STMICROELECTRONICS TDA7492P13TR

TDA7492P
25-watt + 25-watt dual BTL class-D audio amplifier
Features
■
25 W + 25 W continuous output power at
THD = 10% with VCC = 20 V and RL = 8 Ω
■
Wide-range single-supply operation (8 - 26 V)
■
High efficiency (η = 90%)
■
Four selectable, fixed gain settings of
nominally 21.6 dB, 27.6 dB, 31.1 dB and
33.6 dB
■
Differential inputs minimize common-mode
noise
■
Standby and mute features
■
Short-circuit protection
■
Thermal overload protection
■
Externally synchronizable
■
ECOPACK®, environmentally-friendly package
Table 1.
PowerSSO-36
with exposed pad down
Description
The TDA7492P is a dual BTL class-D audio
amplifier with single power supply, designed for
LCD TVs and monitors.
Thanks to the high efficiency and exposed-paddown (EPD) package no heatsink is required.
Device summary
Order code
Operating temp. range
Package
Packaging
TDA7492P
-40 to 85 °C
PowerSSO-36 EPD
Tube
TDA7492P13TR
-40 to 85 °C
PowerSSO-36 EPD
Tape and reel
September 2011
Doc ID 15068 Rev 5
1/26
www.st.com
1
Contents
TDA7492P
Contents
1
Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
4
2.1
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1
Characterizations for 6 Ω loads with 18 V . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2
Characterizations for 8 Ω loads with 20 V . . . . . . . . . . . . . . . . . . . . . . . . 13
5
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4
Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4.1
Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4.2
Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.5
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.7
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26
Doc ID 15068 Rev 5
TDA7492P
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
How to set up SYNCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PowerSSO-36 EPD dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Doc ID 15068 Rev 5
3/26
List of figures
TDA7492P
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
4/26
Internal block diagram (showing one channel only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connections (top view, PCB view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Output power vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
THD at 1 kHz vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
THD at 100 Hz vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
THD at 1 W vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Crosstalk vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
FFT 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
FFT -60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power vs supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD at 1 kHz vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD at 100 Hz vs output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
THD at 1 W vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Crosstalk vs frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
FFT 0 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
FFT -60 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Test board (SZ-LAB-TDA7492P) layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Applications circuit for class-D amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Standby and mute circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Turn-on/off sequence for minimizing speaker “pop” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Device input circuit and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Master and slave connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Typical LC filter for a 8-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Typical LC filter for a 4-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Behavior of pin DIAG for various protection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PowerSSO-36 EPD outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Doc ID 15068 Rev 5
TDA7492P
1
Device block diagram
Device block diagram
Figure 1 shows the block diagram of one of the two identical channels of the TDA7492P.
Figure 1.
Internal block diagram (showing one channel only)
Doc ID 15068 Rev 5
5/26
Pin description
TDA7492P
2
Pin description
2.1
Pinout
Figure 2.
6/26
Pin connections (top view, PCB view)
SUB_GND
1
36
VSS
OUTPB
2
35
SVCC
OUTPB
3
34
VREF
PGNDB
4
33
INNB
PGNDB
5
32
INPB
PVCCB
6
31
GAIN1
PVCCB
7
30
GAIN0
OUTNB
8
29
SVR
OUTNB
9
28
DIAG
OUTNA
10
27
SGND
OUTNA
11
26
VDDS
PVCCA
12
25
SYNCLK
PVCCA
13
24
ROSC
PGNDA
14
23
INNA
PGNDA
15
22
INPA
OUTPA
16
21
MUTE
OUTPA
17
20
STBY
PGND
18
19
VDDPW
Exposed pad down
(Connect to ground)
Doc ID 15068 Rev 5
TDA7492P
2.2
Pin description
Pin list
Table 2.
Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
OUTPB
O
Positive PWM for right channel
4,5
PGNDB
PWR
Power stage ground for right channel
6,7
PVCCB
PWR
Power supply for right channel
8,9
OUTNB
O
Negative PWM output for right channel
10,11
OUTNA
O
Negative PWM output for left channel
12,13
PVCCA
PWR
Power supply for left channel
14,15
PGNDA
PWR
Power stage ground for left channel
16,17
OUTPA
O
Positive PWM output for left channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for power stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INPA
I
Positive differential input of left channel
23
INNA
I
Negative differential input of left channel
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for signal
blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
INPB
I
Positive differential input of right channel
33
INNB
I
Negative differential input of right channel
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
PWR
Exposed pad for connection to ground plane as heatsink
Doc ID 15068 Rev 5
7/26
Electrical specifications
TDA7492P
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
3.2
Parameter
Value
Unit
VCCMAX
DC supply voltage for pins PVCCA, PVCCB, SVCC
30
V
VI
Voltage limits for input pins STANDBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
-0.3 to 3.6
V
Top
Operating temperature
-40 to 85
°C
Tj
Junction temperature
-40 to 150
°C
Tstg
Storage temperature
-40 to 150
°C
Thermal data
Table 4.
