MGA-638P8 High Linearity Low Noise Amplifier Data Sheet Description Features Avago Technologies’ MGA-638P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). This LNA has low noise and high linearity achieved through the use of Avago Technologies’ proprietary 0.25 m GaAs Enhancement-mode pHEMT process. It is housed in the miniature 2.0 x 2.0 x 0.75 mm3 8-pin Dual-Flat-Non-Lead (DFN) package. The device is designed for optimum use from 2.5 GHz up to 4.0 GHz. The compact footprint and low profile coupled with low noise, high gain and high linearity make this an ideal choice as a low noise amplifier for cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA. For optimum performance at lower frequency from 450 MHz up to 1.5 GHz, MGA-636P8 is recommended. For optimum performance from 1.5 GHz up to 2.5 GHz, MGA-637P8 is recommended. All these 3 products, MGA-636P8, MGA-637P8 and MGA-638P8 share the same package and pinout configuration. High linearity performance. Pin Configuration and Package Marking [2] [3] [8] 38X [7] [6] [5] [4] TOP VIEW Pin 1 – Not Used Pin 2 – RFinput Pin 3 – Vbias2 Pin 4 – Not Used Center paddle – GND [8] [7] [6] [5] [1] [2] GND GaAs E-pHEMT Technology[1]. Low cost small package size. Integrated with active bias and option to access FET gate. Integrated power down control pin. Specifications 2.5 GHz; 4.8 V, 84 mA 17.3 dB Gain 0.87 dB Noise Figure 14 dB Input Return Loss 22.6 dBm Input IP3 22.2 dBm Output Power at 1 dB gain compression Applications 2.0 x 2.0 x 0.75 mm3 8-lead DFN [1] Low Noise Figure. [3] [4] BOTTOM VIEW Cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA. Other low noise applications. Note: 1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Pin 5 – Vbias1 Pin 6 – PwrDwn Pin 7 – RFoutput Pin 8 – Not Used Note: Package marking provides orientation and identification “38” = Product Code “X” = Month Code It is recommended to ground Pin1, 4 and 8 which are Not Used. Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 100 V ESD Human Body Model = 350 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Simplified Schematic [1] Vdd C6 R2 C4 L3 C1 RFin L1 [8] [NU] [2] [RFinput] [7] [RFoutput] [3] [Vbias2] Bias [4] [NU] C3 L2 [1] [NU] C2 RFout [6] [PwrDwn] [5] [Vbias1] R1 Rb C7 C5 C8 PwrDwn Vbias1 Note: 1. Device is turned ON when PwrDwn pin is applied with 0 V or left open. Device is turned OFF when PwrDwn pin is applied with 3.3 V Absolute Maximum Rating [1] TA=25° C Thermal Resistance Symbol Parameter Units Absolute Maximum Vdd Device Voltage, RF output to ground V 5.5 Idd Drain Current mA 125 Vbias1 Bias Voltage V 5.5 VpwrDwn Power Down Voltage V 5.5 Pin,max CW RF Input Power dBm +24 Pdiss Total Power Dissipation W 0.61 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 2 Thermal Resistance [2] (Vdd = 4.8 V, Idd = 84 mA) jc = 67°C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Thermal resistance measured using Infra-Red Measurement Technique. 