microchip Technology Inc. Preliminary DS61156C-page 163 PIC32MX5XX/6XX/7XX REGISTER 28-6: DDPCON: DEBUG DATA PORT CONTROL REGISTER r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 — — — — — — — — bit 31 bit 24 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 — — — — — — — — bit 23 bit 16 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 — — — — — — — — bit 15 bit 8 r-0 r-0 r-0 r-0 R/W-1 R/W-0 r-0 r-0 — — — — JTAGEN TROEN — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) bit 31-4 Reserved: Write ‘0’; ignore read bit 3 JTAGEN: JTAG Port Enable bit 1 = Enable the JTAG port 0 = Disable the JTAG port bit 2 TROEN: Trace Output Enable bit 1 = Enable the trace port 0 = Disable the trace port bit 1-0 Reserved: Write ‘1’; ignore read DS61156C-page 164 P = Programmable bit Preliminary r = Reserved bit 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 29.0 INSTRUCTION SET The PIC32MX5XX/6XX/7XX family instruction set complies with the MIPS32 Release 2 instruction set architecture. PIC32MX does not support the following features: • Core Extend Instructions • Coprocessor 1 Instructions • Coprocessor 2 Instructions Note: Refer to “MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set” at www.mips.com for more information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 165 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 166 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 30.0 DEVELOPMENT SUPPORT 30.1 The PIC® microcontrollers and dsPIC® digital signal controllers are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® IDE Software • Compilers/Assemblers/Linkers - MPLAB C Compiler for Various Device Families - HI-TECH C for Various Device Families - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers - MPLAB ICD 3 - PICkit™ 3 Debug Express • Device Programmers - PICkit™ 2 Programmer - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits MPLAB Integrated Development Environment Software The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains: • A single graphical interface to all debugging tools - Simulator - Programmer (sold separately) - In-Circuit Emulator (sold separately) - In-Circuit Debugger (sold separately) • A full-featured editor with color-coded context • A multiple project manager • Customizable data windows with direct edit of contents • High-level source code debugging • Mouse over variable inspection • Drag and drop variables from source to watch windows • Extensive on-line help • Integration of select third party tools, such as IAR C Compilers The MPLAB IDE allows you to: • Edit your source files (either C or assembly) • One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information) • Debug using: - Source files (C or assembly) - Mixed C and assembly - Machine code MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power. 2010 Microchip Technology Inc. Preliminary DS61156C-page 167 PIC32MX5XX/6XX/7XX 30.2 MPLAB C Compilers for Various Device Families The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use. For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. 30.3 HI-TECH C for Various Device Families For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger. The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms. MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging. The MPASM Assembler features include: MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip’s PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use. 30.4 30.5 • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 30.6 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command line interface Rich directive set Flexible macro language MPLAB IDE compatibility • Integration into MPLAB IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multi-purpose source files • Directives that allow complete control over the assembly process DS61156C-page 168 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 30.7 MPLAB SIM Software Simulator 30.9 The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 30.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC® Flash MCUs and dsPIC® Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new highspeed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. 2010 Microchip Technology Inc. MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 30.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and programming of PIC® and dsPIC® Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming™. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. Preliminary DS61156C-page 169 PIC32MX5XX/6XX/7XX 30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express 30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits The PICkit™ 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip’s Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip’s powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified. A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user’s guide, lessons, tutorial, compiler and MPLAB IDE software. 30.12 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications. DS61156C-page 170 The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 31.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the PIC32MX5XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the PIC32MX5XX/6XX/7XX devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied. Absolute Maximum Ratings(1) Ambient temperature under bias.............................................................................................................. .-40°C to +85°C Storage temperature .............................................................................................................................. -65°C to +150°C Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant, with respect to VSS (Note 3) ......................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD 2.3V (Note 3) ........................................ -0.3V to +5.5V Voltage on any 5V tolerant pin with respect to VSS when VDD < 2.3V (Note 3) ............................. -0.3V to (VDD + 0.3V) Voltage on VDDCORE with respect to VSS ................................................................................................... -0.3V to 2.0V Maximum current out of VSS pin(s) .......................................................................................................................300 mA Maximum current into VDD pin(s) (Note 2)............................................................................................................300 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by all ports .......................................................................................................................200 mA Maximum current sourced by all ports (Note 2) ....................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2). 3: See the “Pin Diagrams” section for the 5V tolerant pins. 2010 Microchip Technology Inc. Preliminary DS61156C-page 171 PIC32MX5XX/6XX/7XX 31.1 DC Characteristics TABLE 31-1: OPERATING MIPS VS. VOLTAGE Characteristic Temp. Range (in °C) PIC32MX5XX/6XX/7XX 2.3-3.6V -40°C to +85°C 80 MHz (Note 1) DC5 Note 1: Max. Frequency VDD Range (in Volts) 40 MHz maximum for PIC32MX 40 MHz family variants. TABLE 31-2: THERMAL OPERATING CONDITIONS Rating Symbol Min. Typical Max. Unit Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C PIC32MX5XX/6XX/7XX Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD – S IOH) PD PINT + PI/O W PDMAX (TJ – TA)/JA W I/O Pin Power Dissipation: I/O = S ({VDD – VOH} x IOH) + S (VOL x IOL)) Maximum Allowed Power Dissipation TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS Characteristics Symbol Typical Max. Unit Notes Package Thermal Resistance, 121-Pin XBGA (10x10x1.1 mm) JA 40 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (14x14x1 mm) JA 43 — °C/W 1 Package Thermal Resistance, 100-Pin TQFP (12x12x1 mm) JA 43 — °C/W 1 Package Thermal Resistance, 64-Pin TQFP (10x10x1 mm) JA 47 — °C/W 1 Package Thermal Resistance, 64-Pin QFN (9x9x0,9 mm) JA 28 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations. TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Param. Symbol No. Characteristics Min. Typical Max. Units 2.3 — 3.6 V Conditions Operating Voltage DC10 Supply Voltage VDD DC12 VDR RAM Data Retention Voltage (Note 1) 1.75 — — V DC16 VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal 1.75 — 1.95 V DC17 SVDD VDD Rise Rate to Ensure Internal Power-on Reset Signal 0.00005 — 0.115 V/s Note 1: This is the limit to which VDD can be lowered without losing RAM data. DS61156C-page 172 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Parameter No. Typical(3) Max. Units Conditions Operating Current (IDD)(1,2) DC20 6 9 mA Code executing from Flash — DC20c 4 — mA Code executing from SRAM — DC21 37 40 mA Code executing from Flash — DC21c 25 — mA Code executing from SRAM — DC22 64 70 mA Code executing from Flash — DC22c 61 — mA Code executing from SRAM — DC23 85 98 mA Code executing from Flash — DC23c 85 — mA Code executing from SRAM — DC25a 125 150 µA Note 1: 2: 3: 4: +25°C 3.3V 4 MHz 25 MHz (Note 4) 60 MHz (Note 4) 80 MHz LPRC (31 kHz) (Note 4) A device’s IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, execution from Program Flash memory vs. SRAM, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption. The test conditions for IDD measurements are as follows: Oscillator mode = EC+PLL with OSC1 driven by external square wave from rail-to-rail and PBCLK divisor = 1:8. CPU, Program Flash and SRAM data memory are operational, Program Flash memory Wait states = 7, program cache and prefetch are disabled and SRAM data memory Wait states = 1. All peripheral modules are disabled (ON bit = 0). WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD. Data in “Typical” column is at 3.3V, 25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested. This parameter is characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 173 PIC32MX5XX/6XX/7XX TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Parameter No. Typical(2) Max. Units Conditions Idle Current (IIDLE): Core Off, Clock On Base Current (Note 1) DC30 4.5 6.5 mA 4 MHz DC31 13 15 mA 25 MHz (Note 3) DC32 28 30 mA 60 MHz (Note 3) DC33 36 42 mA DC34 — 40 µA -40°C DC34a — 75 µA +25°C DC34b — 800 µA +85°C 80 MHz DC35 35 — µA -40°C DC35a 65 — µA +25°C DC35b 600 — µA +85°C DC36 — 43 µA -40°C DC36a — 106 µA +25°C DC36b — 800 µA +85°C Note 1: 2: 3: 2.3V 3.3V LPRC (31 kHz) (Note 3) 3.6V The test conditions for base IDLE current measurements are as follows: System clock is enabled and PBCLK divisor = 1:8. CPU in Idle mode (CPU core Halted). Only digital peripheral modules are enabled (ON bit = 1) and being clocked. WDT and FSCM are disabled. All I/O pins are configured as inputs and pulled to VSS. MCLR = VDD. