AGERE TTRN012G53XE1

Preliminary Data Sheet
August 2000
TTRN012G5 (2.5 Gbits/s) and TTRN012G7 (2.5 Gbits/s and 2.7 Gbits/s)
Clock Synthesizer, 16:1 Data Multiplexer
Features
■
TTRN012G5 supports OC-48/STM-16 data rate
■
TTRN012G7 supports:
— OC-48/STM-16 data rate
— RS (255, 239) forward error correction (FEC)
OC-48/STM-16 data rate
■
Fully integrated clock synthesizer and 16:1 data
multiplexer
■
Supports clockless data transfer into the 16:1
multiplexer
■
Parity checking and valid data indication
■
Data inversion option
■
Additional high-speed CML serial data output for
system loopback
■
Loss of lock indication
■
Single 3.3 V supply
■
Available in either MBIC 025 BiCMOS technology
or lower-power MBIC 025 silicon germanium
BiCMOS technology
■
LVPECL 155.52 Mbits/s digital I/O
■
Jitter generation and jitter transfer compliant with
the following:
— Telcordia Technologies* GR-253
— ITU-T G.825
— ITU-T G.958
Applications
■
SONET/SDH line origination equipment
■
SONET/SDH add/drop multiplexers
■
SONET/SDH cross connects
■
SONET/SDH test equipment
■
Digital video transmission
* Telcordia Technologies is a registered trademark of Bell Communications Research, Inc.
Description
The Lucent Technologies Microelectronics Group
TTRN012G5 operates at the OC-48/STM-16 data
rate of 2.5 Gbits/s. The TTRN012G7 device operates
at either 2.5 Gbits/s or the RS FEC OC-48/STM-16
data rate of 2.7 Gbits/s. For clarity, this data sheet
refers to the TTRN012G5 serial data rate as
2.5 Gbits/s and the parallel data and reference clock
frequency as 155 MHz. (The precise rates are
2.48832 Gbits/s and 155.52 MHz.) When using the
TTRN012G7 at the FEC rate, the 2.5 Gbits/s data
rate should be interpreted as 2.7 Gbits/s and the parallel and clock frequency should be interpreted as
166 MHz. (The precise rates are 2.66606 Gbits/s and
166.62 MHz.)
The devices provide a 16:1 multiplexer and clock
multiplier unit. Both a high-speed serial clock and
data output are generated. The devices accept 16
differential PECL data inputs and a low-speed reference clock. A unique feature of the multiplexer is that
no clock is required to feed in the 16 data lines, as
long as the upstream data chip clock is synchronous
with the device REFCLKP/N input.
Alternatively, contra-clocking may be used, whereby
the device provides one of four phases of a
155.52 MHz or 166.62 MHz clock output back
upstream to the data chip.
Other features include a parity bit input and parity
check on the 16 input data lines, a second
2.5 Gbits/s or 2.7 Gbits/s data output for loopback
toward the TRCV012G5 or TRCV012G7 device, and
a user-configurable PLL bandwidth. Both devices are
available in either BiCMOS or in SiGe BiCMOS technology for lower power operation.
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Table of Contents
Contents
Page
Features .................................................................................................................................................................... 1
Applications ............................................................................................................................................................... 1
Description.................................................................................................................................................................1
Pin Information ..........................................................................................................................................................4
Functional Overview .................................................................................................................................................. 9
Clock Synthesizer Operation .................................................................................................................................. 9
Multiplexer Operation............................................................................................................................................11
Clocking Modes and Timing Adjustments ...............................................................................................................12
Clockless Transfer Mode (CLKMODE, EXTADJN, MONAPAP/N) .......................................................................12
Contra-Directional Clocking Mode (CLKMODE, PHADJ[1:0]) ..............................................................................13
CML Output Structure (Used on Pins D2G5P/N, CK2G5P/N).................................................................................14
Choosing the Value of the External CML Reference Resistors (RREF1, RREF2) ...............................................14
Absolute Maximum Ratings.....................................................................................................................................15
Handling Precautions ..............................................................................................................................................15
Operating Conditions...............................................................................................................................................15
Electrical Characteristics .........................................................................................................................................16
Reference Frequency (REFCLKP/N) Specifications.............................................................................................16
LVPECL, CMOS, CML Input and Output Pins ......................................................................................................17
Timing Characteristics .............................................................................................................................................19
Transmit Timing ....................................................................................................................................................19
Outline Diagram.......................................................................................................................................................21
128-Pin QFP .........................................................................................................................................................21
Ordering Information................................................................................................................................................22
DS00-375HSPL Replaces DS00-155HSPL to Incorporate the Following Updates.................................................22
2
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Description (continued)
RESETN
TO DIGITAL LOGIC
INVDAT
INVDATN
D0P
D0N
ENLBDN
LBDP
LBDN
16:1 MULTIPLEXER
D1P
D1N
D15P
D15N
D2G5P
D2G5N
DATA
RETIME
ENCK2G5
CK2G5P
CK2G5N
LOAD
PARITY
CHECK
PARITYP
PARITYN
PARITY
REGISTER
CLKMODE
0
VALIDP
VALIDN
1
1
MONAPAP
MONAPAN
0
0
CK155P
CK155N
1
RREF2
RREF1
AUTO
PHASE
ADJUST
MANUAL
PHASE
ADJUST
DIVIDE
BY 16
PHADJ[1:0]
TEST
0
EXTADJN
PHASE/
FREQ.
