TDA7498L - STMicroelectronics

TDA7498L
80-watt + 80-watt dual BTL class-D audio amplifier
Datasheet - production data
•
•
•
•
•
Differential inputs minimize common-mode
noise
Standby and mute features
Short-circuit protection
Thermal overload protection
Externally synchronizable
Description
PowerSSO-36
exposed pad up
The TDA7498L is a dual BTL class-D audio
amplifier with single power supply designed for
home systems and active speaker applications.
Features
•
•
•
•
•
80 W + 80 W output power at THD = 10%
with RL = 6 Ω and VCC = 32 V
70 W + 70 W output power at THD = 10%
with RL = 8 Ω and VCC = 34 V
Wide-range single-supply operation
(14 - 36 V)
High efficiency (η = 90%)
Four selectable, fixed gain settings of
nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
September 2015
It comes in a 36-pin PowerSSO package with
exposed pad up (EPU) to facilitate mounting a
separate heatsink.
Table 1: Device summary
Order code
Package
Packaging
TDA7498L
-40 to 85 °C
PowerSSO36
(EPU)
Tube
TDA7498LTR
-40 to 85 °C
PowerSSO36
(EPU)
Tape and reel
DocID16504 Rev 4
This is information on a product in full production.
Operating
temp. range
1/27
www.st.com
Contents
TDA7498L
Contents
1
Device block diagram...................................................................... 5
2
Pin description ................................................................................ 6
3
4
5
6
2.1
Pinout ................................................................................................ 6
2.2
Pin list ............................................................................................... 7
Electrical specifications .................................................................. 8
3.1
Absolute maximum ratings ................................................................ 8
3.2
Thermal data ..................................................................................... 8
3.3
Recommended operating conditions ................................................. 8
3.4
Electrical specifications ..................................................................... 9
Characterization curves ................................................................ 11
4.1
PCB layout ...................................................................................... 11
4.2
Characterization curves .................................................................. 12
2/27
For RL = 6 Ω...................................................................................... 12
4.2.2
For RL = 8 Ω...................................................................................... 14
Application information ................................................................ 16
5.1
Application circuit ............................................................................ 16
5.2
Mode selection ................................................................................ 17
5.3
Gain setting ..................................................................................... 18
5.4
Input resistance and capacitance .................................................... 19
5.5
Internal and external clocks ............................................................ 20
5.5.1
Master mode (internal clock) ............................................................ 20
5.5.2
Slave mode (external clock) ............................................................. 20
5.6
Output low-pass filter ...................................................................... 21
5.7
Protection functions......................................................................... 22
5.8
Diagnostic output ............................................................................ 22
Package information ..................................................................... 23
6.1
7
4.2.1
PowerSSO-36 EPU package information ........................................ 23
Revision history ............................................................................ 26
DocID16504 Rev 4
TDA7498L
List of tables
List of tables
Table 1: Device summary ........................................................................................................................... 1
Table 2: Pin description list ......................................................................................................................... 7
Table 3: Absolute maximum ratings ........................................................................................................... 8
Table 4: Thermal data ................................................................................................................................. 8
Table 5: Recommended operating conditions ............................................................................................ 8
Table 6: Electrical specifications ................................................................................................................. 9
Table 7: Mode settings.............................................................................................................................. 17
Table 8: Gain settings ............................................................................................................................... 18
Table 9: How to set up SYNCLK .............................................................................................................. 20
Table 10: PowerSSO-36 EPU package mechanical data ........................................................................ 25
Table 11: Document revision history ........................................................................................................ 26
DocID16504 Rev 4
3/27
List of figures
TDA7498L
List of figures
Figure 1: Internal block diagram (showing one channel only) .................................................................... 5
Figure 2: Pin connections (top view, PCB view) ......................................................................................... 6
Figure 3: Test board.................................................................................................................................. 11
Figure 4: Output power vs. supply voltage ............................................................................................... 12