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. This parameter is characterized, but not tested in manufacturing. DS61156C-page 174 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Parameter No. Typical(2) Max. Units Conditions Power-Down Current (IPD) (Note 1) DC40 10 40 A -40°C DC40a 36 100 A +25°C DC40b 400 720 A +85°C DC40c 41 120 A +25°C DC40d 22 80 A -40°C DC40e 42 120 A +25°C DC40g 315 400 A +70°C DC40f 410 800 A +85°C 2.3V Base Power-Down Current (Note 6) 3.3V Base Power-Down Current 3.6V Base Power-Down Current Module Differential Current DC41 — 10 A 2.3V Watchdog Timer Current: IWDT (Notes 3, 6) DC41c 5 — A 3.3V Watchdog Timer Current: IWDT (Note 3) DC41d — 20 A 3.6V Watchdog Timer Current: IWDT (Note 3) DC42 — 40 A 2.3V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Notes 3, 6) DC42c 23 — A DC42e — 50 A DC43 — 1300 DC43c 1100 DC43e — Note 1: 2: 3: 4: 5: 6: 3.3V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3) 3.6V RTCC + Timer1 w/32 kHz Crystal: IRTCC (Note 3) A 2.5V ADC: IADC (Notes 3, 4, 6) — A 3.3V ADC: IADC (Notes 3, 4) 1300 A 3.6V ADC: IADC (Notes 3, 4) Base IPD is measured with all digital peripheral modules and being clocked, CPU clock is disabled. All I/Os are configured as inputs and pulled low. WDT and FSCM are disabled. Data in the “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled. Data is characterized at +70°C and not tested. Parameter is for design guidance only. This parameter is characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 175 PIC32MX5XX/6XX/7XX TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS DC CHARACTERISTICS Param. Symbol No. VIL DI10 Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Min. Typical(1) Max. Units with TTL Buffer VSS — 0.15 VDD V (Note 4) with Schmitt Trigger Buffer VSS — 0.2 VDD V (Note 4) Characteristics Conditions Input Low Voltage I/O Pins: (2) DI15 MCLR VSS — 0.2 VDD V (Note 4) DI16 OSC1 (XT mode) VSS — 0.2 VDD V (Note 4) DI17 OSC1 (HS mode) VSS — 0.2 VDD V (Note 4) DI18 SDAx, SCLx VSS — 0.3 VDD V SMBus disabled (Note 4) DI19 SDAx, SCLx VSS — 0.8 V SMBus enabled (Note 4) 0.8 VDD — VDD V (Note 4) VIH DI20 Input High Voltage I/O Pins: with Analog Functions Digital Only 0.8 VDD — V (Note 4) 0.25 VDD + 0.8V — 5.5 V (Note 4) with Schmitt Trigger Buffer 0.8 VDD — 5.5 V (Note 4) MCLR(2) 0.8 VDD — VDD V (Note 4) DI26 OSC1 (XT mode) 0.7 VDD — VDD V (Note 4) DI27 OSC1 (HS mode) 0.7 VDD — VDD V (Note 4) DI28 SDAx, SCLx 0.7 VDD — 5.5 V SMBus disabled (Note 4) DI29 SDAx, SCLx 2.1 — 5.5 V SMBus enabled, 2.3V VPIN 5.5 (Note 4) ICNPU CNxx Pull up Current 50 250 400 A VDD = 3.3V, VPIN = VSS IIL Input Leakage Current (Note 3) with TTL Buffer DI25 DI30 DI50 I/O Ports — — +1 A VSS VPIN VDD, Pin at high-impedance DI51 Analog Input Pins — — +1 A VSS VPIN VDD, Pin at high-impedance DI55 MCLR(2) — — +1 A VSS VPIN VDD DI56 OSC1 — — +1 A VSS VPIN VDD, XT and HS modes Note 1: 2: 3: 4: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. This parameter is characterized, but not tested in manufacturing. DS61156C-page 176 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS DC CHARACTERISTICS Param. Symbol No. VOL Characteristics I/O Ports DO16 OSC2/CLKO DO20 Typical Max. Units Conditions — — 0.4 V — — 0.4 V IOL = 6 mA, VDD = 2.3V — — 0.4 V IOL = 3.5 mA, VDD = 3.6V — — 0.4 V IOL = 2.5 mA, VDD = 2.3V 2.4 — — V IOH = -12 mA, VDD = 3.6V 1.4 — — V IOH = -12 mA, VDD = 2.3V 2.4 — — V IOH = -12 mA, VDD = 3.6V 1.4 — — V IOH = -12 mA, VDD = 2.3V IOL = 7 mA, VDD = 3.6V Output High Voltage I/O Ports DO26 Min. Output Low Voltage DO10 VOH Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial OSC2/CLKO TABLE 31-10: DC CHARACTERISTICS: PROGRAM MEMORY(3) DC CHARACTERISTICS Param. Symbol No. Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Programming temperature 0°C TA +70°C (25°C recommended) Min. Typical(1) Max. Units Conditions Program Flash Memory D130 EP Cell Endurance 1000 — — D131 VPR VDD for Read VMIN — 3.6 D132 VPEW VDD for Erase or Write 3.0 — 3.6 D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated D135 IDDP Supply Current during Programming — 10 — mA TWW Word Write Cycle Time 20 — 40 s 0°C to +40°C D136 TRW Row Write Cycle Time (Note 2) (128 words per row) 3 4.5 — ms 0°C to +40°C D137 TPE Page Erase Cycle Time 20 — — ms 0°C to +40°C TCE Chip Erase Cycle Time 80 — — ms 0°C to +40°C Note 1: 2: 3: E/W -40°C to +85°C V VMIN = Minimum operating voltage V 0°C to +40°C 0°C to +40°C Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. The minimum SYSCLK for row programming is 4 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority). Refer to the “PIC32MX Flash Programming Specification” (DS61145) for operating conditions during programming and erase cycles. 2010 Microchip Technology Inc. Preliminary DS61156C-page 177 PIC32MX5XX/6XX/7XX TABLE 31-11: PROGRAM FLASH MEMORY WAIT STATE CHARACTERISTICS DC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Required Flash Wait States SYSCLK Units 0 Wait State 0 to 30 MHz 1 Wait State 31 to 60 2 Wait States 61 to 80 Comments TABLE 31-12: COMPARATOR SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Param. Symbol No. Characteristics Min. Typical Max. Units Comments D300 VIOFF Input Offset Voltage — ±7.5 ±25 mV AVDD = VDD, AVSS = VSS D301 VICM Input Common Mode Voltage 0 — VDD V AVDD = VDD, AVSS = VSS (Note 2) D302 CMRR Common Mode Rejection Ratio 55 — — dB Max VICM = (VDD – 1)V (Note 2) D303 TRESP Response Time — 150 400 ns AVDD = VDD, AVSS = VSS (Notes 1, 2) D304 ON2OV Comparator Enabled to Output Valid — — 10 s Comparator module is configured before setting the comparator ON bit. (Note 2) Note 1: 2: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from VSS to VDD. These parameters are characterized but not tested. DS61156C-page 178 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-13: VOLTAGE REFERENCE SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Param. No. Symbol Characteristics D310 VRES Resolution D311 VRAA Absolute Accuracy Typical Max. Units VDD/24 — VDD/32 LSb — — 1/2 LSb — — 10 s — 0.6 — V (1) D312 TSET Settling Time D313 VIREF Internal Voltage Reference Note 1: Min. Comments Settling time measured while CVRR = 1 and CVR<3:0> transitions from ‘0000’ to ‘1111’. This parameter is characterized, but not tested in manufacturing. TABLE 31-14: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial DC CHARACTERISTICS Param. No. Symbol Characteristics Min. Typical Max. Units 1.62 1.80 1.98 V D320 VDDCORE Regulator Output Voltage D321 CEFC External Filter Capacitor Value 8 10 — F D322 TPWRT Power-up Timer Period — 64 — ms 2010 Microchip Technology Inc. Preliminary Comments Capacitor must be low series resistance (1 ohm) DS61156C-page 179 PIC32MX5XX/6XX/7XX 31.2 AC Characteristics and Timing Parameters The information contained in this section defines PIC32MX5XX/6XX/7XX AC characteristics and timing parameters. TABLE 31-15: AC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Operating voltage VDD range. AC CHARACTERISTICS FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 RL CL Pin VSS CL Pin RL = 464 CL = 50 pF for all pins 50 pF for OSC2 pin (EC mode) VSS TABLE 31-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS AC CHARACTERISTICS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Param. Symbol No. Min. Typical(1) Characteristics Max. Units Conditions DO56 CIO All I/O pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C™ mode Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 31-2: EXTERNAL CLOCK TIMING OS20 OS30 OS31 OSC1 OS30 DS61156C-page 180 Preliminary OS31 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-17: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Min. Typical(1) Max. Units Conditions External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) DC 4 — — 50 (Note 3) 50 (Note 5) MHz MHz EC (Note 5) ECPLL (Note 4) Oscillator Crystal Frequency 3 — 10 MHz XT (Note 5) OS12 4 — 10 MHz XTPLL (Notes 4, 5) OS13 10 — 25 MHz HS (Note 5) OS14 10 — 25 MHz HSPLL (Notes 4, 5) OS15 32 32.768 100 kHz SOSC (Note 5) — — — — See parameter OS10 for FOSC value OS10 FOSC OS11 Characteristics OS20 TOSC TOSC = 1/FOSC = TCY (Note 2) OS30 TOSL, TOSH External Clock In (OSC1) High or Low Time 0.45 x TOSC — — ns EC (Note 5) OS31 TOSR, TOSF External Clock In (OSC1) Rise or Fall Time — — 0.05 x TOSC ns EC (Note 5) OS40 TOST Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and SOSC Clock Oscillator modes) — 1024 — TOSC (Note 5) OS41 TFSCM Primary Clock Fail Safe Time-out Period — 2 — ms (Note 5) OS42 GM External Oscillator Transconductance — 12 — Note 1: 2: 3: 4: 5: mA/V VDD = 3.3V, TA = +25°C (Note 5) Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested. Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. 40 MHz maximum for PIC32MX 40 MHz family variants. PLL input requirements: 4 MHZ FPLLIN 5 MHZ (use PLL prescaler to reduce FOSC). This parameter is characterized, but tested at 10 MHz only at manufacturing. This parameter is characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 181 PIC32MX5XX/6XX/7XX TABLE 31-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.3V TO 3.6V) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical(2) Max. Units OS50 FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 4 — 5 MHz OS51 FSYS On-Chip VCO System Frequency 60 — 120 MHz OS52 TLOCK PLL Start-up Time (Lock Time) OS53 DCLK CLKO Stability (Period Jitter or Cumulative) Note 1: 2: — — 2 ms -0.25 — +0.25 % Conditions ECPLL, HSPLL, XTPLL, FRCPLL modes Measured over 100 ms period These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. TABLE 31-19: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param. No. Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for industrial Min. Typical Max. Units +2 % Conditions Internal FRC Accuracy @ 8.00 MHz (Note 1) F20 Note 1: FRC -2 — Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift. TABLE 31-20: INTERNAL RC ACCURACY AC CHARACTERISTICS Param. No. Characteristics Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Min. Typical Max. Units -15 — +15 % Conditions LPRC @ 31.25 kHz (Note 1) F21 Note 1: LPRC Change of LPRC frequency as VDD changes. DS61156C-page 182 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) DO31 DO32 Note: Refer to Figure 31-1 for load conditions. TABLE 31-21: I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(2) Min. Typical(1) Max. Units — 5 15 ns VDD < 2.5V Conditions DO31 TIOR Port Output Rise Time — 5 10 ns VDD > 2.5V DO32 TIOF Port Output Fall Time — 5 15 ns VDD < 2.5V — 5 10 ns VDD > 2.5V DI35 TINP INTx Pin High or Low Time 10 — — ns DI40 TRBP CNx High or Low Time (input) 2 — — TSYSCLK Note 1: 2: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. This parameter is characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 183 PIC32MX5XX/6XX/7XX FIGURE 31-4: POWER-ON RESET TIMING CHARACTERISTICS Internal Voltage Regulator Enabled Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 (TPU) (Note 1) Internal Voltage Regulator Enabled Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) VDD VPOR (TSYSDLY) SY02 Power-up Sequence (Note 2) SY00 (TPU) (Note 1) SY10 (TOST) CPU Starts Fetching Code External VDDCORE Provided Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) VDD VDDCORE VPOR (TSYSDLY) SY02 Power-up Sequence (Note 3) SY01 (TPWRT) (Note 1) Note 1: CPU Starts Fetching Code The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VDDMIN). 2: Includes interval voltage regulator stabilization delay. 3: Power-up Timer (PWRT); only active when the internal voltage regulator is disabled. DS61156C-page 184 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-5: EXTERNAL RESET TIMING CHARACTERISTICS Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) MCLR TMCLR (SY20) BOR TBOR (SY30) (TSYSDLY) SY02 Reset Sequence CPU Starts Fetching Code Clock Sources = (HS, HSPLL, XT, XTPLL and SOSC) (TSYSDLY) SY02 Reset Sequence CPU Starts Fetching Code TOST (SY10) TABLE 31-22: RESETS TIMING Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical(2) Max. Units Conditions SY00 TPU Power-up Period Internal Voltage Regulator Enabled — 400 600 s -40°C to +85°C SY01 TPWRT Power-up Period External VDDCORE Applied (Power-up timer active) 48 64 80 ms -40°C to +85°C SY02 TSYSDLY System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched. — s + 8 SYSCLK cycles — — -40°C to +85°C SY20 TMCLR MCLR Pulse Width (low) — 2 — s -40°C to +85°C SY30 TBOR BOR Pulse Width (low) — 1 — s -40°C to +85°C Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested. 2010 Microchip Technology Inc. Preliminary DS61156C-page 185 PIC32MX5XX/6XX/7XX FIGURE 31-6: TIMER1, 2, 3, 4, 5 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx11 Tx10 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 31-1 for load conditions. TABLE 31-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. TA10 TA11 TA15 Symbol TTXH TTXL TTXP Characteristics(2) TxCK High Time TxCK Low Time Typical Max. Units Conditions Synchronous, with prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — — ns Asynchronous, with prescaler 10 — — ns Synchronous, with prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — — ns Asynchronous, with prescaler 10 — — ns [(Greater of 25 ns or 2 TPB)/N] + 30 ns — — ns VDD > 2.7V [(Greater of 25 ns or 2 TPB)/N] + 50 ns — — ns VDD < 2.7V 20 — — ns VDD > 2.7V (Note 3) 50 — — ns VDD < 2.7V (Note 3) 32 — 100 kHz 1 TPB TxCK Synchronous, Input Period with prescaler Asynchronous, with prescaler OS60 FT1 TA20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment Note 1: 2: 3: Min. SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit (T1CON<1>)) — Must also meet parameter TA15 Must also meet parameter TA15 Timer1 is a Type A. This parameter is characterized, but not tested in manufacturing. N = Prescale Value (1, 8, 64, 256) DS61156C-page 186 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-24: TIMER2, 3, 4, 5 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Characteristics(1) Symbol Min. Max. Units Conditions TB10 TTXH TxCK Synchronous, with High Time prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — ns TB11 TTXL TxCK Low Time Synchronous, with prescaler [(12.5 ns or 1 TPB)/N] + 25 ns — ns TB15 TTXP TxCK Input Synchronous, with Period prescaler [(Greater of [(25 ns or 2 TPB)/N] + 30 ns — ns VDD > 2.7V [(Greater of [(25 ns or 2 TPB)/N] + 50 ns — ns VDD < 2.7V — 1 TPB TB20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment Note 1: Must also meet N = prescale parameter TB15 value Must also meet (1, 2, 4, 8, 16, parameter TB15 32, 64, 256) These parameters are characterized, but not tested in manufacturing. FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note: Refer to Figure 31-1 for load conditions. TABLE 31-25: INPUT CAPTURE MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Param. Symbol No. Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Characteristics(1) Min. Max. Units Conditions IC10 TCCL ICx Input Low Time [(12.5 ns or 1 TPB)/N] + 25 ns — ns Must also meet parameter IC15. IC11 TCCH ICx Input High Time [(12.5 ns or 1 TPB)/N] + 25 ns — ns Must also meet parameter IC15. IC15 TCCP ICx Input Period [(25 ns or 2 TPB)/N] + 50 ns — ns Note 1: These parameters are characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary N = prescale value (1, 4, 16) DS61156C-page 187 PIC32MX5XX/6XX/7XX FIGURE 31-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS OCx (Output Compare or PWM mode) OC10 OC11 Note: Refer to Figure 31-1 for load conditions. TABLE 31-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical(2) Max. Units Conditions OC10 TCCF OCx Output Fall Time — — — ns See parameter DO32 OC11 TCCR OCx Output Rise Time — — — ns See parameter DO31 Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS OC20 OCFA/OCFB OC15 OCx Note: Refer to Figure 31-1 for load conditions. TABLE 31-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param No. Symbol Characteristics(1) Min Typical(2) Max Units Conditions OC15 TFD Fault Input to PWM I/O Change — — 50 ns OC20 TFLT Fault Input Pulse Width 50 — — ns Note 1: 2: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS61156C-page 188 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 Bit 14 - - - - - -1 MSb SDOx SP31 SDIx LSb SP30 MSb In LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions SP10 TSCL SCKx Output Low Time (Note 3) TSCK/2 — — ns SP11 TSCH SCKx Output High Time (Note 3) TSCK/2 — — ns SP20 TSCF SCKx Output Fall Time (Note 4) — — — ns See parameter DO32 SP21 TSCR SCKx Output Rise Time (Note 4) — — — ns See parameter DO31 SP30 TDOF SDOx Data Output Fall Time (Note 4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time (Note 4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge — — 15 ns VDD > 2.7V — — 20 ns VDD < 2.7V SP40 TDIV2SCH, TDIV2SCL Setup Time of SDIx Data Input to SCKx Edge 10 — — ns SP41 TSCH2DIL, TSCL2DIL Hold Time of SDIx Data Input to SCKx Edge 10 — — ns Note 1: 2: 3: 4: These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. 2010 Microchip Technology Inc. Preliminary DS61156C-page 189 PIC32MX5XX/6XX/7XX FIGURE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS SP36 SCKX (CKP = 0) SP11 SCKX (CKP = 1) SP10 SP21 SP20 SP20 SP21 SP35 MSb SDOX LSb Bit 14 - - - - - -1 SP30,SP31 SDIX MSb In SP40 Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°Cfor Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typ.