3. Power dissipation with unit turned on. Board temperature TC is 25° C. Derate at 14.9 mW/°C for Tc > 105.8° C. Electrical Specifications[1,4] TA = 25° C, Vdd = Vbias1 = 4.8 V, RF measurement at 2.5 GHz, measured on demo board in Figure 5 with component listed in Table1. Symbol Parameter and Test Condition Units Min. Typ. Max. Idd Bias Current mA 60 84 110 IPwrDwn Current at VPwrDwn pin when VPwrDwn = 3.3 V (Power Down mode) mA – 0.15 – Gain Gain dB 16 17.3 19 NF[2] Noise Figure dB – 0.87 1.15 IIP3[3] Input Third Order Intercept Point dBm 21 22.6 – OP1dB Output Power at 1dB Gain Compression dBm – 22.2 – IRL Input Return Loss, 50 source dB – 14 – ORL Output Return Loss, 50 load dB – 10 – Notes: 1. Measurements at 2.5 GHz obtained using demo board described in Figure 5. 2. For NF data, board losses of the input have not been de-embedded. 3. IIP3 test condition: FRF1 = 2.500 GHz, FRF2 = 2.501 GHz with input power of -10 dBm per tone. 4. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application note for more details. Product Consistency Distribution Charts [1, 2] LSL 50 USL 70 60 80 90 100 110 Figure 1. Idd, LSL = 60 mA , nominal = 84 mA, USL = 110 mA 21 0.7 0.9 0.8 1 1.1 LSL 22 23 Figure 3. IIP3, LSL = 21 dBm, nominal = 22.6 dBm 24 1.2 Figure 2. NF, nominal = 0.87 dB, USL = 1.15 dB LSL 20 USL 25 16 USL 17 18 19 Figure 4. Gain, LSL = 16 dB, nominal = 17.3 dB, USL = 19 dB Notes: 1. Distribution data sample size is 500 samples taken from 3 different wafer lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits. 2. Circuit trace losses have not been de-embedded from measurements above. 3 Demo Board Layout Demo Board Schematic Avago Technologies BTS LNA Nov 2010 Vdd C6 R2 RFin C4 L3 C1 C2 L1 RFout L3 L2 C4 C6 C3 Rb C1 RFin R1 L1 C5 C8 C7 [8] [NU] [2] [RFinput] [7] [RFoutput] [3] [Vbias2] Bias [4] [NU] C3 L2 [1] [NU] C2 RFout [6] [PwrDwn] [5] [Vbias1] R1 Rb C7 Vbias1 C8 PwrDwn Vdd PwrDwn Vbias1 C5 Truth Table Figure 5. Demo Board Layout Diagram – Recommended PCB material is 10 mils Rogers RO4350. – Suggested component values may vary according to layout and PCB material. VPwrDwn(V) LNA Mode 0 or open Power Down Mode 3.3 Figure 6. Demo Board Schematic Diagram Notes: The schematic is shown with the assumption that similar PCB is used for all MGA-636P8, MGA-637P8 and MGA-638P8. Detail of the components needed for this product is shown in Table 1. Table 1. Component list for 2.5 GHz matching Part Size Value Detail Part Number C1 0402 1.8 pF (Murata) GRM1555C1H1R8CB01D C2 0402 100 pF (Murata) GRM1555C1H101JD01D C5, C6, C7, C8 0603 4.7 F (Murata) GRM188R60J475KE19D C3, C4 0402 Not Used L1 0402 8.2 nH (Toko) LLP1005-FH8N2C L2 0402 5.6 nH (Toko) LLP1005-FH5N6C L3 0402 1.8 nH (Toko) LLP1005-FH1N8C Rb 0402 680 ohm (Rohm) MCR004YZPJ680 R1 0402 51 ohm (Rohm) MCR004YZPJ510 R2 0402 0 ohm (Rohm) MCR01MZPJ000 Notes: C1, C2 are DC blocking capacitors C1, L1, L3 input match for NF L2 output match for IP3 C5, C6, C7, C8 are bypass capacitors R1 is a stabilizing resistor Rb is the biasing resistor 4 Typical Performance 0.9 0.9 0.8 0.8 0.7 0.7 Fmin (dB) Fmin (dB) RF performance at TA = 25° C, Vdd = 4.8 V, Idd = 84 mA, measured using 50 ohm input and output board unless stated otherwise. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -10 dBm per tone. 0.6 0.5 0.5 0.4 0.4 0.3 0.3 60 80 84 Idd (mA) 90 60 80 84 Idd (mA) 90 100 22 20 18 16 14 12 10 8 6 4 2 0 35 35 30 30 25 25 20 15 5 5 84 Idd (mA) 100 90 100 Figure 11. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2.5 GHz 60 80 84 Idd (mA) 90 100 15 10 80 90 20 10 60 84 Idd (mA) Figure 10. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2 GHz IIP3 (dBm) IIP3 (dBm) Figure 9. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2.5 GHz 0 80 Figure 8. Fmin vs Idd at 4.8 V at 2 GHz Gain(dB) Gain(dB) 22 20 18 16 14 12 10 8 6 4 2 0 60 100 Figure 7. Fmin vs Idd at 4.8 V at 2.5 GHz 5 0.6 0 60 80 84 Idd (mA) 90 100 Figure 12. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2 GHz 1.2 1.1 Gain (dB) Fmin (dB) 1 0.9 0.8 0.7 100 mA 84 mA 70 mA 0.6 0.5 1.9 2 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 13. Fmin vs Frequency and Idd at 4.8 V 30 IIP3 (dBm) 25 20 15 10 5 0 2 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 15. IIP3 vs Frequency for Optimum IIP3 and Fmin at 4.8 V 84 mA 6 1.9 2 2.2 2.5 2.7 Frequency (GHz) 3.3 3.5 Figure 14. Gain vs Frequency for Optimum IIP3 and Fmin at 4.8 V 84 mA 35 1.9 22 20 18 16 14 12 10 8 6 4 2 0 Below is the table showing the MGA-638P8 Reflection Coefficient Parameters tuned for Maximum IIP3, Vdd = 4.8 V, Idd = 84 mA. Gamma Load position Frequency (GHz) Magnitude Angle IIP3 (dBm) 1.9 0.45 -69.6 26.8 2 0.54 -68.1 28.2 2.2 0.45 -69.8 31 2.5 0.45 -58 30 2.7 0.36 -57.7 31.4 3.3 0.18 -89.9 32.1 3.5 0.18 -59.9 34 RFinput Reference Plane [1] [NU] [8] [NU] [2] [RFinput] [7] [RFoutput] [3] [Vbias2] Bias [4] [NU] RFoutput Reference Plane [6] [PwrDwn] [5] [Vbias1] Figure 16. RFinput and RFoutput Reference Plane Notes: 1. The Maximum IIP3 values are calculated based on Load pull measurements on approximately 100 different impedances using Focus Load pull test system. 2. Measurements are conducted on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 16. 7 Typical Performance RF performance at TA = 25° C, Vdd = Vbias1 = 4.8 V, Idd = 84 mA, LNA mode, measured on demo board in Figure 5. Signal = CW unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -10 dBm per tone. 2.0 20 1.8 19 18 Gain (dB) NF (dB) 1.6 1.4 1.2 1.0 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 Frequency (GHz) 3.5 3.7 12 1.9 3.9 2.1 2.3 2.5 2.7 2.9 Frequency (GHz) 3.1 3.3 3.5 Figure 18. Gain vs Frequency vs Temperature 24 23 OP1dB(dBm) IIP3 (dBm) 15 25 85° C 25° C -40° C 22 21 20 19 85° C 25° C -40° C 18 17 16 2.1 2.3 2.5 2.7 2.9 Frequency (GHz) Figure 19. IIP3 vs Frequency vs Temperature 8 16 13 Figure 17. NF vs Frequency vs Temperature 32 30 28 26 24 22 20 18 16 14 12 1.9 17 14 85° C 25° C -40° C 0.8 0.6 85° C 25° C -40° C 3.1 3.3 3.5 1.9 2.1 2.3 2.5 2.7 2.9 3.1 Frequency (GHz) Figure 20. OP1dB vs Frequency vs Temperature 3.3 3.5 2.0 0.5 0.0 2.0 2.5 3.0 Frequency (GHz) 3.5 0 4.0 Figure 21. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs Frequency 2 4 6 8 10 12 14 Frequency (GHz) 16 18 20 Figure 22. k-factor vs Frequency vs Temperature 90 120 85° C 25° C -40° C 80 100 70 60 Idd (mA) 80 Idd (mA) 1.5 1.0 1.5 60 50 40 30 40 20 20 10 0 0 0 200 Figure 23. Idd vs Rb 9 100° C 85° C 25° C -40° C 2.5 k-factor dB(S(1,2)) dB(S(2,2)) dB(S(1,1)) dB(S(2,1)) 3.0 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 400 600 Rb (ohm) 800 1000 1200 0.0 0.5 1.0 Figure 24. Idd vs VPwrDwn 1.5 2.0 2.5 VPwrDwn (V) 3.0 3.5 4.0 Typical Scattering Parameters, Vdd = 4.8 V, Idd = 84 mA LNA SPAR (100 MHz – 20 GHz) Freq (GHz) S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) 0.1 0.5 0.7 0.9 1.0 1 1.5 1.7 1.9 2.0 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0.052 -3.786 -4.926 -5.619 -5.94 -6.855 -6.979 -7.065 -7.111 -7.134 -7.136 -7.142 -7.139 -7.089 -6.942 -6.655 -6.451 -5.788 -5.04 -4.687 -4.53 -4.256 -3.95 -3.737 -3.546 -3.424 -3.498 -3.526 -3.178 -2.789 -2.6 0.052 -25.318 -94.894 -113.237 -126.296 -130.828 -149.182 -155.224 -160.403 -162.698 -172.674 179.587 173.225 167.248 161.143 155.016 148.942 142.125 130.272 122.162 113.451 100.173 84.617 69.227 53.796 40.2 31.813 23.38 11.48 -0.579 -13.818 -28.557 -25.318 34.68 28.92 26.654 24.794 24.002 20.776 19.732 18.78 18.329 16.343 14.633 13.156 11.896 10.78 9.656 8.55 7.548 5.404 3.238 1.055 -0.705 -3.251 -6.332 -10.138 -12.417 -16.055 -20.865 -28.925 -41.317 -28.286 -24.254 34.68 152.786 107.281 95.227 85.752 81.827 64.411 57.966 51.816 48.898 34.267 20.497 7.35 -4.959 -17.688 -30.521 -43.17 -55.893 -80.204 -102.483 -123.348 -145.751 -170.507 165.37 151.871 132.898 116.123 103.357 85.718 -143.263 -139.464 -152.264 152.786 -47.737 -37.408 -35.752 -34.427 -33.793 -31.307 -30.494 -29.76 -29.413 -27.955 -26.738 -25.665 -24.685 -23.859 -23.2 -22.633 -22.01 -21.138 -20.538 -19.722 -18.579 -18.185 -17.868 -18.239 -16.923 -16.237 -15.662 -15.097 -15.974 -16.249 -16.13 -47.737 91.863 58.237 55.654 54.436 54.206 51.726 50.16 48.458 47.834 42.754 37.613 32.748 27.439 21.999 16.433 11 5.398 -5.826 -15.36 -23.213 -35.202 -49.114 -64.111 -71.411 -83.447 -95.104 -105.573 -123.669 -133.494 -148.305 -161.015 91.863 -4.011 -9.104 -10.055 -10.498 -10.523 -10.416 -10.335 -10.19 -10.067 -9.537 -8.876 -8.157 -7.477 -7.005 -6.443 -5.941 -5.508 -4.575 -3.749 -3.697 -2.821 -2.62 -2.273 -3.688 -2.495 -2.974 -3.854 -3.569 -3.394 -2.439 -2.919 -4.011 -28.89 -52.056 -57.82 -62.723 -63.981 -74.85 -80.854 -86.86 -89.923 -104.635 -118.233 -130.639 -143.5 -155.432 -167.299 -178.746 169.605 148.209 131.73 119.517 101.483 75.099 51.688 41.604 39.518 25.468 8.667 -9.967 -14.401 -20.145 -18.344 -28.89 RFinput Reference Plane [1] [NU] [8] [NU] [2] [RFinput] [7] [RFoutput] [3] [Vbias2] Bias [4] [NU] Figure 25. RFinput and RFoutput Reference Plane 10 [6] [PwrDwn] [5] [Vbias1] RFoutput Reference Plane Typical Noise Parameters, Vdd = 4.8 V, Idd = 84 mA