Thermal data
Symbol
Parameter
Rth j-case
Thermal resistance, junction to case
Rth j-amb
Min
-
Thermal resistance, junction to ambient
Typ
2
-
24
(1)
Max
Unit
3
°C/W
-
°C/W
1. FR4 with vias to copper area of 9 cm2
3.3
Electrical specifications
Unless otherwise stated, the results in Table 5 below are given for the conditions:
VCC = 20 V, RL (load) = 8 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 21.6 dB, and
Tamb = 25 °C.
Table 5.
Symbol
8/26
Electrical specifications
Parameter
Condition
Min
Typ
Max
Unit
VCC
Supply voltage for
pins PVCCA, PVCCB, SVCC
-
8
-
26
V
Iq
Total quiescent
-
-
26
35
mA
IqSTBY
Quiescent current in standby
-
-
2.5
5.0
µA
Play mode
-
-
±100 mV
VOS
Output offset voltage
Mute mode
-
-
±60
mV
IOCP
Overcurrent protection threshold RL = 0 Ω
3.8
4.2
-
A
TjSD
Junction temperature at thermal
shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
Doc ID 15068 Rev 5
TDA7492P
Electrical specifications
Table 5.
Electrical specifications (continued)
Symbol
Parameter
Condition
Min
Typ
Max
Unit
VOVP
Overvoltage protection threshold -
28
29
-
V
VUVP
Undervoltage protection
threshold
-
-
-
7
V
High side
-
0.2
-
RdsON
Power transistor on resistance
Low side
-
0.2
-
THD = 10%
-
25
-
Po
Output power
THD = 1%
-
20
-
9.5
-
Output power
VCC = 12 V, THD = 10%
-
Po
VCC = 12 V, THD = 1%
-
7.2
-
PD
Power dissipated by device
Po = 25 W + 25 W,
THD = 10%
-
5.0
-
W
η
Efficiency
Po = 10 W + 10 W
80
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
0.4
%
GAIN0 = L, GAIN1 = L
20.6
21.6
22.6
GAIN0 = L, GAIN1 = H
26.6
27.6
28.6
GAIN0 = H, GAIN1 = L
30.1
31.1
32.1
GAIN0 = H, GAIN1 = H
32.6
33.6
34.6
GV
Ω
W
W
Closed-loop gain
dB
ΔGV
Gain matching
-
-
-
±1
dB
CT
Cross talk
f = 1 kHz
-
50
-
dB
20
-
Total input noise
A Curve, GV = 20 dB
-
eN
f = 22 Hz to 22 kHz
-
25
35
µV
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 V,
CSVR = 10 µF
40
50
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
250
-
400
250
-
400
2.3
-
-
-
-
0.8
60
80
-
fSWR
Output switching frequency
range
VinH
Digital input high (H)
VinL
Digital input low (L)
AMUTE
Mute attenuation
With internal oscillator
With external oscillator
(1)
(2)
kHz
VMUTE = 1 V
V
dB
1. fSW = 106 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ, see Figure 20.
2. fSW = fSYNCLK / 2 with the frequency of the external oscillator.
Doc ID 15068 Rev 5
9/26
Characterization curves
4
TDA7492P
Characterization curves
The following characterizations were made using the SZ-LAB-TDA7492P demo board. The
layout is shown in Figure 19 on page 16. The LC filter for the 6 Ω load used 22 µH and
220 nF components, whilst that for the 8 Ω load used 33 µH and 220 nF.
4.1
Characterizations for 6 Ω loads with 18 V
Figure 3.