(2) Max. Units — — ns Conditions SP10 TSCL SCKx Output Low Time (Note 3) TSCK/2 SP11 TSCH SCKx Output High Time (Note 3) TSCK/2 — — ns SP20 TSCF SCKx Output Fall Time (Note 4) — — — ns See parameter DO32 SP21 TSCR SCKx Output Rise Time (Note 4) — — — ns See parameter DO31 SP30 TDOF SDOx Data Output Fall Time (Note 4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time (Note 4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge — — 15 ns VDD > 2.7V — — 20 ns VDD < 2.7V SP36 TDOV2SC, SDOx Data Output Setup to TDOV2SCL First SCKx Edge 15 — — ns SP40 TDIV2SCH, Setup Time of SDIx Data Input to TDIV2SCL SCKx Edge 15 — — ns VDD > 2.7V 20 — — ns VDD < 2.7V TSCH2DIL, TSCL2DIL SP41 Note 1: 2: 3: 4: Hold Time of SDIx Data Input to SCKx Edge 15 — — ns VDD > 2.7V 20 — — ns VDD < 2.7V These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. DS61156C-page 190 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP71 SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 MSb SDOX LSb Bit 14 - - - - - -1 SP51 SP30,SP31 SDIX Bit 14 - - - -1 MSb In SP40 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typ.(2) Max. Units SP70 SP71 SP72 SP73 SP30 SP31 SP35 TSCL TSCH TSCF TSCR TDOF TDOR TSCH2DOV, TSCL2DOV SCKx Input Low Time (Note 3) SCKx Input High Time (Note 3) SCKx Input Fall Time SCKx Input Rise Time SDOx Data Output Fall Time (Note 4) SDOx Data Output Rise Time (Note 4) SDOx Data Output Valid after SCKx Edge SP40 TDIV2SCH, TDIV2SCL TSCH2DIL, TSCL2DIL Setup Time of SDIx Data Input to SCKx Edge Hold Time of SDIx Data Input to SCKx Edge TSCK/2 TSCK/2 — — — — — — 10 — — — — — — — — — — — — — — — 15 20 — ns ns ns ns ns ns ns ns ns 10 — — ns 175 — — ns 5 — 25 ns SP41 Conditions See parameter DO32 See parameter DO31 See parameter DO32 See parameter DO31 VDD > 2.7V VDD < 2.7V SP50 TSSL2SCH, SSx to SCKx or SCKx Input TSSL2SCL SP51 TSSH2DOZ SSx to SDOx Output High-Impedance (Note 3) SP52 TSCH2SSH SSx after SCKx Edge TSCK + 20 — — ns TSCL2SSH These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. Note 1: 2: 3: 4: 2010 Microchip Technology Inc. Preliminary DS61156C-page 191 PIC32MX5XX/6XX/7XX FIGURE 31-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP71 SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 LSb SP30,SP31 SDIx SDI MSb In SP40 SP51 Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 31-1 for load conditions. TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2) Max. Units Conditions SP70 TSCL SCKx Input Low Time (Note 3) TSCK/2 — — ns SP71 TSCH SCKx Input High Time (Note 3) TSCK/2 — — ns SP72 TSCF SCKx Input Fall Time — 5 10 ns SP73 TSCR SCKx Input Rise Time — 5 10 ns SP30 TDOF SDOx Data Output Fall Time (Note 4) — — — ns See parameter DO32 SP31 TDOR SDOx Data Output Rise Time (Note 4) — — — ns See parameter DO31 SP35 TSCH2DOV, SDOx Data Output Valid after TSCL2DOV SCKx Edge SP40 TDIV2SCH, Setup Time of SDIx Data Input TDIV2SCL to SCKx Edge SP41 TSCH2DIL, TSCL2DIL SP50 TSSL2SCH, SSx to SCKx or SCKx Input TSSL2SCL Note 1: 2: 3: 4: Hold Time of SDIx Data Input to SCKx Edge — — 20 ns VDD > 2.7V — — 30 ns VDD < 2.7V 10 — — ns 10 — — ns 175 — — ns These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. DS61156C-page 192 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical(2) Max. Units SP51 TSSH2DOZ SSx to SDOX Output High-Impedance (Note 4) 5 — 25 ns SP52 TSCH2SSH SSx after SCKx Edge TSCL2SSH TSCK + 20 — — ns SP60 TSSL2DOV SDOx Data Output Valid after SSx Edge — — 25 ns Note 1: 2: 3: 4: Conditions These parameters are characterized, but not tested in manufacturing. Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. The minimum clock period for SCKx is 40 ns. Assumes 50 pF load on all SPIx pins. 2010 Microchip Technology Inc. Preliminary DS61156C-page 193 PIC32MX5XX/6XX/7XX FIGURE 31-14: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Stop Condition Start Condition Note: Refer to Figure 31-1 for load conditions. FIGURE 31-15: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure 31-1 for load conditions. DS61156C-page 194 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. IM10 IM11 IM20 Min.(1) Max. Units TLO:SCL Clock Low Time 100 kHz mode TPB * (BRG + 2) — s 400 kHz mode TPB * (BRG + 2) — s 1 MHz mode (Note 2) TPB * (BRG + 2) — s Clock High Time 100 kHz mode TPB * (BRG + 2) — s 400 kHz mode TPB * (BRG + 2) — s 1 MHz mode (Note 2) TPB * (BRG + 2) — s — 300 ns 300 ns — 100 ns — 1000 ns 20 + 0.1 CB 300 ns — 300 ns 100 kHz mode 250 — ns 400 kHz mode 100 — ns 1 MHz mode (Note 2) 100 — ns THI:SCL TF:SCL Characteristics SDAx and SCLx 100 kHz mode Fall Time 400 kHz mode 1 MHz mode (Note 2) IM21 TR:SCL SDAx and SCLx 100 kHz mode Rise Time 400 kHz mode 1 MHz mode (Note 2) IM25 IM26 IM30 IM31 IM33 IM34 TSU:DAT Data Input Setup Time THD:DAT Data Input Hold Time TSU:STA Start Condition Setup Time THD:STA Start Condition Hold Time TSU:STO Stop Condition Setup Time THD:STO Stop Condition Hold Time Note 1: 2: 20 + 0.1 CB 100 kHz mode 0 — s 400 kHz mode 0 0.9 s 1 MHz mode (Note 2) 0 0.3 s 100 kHz mode TPB * (BRG + 2) — s 400 kHz mode TPB * (BRG + 2) — s 1 MHz mode (Note 2) TPB * (BRG + 2) — s 100 kHz mode TPB * (BRG + 2) — s 400 kHz mode TPB * (BRG + 2) — s 1 MHz mode (Note 2) TPB * (BRG + 2) — s 100 kHz mode TPB * (BRG + 2) — s 400 kHz mode TPB * (BRG + 2) — s 1 MHz mode (Note 2) TPB * (BRG + 2) — s 100 kHz mode TPB * (BRG + 2) — ns 400 kHz mode TPB * (BRG + 2) — ns 1 MHz mode (Note 2) TPB * (BRG + 2) — ns Conditions CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated BRG is the value of the I2C™ Baud Rate Generator. Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 2010 Microchip Technology Inc. Preliminary DS61156C-page 195 PIC32MX5XX/6XX/7XX TABLE 31-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. IM40 IM45 IM50 Note 1: 2: TAA:SCL Output Valid From Clock TBF:SDA Bus Free Time CB Min.(1) Max. Units 100 kHz mode — 3500 ns 400 kHz mode — 1000 ns 1 MHz mode (Note 2) — 350 ns 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 1 MHz mode (Note 2) 0.5 — s — 400 pF Characteristics Bus Capacitive Loading Conditions The amount of time the bus must be free before a new transmission can start BRG is the value of the I2C™ Baud Rate Generator. Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). DS61156C-page 196 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition Note: Refer to Figure 31-1 for load conditions. FIGURE 31-17: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out Note: Refer to Figure 31-1 for load conditions. 2010 Microchip Technology Inc. Preliminary DS61156C-page 197 PIC32MX5XX/6XX/7XX TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. IS10 IS11 IS20 IS21 Symbol TLO:SCL THI:SCL TF:SCL TR:SCL Characteristics Clock Low Time Clock High Time SDAx and SCLx Fall Time SDAx and SCLx Rise Time Min. Max. Units 100 kHz mode 4.7 — s PBCLK must operate at a minimum of 800 kHz 400 kHz mode 1.3 — s PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode (Note 1) 0.5 — s 100 kHz mode 4.0 — s PBCLK must operate at a minimum of 800 kHz 400 kHz mode 0.6 — s PBCLK must operate at a minimum of 3.2 MHz 1 MHz mode (Note 1) 0.5 — s 100 kHz mode — 400 kHz mode IS26 IS30 IS31 IS33 Note 1: TSU:DAT THD:DAT TSU:STA THD:STA TSU:STO Data Input Setup Time Data Input Hold Time Start Condition Setup Time Start Condition Hold Time Stop Condition Setup Time 300 ns 300 ns 1 MHz mode (Note 1) — 100 ns 100 kHz mode — 1000 ns 400 kHz mode 20 + 0.1 CB 300 ns — 300 ns 100 kHz mode 250 — ns 400 kHz mode 100 — ns 1 MHz mode (Note 1) 100 — ns 1 MHz mode (Note 1) IS25 20 + 0.1 CB 100 kHz mode 0 — ns 400 kHz mode 0 0.9 s 1 MHz mode (Note 1) 0 0.3 s 100 kHz mode 4700 — s 400 kHz mode 600 — s 1 MHz mode (Note 1) 250 — s 100 kHz mode 4000 — s 400 kHz mode 600 — s 1 MHz mode (Note 1) 250 — s 100 kHz mode 4000 — s 400 kHz mode 600 — s 1 MHz mode (Note 1) 600 — s Conditions CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). DS61156C-page 198 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED) Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. IS34 IS40 Symbol THD:STO TAA:SCL Characteristics Stop Condition Hold Time Min. Max. Units 100 kHz mode 4000 — ns 400 kHz mode 600 — ns 1 MHz mode (Note 1) 250 Output Valid From 100 kHz mode Clock 400 kHz mode 1 MHz mode (Note 1) IS45 IS50 Note 1: TBF:SDA CB Bus Free Time ns 0 3500 ns 0 1000 ns 0 350 ns 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 1 MHz mode (Note 1) 0.5 — s — 400 pF Bus Capacitive Loading Conditions The amount of time the bus must be free before a new transmission can start Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 2010 Microchip Technology Inc. Preliminary DS61156C-page 199 PIC32MX5XX/6XX/7XX FIGURE 31-18: CiTx Pin (output) CAN MODULE I/O TIMING CHARACTERISTICS New Value Old Value CA10 CA11 CiRx Pin (input) CA20 TABLE 31-34: CAN MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions CA10 TioF Port Output Fall Time — — — ns See parameter D032 CA11 TioR Port Output Rise Time — — — ns See parameter D031 CA20 Tcwf Pulse Width to Trigger CAN Wake-up Filter 500 — — ns Note 1: 2: — These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS61156C-page 200 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-35: ETHERNET MODULE SPECIFICATIONS AC CHARACTERISTICS Param. No. Characteristic Standard Operating Conditions: 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Min. Typical Max. Units Conditions Device Supply ET20a Module VDD Supply 2.5 — 3.6 V ET20b Module VDD Supply 2.7 — 3.6 V MDC Duty Cycle 40 — 60 % ET2 MDC Period 