STMICROELECTRONICS TDA7498LTR

TDA7498L
80 watt + 80 watt dual BTL class-D audio amplifier
Features
■
80 W + 80 W output power at
THD = 10% with RL = 6 Ω and VCC = 32 V
■
70 W + 70 W output power at
THD = 10% with RL = 8 Ω and VCC = 34 V
■
Wide-range single-supply operation (14 - 36 V)
■
High efficiency (η = 90%)
■
Four selectable, fixed gain settings of
nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
■
Differential inputs minimize common-mode
noise
■
Standby and mute features
■
Short-circuit protection
■
Thermal overload protection
■
Externally synchronizable
PowerSSO-36
with exposed pad up
Description
The TDA7498L is a dual BTL class-D audio
amplifier with single power supply designed for
home systems and active speaker applications.
It comes in a 36-pin PowerSSO package with
exposed pad up (EPU) to facilitate mounting a
separate heatsink.
Table 1.
Device summary
Order code
Temperature range
Package
Packaging
TDA7498L
-40 to 85 °C
PowerSSO-36 (EPU)
Tube
TDA7498LTR
-40 to 85 °C
PowerSSO-36 (EPU)
Tape and reel
September 2011
Doc ID 16504 Rev 3
1/27
www.st.com
27
Contents
TDA7498L
Contents
1
2
3
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1
For RL = 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.2.2
For RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5
Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.1
Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2
Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/27
Doc ID 16504 Rev 3
TDA7498L
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Internal block diagram (showing one channel only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connections (top view, PCB view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Test circuit for characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power (THD = 10%) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
FFT performance (0 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
FFT performance (-60 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output power (THD = 10%) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FFT performance (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FFT performance (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Applications circuit for 6- or 8-Ω speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Standby and mute circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Turn on/off sequence for minimizing speaker “pop” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Input circuit and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Master and slave connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Typical LC filter for a 8-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Typical LC filter for a 6-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Behavior of pin DIAG for various protection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PowerSSO36 EPU outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 16504 Rev 3
3/27
List of tables
TDA7498L
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
4/27
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How to set up SYNCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PowerSSO-36 EPU dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 16504 Rev 3
TDA7498L
1
Device block diagram
Device block diagram
Figure 1 shows the block diagram of one of the two identical channels of the TDA7498L.
Figure 1.
Internal block diagram (showing one channel only)
Doc ID 16504 Rev 3
5/27
Pin description
TDA7498L
2
Pin description
2.1
Pinout
Figure 2.
Pin connections (top view, PCB view)
SUB_GND
1
SVCC
OUTPB
2
34 VREF
OUTPB
3
33 INNB
PGNDB
4
32 INPB
PGNDB
5
31 GAIN1
PVCCB
6
30 GAIN0
PVCCB
7
29 SVR
OUTNB
8
28 DIAG
OUTNB
9
27 SGND
OUTNA 10
26 VDDS
OUTNA 11
25 SYNCLK
PVCCA 12
24 ROSC
PVCCA 13
23 INNA
PGNDA 14
36 VSS
35
22 INPA
EP, exposed pad
Connect to ground
21 MUTE
OUTPA 16
OUTPA 17
20 STBY
19 VDDPW
6/27
PGNDA 15
Doc ID 16504 Rev 3
PGND 18
TDA7498L
2.2
Pin description
Pin list
Table 2.
Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
OUTPB
O
Positive PWM for right channel
4,5
PGNDB
PWR
Power stage ground for right channel
6,7
PVCCB
PWR
Power supply for right channel
8,9
OUTNB
O
Negative PWM output for right channel
10,11
OUTNA
O
Negative PWM output for left channel
12,13
PVCCA
PWR
Power supply for left channel
14,15
PGNDA
PWR
Power stage ground for left channel
16,17
OUTPA
O
Positive PWM output for left channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for power
stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INPA
I
Positive differential input of left channel
23
INNA
I
Negative differential input of left channel
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for signal
blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
INPB
I
Positive differential input of right channel
33
INNB
I
Negative differential input of right channel
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply decoupling
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
Doc ID 16504 Rev 3
7/27
Electrical specifications
TDA7498L
3
Electrical specifications
3.1
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
Parameter
VCC_MAX DC supply voltage for pins PVCCA, PVCCB
V
-0.3 to 3.6
V
Tj_MAX
Operating junction temperature
0 to 150
°C
Tstg
Storage temperature
-40 to 150
°C
Stresses beyond those listed under “Absolute maximum
ratings” make cause permanent damage to the device. These
are stress ratings only, and functional operation of the device
at these or any other conditions beyond those indicated
under “Recommended operating condition” are not implied.
Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability. In the real
application, the power supply with the nominal value rated in
the recommended operating conditions, may rise beyond the
maximum operating condition for a short time when no or
very low current is sunk (amplifier in mute state). In this case
the reliability of the device is guaranteed, provided that the
absolute maximum rating is not exceeded.
Thermal data
Thermal data
Symbol
Parameter
Rth j-case
Thermal resistance, junction to case
Min
-
Typ
2
Max
3
Unit
°C/W
Recommended operating conditions
Table 5.
Symbol
8/27
44
Voltage limits for input pins STBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
Table 4.
3.3
Unit
VL_MAX
Warning:
3.2
Value
Recommended operating conditions
Parameter
Min
Typ
Max
Unit
VCC
Supply voltage for pins PVCCA, PVCCB
14
-
36
V
Tamb
Ambient operating temperature
-20
-
85
°C
Doc ID 16504 Rev 3
TDA7498L
3.4
Electrical specifications
Electrical specifications
Unless otherwise stated, the results in Table 6 below are given for the conditions:
VCC = 32 V, RL (load) = 6 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB and
Tamb = 25 °C.
Table 6.
Electrical specifications
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Iq
Total quiescent current
No LC filter, no load
-
40
60
mA
IqSTBY
Quiescent current in standby
-
-
1
10
µA
Play mode
-100
-
100
VOS
Output offset voltage
Mute mode
-60
-
60
IOCP
Overcurrent protection threshold RL = 0 Ω
5.0
6.0
-
A
TjS
Junction temperature at thermal
shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
VOVP
Overvoltage protection threshold -
42
43
-
V
VUVP
Undervoltage protection
threshold
-
-
-
8
V
High side
-
0.2
-
RdsON
Power transistor on resistance
Low side
-
0.2
-
THD = 10%
-
80
-
Po
Output power
THD = 1%
-
65
-
Po
Output power
RL = 8 Ω, THD = 10%,
VCC = 32V
-
65
-
W
PD
Dissipated power
Po = 80 W + 80 W,
THD = 10%
-
16
-
W
η
Efficiency
Po = 80 W + 80W
-
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
GV
mV
Ω
W
Closed-loop gain
dB
ΔGV
Gain matching
-
-1
-
1
dB
CT
Crosstalk
f = 1 kHz, Po = 1 W
50
70
-
dB
15
-
Total input noise
A Curve, GV = 20 dB
-
eN
f = 22 Hz to 22 kHz
-
25
50
µV
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp,
CSVR = 10 µF
70
-
dB
Tr, Tf
Rise and fall times
-
50
-
ns
Doc ID 16504 Rev 3
-
9/27
Electrical specifications
Table 6.
TDA7498L
Electrical specifications (continued)
Symbol
Parameter
fSW
Switching frequency
fSWR
Output switching frequency
Range
VinH
Digital input high (H)
VinL
Digital input low (L)
Condition
Internal oscillator
With external oscillator
AMUTE
(2)
Typ
310
330
-
400
250
-
400
2.3
-
-
-
-
0.8
2.7
-
-
Pin STBY voltage low (L)
-
-
0.5
2.5
-
-
-
-
0.8
Mute attenuation
VMUTE < 0.8 V
-
70
-
V
V
1. fSW = 10 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 20.).