Output power vs. supply voltage
28
26
Vcc = 8 to 18 V,
24
RL = 6 Ω,
22
Rosc = 39 kΩ, Cosc = 100 nF,
20
f = 1 kHz,
Gv = 30 dB,
Tamb = 25r C
Specification limit:
Output power (W)
Test conditions:
THD = 10%
18
16
14
THD = 1%
12
10
8
Typical:
6
Vcc =18 V, RL = 6 Ω
4
Po = 25 W @THD = 10%
2
0
Po = 20 W @THD = 1%
8
9
10
11
12
13
14
15
16
17
18
Supply voltage (V)
Figure 4.
THD at 1 kHz vs. output power
10
5
Test conditions:
Vcc = 18 V,
THD (%)
RL = 6 Ω,
2
Rosc = 39 kΩ, Cosc = 100 nF,
1
f = 1 kHz,
0.5
Gv = 30 dB,
Tamb = 25r C
0.2
0.1
0.05
Specification limit:
Typical:
0.02
Po = 25 W @THD = 10%
0.01
0.005
200m
500m
1
2
Output power (W)
10/26
Doc ID 15068 Rev 5
5
10
20
30
TDA7492P
Characterization curves
Figure 5.
THD at 100 Hz vs. output power
10
Test conditions:
Vcc = 18 V,
5
THD (%)
RL = 6 Ω,
2
Rosc = 39 kΩ, Cosc = 100 nF,
1
f = 100 Hz,
0.5
Gv = 30 dB,
Tamb = 25r C
0.2
0.1
0.05
Specification limit:
0.02
Typical:
0.01
Po = 25 W @THD = 10%
0.005
200m
500m
1
2
5
10
2k
5k
20
30
2XWSXWSRZHU:
Figure 6.
THD at 1 W vs. frequency
0.5
Test conditions:
Vcc = 18 V,
THD (%)
RL = 6 Ω,
0.2
Rosc = 39 kΩ, Cosc = 100 nF,
f = 1 kHz,
0.1
Gv = 30 dB,
Po = 1 W
0.05
Tamb = 25r C
0.02
0.01
Specification limit:
Typical:
THD < 0.4%
0.005
20
50
100
200
500
1k
10k
20k
Frequency (Hz)
Figure 7.
Frequency response
+2
Test conditions:
Vcc = 18 V,
RL = 6 Ω,
Ampl
Rosc = 39 kΩ, Cosc = 100 nF,
(dB)
+1
-0
f = 1 kHz,
Gv = 30 dB,
-1
Po = 1 W
Tamb = 25r C
-2
-3
Specification limit:
Max:
-4
+/-3 dB @20 Hz to 20 kHz
-5
10
20
50
100
200
500
1k
2k
5k
10k
30k
Frequency (Hz)
Doc ID 15068 Rev 5
11/26
Characterization curves
Figure 8.
TDA7492P
Crosstalk vs frequency
-60
Test conditions:
-65
Vcc = 18 V,
Crosstalk
RL = 6 Ω,
(dB)
-70
-75
Rosc = 39 kΩ, Cosc = 100 nF,
f = 1 kHz,
-80
Gv = 30 dB,
-85
Po = 1 W
-90
Tamb = 25r C
-95
-100
-105
Specification limit:
-110
Typical:
-115
> 50 dB @f = 1 kHz
-120
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Figure 9.