DETECTOR
REFCLKP
REFCLKN
LCKLOSSN
CHARGE
PUMP
VCO
1
TESTN
TSTCKP
TSTCKN
ACQUISITION
INDICATOR
LFP LFN VCP VCN
5-8060(F)r.3
Note: Diagram is representative of device functionality and conceptual signal flow. Internal implementation details may be different than shown.
Figure 1. Functional Block Diagram
Lucent Technologies Inc.
3
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
GND
VCCA
VCCA
NC
GND
GND
GND
GND
GND
GND
GND
GND
NC
NC
VCCA
VCP
LFP
LFN
VCN
VCCA
VCCA
VCCD
REFCLKN
REFCLKP
VCCD
GND
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
Pin Information
GND
GND
19
84
D9P
VCCD
20
83
D9N
ENCK2G5
21
82
D8P
RREF2
22
81
D8N
RREF1
23
80
VCCD
VCCD
24
79
D7P
GND
25
78
D7N
LBDN
26
77
D6P
LBDP
27
76
D6N
GND
28
75
GND
VCCD
29
74
D5P
ENLBDN
30
73
D5N
GND
31
72
D4P
GND
32
71
D4N
LCKLOSSN
33
70
VCCD
VCCD
34
69
D3P
VCCD
35
68
D3N
NC
36
67
D2P
GND
37
66
D2N
GND
38
65
GND
64
85
GND
18
63
D10N
CK2G5N
VCCD
86
62
17
D1P
D10P
CK2G5P
61
87
D1N
16
60
D11N
GND
D0P
88
59
15
D0N
D11P
D2G5N
58
89
GND
14
57
VCCD
D2G5P
PARITYP
90
56
13
PARITYN
D12N
GND
55
91
GND
12
54
D12P
VCCD
VCCD
92
53
11
CK155P
D13N
INVDATN
52
93
CK155N
10
51
D13P
TESTN
VCCD
94
50
9
VALIDP
GND
VCCD
49
95
VALIDN
8
48
D14N
TSTCKN
VCCD
96
47
7
MONAPAP
D14P
VCCD
46
97
MONAPAN
6
45
D15N
TSTCKP
NC
98
44
5
PHADJ0
D15P
VCCD
43
99
PHADJ1
4
42
GND
GND
CLKMODE
100
41
3
EXTADJN
GND
VCCD
40
GND
101
39
102
2
GND
1
VCCD
RESETN
GND
5-8066(F)r.3
Figure 2. Pin Diagram of 128-Pin QFP (Top View)
4
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Pin Information (continued)
Table 1. Pin Descriptions—2.5 Gbits/s and Related Signals
Note: In Table 1, when operating the TTRN012G7 device at the OC-48/STM-16 rate, 2.5 Gbits/s should be interpreted as 2.48832 Gbits/s. When operating the TTRN012G7 device at the RS FEC OC-48/STM-16 rate,
2.5 Gbits/s should be interpreted as 2.66606 Gbits/s. (A similar interpretation should be made for 2.5 GHz.)
Pin
14
15
27
26
17
18
23
Symbol*
D2G5P
D2G5N
LBDP
LBDN
CK2G5P
CK2G5N
RREF1
Type†
O
Level
CML
Name/Description
Data Output (2.5 Gbits/s NRZ). 2.5 Gbits/s differential data
output.
O
CML
Loopback Data Output. Additional 2.5 Gbits/s differential data
output for system loopback.
O
CML
Clock Output (2.5 GHz). 2.5 GHz differential clock output.
I
Analog
22
RREF2
I
Analog
21
ENCK2G5
Iu
CMOS
30
ENLBDN
Iu
CMOS
11
INVDATN
Iu
CMOS
Resistor Reference 1. CML current bias reference resistor.
(See Table 15, page 18 for values.)
Resistor Reference 2. CML bias reference resistor. Connect a
1.5 kΩ resistor to VCCD.
Enable CK2G5P/N Clock Output.
0 = CK2G5P/N buffer powered off
1 or no connection = CK2G5P/N buffer enabled
Enable LBDP/N Data Output (Active-Low).
0 = LBDP/N buffer enabled
1 or no connection = LBDP/N buffer powered off
Invert D2G5P/N Data Output (Active-Low).
0 = invert
1 or no connection = noninvert
* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
† I = input, O = output. Iu indicates an internal pull-up resistor on this pin.
Lucent Technologies Inc.