400 — — ns ET3 MDIO Output Delay 10 — 10 ns ET4 MDIO Input Delay 0 — 300 ns For RMII mode only MIIM Timing Requirements ET1 MII Timing Requirements ET5 TX Clock Frequency — 25 — MHz ET6 TX Clock Duty Cycle 35 — 65 % ET7 ETXDx, ETEN, ETXERR Delay 0 — 25 ns ET8 RX Clock Frequency — 25 — MHz ET9 RX Clock Duty Cycle 35 — 65 % ET10 ERXDx, ERXDV, ERXERR Delay 10 — 30 ns RMII Timing Requirements ET11 Reference Clock Frequency — 50 — MHz ET12 Reference Clock Duty Cycle 35 — 65 % ET13 ETXDx, ETEN, Delay 2 — 16 ns ET14 ERXDx, ERXDV, ERXERR Delay 2 — 16 ns 2010 Microchip Technology Inc. Preliminary DS61156C-page 201 PIC32MX5XX/6XX/7XX TABLE 31-36: ADC MODULE SPECIFICATIONS AC CHARACTERISTICS Param. No. Symbol Characteristics Standard Operating Conditions: 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Min. Typical Max. Units Conditions Device Supply AD01 AVDD Module VDD Supply Greater of VDD – 0.3 or 2.5 — Lesser of VDD + 0.3 or 3.6 V AD02 AVSS Module VSS Supply VSS — VSS + 0.3 V AVDD V (Note 1) Reference Inputs AD05 VREFH Reference Voltage High AVSS + 2.0 — 2.5 — 3.6 V VREFH = AVDD (Note 3) AD06 VREFL Reference Voltage Low AVSS — VREFH – 2.0 V (Note 1) AD07 VREF Absolute Reference Voltage (VREFH – VREFL) 2.0 — AVDD V (Note 3) AD08 IREF Current Drain — 250 — 400 3 A A ADC operating ADC off AD05a Analog Input AD12 AD17 VREFL — VREFH V VINL VINH-VINL Full-Scale Input Span Absolute VINL Input Voltage AVSS – 0.3 — AVDD/2 V VIN Absolute Input Voltage AVSS – 0.3 — AVDD + 0.3 V Leakage Current — +/- 0.001 +/-0.610 A VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V Source Impedance = 10 k Recommended Impedance of Analog Voltage Source — — 5K (Note 1) RIN ADC Accuracy – Measurements with External VREF+/VREF- AD20c Nr Resolution AD21c INL Integral Nonlinearity > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD22c DNL Differential Nonlinearity > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V (Note 2) AD23c GERR Gain Error > -1 — <1 LSb VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V AD24n EOFF Offset Error > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 3.3V AD25c Monotonicity — — — Note 1: 2: 3: 4: — 10 data bits bits — Guaranteed These parameters are not characterized or tested in manufacturing. With no missing codes. These parameters are characterized, but not tested in manufacturing. Characterized with a 1 kHz sinewave. DS61156C-page 202 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-36: ADC MODULE SPECIFICATIONS (CONTINUED) AC CHARACTERISTICS Param. No. Symbol Characteristics Standard Operating Conditions: 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial Min. Typical Max. Units Conditions ADC Accuracy – Measurements with Internal VREF+/VREF- AD20d Nr Resolution AD21d INL Integral Nonlinearity > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD22d DNL Differential Nonlinearity > -1 — <1 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2, 3) AD23d GERR Gain Error > -4 — <4 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD24d EOFF Offset Error > -2 — <2 LSb VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Note 3) AD25d Monotonicity — — — — Guaranteed — 10 data bits bits (Note 3) Dynamic Performance AD31b SINAD Signal to Noise and Distortion 55 58.5 — dB (Notes 3, 4) AD34b ENOB Effective Number of Bits 9.0 9.5 — bits (Notes 3, 4) Note 1: 2: 3: 4: These parameters are not characterized or tested in manufacturing. With no missing codes. These parameters are characterized, but not tested in manufacturing. Characterized with a 1 kHz sinewave. 2010 Microchip Technology Inc. Preliminary DS61156C-page 203 PIC32MX5XX/6XX/7XX TABLE 31-37: 10-BIT CONVERSION RATE PARAMETERS PIC32MX 10-Bit A/D Converter Conversion Rates(2) ADC Speed 1 Msps to 400 ksps(1) Sampling TAD RS Max Minimum Time Min 65 ns 132 ns 500 VDD Temperature 3.0V to 3.6V -40°C to +85°C ADC Channels Configuration VREF- VREF+ CHX ANx Up to 400 ksps 200 ns 200 ns 5.0 k 2.5V to 3.6V SHA ADC -40°C to +85°C VREF- VREF+ or or AVSS AVDD CHX ANx SHA ADC ANx or VREF- Up to 300 ksps 200 ns 200 ns 5.0 k 2.5V to 3.6V -40°C to +85°C VREF- VREF+ or or AVSS AVDD CHX ANx SHA ADC ANx or VREF- Note 1: 2: External VREF- and VREF+ pins must be used for correct operation. These parameters are characterized, but not tested in manufacturing. DS61156C-page 204 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-38: A/D CONVERSION TIMING REQUIREMENTS Standard Operating Conditions: 2.5V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Min. Typical(1) Max. Units A/D Clock Period(2) 65 — — ns Characteristics Conditions Clock Parameters AD50 TAD See Table 31-37 Conversion Rate AD55 TCONV Conversion Time — 12 TAD — — AD56 FCNV Throughput Rate (Sampling Speed) — — 1000 ksps AVDD = 3.0V to 3.6V — — 400 ksps AVDD = 2.5V to 3.6V Sample Time 1 — 31 TAD TSAMP must be 132 ns — 1.0 TAD — — 0.5 TAD — 1.5 TAD — AD57 TSAMP Timing Parameters AD60 TPCS Conversion Start from Sample Trigger(3) AD61 TPSS Sample Start from Setting Sample (SAMP) bit AD62 TCSS Conversion Completion to Sample Start (ASAM = 1)(3) — 0.5 TAD — — AD63 TDPU Time to Stabilize Analog Stage from A/D Off to A/D On(3) — — 2 s Note 1: 2: 3: Auto-Convert Trigger (SSRC<2:0> = 111) not selected These parameters are characterized, but not tested in manufacturing. Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures. Characterized by design but not tested. 2010 Microchip Technology Inc. Preliminary DS61156C-page 205 PIC32MX5XX/6XX/7XX FIGURE 31-19: A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000) AD50 ADCLK Instruction Execution Set SAMP Clear SAMP SAMP ch0_dischrg ch0_samp ch1_dischrg ch1_samp eoc AD61 AD60 AD55 TSAMP AD55 CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 8 5 6 7 8 1 – Software sets ADxCON. SAMP to start sampling. 2 – Sampling starts after discharge period. TSAMP is described in the “PIC32MX Family Reference Manual” (DS61132). 3 – Software clears ADxCON. SAMP to start conversion. 4 – Sampling ends, conversion sequence starts. 5 – Convert bit 9. 6 – Convert bit 8. 7 – Convert bit 0. 8 – One TAD for end of conversion. DS61156C-page 206 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-20: A/D CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001) AD50 ADCLK Instruction Execution Set ADON SAMP ch0_dischrg ch0_samp ch1_dischrg ch1_samp eoc TSAMP AD55 TSAMP AD55 TCONV CONV ADxIF Buffer(0) Buffer(1) 1 2 3 4 5 6 7 3 4 5 6 8 3 4 1 – Software sets ADxCON. ADON to start AD operation. 5 – Convert bit 0. 2 – Sampling starts after discharge period. TSAMP is described in the “PIC32MX Family Reference Manual” (DS61132). 6 – One TAD for end of conversion. 3 – Convert bit 9. 8 – Sample for time specified by SAMC<4:0>. 7 – Begin conversion of next channel. 4 – Convert bit 8. 2010 Microchip Technology Inc. Preliminary DS61156C-page 207 PIC32MX5XX/6XX/7XX FIGURE 31-21: PARALLEL SLAVE PORT TIMING CS PS5 RD PS6 WR PS4 PS7 PMD<7:0> PS1 PS3 PS2 TABLE 31-39: PARALLEL SLAVE PORT REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Characteristics(1) Min. Typical Max. Units 20 — — ns PS1 TdtV2wrH Data In Valid before WR or CS Inactive (setup time) PS2 TwrH2dtI WR or CS Inactive to Data–In Invalid (hold time) 40 — — ns PS3 TrdL2dtV RD and CS Active to Data–Out Valid — — 60 ns PS4 TrdH2dtI RD Activeor CS Inactive to Data–Out Invalid 0 — 10 ns PS5 Tcs CS Active Time TPB + 40 — — ns PS6 TWR WR Active Time TPB + 25 — — ns PS7 TRD RD Active Time TPB + 25 — — ns Note 1: Conditions These parameters are characterized, but not tested in manufacturing. DS61156C-page 208 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX FIGURE 31-22: PARALLEL MASTER PORT READ TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock PM4 Address PMA<13:18> PM6 PMD<7:0> Data Data Address<7:0> Address<7:0> PM2 PM7 PM3 PMRD PM5 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 31-40: PARALLEL MASTER PORT READ TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units PM1 TLAT PMALL/PMALH Pulse Width — 1 TPB — — PM2 TADSU Address Out Valid to PMALL/PMALH Invalid (address setup time) — 2 TPB — — PM3 TADHOLD PMALL/PMALH Invalid to Address Out Invalid (address hold time) — 1 TPB — — PM4 TAHOLD PMRD Inactive to Address Out Invalid (address hold time) 5 — — ns PM5 TRD PMRD Pulse Width — 1 TPB — — PM6 TDSU PMRD or PMENB Active to Data In Valid (data setup time) 15 — — ns PM7 TDHOLD PMRD or PMENB Inactive to Data In Invalid (data hold time) — 80 — ns Note 1: Conditions These parameters are characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 209 PIC32MX5XX/6XX/7XX FIGURE 31-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM TPB TPB TPB TPB TPB TPB TPB TPB PB Clock Address PMA<13:18> PM2 + PM3 Address<7:0> PMD<7:0> Data PM12 PM13 PMRD PM11 PMWR PM1 PMALL/PMALH PMCS<2:1> TABLE 31-41: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units PM11 TWR PMWR Pulse Width — 1 TPB — — PM12 TDVSU Data Out Valid before PMWR or PMENB goes Inactive (data setup time) — 2 TPB — — PM13 TDVHOLD PMWR or PMEMB Invalid to Data Out Invalid (data hold time) — 1 TPB — — Note 1: Conditions These parameters are characterized, but not tested in manufacturing. DS61156C-page 210 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE 31-42: OTG ELECTRICAL SPECIFICATIONS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. Symbol No. Characteristics(1) Min. Typical Max. Units USB313 VUSB USB Voltage 3.0 — 3.6 V USB315 VILUSB Input Low Voltage for USB Buffer — — 0.8 V USB316 VIHUSB Input High Voltage for USB Buffer 2.0 — — V USB318 VDIFS Differential Input Sensitivity — — 0.2 V USB319 VCM Differential Common Mode Range 0.8 — 2.5 V Conditions Voltage on bus must be in this range for proper USB operation The difference between D+ and Dmust exceed this value while VCM is met USB320 ZOUT Driver Output Impedance 28.0 — 44.0 USB321 VOL Voltage Output Low 0.0 — 0.3 V 14.25 k load connected to 3.6V USB322 VOH Voltage Output High 2.8 — 3.6 V 14.25 k load connected to ground Note 1: These parameters are characterized, but not tested in manufacturing. 