FFT 0 dB
+10
Test conditions:
+0
FFT
-10
(dB)
-20
Vcc = 18 V,
RL = 6 Ω,
-30
Rosc = 39 kΩ, Cosc = 100 nF,
-40
f = 1 kHz,
-50
Gv = 30 dB,
-60
Po = 1 W
-70
Tamb = 25r C
-80
-90
-100
-110
Specification limit:
-120
Typical:
-130
> 60 dB for the harmonic frequency
-140
-150
20
50
100
200
500
1k
2k
5k
10k
Frequency (Hz)
Figure 10. FFT -60 dB
+0
-10
Test conditions:
Vcc = 18 V,
FFT
-20
RL = 6 Ω,
(dB)
-30
Rosc = 39 kΩ, Cosc = 100 nF,
-40
f = 1 kHz,
-50
Gv = 30 dB,
-60
Po = -60 dB @1 W = 0 dB
-70
Tamb = 25r C
-80
-90
-100
-110
Specification limit:
-120
Typical:
-130
> 90dB for the harmonic frequency
-140
-150
20
50
100
200
500
1k
Frequency (Hz)
12/26
Doc ID 15068 Rev 5
2k
5k
10k
20k
20k
TDA7492P
Characterizations for 8 Ω loads with 20 V
Figure 11. Output power vs supply voltage
28
Test conditions:
26
Vcc = 8 to 20 V,
24
RL = 8 Ω,
Rosc = 39 kΩ, Cosc = 100 nF,
f = 1 kHz,
Gv = 30 dB,
Tamb = 25r C
Output power (W)
4.2
Characterization curves
22
20
THD = 10%
18
16
14
12
THD = 1%
10
Specification limit:
8
Typical:
6
Vs = 20 V, RL = 8 Ω
4
Po = 25 W @THD = 10%
2
8
Po = 20 W @THD = 1%
9
10
11
12
13
14
15
16
17
18
19
20
Supply voltage (V)
Figure 12. THD at 1 kHz vs output power
10
Test conditions:
Vcc = 20 V,
RL = 8 Ω,
Rosc = 39 kΩ, Cosc = 100 nF,
5
THD (%)
2
1
f = 1 kHz,
0.5
Gv = 30 dB,
Tamb = 25r C
0.2
0.1
0.05
Specification limit:
Typical:
0.02
Po = 25 W @THD = 10%
0.01
0.005
100m
200m
500m
1
2
5
10
20
30
Output power (W)
Doc ID 15068 Rev 5
13/26
Characterization curves
TDA7492P
Figure 13. THD at 100 Hz vs output power
10
Test conditions:
Vcc = 20 V,
5
THD (%)
RL = 8 Ω,
2
Rosc = 39 kΩ, Cosc = 100 nF,
1
f = 100 Hz,
0.5
Gv = 30 dB,
Tamb = 25r C
0.2
0.1
0.05
Specification limit:
0.02
Typical:
0.01
Po = 25 W @THD = 10%
0.005
100m
200m
500m
1
2
5
10
20
30
Output power (W)
Figure 14. THD at 1 W vs frequency
0.5
Test conditions:
Vcc = 20 V,
RL = 8 Ω,
Rosc = 39 kΩ, Cosc = 100 nF,
0.2
THD (%)
f = 1 kHz,
0.1
Gv = 30 dB,
Po = 1 W
0.05
Tamb = 25r C
0.02
Specification Limit:
0.01
Typical:
THD < 0.4%
0.005
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Figure 15. Frequency response
+2
Test conditions:
Vcc = 20 V,
RL = 8 Ω,
Rosc = 39 kΩ, Cosc = 100 nF,
f = 1 kHz,
+1
Ampl
(dB)
-0
Gv = 30 dB,
-1
Po = 1 W
Tamb = 25r C
-2
-3
Specification limit:
Max:
-4
+/-3 dB @20 Hz to 20 kHz
-5
10
20
50
100
200
500
1k
Frequency (Hz)
14/26
Doc ID 15068 Rev 5
2k
5k
10k
20k 30k
TDA7492P
Characterization curves
Figure 16. Crosstalk vs frequency
-60
Test conditions:
TTTTTTTTTTT TTTT T TTTTT
-65
Vcc = 20 V,
Crosstalk
RL = 8 Ω,
(dB)
-70
-75
Rosc = 39 kΩ, Cosc = 100 nF,
f = 1 kHz,
-80
Gv = 30 dB,
-85
Po = 1 W
-90
Tamb = 25r C
-95
-100
-105
Specification limit:
-110
Typical:
-115
> 50 dB @f = 1 kHz
-120
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
5k
10k
20k
Frequency (Hz)
Figure 17. FFT 0 dB
+10
Test conditions:
+0
Vcc = 20 V,
FFT
RL = 8 Ω
(dB)
-10
-20
Rosc = 39 kΩ, Cosc = 100 nF,
-30
f = 1 kHz,
-40
-50
Gv = 30 dB,
-60
Po = 1 W
-70
Tamb = 25r C
-80
-90
-100
-110
Specification limit:
-120
Typical:
-130
