TI SN74CB3T3245DGVR

www.ti.com
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
FEATURES
•
•
•
•
•
•
•
•
•
Standard '245-Type Pinout
Output Voltage Translation Tracks VCC
Supports Mixed-Mode Signal Operation on All
Data I/O Ports
– 5-V Input Down to 3.3-V Output Level Shift
With 3.3-V VCC
– 5-V/3.3-V Input Down to 2.5-V Output Level
Shift With 2.5-V VCC
5-V-Tolerant I/Os With Device Powered Up or
Powered Down
Bidirectional Data Flow With Near-Zero
Propagation Delay
Low ON-State Resistance (ron) Characteristics
(ron = 5 Ω Typ)
Low Input/Output Capacitance Minimizes
Loading (Cio(OFF) = 5 pF Typ)
Data and Control Inputs Provide Undershoot
Clamp Diodes
Low Power Consumption (ICC = 40 µA Max)
•
•
•
•
•
•
•
•
VCC Operating Range From 2.3 V to 3.6 V
Data I/Os Support 0- to 5-V Signaling Levels
(0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, 5 V)
Control Inputs Can Be Driven by TTL or
5-V/3.3-V CMOS Outputs
Ioff Supports Partial-Power-Down Mode
Operation
Latch-Up Performance Exceeds 250 mA
Per JESD 17
ESD Performance Tested Per JESD 22
– 2000-V Human-Body Model (A114-B,
Class II)
– 1000-V Charged-Device Model (C101)
Supports Digital Applications: Level
Translation, PCI Interface, USB Interface,
Memory Interleaving, Bus Isolation
Ideal for Low-Power Portable Equipment
DBQ, DGV, DW, OR PW PACKAGE
(TOP VIEW)
NC
A1
A2
A3
A4
A5
A6
A7
A8
GND
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
OE
B1
B2
B3
B4
B5
B6
B7
B8
NC − No internal connection
DESCRIPTION/ORDERING INFORMATION
The SN74CB3T3245 is a high-speed TTL-compatible FET bus switch with low ON-state resistance (ron), allowing
for minimal propagation delay. The device fully supports mixed-mode signal operation on all data I/O ports by
providing voltage translation that tracks VCC. The SN74CB3T3245 supports systems using 5-V TTL, 3.3-V
LVTTL, and 2.5-V CMOS switching standards, as well as user-defined switching levels (see Figure 1).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2003–2005, Texas Instruments Incorporated
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
VCC
5.5 V
VCC
IN
VCC − 1 V
OUT
VCC
VCC − 1 V
CB3T
0V
0V
Input Voltages
Output Voltages
NOTE A: If the input high-voltage (VIH) level is greater than or equal to (VCC − 1 V) and less than or equal to 5.5 V,
then the output high-voltage (VOH) level will be equal to approximately the VCC voltage level.
Figure 1. Typical DC Voltage Translation Characteristics
The SN74CB3T3245 is an 8-bit bus switch with a single ouput-enable (OE) input and a standard '245 pinout.
When OE is low, the 8-bit bus switch is ON, and the A port is connected to the B port, allowing bidirectional data
flow between ports. When OE is high, the 8-bit bus switch is OFF, and a high-impedance state exists between
the A and B ports.
This device is fully specified for partial-power-down applications using Ioff. The Ioff feature ensures that damaging
current will not backflow through the device when it is powered down. The device has isolation during power off.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
PACKAGE (1)
TA
SOIC – DW
–40°C to 85°C
SSOP (QSOP) – DBQ
TSSOP – PW
TVSOP – DGV
(1)
ORDERABLE PART NUMBER
Tube
SN74CB3T3245DW
Tape and reel
SN74CB3T3245DWR
Tape and reel
SN74CB3T3245DBQR
Tube
SN74CB3T3245PW
Tape and reel
SN74CB3T3245PWR
Tape and reel
SN74CB3T3245DGVR
CB3T3245
CB3T3245
KS245
KS245
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
FUNCTION TABLE
2
TOP-SIDE MARKING
INPUT
OE
INPUT/OUTPUT
A
FUNCTION
L
B
A port = B port
H
Z
Disconnect
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
LOGIC DIAGRAM (POSITIVE LOGIC)
2
A1
A8
18
B1
SW
9
11
SW
B8
19
OE
SIMPLIFIED SCHEMATIC, EACH FET SWITCH (SW)
A
B
VG(1)
Control
Circuit
EN(2)
1) Gate Voltage (VG) is approximately equal to VCC + VT when the switch is ON and VI > (VCC + VT).
2) EN is the internal enable signal applied to the switch.