2010 Microchip Technology Inc. Preliminary DS61156C-page 211 PIC32MX5XX/6XX/7XX FIGURE 31-24: EJTAG TIMING CHARACTERISTICS TTCKeye TTCKhigh TTCKlow Trf TCK Trf TMS TDI TTsetup TThold Trf Trf TDO TRST* TTRST*low TTDOout TTDOzstate Defined Trf Undefined TABLE 31-43: EJTAG TIMING REQUIREMENTS Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature -40°C TA +85°C for Industrial AC CHARACTERISTICS Param. No. Symbol Description(1) Min. Max. Units EJ1 TTCKCYC TCK Cycle Time 25 — ns EJ2 TTCKHIGH TCK High Time 10 — ns EJ3 TTCKLOW TCK Low Time 10 — ns EJ4 TTSETUP TAP Signals Setup Time Before Rising TCK 5 — ns EJ5 TTHOLD TAP Signals Hold Time After Rising TCK 3 — ns EJ6 TTDOOUT TDO Output Delay Time From Falling TCK — 5 ns EJ7 TTDOZSTATE TDO 3-State Delay Time From Falling TCK — 5 ns EJ8 TTRSTLOW TRST Low Time 25 — ns EJ9 TRF TAP Signals Rise/Fall Time, All Input and Output — — ns Note 1: Conditions These parameters are characterized, but not tested in manufacturing. DS61156C-page 212 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 32.0 PACKAGING INFORMATION 32.1 Package Marking Information Example 64-Lead TQFP (10x10x1 mm) PIC32MX575F 512H-80I/PT XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN e3 0510017 100-Lead TQFP (14x14x1 mm) Example PIC32MX575F 512L-80I/PF e3 0510017 XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN 100-Lead TQFP (12x12x1 mm) Example PIC32MX575F 512L-80I/PT e3 0510017 XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN Legend: XX...X Y YY WW NNN * Note: Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e) 3 can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. 2010 Microchip Technology Inc. Preliminary DS61156C-page 213 PIC32MX5XX/6XX/7XX 32.1 Package Marking Information (Continued) 64-Lead QFN (9x9x0.9 mm) Example XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN PIC32MX575F 512H-80I/MR e3 0510017 121-Lead XBGA (10x10x1.1 mm) XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX YYWWNNN DS61156C-page 214 Example PIC32MX575F 512H-80I/BG e3 0510017 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX 32.2 Package Details The following sections give the technical details of the packages. !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 D D1 E e E1 N b NOTE 1 123 NOTE 2 α A φ c A2 β A1 L L1 6&! '!7'&! 8"')%7#! ' 77.. 8 8 89 : ; 7#& 9 <& = /1+ = ##44!! / / &#%% / = / 3&7& 7 / ; / 3& & 7 .3 3& 9 ?#& . > 1+ /> 9 7& 1+ ##4?#& . 1+ ##47& 1+ > 7#4!! = 7#?#& ) #%& > > > #%&1&&' > > > ( !"#$%&"' ()"&'"!&)&#*&&&# +'%!&! &,!-' '!!#.#&"#'#%! &"!!#%! &"!!!&$#/'' !# '!#& .0/ 1+2 1!'!&$& "!**&"&&! .32 %'!("!"*&"&&(%%'& " !! * +@/1 2010 Microchip Technology Inc. Preliminary DS61156C-page 215 PIC32MX5XX/6XX/7XX !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 DS61156C-page 216 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 D D1 e E1 E b N α NOTE 1 1 23 A NOTE 2 φ c β A2 A1 L L1 6&! '!7'&! 8"')%7#! ' 77.. 8 8 89 : 7#& 9 <& = /1+ = ##44!! / / &#%% / = / 3&7& 7 / ; / 3& & 7 .3 3& 9 ?#& . > ;1+ /> 9 7& ;1+ ##4?#& . 1+ ##47& 1+ > 7#4!! = 7#?#& ) #%& > > > #%&1&&' > > > ( !"#$%&"' ()"&'"!&)&#*&&&# +'%!&! &,!-' '!!#.#&"#'#%! &"!!#%! &"!!!&$#/'' !# '!#& .0/ 1+2 1!'!&$& "!**&"&&! .32 %'!("!"*&"&&(%%'& " !! * +1 2010 Microchip Technology Inc. Preliminary DS61156C-page 217 PIC32MX5XX/6XX/7XX !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 DS61156C-page 218 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX ## !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 D D1 e E E1 N b NOTE 1 1 23 NOTE 2 α c A φ L β A1 6&! '!7'&! 8"')%7#! ' A2 L1 77.. 8 8 89 : 7#& 9 <& = 1+ = ##44!! / / &#%% / = / 3&7& 7 / ; / 3& & 7 .3 3& I 9 ?#& . > 1+ /> 9 7& 1+ ##4?#& . 1+ ##47& 1+ > 7#4!! = 7#?#& ) @ #%& D > > > #%&1&&' E > > > ( !"#$%&"' ()"&'"!&)&#*&&&# +'%!&! &,!-' '!!#.#&"#'#%! &"!!#%! &"!!!&$#/'' !# '!#& .0/ 1+2 1!'!&$& "!**&"&&! .32 %'!("!"*&"&&(%%'& " !! * +1 2010 Microchip Technology Inc. Preliminary DS61156C-page 219 PIC32MX5XX/6XX/7XX ## !"#$% & ' ( 3&'!&"& 4#*!( !!& 4 %&&#& && 255***' '5 4 DS61156C-page 220 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2010 Microchip Technology Inc. Preliminary DS61156C-page 221 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156C-page 222 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2010 Microchip Technology Inc. Preliminary DS61156C-page 223 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156C-page 224 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging 2010 Microchip Technology Inc. Preliminary DS61156C-page 225 PIC32MX5XX/6XX/7XX Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS61156C-page 226 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX APPENDIX A: MIGRATING FROM PIC32MX3XX/4XX TO PIC32MX5XX/6XX/7XX DEVICES This appendix provides an overview of considerations for migrating from PIC32MX3XX/4XX devices to the PIC32MX5XX/6XX/7XX family of devices. The code developed for the PIC32MX3XX/4XX devices can be ported to the PIC32MX5XX/6XX/7XX devices after making the appropriate changes outlined below. A.1 DMA PIC32MX5XX/6XX/7XX devices do stopping DMA transfers in Idle mode. A.2 not A.3 Pin Assignments PIC32MX5XX/6XX/7XX devices have the same pin assignment for peripherals as PIC32MX4XX devices with the following exceptions: • Pins associated with the UART1 and UART2 modules on PIC32MX4XX devices are now associated with the UART1A and UART3A modules, respectively on PIC32MX5XX/6XX/7XX devices • Pins associated with the SPI2 module on PIC32MX4XX devices are now associated with the SPI2A module on PIC32MX5XX/6XX/7XX devices support Interrupts PIC32MX5XX/6XX/7XX devices have persistent interrupts for some of the peripheral modules. This means that the interrupt condition for these peripherals must be cleared before the interrupt flag can be cleared. For example, to clear a UART receive interrupt, the user application must first read the UART Receive register to clear the interrupt condition and then clear the associated UxIF flag to clear the pending UART interrupt. In other words, the UxIF flag cannot be cleared by software until the UART Receive register is read. Table A-1 outlines the peripherals and associated interrupts that are implemented differently on PIC32MX5XX/6XX/7XX versus PIC32MX3XX/4XX devices. In addition, on the SPI module, the IRQ numbers for the receive done interrupts were changed from 25 to 24 and the transfer done interrupts were changed from 24 to 25. TABLE A-1: PIC32MX3XX/4XX vs. PIC32MX5XX/6XX/7XX INTERRUPT IMPLEMENTATION DIFFERENCES Module Interrupt Implementation Input Capture To clear an interrupt source, read the Buffer Result (ICxBUF) register to obtain the number of capture results in the buffer that are below the interrupt threshold (specified by ICI<1:0> bits). SPI Receive and transmit interrupts are controlled by the SRXISEL<1:0> and STXISEL<1:0> bits, respectively. To clear an interrupt source, data must be written to, or read from, the SPIxBUF register to obtain the number of data to receive/transmit below the level specified by the SRXISEL<1:0> and STXISEL<1:0> bits. UART TX interrupt will be generated as soon as the UART module is enabled. Receive and transmit interrupts are controlled by the URXISEL<1:0> and UTXISEL<1:0> bits, respectively. To clear an interrupt source, data must be read from, or written to, the UxRXREG or UxTXREG registers to obtain the number of data to receive/transmit below the level specified by the URXISEL<1:0> and UTXISEL<1:0> bits. ADC All samples must be read from the result registers (ADC1BUFx) to clear the interrupt source. PMP To clear an interrupt source, read the Parallel Master Port Data Input/Output (PMDIN/PMDOUT) register. 