> 60 dB for the harmonic frequency
-140
-150
20
50
100
200
500
1k
Frequency (Hz)
Figure 18. FFT -60 dB
+0
Test conditions:
Vcc = 20 V,
RL = 8 Ω,
Rosc = 39 kΩ, Cosc = 100 nF,
-10
FFT
(dB)
-20
-30
-40
f = 1 kHz,
-50
Gv = 30 dB,
-60
Po = -60 dB (1 W = 0 dB)
-70
Tamb = 25r C
-80
-90
-100
Specification limit:
Typical:
> 90 dB for the harmonic frequency
-110
-120
-130
-140
-150
20
50
100
200
500
1k
2k
Frequency (Hz)
Doc ID 15068 Rev 5
15/26
Characterization curves
TDA7492P
2. Test Board
Figure 19. Test board (SZ-LAB-TDA7492P) layout
16/26
Doc ID 15068 Rev 5
Applications circuit
TDA7492P
5
Figure 20. Applications circuit for class-D amplifier
&
Q)
& Q)
6*1'
&
Q)
& Q)
6*1'
Jumper settings for gain:
Q)
0V:0V
0 V : 3.3 V
Doc ID 15068 Rev 5
31.1 dB
3.3 V : 3.3 V
33.6 dB
5
)RU
6LQJOH(QGHG
',$*
&
5
Q)
-
Play
-
&
&
9''6
Q)
Q)
',$*
39&&$ &
/
526&
*$,1
9''6
*$,1
-
6*1'
6LQJOH(QGHG
-
Q)
&
966
/
2873%
X+
39&&%
39&&%
,13%
,11%
&
& Q)
9
6*1'
6 087(
9
6*1'
&
6*1'
6*1'
5 N
5 9&&
,1
/&= N
5
&
Q)
*1'
N
6*1'
6*1'
6*1'
6*1'
6*1'
932:(56833/<
6*1'
&
&
3*1'%
2871%
2871%
9&&
*1'
-
Q)
2875
2875
Q)
&
&
S)
Q)
/
X+
95()
695
087(
&
X)
9 67%<
&
X)
9
&
X)
9
6*1'
7'$36OXJGRZQ
&/$66'$03/,),(5
&
X)
9
6*1'
/&),/7(5&20321(17
LC filter components
/RDG
Load
&&
//// C20,C26
L1,L2,L3,L4
RKP
4Ω
15 µHX+
470 Q)
nF
RKP
6Ω
22 µHX+
220 Q)
nF
RKP
8Ω
33 µHX+
220 Q)
nF
16 Ω
RKP
68 µHX+
220 Q)
nF
17/26
Applications circuit
& X)
6*1'
,&
Q)
Q)
5
5 N
6 67%<
287
Q)
&
5
6*1'
& Q)
X)
9
2873%
3*1'%
287/
,&
69&&
&
-
287/
Q)
X+
TDA7492P
7'$3
&
S)
2871$ 6<1&/.
.
Standby
3.3 V : 3.3 V
&
Q)
6*1'
3*1'
,1/
,QSXW
Mute
5
9''3:
6<1&/.
-
)RU
3.3 V : 0 V
5
39&&$ Switch settings for standby, mute
and play:
0 V : 3.3 V
2871$ Q)
,15
Standby
3*1'$
3*1'$
6*1'
,15
0V:0V
,11$
&
-
,1/
Mode
5
STBY : MUTE
X+
5 N ,QSXW
3.3 V : 0 V
/
2873$ 6*1'
21.6 dB
27.6 dB
2873$ ,13$
9''6 &
GAIN0 : GAIN1 Nominal gain
68%B*1'
Applications information
TDA7492P
6
Applications information
6.1
Mode selection
The three operating modes of the TDA7492P are set by the two inputs STBY (pin 20) and
MUTE (pin 21).
●
Standby mode: all circuits are turned off, very low current consumption.
●
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
●
Play mode: the amplifiers are active.
The protection functions of the TDA7492P are enabled by pulling down the voltages of the
STBY and MUTE inputs shown in Figure 21. The input current of the corresponding pins
must be limited to 200 µA.
Table 6.
Mode settings
Mode selection
STBY
MUTE
L (1)
Standby
Mute
H
Play
H
X (don’t care)
(1)
L
H
1. Drive levels defined in Table 5: Electrical specifications on page 8
Figure 21. Standby and mute circuits
Standby
STBY
3.3 V
0V
R2
30 kΩ
C7
2.2 µF
R4
30 kΩ
C15
2.2 µF
Mute
MUTE
3.3 V
0V
TDA7492P
Figure 22. Turn-on/off sequence for minimizing speaker “pop”
VCC
0
t
STBY
0
t
MUTE
0
Input
t
0
t
Output
0
t
Standby Mute
Play
Mute
Standby
Iq
0
18/26
t
Doc ID 15068 Rev 5
TDA7492P
6.2
Applications information
Gain setting
The gain of the TDA7492P is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 7.