5
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Pin Information (continued)
Table 2. Pin Descriptions—155.52 Mbits/s and Related Signals
Note: In Table 2, when operating the TTRN012G7 device at the OC-48/STM-16 rate, 155 Mbits/s should be interpreted as 155.52 Mbits/s. When operating the TTRN012G7 device at the RS FEC OC-48/STM-16 rate,
155 Mbits/s should be interpreted as 166.62 Mbits/s. (A similar interpretation should be made for 155 MHz.)
Pin
99
98
97
96
94
93
92
91
89
88
87
86
84
83
82
81
79
78
77
76
74
73
72
71
69
68
67
66
62
61
60
59
Symbol*
D15P
D15N
D14P
D14N
D13P
D13N
D12P
D12N
D11P
D11N
D10P
D10N
D9P
D9N
D8P
D8N
D7P
D7N
D6P
D6N
D5P
D5N
D4P
D4N
D3P
D3N
D2P
D2N
D1P
D1N
D0P
D0N
Type†
I
Level
Name/Description
LVPECL Data Input (155 Mbits/s). 155 Mbits/s differential data input.
D15 is the most significant bit and is transmitted first on the
LVPECL D2G5P/N output.
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
LVPECL
* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
† I = input, O = output. Iu indicates an internal pull-up resistor on this pin.
6
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Pin Information (continued)
Table 2. Pin Descriptions—155.52 Mbits/s and Related Signals (continued)
Pin
53
52
43
44
42
Symbol*
CK155P
CK155N
PHADJ1
PHADJ0
CLKMODE
Type†
O
57
56
50
49
PARITYP
PARITYN
VALIDP
VALIDN
I
33
41
LCKLOSSN
EXTADJN
O
Iu
47
46
105
106
MONAPAP
MONAPAN
REFCLKP
REFCLKN
O
Level
Name/Description
LVPECL Clock Output (155 MHz). 155 MHz differential clock output.
Iu
CMOS
Iu
CMOS
O
I
Phase Adjust. Adjusts phase of CK155P/N in 90 degree steps.
Clock Mode Select. Selects clockless data transfer mode.
0 = clockless transfer
1 or no connection = contra clock
LVPECL Parity Input over Data (D[15:0]).
LVPECL Parity Check Output. Validates the input of PARITYP/N.
0 = parity check does not agree with input PARITYP/N pins
1 = parity check agrees
CMOS Loss of Lock (Active-Low). 0 = PLL out of lock.
CMOS External Automatic Phase Adjust (Active-Low). Adjusts the
155 MHz clock output, CK155P/N.
0 = adjust phase of 155 MHz clock to data upon next transition
of the D0P/N input signal
1 = no adjust
Must be held low until the first rising transition of D0P/N.
LVPECL Monitor Automatic Phase Adjust. Indicates when a phase
adjustment in the automatic phase adjust block occurs.
LVPECL Reference Clock Input (155 MHz). This clock is required.
When applying the REFCLKP/N, set the REFCLKP/N to one of
the following frequencies:
■
155.52 MHz if using the TRCV012G5, or the TRCV012G7 at
the 0C-48/STM-16 rate of 2.48832 GHz.
I
Analog
166.62 MHz if using the TRCV012G7 at the RS FEC
0C-48/STM-16 rate of 2.66606 GHz.
Loop Filter PLL. Connect LFP to VCP, and LFN to VCN.
I
Analog
VCO Control. Connect VCP to LFP, and VCN to LFN.
■
112
111
113
110
LFP
LFN
VCP
VCN
* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
† I = input, O = output. Iu indicates an internal pull-up resistor on this pin.
Lucent Technologies Inc.
7
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Pin Information (continued)
Table 3. Pin Descriptions—Reset and Test Signals
Pin
40
Symbol*
RESETN
Type†
Iu
Level
CMOS
6
8
10
TSTCKP
TSTCKN
TESTN
I
CML
Iu
CMOS
Name/Description
Reset (Active-Low). Resets all synchronous logic. During a
reset, the true data outputs are in the low state and the barred
data outputs are in the high state.
0 = reset
1 or no connection = normal operation
Test Clock Input. Buffer is powered down when TESTN = 1.
Test Clock Select (Active-Low).
0 = select test clock
1 or no connection = select internal VCO
* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
† I = input, O = output. Iu indicates an internal pull-up resistor on this pin.
Table 4. Pin Descriptions—Power and No-Connect Signals
Note: VCCA and VCCD have the same dc value, which is represented as VCC unless otherwise specified. However,
high-frequency filtering is suggested between the individual supplies.
Pin
108, 109, 114,
126, 127
2, 3, 5, 7, 9,
12, 20, 24, 29,
34, 35, 48, 51,
54, 63, 70, 80,
90, 104, 107
1, 4, 13, 16,
19, 25, 28, 31,
32, 37—39,
55, 58, 64, 65,
75, 85, 95,
100—103,
117—124, 128
36, 45, 115,
116, 125
Symbol*
VCCA
Type†
I
Level
Power
Name/Description
Analog Power Supply (3.3 V).
VCCD
I
Power
Digital Power Supply (3.3 V).
GND
I
Ground
Ground.
NC
—
—
No Connection. Pin 45 has an internal pull-up resistance
of approximately 25 kΩ. All of these pins must be left open.
* Differential pairs are indicated by P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
† I = input, O = output. Iu indicates an internal pull-up resistor on this pin.