Figure 5: THD vs. output power (1 kHz) ................................................................................................... 12
Figure 6: THD vs. output power (100 Hz) ................................................................................................. 12
Figure 7: THD vs. frequency (1 W) ........................................................................................................... 12
Figure 8: THD vs. frequency (100 mW) .................................................................................................... 13
Figure 9: Frequency response .................................................................................................................. 13
Figure 10: FFT performance (0 dBFS) ..................................................................................................... 13
Figure 11: FFT performance (-60 dBFS) .................................................................................................. 13
Figure 12: Output power vs. supply voltage ............................................................................................. 14
Figure 13: THD vs. output power (1 kHz) ................................................................................................. 14
Figure 14: THD vs. output power (100 Hz) ............................................................................................... 14
Figure 15: THD vs. frequency (1 W) ......................................................................................................... 14
Figure 16: THD vs. frequency (100 mW) .................................................................................................. 15
Figure 17: Frequency response ................................................................................................................ 15
Figure 18: FFT performance (0 dB) .......................................................................................................... 15
Figure 19: FFT performance (-60 dB) ....................................................................................................... 15
Figure 20: Application circuit ..................................................................................................................... 16
Figure 21: Standby and mute circuits ....................................................................................................... 17
Figure 22: Turn on/off sequence for minimizing speaker “pop” ................................................................ 18
Figure 23: Input circuit and frequency response ...................................................................................... 19
Figure 24: Master and slave connection ................................................................................................... 20
Figure 25: Typical LC filter for an 8 Ω speaker ......................................................................................... 21
Figure 26: Typical LC filter for a 6 Ω speaker ........................................................................................... 21
Figure 27: Behavior of pin DIAG for various protection conditions ........................................................... 22
Figure 28: PowerSSO-36 EPU package outline ....................................................................................... 24
4/27
DocID16504 Rev 4
TDA7498L
1
Device block diagram
Device block diagram
Figure 1: "Internal block diagram (showing one channel only)" shows the block diagram of
one of the two identical channels of the TDA7498L.
Figure 1: Internal block diagram (showing one channel only)
DocID16504 Rev 4
5/27
Pin description
TDA7498L
2
Pin description
2.1
Pinout
Figure 2: Pin connections (top view, PCB view)
SUB_GND
1
SVCC
OUTPB
2
VREF
OUTPB
3
33 INNB
PGNDB
4
32
PGNDB
5
31 GAIN1
PVCCB
6
30 GAIN0
PVCCB
7
OUTNB
8
28 DIAG
OUTNB
9
27 SGND
OUTNA
10
26 VDDS
OUTNA
11
25 SYNCLK
PVCCA
12
24 ROSC
PVCCA
13
23 INNA
PGNDA
14
PGNDA
15
OUTPA
16
OUTPA
17
PGND
18
36
VSS
35
34
29
INPB
SVR
22 INPA
21 MUTE
EP, exposed pad
Connect to ground
20 STBY
19 VDDPW
6/27
DocID16504 Rev 4
TDA7498L
2.2
Pin description
Pin list
Table 2: Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
OUTPB
O
Positive PWM for right channel
4,5
PGNDB
PWR
Power stage ground for right channel
6,7
PVCCB
PWR
Power supply for right channel
8,9
OUTNB
O
Negative PWM output for right channel
10,11
OUTNA
O
Negative PWM output for left channel
12,13
PVCCA
PWR
Power supply for left channel
14,15
PGNDA
PWR
Power stage ground for left channel
16,17
OUTPA
O
Positive PWM output for left channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for
power stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INPA
I
Positive differential input of left channel
23
INNA
I
Negative differential input of left channel
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for
signal blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
INPB
I
Positive differential input of right channel
33
INNB
I
Negative differential input of right channel
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply decoupling
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
DocID16504 Rev 4
7/27
Electrical specifications
TDA7498L
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3: Absolute maximum ratings
Symbol
Parameter
VCC_MAX
DC supply voltage for pins PVCCA, PVCCB, SVCC
VL_MAX
Voltage limits for input pins STBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
Tj_MAX
Operating junction temperature
Tstg
Storage temperature
Value
Unit
45
V
-0.3 to 3.6
V
0 to 150
°C
-40 to 150
°C
Warning: Stresses beyond those listed under “Absolute maximum ratings”
make cause permanent damage to the device. These are stress ratings only,
and functional operation of the device at these or any other conditions
beyond those indicated under “Recommended operating condition” are not
implied. Exposure to absolute maximum rated conditions for extended
periods may affect device reliability. In the real application, the power
supply with the nominal value rated in the recommended operating
conditions may rise beyond the maximum operating condition for a short
time when no or very low current is sunk (amplifier in mute state). In this
case the reliability of the device is guaranteed, provided that the absolute
maximum rating is not exceeded.