Gain settings
GAIN0
6.3
GAIN1
Nominal gain, Gv (dB)
0
0
21.6
0
1
27.6
1
0
31.1
1
1
33.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 23. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz:
fc = 1 / (2 * π * Ri * Ci)
Figure 23. Device input circuit and frequency response
Rf
Input
signal
Ci
Input
pin
Ri
Doc ID 15068 Rev 5
19/26
Applications information
6.4
TDA7492P
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7492P as master clock, while the other devices are in slave mode (that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
6.4.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW, is controlled by the
resistor, ROSC, connected to pin ROSC:
fSW = 106 / ((16 * ROSC + 182) * 4) kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin, whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 8.
6.4.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 8.
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
s
Table 8.
How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 24. Master and slave connection
Master
Slave
TDA7492P
ROSC
TDA7492P
SYNCLK
Output
Cosc
100 nF
20/26
Rosc
39 kΩ
Doc ID 15068 Rev 5
SYNCLK
Input
ROSC
TDA7492P
6.5
Applications information
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The
cutoff frequency should be larger than 22 kHz and much lower than the output switching
frequency. It is necessary to choose the L-C component values depending on the loud
speaker impedance. Some typical values, which give a cutoff frequency of 27 kHz, are
shown in Figure 25 and Figure 26 below.
Figure 25. Typical LC filter for a 8-Ω speaker
Figure 26. Typical LC filter for a 4-Ω speaker
Doc ID 15068 Rev 5
21/26
Applications information
6.6
TDA7492P
Protection functions
The TDA7492P is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 5: Electrical specifications on
page 8 the overvoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage drops to below the threshold value the
device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 5: Electrical
specifications on page 8 the undervoltage protection is activated which forces the outputs to
the high-impedance state. When the supply voltage recovers the device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 5: Electrical specifications on
page 8 the overcurrent protection is activated which forces the outputs to the
high-impedance state. Periodically, the device attempts to restart. If the overcurrent
condition is still present then the OCP remains active. The restart time, TOC, is determined
by the R-C components connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 5: Electrical specifications on page 8 the
device shuts down and the output is forced to the high-impedance state. When the device
cools sufficiently the device restarts.
6.7
Diagnostic output
The output pin DIAG is an open-drain transistor. When the protection is activated it is in the
high-impedance state. The pin can be connected to a power supply (<26 V) by a pull-up
resistor whose value is limited by the maximum sinking current (200 µA) of the pin.
Figure 27. Behavior of pin DIAG for various protection conditions
VDD
TDA7492P
R1
DIAG
Protection logic
VDD
Restart
Restart
Overcurrent
protection
22/26
OV, UV, OT
protection
Doc ID 15068 Rev 5
TDA7492P
7
Package mechanical data
Package mechanical data
The TDA7492P comes in a 36-pin PowerSSO package with exposed pad down.
Figure 28 below shows the package outline and Table 9 gives the dimensions.
Table 9.
PowerSSO-36 EPD dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 15068 Rev 5
23/26
h x 45°
Package mechanical data
24/26
Figure 28. PowerSSO-36 EPD outline drawing
Doc ID 15068 Rev 5
TDA7492P
TDA7492P
8
Revision history
Revision history
Table 10.
Document revision history
Date
Revision
Changes
30-Sep-2008
1
Initial release.
11-May-2009
2
Updated supply operating range to 8 V - 26 V on page 1
Changed C1 to C8 at beginning of Section 3.3 on page 8
Updated Table 5: Electrical specifications on page 8 for VCC min, VOS
min/max and added new parameter VUV
Updated Figure 20: Applications circuit for class-D amplifier on
page 17
Inserted brackets in equation in Table 5 footnote and in
Section 6.4.1 on page 20
Updated values in UVP and OCP in Section 6.6 on page 22
Updated voltage to “<26 V” in Section 6.7 on page 22
Updated max dimensions for A and A2 in Table 9: PowerSSO-36 EPD
dimensions on page 23.
02-Sep-2009
3
Updated value for GV at head of Section 3.3 on page 8
Updated package Y (Min) dimension in Table 9 on page 23.
19-Jan-2011
4
Updated operating temperature range
Updated datasheet presentation.
12-Sep-2011
5
Updated OUTNA in Table 2: Pin description list
Doc ID 15068 Rev 5
25/26
TDA7492P
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26
Doc ID 15068 Rev 5