8
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Functional Overview
The Lucent Technologies Microelectronics Group TTRN012G5 operates at the OC-48/STM-16 data rate of
2.5 Gbits/s.* The TTRN012G7 device operates at either 2.5 Gbits/s or the RS FEC OC-48/STM-16 data rate of
2.7 Gbits/s. The device performs the clock synthesis and 16:1 data multiplexing operations required to support
2.5 Gbits/s applications compliant with Telcordia Technologies and ITU standards. Parallel 155 Mbits/s data is
clocked into an input register and checked for valid parity. Both clockless data transfer and contra-directional clocking modes are supported. The data is then multiplexed into a 2.5 Gbits/s serial stream and output buffered for interfacing to a laser driver. A 2.5 GHz clock is synthesized from a reference clock and is used to retime the serial data.
The 2.5 GHz clock is optionally available as an output. The serial data stream polarity can be inverted under pin
control to make interfacing easier.
Clock Synthesizer Operation
The clock synthesizer uses a PLL to synthesize a 2.5 GHz clock from a reference frequency. A 155 MHz clock
derived from the 2.5 GHz synthesized clock may be used to clock in the parallel data.
Clock Synthesizer Loop Filter
A typical loop filter that provides adequate damping for less than 0.1 dB of jitter peaking is shown in Figure 3. Connect the filter components and also connect LFP to VCP and connect LFN to VCN. The component values can be
varied to adjust the loop dynamic response (see Table 5).
Table 5. Clock Synthesizer Loop Filter Component Values
Components
C1*
C2, C3
R1
Values for 2 MHz Loop Bandwidth
0.10 µF ± 10%
10 pF ± 20%
680 Ω ± 5%
* Capacitor C1 should be either ceramic or nonpolar.
LFP/VCP
C1
C2
LFN/VCN
R1
C3
5-8061(F)
Figure 3. Clock Synthesizer Loop Filter Components
Clock Synthesizer Settling Time
The clock synthesizer will acquire phase/frequency lock after a valid reference clock is applied to the REFCLKP/N
input pins. The actual time to acquire lock is a function of the loop bandwidth selected. The loop will acquire lock
within 5 ms when using the external loop bandwidth components corresponding to 2 MHz.
Loss of Lock Indicator (LCKLOSSN)
The LCKLOSSN pin indicates (active-low) when the clock synthesizer has exceeded phase-lock limits with the
incoming REFCLKP/N phase. The lock detect function compares the phases of the input 155 MHz clock at the
REFCLKP/N pins with the internally generated 155 MHz output clock at the CK155P/N pins. When the phase difference in the two signals is close to zero as determined by a second internal phase detector and filter, the lock
detect signal LCKLOSSN is set to the logic high state. When the phase difference between the two signals is
changing with time at a rate exceeding the filter's cutoff frequency, the device is declared out of lock and lock
detect signal LCKLOSSN is set to a logic low. If a set of highly damped phase-locked loop parameters is chosen
for the device, LCKLOSSN may exhibit more than one positive edge transition during the acquisition process
before a steady logic high state is achieved.
* The OC-48/STM-16 data rate of 2.48832 Gbits/s is typically approximated as 2.5 Gbits/s in this document when referring to the application
rate. The RS FEC OC-48/STM-16 data rate is 2.66606 Gbits/s and is approximated as 2.7 Gbits/s in this document. Similarly, the OC-3/
STM-1 data rate of 155.52 Mbits/s is typically approximated as 155 Mbits/s, and the RS FEC OC-3/STM-1 data rate of 166.62 Mbits/s is
approximated as 166 Mbits/s. The exact frequencies are used only when necessary for clarity.
Lucent Technologies Inc.
9
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Functional Overview (continued)
Clock Synthesizer Operation (continued)
Clock Synthesizer Generated Jitter
The clock synthesizer’s generated jitter performance meets the requirements shown in Table 6. These specifications apply to the jitter generated at the 2.5 GHz clock pins (CK2G5P/N) when the jitter on the reference clock
(REFCLKP/N) is within the specifications given in Table 9 on page 16, and the loop filter components are chosen to
provide a loop bandwidth of 2 MHz.
Table 6. Clock Synthesizer Generated Jitter Specifications
Parameter
Typical
Generated Jitter (p-p):
Measured with 12 kHz to 20 MHz Bandpass
Filter
Generated Jitter (rms):
Measured with 12 kHz to 20 MHz Bandpass
Filter
Unit
0.02
Max
(Device)*
0.09
UIp-p
0.002
0.009
UIrms
* This denotes the device specification for system SONET/SDH compliance when the loop filter in
Table 5 and Figure 3 is used.
Clock Synthesizer Jitter Transfer
The clock synthesizer’s jitter transfer performance meets the requirement shown in Figure 4 when the loop filter
values shown in Table 5 are used.
(2 MHz, 0.1 dB)
0
JITTER OUT/JITTER IN (dB)
10
20
30
40
50
60
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
5-8062(F)r.1
Figure 4. Clock Synthesizer Jitter Transfer
10
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Functional Overview (continued)
Multiplexer Operation
The parallel 155 Mbits/s data is clocked into an input buffer by a 155 MHz clock derived from the synthesized
2.5 GHz clock. The data is checked for parity and then clocked into a 16:1 multiplexer. The relationship between
the parallel D[15:0] input data and the serial output data (D2G5P/N) is given in Figure 5. The D15 bit is the most
significant bit (MSB) and is shifted out first in time in the serial output stream.