Freq GHz Fmin dB opt Mag. opt Ang. 1.9 0.656 0.193 2 0.664 0.206 2.2 0.678 2.5 2.7 Part Number Ordering Information Part Number No. of Devices Container Rn/50 MGA-638P8-BLKG 100 Antistatic Bag 152.8 0.044 MGA-638P8-TR1G 3000 7 inch Reel 156.4 0.040 0.234 163.5 0.035 0.704 0.274 174.2 0.034 0.736 0.301 181.4 0.036 3.3 0.958 0.383 202.8 0.045 3.5 1.12 0.41 209.9 0.045 Notes: 1. The Fmin values are based on noise figure measurements at 100 different impedances using Focus source pull test system. From these measurements a true Fmin is calculated. 2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 25. DFN2X2 Package Dimensions PIN 1 DOT BY MARKING 2.00±0.10 0.20 Ref. 2.00±0.10 38X 0.0–0.05 0.75±0.10 TOP VIEW SIDE VIEW 0.60±0.05 Exp. DAP PIN #1 IDENTIFICATION R0.10 0.35±0.05 1.20±0.05 Exp. DAP 0.50 Bsc 0.25±0.05 BOTTOM VIEW 11 1.50 Ref. Notes: 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold ash and metal burr. Recommended PCB Land Pattern and Stencil Design 2.20 2.16 1.75 0.563x 0.502x 1.75 0.00 0.80 0.506x 1.50 0.258x 0.21 0.228x 0.1702x 0.458x 0.05 (all SM gaps) 0.303x 0.408x R0.154x PCB Land Pattern Stencil Design 1.75 0.563x 0.506x 0.50 Metal surface 0.21 1.50 Soldermask Open R0.154x 0.172x Combines PCB & Stencil Design All Dimension are in millimeters Notes: 1. Stencil thickness is 0.1 mm (4 mils). 2. All dimensions are in mm unless otherwise specified. 12 1.72 0.482x 1.50 1.20 0.50 0.506x Device Orientation REEL 4 mm 8 mm 38X CARRIER TAPE USER FEED DIRECTION 38X COVER TAPE Tape Dimensions D P PO P2 E F W + + D1 t1 Tt KO 10° MAX AO DESCRIPTION LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER PERFORATION DIAMETER PITCH POSITION CARRIER TAPE WIDTH CAVITY COVER TAPE DISTANCE 13 10° MAX BO THICKNESS WIDTH TAPE THICKNESS CAVITY TO PERFORATION (WIDTH DIRECTION) CAVITY TO PERFORATION (LENGTH DIRECTION) SYMBOL A0 B0 K0 P D1 D P0 E W t1 C Tt F SIZE (mm) 2.30 ± 0.05 2.30 ± 0.05 1.00 ± 0.05 4.00 ± 0.10 1.00 + 0.25 1.50 ± 0.10 4.00 ± 0.10 1.75 ± 0.10 8.00 ± 0.30 8.00 ± 0.10 0.254 ± 0.02 5.4 ± 0.10 0.062 ± 0.001 3.50 ± 0.05 SIZE (INCHES) 0.091 ± 0.004 0.091 ± 0.004 0.039 ± 0.002 0.157 ± 0.004 0.039 + 0.002 0.060 ± 0.004 0.157 ± 0.004 0.069 ± 0.004 0.315 ± 0.012 0.315 ± 0.004 0.010 ± 0.0008 0.205 ± 0.004 0.0025 ± 0.0004 0.138 ± 0.002 P2 2.00 ± 0.05 0.079 ± 0.002 38X 38X Reel Dimensions – 7 inch 6.25mm EMBOSSED LETTERS LETTERING THICKNESS: 1.6mm SLOT HOLE "a" SEE DETAIL "X" Ø178.0±0.5 SLOT HOLE "b" FRONT BACK 6 PS SLOT HOLE(2x) 180° APART. 6 PS RECYCLE LOGO SLOT HOLE "a": 3.0±0.5mm(1x) SLOT HOLE "b": 2.5±0.5mm(1x) FRONT VIEW 12.4 45° 1.5 MIN. +1.5* -0.0 +0.5 Ø13.0 -0.2 Ø20.2 MIN. ° R10.65 120 65° R5.2 45° EMBOSSED RIBS RAISED: 0.25mm, WIDTH: 1.25mm Ø178.0±0.5 Ø51.2±0.3 BACK VIEW For product information and a complete list of distributors, please go to our web site: DETAIL "X" 18.0* MAX. SEE DETAIL "Y" www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2993EN - September 29, 2011 3.5 DETAIL "Y" (Slot Hole) 1.0 Ø55.0±0.5 BACK Ø178.0±0.5 FRONT