3.2
Thermal data
Table 4: Thermal data
Symbol
Rth j-case
3.3
Parameter
Thermal resistance, junction to case
Min
Typ
Max
-
2
3
Unit
°C/W
Recommended operating conditions
Table 5: Recommended operating conditions
Symbol
8/27
Parameter
Min
Typ
Max
Unit
VCC
Supply voltage for pins PVCCA, PVCCB
14
-
36
V
Tamb
Ambient operating temperature
-20
-
85
°C
DocID16504 Rev 4
TDA7498L
3.4
Electrical specifications
Electrical specifications
Unless otherwise stated, the values in the table below are specified for the conditions:
VCC = 32 V, RL = 6 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB
Tamb = 25 °C.
Table 6: Electrical specifications
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Iq
Total quiescent current
No LC filter, no load
-
40
60
mA
IqSTBY
Quiescent current in standby
-
-
1
10
µA
VOS
Output offset voltage
Play mode
-100
-
100
Mute mode
-60
-
60
IOCP
Overcurrent protection
threshold
RL = 0 Ω
5.0
6.0
-
A
TjS
Junction temperature at
thermal shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
VOVP
Overvoltage protection
threshold
-
42
43
-
V
VUVP
Undervoltage protection
threshold
-
-
-
8
V
RdsON
Power transistor on-resistance
High side
-
0.2
-
Low side
-
0.2
-
Po
Output power
THD = 10%
-
80
-
THD = 1%
-
65
-
Po
Output power
RL = 8 Ω, THD = 10%,
VCC = 32 V
-
65
-
W
PD
Dissipated power
Po = 80 W + 80 W,
THD = 10%
-
16
-
W
η
Efficiency
Po = 80 W + 80 W
-
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
GV
Closed-loop gain
mV
Ω
W
dB
ΔGV
Gain matching
-
-1
-
1
dB
CT
Crosstalk
f = 1 kHz, Po = 1 W
50
70
-
dB
eN
Total input noise
A Curve, GV = 20 dB
-
15
-
f = 22 Hz to 22 kHz
-
25
50
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp,
CSVR = 10 µF
-
70
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
250
-
400
250
-
400
fSWR
Output switching frequency
range
With internal oscillator
(1)
With external oscillator
DocID16504 Rev 4
(2)
µV
kHz
9/27
Electrical specifications
Symbol
TDA7498L
Parameter
VinH
Digital input high (H)
VinL
Digital input low (L)
Condition
-
Pin STBY voltage high (H)
VSTBY
Pin STBY voltage low (L)
Pin MUTE voltage high (H)
VMUTE
Pin MUTE voltage low (L)
AMUTE
Mute attenuation
-
VMUTE < 0.8 V
Min
Typ
Max
2.3
-
-
-
-
0.8
2.7
-
-
-
-
0.5
2.5
-
-
-
-
0.8
-
70
-
Notes:
(1)
6
fSW = 10 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 20: "Application
circuit").
(2)
10/27
fSW = fSYNCLK / 2 with the external oscillator.
DocID16504 Rev 4
Unit
V
V
V
dB
TDA7498L
4
Characterization curves
Characterization curves
Figure 20: "Application circuit" shows the test circuit with which the characterization curves,
shown in the next sections, were measured. Figure 3: "Test board" below shows the PCB
layout.