2. fSW = fSYNCLK / 2 with the external oscillator.
Doc ID 16504 Rev 3
kHz
V
Pin MUTE voltage low (L)
Unit
kHz
-
6
10/27
Max
-
Pin MUTE voltage high (H)
VMUTE
290
With internal oscillator (1) 250
Pin STBY voltage high (H)
VSTBY
Min
dB
TDA7498L
4
Characterization curves
Characterization curves
Figure 20 on page 18 shows the test circuit with which the characterization curves, shown in
the next sections, were measured. Figure 3 below shows the PCB layout.
4.1
PCB layout
Figure 3.
Test board
Top view
Top copper
Bottom view
Bottom copper
Doc ID 16504 Rev 3
11/27
Characterization curves
4.2
TDA7498L
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 32 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C
4.2.1
For RL = 6 Ω
Figure 4.
Output power vs. supply voltage
Figure 5.
THD vs. output power (1 kHz)
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
W
12/27
Doc ID 16504 Rev 3
10
20
50
90
TDA7498L
Characterization curves
Figure 6.
THD vs. output power (100 Hz)
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
90
W
Figure 7.
THD vs. frequency (1 W)
1
0.5
0.2
0.1
%
0.05
0.02
0.01
0.005
20
50
100
200
500
1k
2k
5k
10k
20k
1k
2k
5k
10k
20k
Hz
Figure 8.
THD vs. frequency (100 mW)
1
0.5
0.2
%
0.1
0.05
0.02
0.01
20
50
100
200
500
Hz
Doc ID 16504 Rev 3
13/27
Characterization curves
Figure 9.
TDA7498L
Frequency response
+3
+2.5
+2
+1.5
+1
d
B
r
A
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
20
50
100
200
500
1k
2k
5k
10k
20k
1k
2k
5k
10k
20k
Hz
Figure 10. FFT performance (0 dBFS)
+0
-10
-20
-30
-40
-50
d
B
r
A
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
Hz
Figure 11. FFT performance (-60 dBFS)
+0
-10
-20
-30
-40
-50
d
B
r
A
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
1k
Hz
14/27
Doc ID 16504 Rev 3
2k
5k
10k
20k
TDA7498L
4.2.2
Characterization curves
For RL = 8 Ω
Figure 12. Output power vs. supply voltage
Figure 13. THD vs. output power (1 kHz)
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
20
50
90
W
Doc ID 16504 Rev 3
15/27
Characterization curves
TDA7498L
Figure 14. THD vs. output power (100 Hz)
10
5
2
1
0.5
0.2
%
0.1
0.05
0.02
0.01
0.005
0.002
0.001
100m
200m
500m
1
2
5
10
1k
2k
1k
2k
20
50
90
5k
10k
20k
5k
10k
20k
W
Figure 15. THD vs. frequency (1 W)
1
0.5
0.2
0.1
%
0.05
0.02
0.01
0.005
20
50
100
200
500
Hz
Figure 16. THD vs. frequency (100 mW)
1
0.5
0.2
%
0.1
0.05
0.02
0.01
20
50
100
200
500
Hz
16/27
Doc ID 16504 Rev 3
TDA7498L
Characterization curves
Figure 17. Frequency response
+3
+2.5
+2
+1.5
+1
d
B
r
A
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
20
50
100
200
500
1k
2k
5k
10k
20k
1k
2k
5k
10k
20k
1k
2k
5k
10k
20k
Hz
Figure 18. FFT performance (0 dBFS)
+0
-10
-20
-30
-40
-50
d
B
r
A
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
Hz