D15
(MSB)
D14
D1
(D15 SERIALLY SHIFTED OUT FIRST)
D0
(LSB)
D15
(D0 SERIALLY SHIFTED OUT LAST)
TIME
5-8063(F)
Figure 5. Parallel Input to Serial Output Data Relationship
High-Speed Serial Clock Output Enable (ENCK2G5)
A separate output enable is provided for the 2.5 GHz clock output (CK2G5P/N). The enable is an active-high
CMOS input with an internal pull-up resistor. The default condition will enable the CK2G5P/N output, and applying
a ground or setting the enable pin (ENCK2G5) to logic low will disable the CK2G5P/N output. When disabled, the
CK2G5P/N output pins should be either left floating, or be connected to a load which returns to VCC. The output
must not be connected directly to ground when it is disabled.
Loopback 2.5 GHz Data Output (LBDP/N, ENLBDN)
An alternate 2.5 Gbits/s CML data output is available on the LBDP/N pin. This pin is provided for use in system
loopback testing and avoids the need for off-chip signal splitting of the data signal path. The alternate
2.5 Gbits/s loopback data output may be enabled by setting the ENLBDN pin to logic low. ENLBDN enable is an
active-low CMOS input with an internal pull-up resistor so the default condition will disable the LBDP/N output, and
a ground or logic-low signal must be applied to enable the loopback output. When disabled, the LBDP/N pin should
be either left floating, or be connected to a load which returns to VCC. The output must not be connected directly to
ground when it is disabled.
Parity Validation (VALIDP/N)
The parity signal is expected to be a logic 0 when the number of 1s in the 16-bit input register is an even number,
and the parity signal is expected to be a logic 1 when the number of 1s in the input register is an odd number. If the
parity bit agrees with the parity in the input register, then the VALIDP/N signal will be logic high. If the parity signal
is not generated, the VALIDP/N pin should be left open without termination to avoid meaningless signal swings and
avoid unnecessary power dissipation.
Lucent Technologies Inc.
11
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Clocking Modes and Timing Adjustments
Clockless Transfer Mode (CLKMODE, EXTADJN, MONAPAP/N)
The device supports two timing modes for the 155 Mbits/s data input. In clockless transfer mode (CLKMODE = 0),
data may be sent to the device without a clock. After phase/frequency lock has been obtained by the clock
synthesizer, the device automatically finds the correct phase of the internal 155 MHz clock by sampling the rising
edge of the D0P/N data bit. The skew of any data bit D[15:0]P/N must be less than 500 ps relative to D0P/N. If the
phase of the incoming data shifts more than ±2400 ps from the time the automatic phase adjustment occurred, the
device will automatically readjust its internal clocking phase. Data integrity may not be obtained at the instant of
phase adjustment, and an error burst of up to 16 data bits may occur.
The user may optionally force the automatic phase adjustment to occur by toggling the EXTADJN pin (active-low)
and keeping it low for at least 12.8 ns after the next rising edge of the D0P/N input. The phase will be adjusted one
time upon the first occurrence of a low-to-high transition of the D0P/N data bit while the EXTADJN pin is in the
logic-low state. To externally adjust the phase again, the RESETN pin must be brought low then high to enable
another phase adjustment. When CLKMODE = 0, the 155 MHz output clock (CK155P/N) is active but should be
left unconnected to conserve power.
MONAPAP/N can be used for the monitoring and reporting of phase adjustments. The MONAPAP/N output will go
high in the following sequence:
■
EXTADJN pin transitions to logic-low state
■
A rising edge of the D0P/N input occurs
■
MONAPAP/N transitions to logic 1 three CK2G5 cycles (1.2 ns) later
■
MONAPAP/N will stay high for 12 CK2G5 cycles (4.8 ns)
The first sixteen D2G5 data output bits after the rising edge of MONAPAP/N are invalid.
12
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Clocking Modes and Timing Adjustments (continued)
Contra-Directional Clocking Mode (CLKMODE, PHADJ[1:0])
In the contra-directional clocking mode (CLKMODE = 1), the data is sampled with the internal 2.5 GHz clock at the
time of the falling edge of CK155P (see Figure 8 on page 19 for timing details). The device sends a 155 MHz clock
with one of four user-selectable phases out to the upstream device for clocking the data toward the device. The
user can program PHADJ[1:0] to adjust the phase of CK155 as a function of PWB layout and upstream device
propagation delay in order to meet the setup and hold time of the 155 Mbits/s data to the device. With a
PHADJ[1:0] = [11], the data is sampled by the internal CK2G5 clock at the falling edge of CK155P. PHADJ[1:0]
changes the phase of the CK155P clock without changing the input data sampling time. PHADJ[1:0] setting information is given in Table 7, and the phase relationship of CK155 for each PHADJ[1:0] setting is shown in Figure 6.
Table 7. PHADJ Settings for CK155 Output Clock (Contra-Clocking Mode)
Input Pins
PHADJ1
1
1
0
0
Phase
PHADJ0
1
0
1
0
(See part A of Figure 6.)
(See part B of Figure 6.)
(See part C of Figure 6.)