4.1
PCB layout
Figure 3: Test board
Top view
Top copper
Bottom view
Bottom copper
DocID16504 Rev 4
11/27
Characterization curves
4.2
TDA7498L
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 32 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C
4.2.1
For RL = 6 Ω
Figure 4: Output power vs. supply voltage
Figure 5: THD vs. output power (1 kHz)
10
5
2
1
0.5
0.2
0.1
%
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
90
W
Figure 6: THD vs. output power (100 Hz)
Figure 7: THD vs. frequency (1 W)
10
1
5
0.5
2
1
0.2
0.5
0.2
%
0.1
0.1
%
0.05
0.05
0.02
0.02
0.01
0.005
0.01
0.002
0.001
100m
0.005
200m
500m
1
2
5
10
20
50
90
W
12/27
20
50
100
200
500
1k
Hz
DocID16504 Rev 4
2k
5k
10k
20k
TDA7498L
Characterization curves
Figure 9: Frequency response
Figure 8: THD vs. frequency (100 mW)
1
+3
+2.5
0.5
+2
+1.5
+1
0.2
%
d
B
r
0.1
A
0.05
+0.5
+0
-0.5
-1
-1.5
-2
0.02
-2.5
0.01
20
50
100
200
500
1k
2k
5k
10k
-3
20
20k
50
100
200
500
Hz
Figure 10: FFT performance (0 dBFS)
A
+0
-10
-10
-20
-20
-30
-30
-40
-40
5k
10k
20k
-50
-60
d
B
r
-70
-80
A
-90
-60
-70
-80
-90
-100
-100
-110
-110
-120
-120
-130
-1 30
-140
-140
-150
20
2k
Figure 11: FFT performance (-60 dBFS)
+0
-50
d
B
r
1k
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
-150
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID16504 Rev 4
13/27
Characterization curves
4.2.2
TDA7498L
For RL = 8 Ω
Figure 12: Output power vs. supply voltage
Figure 13: THD vs. output power (1 kHz)
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
90
W
Figure 14: THD vs. output power (100 Hz)
Figure 15: THD vs. frequency (1 W)
10
1
5
0.5
2
1
0.2
0.5
0.2
%
0.1
0.1
%
0.05
0.05
0.02
0.02
0.01
0.005
0.01
0.002
0.001
100m
0.005
200m
500m
1
2
5
10
20
50
90
W
14/27
20
50
100
200
500
1k
Hz
DocID16504 Rev 4
2k
5k
10k
20k
TDA7498L
Characterization curves
Figure 17: Frequency response
Figure 16: THD vs. frequency (100 mW)
+3
1
+2.5
0.5
+2
+1.5
+1
0.2
%
d
B
r
0.1
A
0.05
+0.5
+0
-0.5
-1
-1.5
-2
0.02
-2.5
0.01
20
50
100
200
500
1k
2k
5k
10k
-3
20
20k
50
100
200
10k
20k
Figure 19: FFT performance (-60 dB)
+0
-10
-20
-20
-30
-30
-40
-40
-50
-50
-70
d
B
r
-80
A
-60
-60
-70
-80
-90
-90
-100
-100
-110
-110
-120
-120
-130
-130
-140
-140
-150
20
5k
+0
-10
A
2k
Hz
Figure 18: FFT performance (0 dB)
d
B
r
1k
500
Hz
50
100
200
500
1k
2k
5k
10k
20k
Hz
DocID16504 Rev 4
-150
20
50
100
200
500
1k
2k
5k
10k
20k
Hz
15/27
Application information
5
Application information
5.1
Application circuit
TDA7498L
Figure 20: Application circuit
16/27
DocID16504 Rev 4
TDA7498L
5.2
Application information
Mode selection
The three operating modes of the TDA7498L are set by the two inputs, STBY (pin 20) and
MUTE (pin 21).
•
•
Standby mode: all circuits are turned off, very low current consumption.
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
Play mode: the amplifiers are active.
•
The protection functions of the TDA7498L are enabled by pulling down the voltages of the
STBY and MUTE inputs shown in Figure 21: "Standby and mute circuits". The input current
of the corresponding pins must be limited to 200 µA.