Figure 19. FFT performance (-60 dBFS)
+0
-10
-20
-30
-40
-50
d
B
r
A
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
50
100
200
500
Hz
Doc ID 16504 Rev 3
17/27
Applications information
TDA7498L
5
Applications information
5.1
Applications circuit
Figure 20. Applications circuit
1
C1
1uF
1nF
SGND
1nF
SGND
J1
100nF
SGND
L-
4
L+
1
R-
2
23
INNA
PGNDA 14
R6
PGNDA 15
22R
27
R1
DIAG
J7 Single-Ended 22R
C6
3 FREQUENCY SHIFT
Q1
C8
SYNC
1
R3
2
39K
100nF
R13 68k
ROSC
SGND
J5 30
GAIN0
VDDS
C11
1uF
SGND
S2 MUTE 1uF
S1 STBY
SGND
120k
+
33k
+
R2
2
SGND
IC2
R8
IN
L4931CZ33 3
C29 1
2.2uF
2 GND C9
SGND
VCC
6.8k
D1
100nF
18V
SGND
SGND
SGND
SGND
SGND
3V3 POWER SUPPLY
5.2
1nF
INPB
INNB
C14
R4
2
SGND
OUT
32
33
C13
C12
1
3
220nF
C27
SGND
1nF
330pF
21 MUTE
C15
2.2uF 20
STBY
16V
C7
2.2uF
16V
2200uF
C23+
50V
OUTPB
L1
3
OUTPB
2
PVCCB
7
PVCCB
6
R5
L-
220nF
R-
R16
R+
8R
22uH
*
1
C41
L3
*
J3
Load=6 ohm
L+
*
PVCCA 13
1
VCC
2
GND
2
3
4
J2
22uH
*
C18
22R
220nF
R17
8R
C42
100nF
100nF 36 VSS
3V3
SGND
680nF
C24
SVCC
C10
Input
1
3
1uF
C19
35
SGND
FS
100nF
J6
For
J4
TDA7498L
31 GAIN1
J8 Single-Ended
8R
C40
OUTPUT
PVCCA 12
IC1
25 SYNCLK
24
FS
R9
120K R14 47k
SGND
SGND
FS
C26
OUTNA 11
18 PGND
*
C30
OUTNA 10
SGND
220nF
C25
19 VDDPW
100nF
3V3
DIAG
Input
R+
R15
*
C28
220nF
100k
R7
For
28
*
22uH
SGND
VDDS26 VDDS
C5
3
OUTPA 16
OUTPA 17
C4
1uF
L4
INPA
C3
C2
INPUT
SUB_GND
22
PGNDB
5
PGNDB
4
OUTNB
9
OUTNB
8
VREF
34
SVR
29
C31
C20
1uF
680nF
*
*
C17
220nF
R18
SGND
22uH
10uF
10V
C16
SGND
TDA7498L
CLASS-D AMPLIFIER
8R
L2
*
C43
C22
220nF
C21
330pF
220nF
10uF
10V
LC FILTER COMPONENT
Load
L1,L2,L3,L4
C20,C26 C18,C22,C24,C28
6 ohm
22 uH
680 nF
220 nF
8 ohm
22 uH
470 nF
220 nF
Mode selection
The three operating modes of the TDA7498L are set by the two inputs, STBY (pin 20) and
MUTE (pin 21).
18/27
●
Standby mode: all circuits are turned off, very low current consumption.
●
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
●
Play mode: the amplifiers are active.
Doc ID 16504 Rev 3
TDA7498L
Applications information
The protection functions of the TDA7498L are enabled by pulling down the voltages of the
STBY and MUTE inputs shown in Figure 21. The input current of the corresponding pins
must be limited to 200 µA.
Table 7.
Mode settings
Mode
STBY
MUTE
(1)
X (don’t care)
Standby
L
Mute
H (1)
L
Play
H
H
1. Drive levels defined in Table 6: Electrical specifications on page 9
Figure 21. Standby and mute circuits
Standby
3.3 V
0V
STBY
R2
30 kΩ
C7
2.2 µF
R4
30 kΩ
C15
2.2 µF
Mute
MUTE
3.3 V
0V
TDA7498L
Figure 22. Turn on/off sequence for minimizing speaker “pop”
Doc ID 16504 Rev 3
19/27
Applications information
5.3
TDA7498L
Gain setting
The gain of the TDA7498L is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin 31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 8.