(See part D of Figure 6.)
A. (0 DEG.)
B. (–90 DEG.)
C. (–180 DEG.)
D. (–270 DEG.)
TIME
5-8064(F)r.2
Figure 6. CK155 Phase Relation vs. PHADJ Setting
Lucent Technologies Inc.
13
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
CML Output Structure (Used on Pins D2G5P/N, CK2G5P/N)
The CML architecture is essentially a current-steering mechanism combined with an amplifier. This makes the output swing of the signal a function of the termination resistor and the programmable output current. The user should
connect external termination resistors from the CML output pins to VCC. The on-chip, 100 Ω pull-up resistors provide a dc path when using an ac-coupled load.
The voltage swing of a CML signal is typically 400 mV, half that of ECL/PECL. The lower pulse amplitude reduces
noise transients, crosstalk, and EMI. It also uses half the amount of current through the termination resistors. The
schematic of a typical CML output structure is shown in Figure 7.
DEVICE-INTERNAL CML OUTPUT BUFFER CIRCUIT
VCC
VCC
VCC
VCC
50 Ω
100 Ω
50 Ω
100 Ω
IOUT
EXTERNAL OUTPUT TERMINATION
IOUT
VCC
RREF1
+
18X
VREF
–
RREF2
5-8065(F)r.2
Figure 7. Typical CML Output Structure
Choosing the Value of the External CML Reference Resistors (RREF1, RREF2)
The flexibility of the CML interface permits certain parameters to be customized for a particular application. The
RREF1 resistor controls the CML output driver current source. Adjusting this tail current and termination resistors
will allow signal amplitude control (see the CML output specifications for limitations, page 18 and page 20) and
flexibility in termination schemes.
With RREF2 set to 1.5 kΩ, the equation for the CML output current is the following:
Iout = (18)*(1.21)/RREF1
The CML outputs have on-chip 100 Ω load resistors to VCC to accommodate capacitive ac coupling. With a 50 Ω
1% load, the effective load resistance will be 33.33 Ω ± 6%. For a 400 mV voltage swing into the 50 Ω load, set
RREF1 to 1.8 kΩ. For a 600 mV voltage swing, set RREF1 to 1.2 kΩ. In both cases, RREF2 remains fixed at a
value of 1.5 kΩ.
14
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in
excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for
extended periods can adversely affect device reliability.
Parameter
Power Supply Voltage (VCC)
Storage Temperature
Pin Voltage
Min
—
–40
GND – 0.5
Max
4.0
125
VCC + 0.5
Unit
V
°C
V
Handling Precautions
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid
exposure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model
(HBM) and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD
voltage thresholds are dependent on the circuit parameters used in the defined model. No industrywide standard
has been adopted for the CDM. However, a standard HBM (resistance = 1500 Ω, capacitance = 100 pF) is widely
used and, therefore, can be used for comparison purposes:
Device
TTRN012G5
TTRN012G7
Voltage
≥200 V
≥200 V
Operating Conditions
Table 8. Recommended Operating Conditions
Parameter
Power Supply (dc voltage)
Ground
Input Voltage:
Low
High
Temperature:
Ambient
Power Dissipation:
MBIC 025 BiCMOS
MBIC 025 SiGe BiCMOS
Lucent Technologies Inc.
Symbol
—
—
Typ
3.3
—
See Table 10,
Table 12,
Table 14.
Max
3.465
—
See Table 10,
Table 12,
Table 14.
Unit
V
V
VIL
VIH
Min
3.135
—
See Table 10,
Table 12,
Table 14.
TA
–40
—
85
°C
PD
PD
—
—
1.5
0.9
TBD
1.14
W
W
V
V
15
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Electrical Characteristics
Reference Frequency (REFCLKP/N) Specifications
The device requires a differential LVPECL reference clock input.
■
When using the TTRN012G5 device, a 155.52 MHz differential LVPECL clock must be applied to the
REFCLKP/N input.
■
When using the TTRN012G7 device at the OC-48/STM-16 rate, a 155.52 MHz differential LVPECL clock must
be applied to the REFCLKP/N input.
■
When using the TTRN012G7 device at the RS FEC OC-48/STM-16 rate, a 166.62 MHz differential LVPECL
clock must be applied to the REFCLKP/N input.
Table 9 provides the characteristics of the REFCLKP/N input.
Table 9. Reference Frequency Characteristics
Parameter
Reference Frequency (REFCLKP/N)
Reference Frequency Tolerance*
Duty Cycle
Phase Jitter†
Temperature‡
Supply Voltage‡
Min
—
—
–20
40
—
–40
3.10
Typ
155.52
166.62
—
—
—
—
—
Max
—
—
20
60
3
85
3.60
Unit
MHz
MHz
ppm
%
ps(rms)
°C
V
* Includes effects of power supply variation, temperature, electrical loading, and aging. The ±20 ppm tolerance is
required to meet SONET/SDH requirements. For non-SONET/SDH compliant systems, looser tolerances may apply.
† Measured under one 3.3 V LVPECL load. Includes frequency components up to 2 MHz.
‡ Specified range is to be compatible with environmental specification of TTRN012G5 or TTRN012G7. Applications
requiring a reduced temperature range may specify the reference frequency oscillator accordingly.