2010 Microchip Technology Inc. Preliminary DS61156C-page 227 PIC32MX5XX/6XX/7XX APPENDIX B: REVISION HISTORY Revision B (November 2009) The revision includes the following global update: Revision A (August 2009) • Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits This is the initial revision of this document. Other major changes are referenced by their respective chapter/section in Table B-1. TABLE B-1: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, USB, CAN and Added the following devices: Ethernet 32-Bit Flash - PIC32MX575F256L Microcontrollers” - PIC32MX695F512L - PIC32MX695F512H The 100-pin TQFP pin diagrams have been updated to reflect the current pin name locations (see the “Pin Diagrams” section). Added the 121-pin Ball Grid Array (XBGA) pin diagram. Updated Table 1: “PIC32MX Features” Added the following tables: - Table 2: “Pin Names: PIC32MX575F256L and PIC32MX575F512L Devices”, - Table 3: “Pin Names: PIC32MX675F256L, PIC32MX675F512L and PIC32MX695F512L Devices” - Table 4: “Pin Names: PIC32MX775F256L, PIC32MX775F512L, PIC32MX795F512L and Devices” Updated the following pins as 5V tolerant: - 64-pin QFN: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 64-pin TQFP: Pin 36 (D-/RG3) and Pin 37 (D+/RG2) - 100-pin TQFP: Pin 56 (D-/RG3) and Pin 57 (D+/RG2) Section 2.0 “Guidelines for Getting Removed the last sentence of Section 2.3.1 “Internal Regulator Mode”. Started with 32-Bit Removed Section 2.3.2 “External Regulator Mode” Microcontrollers” DS61156C-page 228 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE B-1: MAJOR SECTION UPDATES (CONTINUED) Section Name Section 4.0 “Memory Organization” Update Description Updated all register tables to include the Virtual Address and All Resets columns. Updated the title of Figure 4-1 to include the PIC32MX575F256L device. Updated the title of Figure 4-3 to include the PIC32MX695F512L and PIC32MX695F512H devices. Also changed PIC32MX795F512L to PIC32MX795F512H. Updated the title of Table 4-3 to include the PIC32MX695F512H device. Updated the title of Table 4-5 to include the PIC32MX575F5256L device. Updated the title of Table 4-6 to include the PIC32MX695F512L device. Reversed the order of Table 4-11 and Table 4-12. Reversed the order of Table 4-14 and Table 4-15. Updated the title of Table 4-15 to include the PIC32MX575F256L and PIC32MX695F512L devices. Updated the title of Table 4-45 to include the PIC32MX575F256L device. Updated the title of Table 4-47 to include the PIC32MX695F512H and PIC32MX695F512L devices. Section 12.0 “I/O Ports” Updated the second paragraph of Section 12.1.2 “Digital Inputs” and removed Table 12-1. Section 22.0 “10-Bit Analog-toDigital Converter (ADC)” Updated the ADC Conversion Clock Period Block Diagram (see Figure 22-2). Section 28.0 “Special Features” Removed references to the ENVREG pin in Section 28.3 “On-Chip Voltage Regulator”. Updated the first sentence of Section 28.3.1 “On-Chip Regulator and POR” and Section 28.3.2 “On-Chip Regulator and BOR”. Updated the Connections for the On-Chip Regulator (see Figure 28-2). Section 31.0 “Electrical Characteristics” Updated the Absolute Maximum Ratings and added Note 3. Added Thermal Packaging Characteristics for the 121-pin XBGA package (see Table 31-3). Updated the Operating Current (IDD) DC Characteristics (see Table 31-5). Updated the Idle Current (IIDLE) DC Characteristics (see Table 31-6). Updated the Power-Down Current (IPD) DC Characteristics (see Table 31-7). Removed Note 1 from the Program Flash Memory Wait State Characteristics (see Table 31-11). Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics, changing SP52 to SP35 between the MSb and Bit 14 on SDOx (see Figure 31-13). Section 32.0 “Packaging Information” Added the 121-pin XBGA package marking information and package details. “Product Identification System” Added the definition for BG (121-lead 10x10x1.1 mm, XBGA). Added the definition for Speed. 2010 Microchip Technology Inc. Preliminary DS61156C-page 229 PIC32MX5XX/6XX/7XX Revision C (February 2010) The revision includes the following updates, as described in Table B-2: TABLE B-2: MAJOR SECTION UPDATES Section Name “High-Performance, USB, CAN and Ethernet 32-Bit Flash Microcontrollers” Update Description Added the following devices: • • • • • • PIC32MX675F256H PIC32MX775F256H PIC32MX775F512H PIC32MX675F256L PIC32MX775F256L PIC32MX775F512L Added the following pins: • • • • EREFCLK ECRSDV AEREFCLK AECRSDV Added the EREFCLK and ECRSDV pins to Table 3 and Table 4. Section 1.0 “Device Overview” Updated the pin number pinout I/O descriptions for the following pin names in Table 1-1: • SCL1A • TMS • C1IN- • SDA1A • TCK • C1IN+ • SCL2 • TDI • C1OUT • SDA2 • TDO • C2IN- • SCL2A • RTCC • C2IN+ • SDA2A • CVREF- • C2OUT • SCL3A • CVREF+ • PMA0 • SDA3A • CVREFOUT • PMA1 Added the following pins to the Pinout I/O Descriptions table (Table 1-1): • • • • DS61156C-page 230 EREFCLK ECRSDV AEREFCLK AECRSDV Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX TABLE B-2: MAJOR SECTION UPDATES (CONTINUED) Section Name Section 4.0 “Memory Organization” Update Description Added new devices and updated the virtual and physical memory map values in Figure 4-1. Added new devices to Figure 4-2. Added new devices to the following register maps: • • • • • • • • Table 4-3, Table 4-4, Table 4-6 and Table 4-7 (Interrupt Register Maps) Table 4-12 (I2C2 Register Map) Table 4-15 (SPI1 Register Map) Table 4-24 through Table 4-35 (PORTA-PORTG Register Maps) Table 4-36 and Table 4-37 (Change Notice and Pull-up Register Maps) Table 4-45 (CAN1 Register Map) Table 4-46 (CAN2 Register Map) Table 4-47 (Ethernet Controller Register Map) Changed the bits named POSCMD to POSCMOD in Table 4-42 (Device Configuration Word Summary). Section 28.0 “Special Features” Changed all references of POSCMD to POSCMOD in the Device Configuration Word 1 register (see Register 28-2). Appendix A: “Migrating from PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX Devices” Added the new section A.3 “Pin Assignments”. 2010 Microchip Technology Inc. Preliminary DS61156C-page 231 PIC32MX5XX/6XX/7XX NOTES: DS61156C-page 232 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX INDEX A D AC Characteristics ............................................................ 180 10-Bit Conversion Rate Parameters ......................... 204 A/D Conversion Requirements ................................. 205 ADC Specifications ................................................... 202 EJTAG Timing Requirements ................................... 212 Ethernet .................................................................... 201 Internal FRC Accuracy.............................................. 182 Internal RC Accuracy ................................................ 182 OTG Electrical Specifications ................................... 211 Parallel Master Port Read Requirements ................. 209 Parallel Master Port Write ......................................... 210 Parallel Master Port Write Requirements.................. 210 Parallel Slave Port Requirements ............................. 208 PLL Clock Timing...................................................... 182 Assembler MPASM Assembler................................................... 168 DC Characteristics............................................................ 172 I/O Pin Input Specifications ...................................... 176 I/O Pin Output Specifications.................................... 177 Idle Current (IIDLE) .................................................... 174 Operating Current (IDD) ............................................ 173 Power-Down Current (IPD)........................................ 175 Program Memory...................................................... 177 Temperature and Voltage Specifications.................. 172 Development Support ....................................................... 167 Direct Memory Access (DMA) Controller.......................... 117 B Block Diagrams A/D Module ............................................................... 141 Comparator I/O Operating Modes............................. 147 Comparator Voltage Reference ................................ 149 Connections for On-Chip Voltage Regulator............. 162 Core and Peripheral Modules ..................................... 23 DMA .......................................................................... 117 Ethernet Controller.................................................... 145 I2C Circuit ................................................................. 134 Input Capture ............................................................ 127 Interrupt Controller .................................................... 109 JTAG Programming, Debugging and Trace Ports ....................................................... 163 MCU............................................................................ 39 Output Compare Module........................................... 129 PIC32MX CAN Module ............................................. 143 PMP Pinout and Connections to External Devices ............................................................. 137 Prefetch Module........................................................ 115 Reset System............................................................ 107 RTCC ........................................................................ 139 SPI Module ............................................................... 131 Timer1....................................................................... 123 Timer2/3/4/5 (16-Bit) ................................................. 125 Typical Multiplexed Port Structure ............................ 121 UART ........................................................................ 135 WDT and Power-up Timer ........................................ 161 Brown-out Reset (BOR) and On-Chip Voltage Regulator................................ 162 C C Compilers MPLAB C18 .............................................................. 168 Clock Diagram .................................................................. 113 Comparator Specifications............................................................ 178 Comparator Module .......................................................... 147 Comparator Voltage Reference (CVREF ........................... 149 Configuration Bit ............................................................... 153 Controller Area Network (CAN)......................................... 