Table 7: Mode settings
Mode
STBY
MUTE
L
(1)
X (don’t care)
Mute
H
(1)
L
Play
H
Standby
H
Notes:
(1)
Drive levels defined in Table 6: "Electrical specifications "
Figure 21: Standby and mute circuits
DocID16504 Rev 4
17/27
Application information
TDA7498L
Figure 22: Turn on/off sequence for minimizing speaker “pop”
5.3
Gain setting
The gain of the TDA7498L is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 8: Gain settings
18/27
GAIN0
GAIN1
Nominal gain, Gv (dB)
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
DocID16504 Rev 4
TDA7498L
5.4
Application information
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 23: "Input circuit and frequency response". For Ci = 470 nF the high-pass filter cutoff
frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
Figure 23: Input circuit and frequency response
DocID16504 Rev 4
19/27
Application information
5.5
TDA7498L
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7498L as master clock, while the other devices are in slave mode, that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
5.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW , is controlled by the
resistor, ROSC, connected to pin ROSC:
6
fSW = 10 / [(ROSC * 16 + 182) * 4] kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 9: "How to set up SYNCLK".
5.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 9: "How to
set up SYNCLK".
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 9: How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 24: Master and slave connection
20/27
DocID16504 Rev 4
TDA7498L
5.6
Application information
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker.
The cutoff frequency should be larger than 22 kHz and much lower than the output
switching frequency. It is necessary to choose the L and C component values depending
on the loudspeaker impedance. Some typical values, which give a cutoff frequency of 27
kHz, are shown in Figure 25: "Typical LC filter for an 8 Ω speaker" and Figure 26: "Typical
LC filter for a 6 Ω speaker" below.
Figure 25: Typical LC filter for an 8 Ω speaker
Figure 26: Typical LC filter for a 6 Ω speaker
DocID16504 Rev 4
21/27
Application information
5.7
TDA7498L
Protection functions
The TDA7498L is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 6: "Electrical specifications
", the overvoltage protection is activated which forces the outputs to the high-impedance
state. When the supply voltage falls back to within the operating range, the device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 6: "Electrical
specifications ", the undervoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage falls back to within the operating range, the
device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 6: "Electrical specifications ",
the overcurrent protection is activated which forces the outputs to the high-impedance
state. Periodically, the device attempts to restart. If the overcurrent condition is still present
then the OCP remains active. The restart time, TOC, is determined by the RC components
connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 6: "Electrical specifications ", the device
shuts down and the output is forced to the high-impedance state. When the device cools
sufficiently, the device restarts.
5.8
Diagnostic output
The output pin DIAG is an open drain transistor. When any protection is activated it
switches to the high-impedance state. The pin can be connected to a power supply (< 36
V) by a pull-up resistor whose value is limited by the maximum sinking current (200 µA) of
the pin.
Figure 27: Behavior of pin DIAG for various protection conditions
VDD
TDA7498L
R1
DIAG
Protection logic
VDD
Overcurrent
protection
22/27
Restart
Restart
OV, UV, OT
protection
DocID16504 Rev 4
TDA7498L
6
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
®
ECOPACK is an ST trademark.
6.1
PowerSSO-36 EPU package information
The device comes in a 36-pin PowerSSO package with exposed pad up (EPU).
Figure 28: "PowerSSO-36 EPU package outline" shows the package outline and Table 10:
"PowerSSO-36 EPU package mechanical data" gives the dimensions.
DocID16504 Rev 4
23/27
Package information
TDA7498L
Figure 28: PowerSSO-36 EPU package outline
7618147_F
24/27
DocID16504 Rev 4
TDA7498L
Package information
Table 10: PowerSSO-36 EPU package mechanical data
Dimensions in mm
Dimensions in inches
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
0
-
8 degrees
L
0.55
-
0.85
0.022
-
0.033
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
DocID16504 Rev 4
25/27
Revision history
7
TDA7498L
Revision history
Table 11: Document revision history
26/27
Date
Revision
Changes
04-Dec-2009
1
Initial release.
02-Jul-2010
2
Removed datasheet preliminary status, updated Section "Features"
list and Table 1: "Device summary"
Updated minimum supply voltage and temperature range in Table 5:
"Recommended operating conditions"
Updated typical power output for 8 Ω to 32 V in Table 6: "Electrical
specifications "
12-Sep-2011
3
Updated OUTNA in Table 2: "Pin description list"; minor textual
updates
09-Sep-2015
4
Updated VCC_MAX in Table 3: "Absolute maximum ratings" and
dimension L in Table 10: "PowerSSO-36 EPU package mechanical
data"
DocID16504 Rev 4
TDA7498L
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID16504 Rev 4
27/27