Gain settings
GAIN0
5.4
GAIN1
Nominal gain, Gv (dB)
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 23. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
Figure 23. Input circuit and frequency response
Rf
Input
signal
20/27
Ci
Input
pin
Ri
Doc ID 16504 Rev 3
TDA7498L
5.5
Applications information
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7498L as master clock, while the other devices are in slave mode, that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
5.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW, is controlled by the
resistor, ROSC, connected to pin ROSC:
fSW = 106 / ((ROSC * 16 + 182) * 4) kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 9.
5.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 9.
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 9.
How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 24. Master and slave connection
Master
Slave
TDA7498L
ROSC
TDA7498L
SYNCLK
Output
Cosc
100 nF
SYNCLK
ROSC
Input
Rosc
39 kΩ
Doc ID 16504 Rev 3
21/27
Applications information
5.6
TDA7498L
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The
cutoff frequency should be larger than 22 kHz and much lower than the output switching
frequency. It is necessary to choose the L and C component values depending on the
loudspeaker impedance. Some typical values, which give a cutoff frequency of 27 kHz, are
shown in Figure 25 and Figure 26 below.
Figure 25. Typical LC filter for a 8-Ω speaker
07-?0
U(
OHM
N&
P&
N&
N&
OHM
OHM
N &
N&
U(
07-?.
OHM
Figure 26. Typical LC filter for a 6-Ω speaker
07-?0
U(
OH M
N &
P&
N &
N&
OH M
OH M
N&
N &
U(
07-?.
22/27
Doc ID 16504 Rev 3
OH M
TDA7498L
5.7
Applications information
Protection functions
The TDA7498L is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 6: Electrical specifications on
page 9 the overvoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage falls back to within the operating range, the
device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 6: Electrical
specifications on page 9 the undervoltage protection is activated which forces the outputs to
the high-impedance state. When the supply voltage recovers to within the operating range,
the device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 6: Electrical specifications on
page 9 the overcurrent protection is activated which forces the outputs to the
high-impedance state. Periodically, the device attempts to restart. If the overcurrent
condition is still present then the OCP remains active. The restart time, TOC, is determined
by the R-C components connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 6: Electrical specifications on page 9 the
device shuts down and the output is forced to the high-impedance state. When the device
cools sufficiently, the device restarts.
5.8
Diagnostic output
The output pin DIAG is an open-drain transistor. When any protection is activated it switches
to the high-impedance state. The pin can be connected to a power supply (< 36 V) by a pullup resistor whose value is limited by the maximum sinking current (200 µA) of the pin.
Figure 27. Behavior of pin DIAG for various protection conditions
VDD
TDA7498L
R1
DIAG
Protection logic
VDD
Restart
Restart
Overcurrent
protection
OV, UV, OT
protection
Doc ID 16504 Rev 3
23/27
Package mechanical data
6
TDA7498L
Package mechanical data
The TDA7498L comes in a 36-pin PowerSSO package with exposed pad up.
Figure 28 shows the package outline and Table 10 gives the dimensions.
Table 10.
PowerSSO-36 EPU dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
-
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
24/27
Doc ID 16504 Rev 3
TDA7498L
Figure 28. PowerSSO-36 EPU outline drawing
h x 45°
Doc ID 16504 Rev 3
Package mechanical data
25/27
Revision history
7
TDA7498L
Revision history
Table 11.
26/27
Document revision history
Date
Revision
Changes
04-Dec-2009
1
Initial release.
02-Jul-2010
2
Removed datasheet preliminary status, updated features list and
updated Device summary table on page 1
Updated minimum supply voltage and temperature range in Table 5:
Recommended operating conditions on page 8
Updated typical power output for 8 Ω at 32 V in Table 6: Electrical
specifications on page 9
12-Sep-2011
3
Updated OUTNA in Table 2: Pin description list; minor textual updates
Doc ID 16504 Rev 3
TDA7498L
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16504 Rev 3
27/27