143 CPU Module........................................................................ 35 2010 Microchip Technology Inc. E Electrical Characteristics .................................................. 171 AC............................................................................. 180 Errata .................................................................................. 21 Ethernet Controller............................................................ 145 External Clock Timer1 Timing Requirements ................................... 186 Timer2, 3, 4, 5 Timing Requirements ....................... 187 Timing Requirements ............................................... 181 F Flash Program Memory .................................................... 105 RTSP Operation ....................................................... 105 I I/O Ports ........................................................................... 121 Parallel I/O (PIO) ...................................................... 122 Instruction Set................................................................... 165 Inter-Integrated Circuit (I2C .............................................. 133 Internal Voltage Reference Specifications........................ 179 Interrupt Controller............................................................ 109 IRG, Vector and Bit Location .................................... 110 M MCU Architecture Overview ................................................ 40 Coprocessor 0 Registers ............................................ 42 Core Exception Types ................................................ 43 EJTAG Debug Support............................................... 44 Power Management ................................................... 44 MCU Module....................................................................... 39 Memory Maps ............................................................... 46–48 Memory Organization ......................................................... 45 Layout......................................................................... 45 Migration PIC32MX3XX/4XX to PIC32MX5XX/6XX/7XX......... 227 MPLAB ASM30 Assembler, Linker, Librarian ................... 168 MPLAB Integrated Development Environment Software .............................................. 167 MPLAB PM3 Device Programmer .................................... 170 MPLAB REAL ICE In-Circuit Emulator System ................ 169 MPLINK Object Linker/MPLIB Object Librarian ................ 168 O Open-Drain Configuration................................................. 122 Oscillator Configuration .................................................... 113 Output Compare ............................................................... 129 Preliminary DS61156C-page 233 PIC32MX5XX/6XX/7XX P Packaging ......................................................................... 213 Details ....................................................................... 215 Marking ..................................................................... 213 Parallel Master Port (PMP) ............................................... 137 PIC32MX Family USB Interface Diagram ......................... 120 Pinout I/O Descriptions (table) ............................................ 24 Power-on Reset (POR) and On-Chip Voltage Regulator ................................ 162 Power-Saving Features..................................................... 151 CPU Halted Methods ................................................ 151 Operation .................................................................. 151 with CPU Running..................................................... 151 Prefetch Cache ................................................................. 115 Program Flash Memory Wait State Characteristics......................................... 178 R Real-Time Clock and Calendar (RTCC)............................ 139 Register Maps ............................................................. 49–103 Registers DDPCON (Debug Data Port Control)........................ 164 DEVCFG0 (Device Configuration Word 0 ................. 153 DEVCFG1 (Device Configuration Word 1 ................. 155 DEVCFG2 (Device Configuration Word 2 ................. 157 DEVCFG3 (Device Configuration Word 3 ................. 159 DEVID (Device and Revision ID) .............................. 160 Resets ............................................................................... 107 Revision History ................................................................ 228 Timing Requirements CLKO and I/O ........................................................... 183 Timing Specifications CAN I/O Requirements ............................................. 200 I2Cx Bus Data Requirements (Master Mode)........... 195 I2Cx Bus Data Requirements (Slave Mode)............. 198 Input Capture Requirements..................................... 187 Output Compare Requirements................................ 188 Simple OCx/PWM Mode Requirements ................... 188 SPIx Master Mode (CKE = 0) Requirements............ 189 SPIx Master Mode (CKE = 1) Requirements............ 190 SPIx Slave Mode (CKE = 1) Requirements.............. 192 SPIx Slave Mode Requirements (CKE = 0).............. 191 U UART ................................................................................ 135 USB On-The-Go (OTG) .................................................... 119 V VCAP/VDDCORE pin............................................................ 162 Voltage Reference Specifications..................................... 179 Voltage Regulator (On-Chip) ............................................ 162 W Watchdog Timer (WDT).................................................... 161 WWW, On-Line Support ..................................................... 21 S Serial Peripheral Interface (SPI) ....................................... 131 Software Simulator (MPLAB SIM)..................................... 169 Special Features ............................................................... 153 T Timer1 Module .................................................................. 123 Timer2/3, Timer4/5 Modules ............................................. 125 Timing Diagrams 10-Bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM = 0, SSRC = 000) .................................. 206 10-Bit A/D Conversion (CHPS = 01, SIMSAM = 0, ASAM = 1, SSRC = 111, SAMC = 00001)........ 207 CAN I/O..................................................................... 200 EJTAG ...................................................................... 212 External Clock ........................................................... 180 I/O Characteristics .................................................... 183 I2Cx Bus Data (Master Mode) .................................. 194 I2Cx Bus Data (Slave Mode) .................................... 197 I2Cx Bus Start/Stop Bits (Master Mode) ................... 194 I2Cx Bus Start/Stop Bits (Slave Mode) ..................... 197 Input Capture (CAPx)................................................ 187 OCx/PWM ................................................................. 188 Output Compare (OCx) ............................................. 188 Parallel Master Port Read ......................................... 209 Parallel Master Port Write ......................................... 210 Parallel Slave Port .................................................... 208 SPIx Master Mode (CKE = 0).................................... 189 SPIx Master Mode (CKE = 1).................................... 190 SPIx Slave Mode (CKE = 0)...................................... 191 SPIx Slave Mode (CKE = 1)...................................... 192 Timer1, 2, 3, 4, 5 External Clock............................... 186 UART Reception ....................................................... 136 UART Transmission (8-Bit or 9-Bit Data) .................. 136 DS61156C-page 234 Preliminary 2010 Microchip Technology Inc. PIC32MX5XX/6XX/7XX Product Identification System To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PIC32 MX 5XX F 512 H T - 80 I / PT - XXX Example: PIC32MX575F256H-80I/PT: General purpose PIC32MX, 256 KB program memory, 64-pin, Industrial temperature, TQFP package. Microchip Brand Architecture Product Groups Flash Memory Family Program Memory Size (KB) Pin Count Tape and Reel Flag (if applicable) Speed Temperature Range Package Pattern Flash Memory Family Architecture MX = 32-bit RISC MCU core Product Groups 5XX = General purpose microcontroller family 6XX = General purpose microcontroller family 7XX = General purpose microcontroller family Flash Memory Family F = Flash program memory Program Memory Size 256 = 256K 512 = 512K Pin Count H L = 64-pin = 100-pin Speed 80 = 80 MHz Temperature Range I = -40°C to +85°C (Industrial) Package PT PT PF MR BG = = = = = Pattern Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample 64-Lead (10x10x1 mm) TQFP (Thin Quad Flatpack) 100-Lead (12x12x1 mm) TQFP (Thin Quad Flatpack) 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack) 64-Lead (9x9x0.9 mm) QFN (Plastic Quad Flat) 121-Lead (10x10x1.1 mm) XBGA (Plastic Thin Profile Ball Grid Array) 2010 Microchip Technology Inc. Preliminary DS61156C-page 235 WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 01/05/10 DS61156C-page 236 Preliminary 2010 Microchip Technology Inc.