Silicon Bipolar MMIC 5 GHz Active Double Balanced Mixer/ IF Amp Technical Data IAM-82028 Features • 15 dB RF-IF Conversion Gain from 0.05 - 5 GHz • IF Output from DC to 2 GHz • IF Output PldB up to +12 dBm • Single Polarity Bias Supply: VCC = 7 to 13 V • Load-Insensitive Performance • Conversion Gain Flat Over Temperature • Low LO Power Requirements: 0 dBm Typical • Low RF to IF Feedthrough, Low LO Leakage • Hermetic Ceramic Surface Mount Package Description The IAM-82028 is a complete moderate-power double-balanced active mixer housed in a miniature ceramic hermetic surface mount package. It is designed for narrow or wide bandwidth commercial, industrial and military applications having RF inputs up to 5 GHz and IF outputs from DC to 2 GHz. Operation at RF and LO frequencies less than 50 MHz can be achieved using optional external capacitors to ground. The IAM-82028 is particularly well suited for applications that require load-insensitive conversion gain and good spurious signal suppression and moderate dynamic range with minimum LO power. Typical applications include frequency Typical Biasing Configuration and Functional Block Diagram 7-131 28 Package PIN 1 downconversion, modulation, demodulation and phase detection for fiber-optic, GPS satellite navigation, mobile radio, and communications receivers. The IAM series of Gilbert multiplier-based frequency converters is fabricated using HP’s 10 GHz fT, 25 GHz fMAX ISOSATTM-I silicon bipolar process which uses nitride self-alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide inter-metal dielectric and scratch protection to achieve excellent performance, uniformity and reliability. 5965-9114E Absolute Maximum Ratings Parameter Device Voltage Thermal Resistance:[2,4] θjc = 45°C/W Absolute Maximum[1] Notes: 1. Permanent damage may occur if any of these limits are exceeded. 2. TCASE = 25°C. 3. Derate at 22.2 mW/°C for TC >146°C. 4. See MEASUREMENTS section "’Thermal Resistance” in Communications Components Catalog, for more information. 15 V Power Dissipation[2,3] 1200 mW RF Input Power +14 dBm LO Input Power +14 dBm Junction Temperature 200°C Storage Temperature -65°C to 200°C IAM-82028 Electrical Specifications[1], TA = 25°C Symbol Parameters and Test Conditions[2]: VCC = 10 V, Vee = 0 V, Vgc = 0 V, ZO = 50 Ω Units Min. Typ. Max. dB 13.5 15 16.5 GC Conversion Gain RF = 2 GHz, LO = 1.75 GHz f3dBRF RF Bandwidth (GC 3 dB Down) IF = 250 MHzz GHz 5.5 f3dBIF IF Bandwidth (GC 3 dB Down) LO = 2 GH GHz 0.6 P1dB IF Output Power at 1 dB Gain Compression RF = 2 GHz, LO = 1.75 GHz dBm 8 IP3 IF Output Third Order Intercept Point RF = 2 GHz, LO = 1.75 GHz dBm 18 NF SSB Noise Figure RF = 2 GHz, LO = 1.75 GHz dB 16 VSWR RF Port VSWR f = 0.05 to 5 GHz 1.5:1 LO Port VSWR f = 0.05 to 5 GHz 2:1 IF Port VSWR RFif RF Feedthrough at IF Port f < 2 GHz 2.3:1 RF = 2 GHz, LO = 1.75 GHz dBc -30 LOif LO Leakage at IF Port LO = 1.75 GHz dBm -20 LOrf LO Leakage at RF Port LO = 1.75 GHz dBm -30 ICC Supply Current mA 40 55 65 Note: 1. The recommended operating voltage range for this device is 7 to 13 V. Typical performance as a function of voltage is on the following page. 7-132 Typical Performance, TA = 25°C, VCC = 10 V RF: -20 dBm at 2 GHz, LO: 0 dBm at 1.75 GHz (unless otherwise noted) 20 20 100 20 15 75 15 10 80 ICC 5 25 0 0 5 GC 70 P1 dB 60 5 ICC (mA) 5 10 IF P1 dB (dBm) 50 GC (dB) IF P1 dB (dBm) GC (dB) 10 10 ICC (mA) GC 15 15 ICC 0 50 P1 dB 0 4 8 12 0 0 20 16 –5 –55 –25 VCC (V) +25 TEMPERATURE (°C) Figure 1. Conversion Gain, IF P1 dB and ICC Current vs. VCC Bias Voltage. Figure 2. Conversion Gain, IF P1 dB and ICC Current vs. Case Temperature. 16 4:1 20 RF LO IF IF = 70 MHz 15 14 VSWR GC (dB) 3:1 GC (dB) 40 +125 +85 10 12 2:1 5 IF = 1 GHz 0 0.2 0.5 1.0 2.0 5.0 1:1 0.1 10 RF FREQUENCY (GHz) –5 0 5 10 LO POWER (dBm) Figure 4. RF, LO and IF Port VSWR vs. Frequency. 20 Figure 5. RF to IF Conversion Gain vs. LO Power. 0 RF to IF (dBc) LO to RF and IF (dBm) LO = 2 GHz 15 10 LO = 4 GHz 5 –10 RF to IF LO to IF LO to RF –20 –30 High Side LO Low Side LO 0 0.01 10 –10 10 FREQUENCY (GHz) Figure 3. Typical RF to IF Conversion Gain vs. RF Frequency, TA = 25°C (Low Side LO). GC (dB) 1.0 HARMONIC LO ORDER 0.1 0.1 1.0 2.0 4.0 FREQUENCY, RF–LO (GHz) Figure 6. RF to IF Conversion Gain vs. IF Frequency. –40 0.1 1.0 10 FREQUENCY (GHz) Figure 7. RF Feedthrough Relative to IF Carrier, dBm LO to RF and IF Leakage vs. Frequency. 7-133 0 — 23 40 >75 >75 >75 1 12 0 52 60 >75 >75 2 6 35 43 >75 >75 >75 3 27 18 59 74 >75 >75 4 22 38 52 >75 >75 >75 5 41 36 73 74 >75 >75 1 2 3 4 5 0 HARMONIC RF ORDER Xmn = Pif – P(m*rf – n*lo) Figure 8. Harmonic Intermodulation Suppression (dB Below Desired Output) RF at 1 GHz, LO at 0.752 GHz, IF at 0.248 GHz. Package Dimensions 28 Package 1 8 2 7 1.27 (0.050) TYP. M820 3 6 5 4 TOP VIEW 4.57 ± 0.13 (0.180 ± 0.005 SQ) 5.33 ± 0.25 (0.210 ± 0.010) 0.38 ± 0.08 (0.015 ± 0.003) 0.76 ± 0.13 (0.030 ± 0.005) 2.08 ± 0.25 (0.082 ± 0.010) 8° MAX. END VIEW 0.13 ± 0.05 (0.005 ± 0.002) 2.54 ± 0.25 (0.100 ± 0.010) 10.16 ± 0.25 (0.400 ± 0.010) 0.08 ± 0.08 (0.003 ± 0.003) 1.78 ± 0.25 (0.070 ± 0.010) DIMENSIONS ARE IN MILLIMETERS (INCHES) 7-134 SIDE VIEW