AGILENT IAM

Silicon Bipolar MMIC 5 GHz
Active Double Balanced Mixer/
IF Amp
Technical Data
IAM-82028
Features
• 15 dB RF-IF Conversion
Gain from 0.05 - 5 GHz
• IF Output from DC to 2 GHz
• IF Output PldB up to
+12 dBm
• Single Polarity Bias Supply:
VCC = 7 to 13 V
• Load-Insensitive
Performance
• Conversion Gain Flat Over
Temperature
• Low LO Power Requirements:
0 dBm Typical
• Low RF to IF Feedthrough,
Low LO Leakage
• Hermetic Ceramic Surface
Mount Package
Description
The IAM-82028 is a complete
moderate-power double-balanced
active mixer housed in a
miniature ceramic hermetic
surface mount package. It is
designed for narrow or wide
bandwidth commercial, industrial
and military applications having
RF inputs up to 5 GHz and IF
outputs from DC to 2 GHz.
Operation at RF and LO
frequencies less than 50 MHz can
be achieved using optional
external capacitors to ground.
The IAM-82028 is particularly well
suited for applications that
require load-insensitive
conversion gain and good
spurious signal suppression and
moderate dynamic range with
minimum LO power. Typical
applications include frequency
Typical Biasing Configuration and
Functional Block Diagram
7-131
28 Package
PIN 1
downconversion, modulation,
demodulation and phase
detection for fiber-optic, GPS
satellite navigation, mobile radio,
and communications receivers.
The IAM series of Gilbert
multiplier-based frequency
converters is fabricated using
HP’s 10 GHz fT, 25 GHz fMAX
ISOSATTM-I silicon bipolar process
which uses nitride self-alignment,
submicrometer lithography,
trench isolation, ion implantation,
gold metallization and polyimide
inter-metal dielectric and scratch
protection to achieve excellent
performance, uniformity and
reliability.
5965-9114E
Absolute Maximum Ratings
Parameter
Device Voltage
Thermal Resistance:[2,4]
θjc = 45°C/W
Absolute
Maximum[1]
Notes:
1. Permanent damage may occur if any of
these limits are exceeded.
2. TCASE = 25°C.
3. Derate at 22.2 mW/°C for TC >146°C.
4. See MEASUREMENTS section
"’Thermal Resistance” in
Communications Components Catalog,
for more information.
15 V
Power Dissipation[2,3]
1200 mW
RF Input Power
+14 dBm
LO Input Power
+14 dBm
Junction Temperature
200°C
Storage Temperature
-65°C to 200°C
IAM-82028 Electrical Specifications[1], TA = 25°C
Symbol
Parameters and Test Conditions[2]:
VCC = 10 V, Vee = 0 V, Vgc = 0 V, ZO = 50 Ω
Units
Min.
Typ.
Max.
dB
13.5
15
16.5
GC
Conversion Gain
RF = 2 GHz, LO = 1.75 GHz
f3dBRF
RF Bandwidth
(GC 3 dB Down)
IF = 250 MHzz
GHz
5.5
f3dBIF
IF Bandwidth
(GC 3 dB Down)
LO = 2 GH
GHz
0.6
P1dB
IF Output Power at
1 dB Gain Compression
RF = 2 GHz, LO = 1.75 GHz
dBm
8
IP3
IF Output Third
Order Intercept Point
RF = 2 GHz, LO = 1.75 GHz
dBm
18
NF
SSB Noise Figure
RF = 2 GHz, LO = 1.75 GHz
dB
16
VSWR
RF Port VSWR
f = 0.05 to 5 GHz
1.5:1
LO Port VSWR
f = 0.05 to 5 GHz
2:1
IF Port VSWR
RFif
RF Feedthrough at IF Port
f < 2 GHz
2.3:1
RF = 2 GHz, LO = 1.75 GHz
dBc
-30
LOif
LO Leakage at IF Port
LO = 1.75 GHz
dBm
-20
LOrf
LO Leakage at RF Port
LO = 1.75 GHz
dBm
-30
ICC
Supply Current
mA
40
55
65
Note:
1. The recommended operating voltage range for this device is 7 to 13 V. Typical performance as a function of voltage is on the following
page.