16
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Electrical Characteristics (continued)
LVPECL, CMOS, CML Input and Output Pins
Notes:
1. For Table 10 through Table 17, VCC = 3.3 V ± 5%, TA = –40 °C to +85 °C; these tables apply to both MBIC 025
BiCMOS and MBIC 025 SiGe BiCMOS technologies.
2. For more information on interpreting CML specifications, see the CML Output Structure (Used on Pins
D2G5P/N, CK2G5P/N) section on page 14.
Table 10. LVPECL Input Pin Characteristics
Applicable
Pins
D[15:0]P/N,
PARITYP/N,
REFCLKP/N
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIH
VIL
IIH
IIL
Input Voltage High
Input Voltage Low
Input Current High Leakage
Input Current Low Leakage
Referred to VCC
Referred to VCC
VIN = VIH (max)
VIN = VIL (min)
–1165
–1810
—
5
—
—
—
—
–880
–1475
20
mV
mV
µA
µA
Table 11. LVPECL Output Pin Characteristics
Applicable Symbol
Parameter
Pins
Output Voltage High
CK155P/N,
VOH
VALIDP/N,
MONAPAP/N
Output Voltage Low
VOL
Conditions
Load = 50 Ω
connected to
VCC – 2.0 V
Load = 50 Ω
connected to
VCC – 2.0 V
Min
Typ
Max
Unit
VCC – 1.31 VCC – 1.20 VCC – 0.90
V
VCC – 1.95 VCC – 1.88 VCC – 1.80
V
Table 12. CMOS Input Pin Characteristics
Applicable
Pins
RESETN,
PHADJ[1:0],
EXTADJN,
INVDATN,
TESTN,
CLKMODE,
ENCK2G5,
ENLBDN
Symbol
Parameter
Conditions
Min
Max
Unit
VIH
VIL
IIH
IIL
Input Voltage High
Input Voltage Low
Input Current High Leakage
Input Current Low Leakage
—
—
VIN = VCC
VIN = GND
VCC – 1.0
GND
—
–225
VCC
1.0
10
—
V
V
µA
µA
Conditions
Min
Max
Unit
IOH = –4.0 mA
IOL = 4.0 mA
—
VCC – 0.5
GND
—
VCC
0.5
15
V
V
pF
Table 13. CMOS Output Pin Characteristics
Applicable
Pins
LCKLOSSN
Symbol
VOH
VOL
Cl
Lucent Technologies Inc.
Parameter
Output Voltage High
Output Voltage Low
Output Load Capacitance
17
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Electrical Characteristics (continued)
LVPECL, CMOS, CML Input and Output Pins (continued)
Table 14. CML Input Pin dc Characteristics
Applicable
Pins
Symbol
Parameter
TSTCKP/N
VIL
Input Voltage Low
VIH
Input Voltage High
Conditions
Min
Typ
Max
Unit
—
—
—
V
—
VCC – 0.4
VCC
—
V
Table 15. CML Output Pin dc Characteristics
Applicable
Pins
Symbol
Parameter
Conditions
Min*
Typ†
Max‡
Unit
D2G5P/N,
LBDP/N,
CK2G5P/N
VOL
Output Voltage Low
VCC – 1.2
VCC – 0.4
—
V
VOH
Output Voltage High
—
VCC
VCC + 0.3
V
IOL
Output Current Low
RREF2 = 1.5 kΩ,
RL = 50 Ω,
All signals
differential
3.6
12
18
mA
IOH
Output Current High
—
0
1
µA
* Applies when RREF1 = 1 kΩ.
† Applies when RREF1 = 1.8 kΩ.
‡ Applies when RREF1 = 6 kΩ.
18
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Timing Characteristics
Transmit Timing
Figure 8 shows the timing relationships between the 155.52 MHz or 166.62 MHz output clock (CK155P/N) and the
155.52 Mbits/s or 166.62 Mbits/s input data (D[15:0]P/N) and the input parity valid check (PARITYP/N). Also
shown is the relationship of the VALIDP/N output signal to CK155P/N; this relationship is true for both the contraclocking mode and the clockless transfer mode.
tPERIOD
CK155P
OUTPUT
CK155N
tSU
INPUTS
D[15:0]P/N,
PARITYP/N
tHOLD
DATA 1
DATA 2
tDD
OUTPUT
VALIDP/N
VALID 1
VALID 2
5-7726(F).hr.2
Note: TSU and THOLD only apply in contra-clocking mode when CLKMODE = 1.
Figure 8. Transmit Timing Waveform
The 155 MHz or 166 MHz output clock and data signals from Figure 8 are characterized in Table 16.
Table 16. LVPECL Input/Output Pin ac Timing Characteristics
Applicable
Pins
Symbol
CK155P/N
—
tPERIOD
D[15:0]P/N,
PARITYP/N,
CK155P/N
tSU
tHOLD
tRISE,
tFALL
tSKEW
VALIDP/N,
CK155P/N
tDD
tRISE,
tFALL
tSKEW
Lucent Technologies Inc.
