Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/IF Amp Technical Data IAM-81028 Features Description • 8 dB RF-IF Conversion Gain From 0.05 - 5 GHz • IF Output from DC to 1 GHz • Low Power Dissipation: 60 mW at VCC = 5 V Typ. • Single Polarity Bias Supply: VCC = 4 to 8 V • Load-Insensitive Performance • Conversion Gain Flat Over Temperature • Low LO Power Requirements: -5 dBm Typical • Low RF to IF Feedthrough, Low LO Leakage • Hermetic Ceramic Surface Mount Package The IAM-81028 is a complete lowpower-consumption doublebalanced active mixer housed in a miniature ceramic hermetic surface mount package. It is designed for narrow or wide bandwidth commercial, industrial and military applications having RF inputs up to 5 GHz and IF outputs from DC to 1 GHz. Operation at RF and LO frequencies less than 50 MHz can be achieved using optional external capacitors to ground. The IAM-81028 is particularly well suited for applications that require load-insensitive conversion gain and good spurious signal suppression with minimum LO and bias power consumption. Typical applications include frequency down conversion, Typical Biasing Configuration and Functional␣ Block␣ Diagram 7-123 28 Package PIN 1 modulation, demodulation and phase detection for fiber-optic, GPS satellite navigation, mobile radio, and battery powered communications receivers. The IAM series of Gilbert multiplier-based frequency converters is fabricated using HP’s 10 GHz, fT, 25 GHz fMAX ISOSATTM-I silicon bipolar process. This process uses nitride self alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide inter-metal dielectric and scratch protection to achieve excellent performance, uniformity and reliability. 5965-9108E Absolute Maximum Ratings Parameter Device Voltage Absolute Maximum[1] Thermal Resistance:[2,4] θjc = 50°C/W 15 V Notes: 1. Permanent damage may occur if any of these limits are exceeded. 2. TCASE = 25°C. 3. Derate at 20 mW/°C for TC > 185°C. 4. See MEASUREMENTS section “Thermal Resistance” in Communications Components Catalog, for more information. Power Dissipation[2,3] 300 mW RF Input Power +14 dBm LO Input Power +14 dBm Junction Temperature 200°C Storage Temperature -65°C to 200°C Electrical Specifications[1] TA = 25°C Symbol Parameters and Test Conditions: VCC = 5 V, ZO = 50 Ω, LO = -5 dBm, RF = -20 dBm Units Min. Typ. Max. dB 7.0 8.5 10 GC Conversion Gain RF = 2 GHz, LO = 1.75 GHz f3dBRF RF Bandwidth (GC 3 dB Down) IF = 250 MHz GHz 4.5 f3dBIF IF Bandwidth (GC 3 dB Down) LO = 2 GHz GHz 0.6 P1dB IF Output Power at 1 dB Gain Compression RF = 2 GHz, LO = 1.75 GHz dBm -6 IP3 IF Output Third Order Intercept Point RF = 2 GHz, LO = 1.75 GHz dBm 3 NF SSB Noise Figure RF = 2 GHz, LO = 1.75 GHz dB 17 RF Port VSWR f = 0.05 to 5 GHz 1.5:1 LO Port VSWR f = 0.05 to 5 GHz 1.5:1 IF Port VSWR f < 1 GHz 1.5:1 RFif RF Feedthrough at IF Port RF = 2 GHz, LO = 1.75 GHz dBc -25 LOif LO Leakage at IF Port LO = 1.75 GHz dBm -25 LOrf LO Leakage at RF Port LO = 1.75 GHz dBm -35 ICC Supply Current VSWR mA 10 12.5 16 Note: 1. The recommended operating voltage range for this device is 4 to 8 V. Typical performance as a function of voltage is on the following page. 7-124 Typical Performance, TA = 25°C, VCC = 5 V RF: -20 dBm at 2 GHz, LO: -5 dBm at 1.75 GHz (unless otherwise noted) 15 5 30 15 5 20 10 0 20 10 –5 5 15 10 –5 P1 dB 0 10 –10 0 2 4 6 8 0 –10 –55 –25 VCC (V) +25 Figure 2. Conversion Gain, IF P1 dB and ICC Current vs. Case Temperature. 4:1 10 10 RF LO IF IF = 70 MHz 5 8 GC (dB) VSWR GC (dB) 3:1 0 0.2 0.5 1.0 2.0 5.0 1:1 0.1 10 RF FREQUENCY (GHz) 1.0 0 –15 10 –10 FREQUENCY (GHz) Figure 3. Typical RF to IF Conversion Gain vs. RF Frequency, TA = 25°C (Low Side LO). –5 0 5 LO POWER (dBm) Figure 4. RF, LO and IF Port VSWR vs. Frequency. 10 Figure 5. RF to IF Conversion Gain vs. LO Power. 0 RF to IF (dBc) LO to RF and IF (dBm) 8 6 LO = 4 GHz 4 2 –10 RF to IF LO to IF LO to RF HARMONIC LO ORDER LO = 2 GHz GC (dB) 4 2 –5 –2 0.01 6 2:1 IF = 1 GHz 0 5 +125 +85 TEMPERATURE (°C) Figure 1. Conversion Gain, IF P1 dB and ICC Current vs. VCC Bias Voltage. 0.1 ICC GC P1 dB 0 ICC (mA) GC IF P1 dB (dBm) 5 0 ICC (mA) GC (dB) IF P1 dB (dBm) 10 GC (dB) ICC –20 –30 High Side LO Low Side LO 0.1 1.0 2.0 FREQUENCY, RF–LO (GHz) Figure 6. RF to IF Conversion Gain vs. IF Frequency. –40 0.1 1.0 10 FREQUENCY (GHz) Figure 7. RF Feedthrough Relative to IF Carrier, dBm LO to RF and IF Leakage vs. Frequency. 7-125 0 — 21 35 >75 >75 >75 1 12 0 48 48 >75 >75 2 13 41 39 71 >75 >75 3 36 28 53 57 >75 >75 4 27 49 49 72 >75 >75 5 45 35 63 62 >75 >75 0 1 2 3 4 5 HARMONIC RF ORDER Xmn = Pif – P(m*rf – n*lo) Figure 8. Harmonic Intermodulation Suppression (dB Below Desired Output) RF at 1 GHz, LO at 0.752 GHz, IF at 0.248 GHz. Package Dimensions 28 Package 1 8 2 7 3 6 4 5 1.27 (0.050) TYP. TOP VIEW 4.57 ± 0.13 (0.180 ± 0.005 SQ) 5.33 ± 0.25 (0.210 ± 0.010) 0.38 ± 0.08 (0.015 ± 0.003) 0.76 ± 0.13 (0.030 ± 0.005) 2.08 ± 0.25 (0.082 ± 0.010) 8° MAX. END VIEW 0.13 ± 0.05 (0.005 ± 0.002) 2.54 ± 0.25 (0.100 ± 0.010) 10.16 ± 0.25 (0.400 ± 0.010) SIDE VIEW 0.08 ± 0.08 (0.003 ± 0.003) 1.78 ± 0.25 (0.070 ± 0.010) DIMENSIONS ARE IN MILLIMETERS (INCHES) Package marking code is “M810” 7-126