7-132
Typical Performance, TA = 25°C, VCC = 10 V
RF: -20 dBm at 2 GHz, LO: 0 dBm at 1.75 GHz
(unless otherwise noted)
20
20
100
20
15
75
15
10
80
ICC
5
25
0
0
5
GC
70
P1 dB
60
5
ICC (mA)
5
10
IF P1 dB (dBm)
50
GC (dB)
IF P1 dB (dBm)
GC (dB)
10
10
ICC (mA)
GC
15
15
ICC
0
50
P1 dB
0
4
8
12
0
0
20
16
–5
–55
–25
VCC (V)
+25
TEMPERATURE (°C)
Figure 1. Conversion Gain, IF P1 dB
and ICC Current vs. VCC Bias Voltage.
Figure 2. Conversion Gain, IF P1 dB
and ICC Current vs. Case Temperature.
16
4:1
20
RF
LO
IF
IF = 70 MHz
15
14
VSWR
GC (dB)
3:1
GC (dB)
40
+125
+85
10
12
2:1
5
IF = 1 GHz
0
0.2
0.5
1.0
2.0
5.0
1:1
0.1
10
RF FREQUENCY (GHz)
–5
0
5
10
LO POWER (dBm)
Figure 4. RF, LO and IF Port VSWR
vs. Frequency.
20
Figure 5. RF to IF Conversion Gain
vs. LO Power.
0
RF to IF (dBc)
LO to RF and IF (dBm)
LO = 2 GHz
15
10
LO = 4 GHz
5
–10
RF to IF
LO to IF
LO to RF
–20
–30
High Side LO
Low Side LO
0
0.01
10
–10
10
FREQUENCY (GHz)
Figure 3. Typical RF to IF Conversion
Gain vs. RF Frequency, TA = 25°C
(Low Side LO).
GC (dB)
1.0
HARMONIC LO ORDER
0.1
0.1
1.0 2.0 4.0
FREQUENCY, RF–LO (GHz)
Figure 6. RF to IF Conversion Gain
vs. IF Frequency.
–40
0.1
1.0
10
FREQUENCY (GHz)
Figure 7. RF Feedthrough Relative to
IF Carrier, dBm LO to RF and IF
Leakage vs. Frequency.
7-133
0
—
23
40
>75
>75
>75
1
12
0
52
60
>75
>75
2
6
35
43
>75
>75
>75
3
27
18
59
74
>75
>75
4
22
38
52
>75
>75
>75
5
41
36
73
74
>75
>75
1
2
3
4
5
0
HARMONIC RF ORDER
Xmn = Pif – P(m*rf – n*lo)
Figure 8. Harmonic Intermodulation
Suppression (dB Below Desired Output)
RF at 1 GHz, LO at 0.752 GHz, IF at 0.248 GHz.
Package Dimensions
28 Package
1
8
2
7
1.27 (0.050) TYP.
M820
3
6
5
4
TOP VIEW
4.57 ± 0.13
(0.180 ± 0.005 SQ)
5.33 ± 0.25
(0.210 ± 0.010)
0.38 ± 0.08
(0.015 ± 0.003)
0.76 ± 0.13
(0.030 ± 0.005)
2.08 ± 0.25
(0.082 ± 0.010)
8° MAX.
END VIEW
0.13 ± 0.05
(0.005 ± 0.002)
2.54 ± 0.25
(0.100 ± 0.010)
10.16 ± 0.25
(0.400 ± 0.010)
0.08 ± 0.08
(0.003 ± 0.003)
1.78 ± 0.25
(0.070 ± 0.010)
DIMENSIONS ARE IN MILLIMETERS (INCHES)
7-134
SIDE VIEW