Parameter
Conditions
Duty Cycle
All signals
differential
155.52 MHz Clock Period
166.62 MHz Clock Period
Input Timing
Setup from Clock Edge to
CLKMODE = 1, All
D[15:0]P/N or to
signals differential
PARITYP/N Edge
Hold from Clock Edge to
CLKMODE = 1,
D[15:0]P/N or to
All signals
PARITYP/N Edge
differential
Rise, Fall Times:
All signals
20%—80%
differential
Transition Skew Rise to Fall
Output Timing
Time Delay from Clock Edge
All signals
to VALIDP/N Edge
differential
Rise, Fall Times:
20%—80%
Transition Skew Rise to Fall
Min
Typ
Max
Unit
40
—
—
50
6.43
6.00
60
—
—
%
ns
ns
2.0
—
—
ns
0.5
—
—
ns
200
500
800
ps
–100
0
100
ps
–300
800
1500
ps
200
500
800
ps
–100
0
100
ps
19
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Timing Characteristics (continued)
Transmit Timing (continued)
Figure 9 shows the timing relationship between the 2.5 GHz or 2.7 GHz output clock (CK2G5P/N) and the
2.5 Gbits/s or 2.7 Gbits/s output data (D2G5P/N).
tPERIOD
CK2G5P
OUTPUT
CK2G5N
tDD
OUTPUT
D2G5P/N
DATA 1
DATA 2
DATA 3
5-7726(F).er.4
Figure 9. Transmit Timing Waveform with 2.5 GHz or 2.7 GHz Clock
The 2.5 GHz or 2.7 GHz output clock and data signals from Figure 9 are characterized in Table 17.
Table 17. CML Output Pin ac Timing Characteristics
Applicable
Pins
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
CK2G5P/N
—
tPERIOD
D2G5P/N,
CK2G5P/N,
LBDP/N
tDD
Duty Cycle
2.48832 GHz Clock Period
2.66606 GHz Clock Period
Time Delay from Clock Edge
to Data Edge
Rise, Fall Times:
20%—80%
Transition Skew Rise to Fall
RREF1 = 1.8 kΩ
RREF2 = 1.5 kΩ
RL = 50 Ω
All signals
differential
40
—
—
151
50
402
375
201
60
—
—
251
%
ps
ps
ps
50
80
120
ps
–10
0
10
ps
20
tRISE,
tFALL
tSKEW
Lucent Technologies Inc.
Preliminary Data Sheet
August 2000
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Outline Diagram
128-Pin QFP
Dimensions are in millimeters.
17.20 ± 0.20
13.89 ± 0.10
8.13 (REF)
128
2.89
(REF)
103
1
102
1
5.87
(REF)
LUCENT
Code Name
YYWWL
XXXXXKNV
17.52
± 0.18
8.13
(REF)
1.600 ± 0.150
19.86
± 0.10
23.20
± 0.20
0.800 ± 0.150
DETAIL A
38
65
39
DETAIL A
64
11.43 ± 0.18
2.80 (REF)
3.30 (REF)
0.20 ± 0.06
2.89
(REF)
0.50 (TYP)
8.13 (REF)
0.000 TO 0.100
0.38 (REF)
(8.13)2 x 0.305 HEAT SINK
5-8416(F)r.2
Lucent Technologies Inc.
21
TTRN012G5 and TTRN012G7
Clock Synthesizer, 16:1 Data Multiplexer
Preliminary Data Sheet
August 2000
Ordering Information
Device Code
TTRN012G5:
TTRN012G5 (BiCMOS)
TTRN012G53XE1 (SiGe BiCMOS)
TTRN012G7:
TTRN012G7 (BiCMOS)
TTRN012G73XE1 (SiGe BiCMOS)
—
Package
Temperature
Comcode
(Ordering Number)
128-pin QFP
128-pin QFP
–40 °C to +85 °C
–40 °C to +85 °C
108419961
108700709
128-pin QFP
128-pin QFP
—
–40 °C to +85 °C
–40 °C to +85 °C
—
108560335
108700717
—
DS00-375HSPL Replaces DS00-155HSPL to Incorporate the Following Updates
1. Added a second technology, MBIC 025 SiGe BiCMOS, to the data sheet.
2. Page 7, REFCLKP/N pins, corrected definition.
3. Page 15, Absolute Maximum Ratings, added maximum power supply value of 4.0 V.
4. Page 15, Handling Precautions, corrected ESD threshold value from TBD to ≥200 V.
5. Page 15, Table 8, added MBIC 025 SiGe BiCMOS power dissipation values.
6. Page 17, Table 11, updated LVPECL Output Pin Characteristics.
7. Page 22, Ordering Information, added MBIC 025 SiGe BiCMOS comcodes.
For additional information, contact your Microelectronics Group Account Manager or the following:
http://www.lucent.com/micro
INTERNET:
[email protected]
E-MAIL:
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai
200233 P. R. China Tel. (86) 21 6440 0468, ext. 325, FAX (86) 21 6440 0652
JAPAN:
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No
rights under any patent accompany the sale of any such product(s) or information.
Copyright © 2000 Lucent Technologies Inc.
All Rights Reserved
August 2000
DS00-375HSPL (Replaces DS00-155HSPL)