3
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range (2)
–0.5
7
V
VIN
Control input voltage range (2) (3)
–0.5
7
V
VI/O
Switch I/O voltage
range (2) (3) (4)
IIK
Control input clamp current
VIN < 0
–50
mA
II/OK
I/O port clamp current
VI/O < 0
–50
mA
±128
mA
±100
mA
II/O
ON-state switch
–0.5
current (5)
Continuous current through VCC or GND
θJA
Package thermal impedance (6)
Tstg
Storage temperature range
DBQ package
68
DGV package
92
DW package
58
PW package
(1)
(2)
(3)
(4)
(5)
(6)
7
UNIT
V
°C/W
83
–65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to ground unless otherwise specified.
The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
VI and VO are used to denote specific conditions for VI/O.
II and IO are used to denote specific conditions for II/O.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
VCC
Supply voltage
VIH
High-level control input voltage
VIL
Low-level control input voltage
VI/O
Data input/output voltage
TA
Operating free-air temperature
(1)
4
MIN
MAX
2.3
3.6
UNIT
VCC = 2.3 V to 2.7 V
1.7
5.5
VCC = 2.7 V to 3.6 V
2
5.5
VCC = 2.3 V to 2.7 V
0
0.7
VCC = 2.7 V to 3.6 V
0
0.8
0
5.5
V
–40
85
°C
V
V
V
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
Electrical Characteristics
(1)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIK
VCC = 3 V, II = –18 mA
VOH
See Figure 3 and Figure 4
IIN
Control inputs
MIN
TYP (2)
VCC = 3.6 V, VIN = 3.6 V to 5.5 V or GND
MAX
UNIT
–1.2
V
±10
µA
VI = VCC – 0.7 V to 5.5 V
±20
II
VCC = 3.6 V, Switch ON, VIN = VCC or GND VI = 0.7 V to VCC – 0.7 V
–40
IOZ (3)
VCC = 3.6 V, VO = 0 to 5.5 V, VI = 0, Switch OFF, VIN = VCC or GND
Ioff
VCC = 0, VO = 0 to 5.5 V, VI = 0,
ICC
VCC = 3.6 V, II/O = 0,
Switch ON or OFF, VIN = VCC or GND
±5
VI = 0 to 0.7 V
40
VCC = 3 V to 3.6 V, One input at VCC – 0.6 V, Other inputs at VCC or GND
Control inputs
VCC = 3.3 V, VIN = VCC or GND
ron (5)
VCC = 3 V, VI = 0
(1)
(2)
(3)
(4)
(5)
300
VCC = 3.3 V, VI/O = 5.5 V, 3.3 V, or GND, Switch OFF, VIN = VCC or GND
VCC = 2.3 V, TYP at VCC = 2.5 V, VI = 0
µA
40
Control inputs
VCC = 3.3 V, Switch ON, VIN = VCC or GND
µA
10
VI = 5.5 V
Cin
Cio(ON)
±10
VI = VCC or GND
∆ICC (4)
Cio(OFF)
µA
VI/O = 5.5 V or 3.3 V
µA
µA
4
pF
5
pF
5
pF
VI/O = GND
13
IO = 24 mA
5
8.5
IO = 16 mA
5
8.5
IO = 64 mA
5
7
IO = 32 mA
5
7
Ω
VIN and IIN refer to control inputs. VI, VO, II, and IO refer to data pins.
All typical values are at VCC = 3.3 V (unless otherwise noted), TA = 25°C.
For I/O ports, the parameter IOZ includes the input leakage current.
This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
Measured by the voltage drop between A and B terminals at the indicated current through the switch. ON-state resistance is determined
by the lower of the voltages of the two (A or B) terminals.
Switching Characteristics
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)
(1)
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
FROM
(INPUT)
TO
(OUTPUT)
tpd (1)
A or B
B or A
0.25
ns
ten
OE
A or B
1
10.5
1
8
ns
tdis
OE
A or B
1
5.5
1
7.5
ns
PARAMETER
MIN
MAX
MIN
0.15
UNIT
MAX
The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load
capacitance, when driven by an ideal voltage source (zero output impedance).
5
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
PARAMETER MEASUREMENT INFORMATION
VCC
Input Generator
VIN
50 Ω
50 Ω
VG1
TEST CIRCUIT
DUT
2 × VCC
Input Generator
S1
RL
VO
VI
50 Ω
50 Ω
VG2
CL
(see Note A)
RL
TEST
VCC
S1
RL
VI
CL
tpd(s)
2.5 V ± 0.2 V
3.3 V ± 0.3 V
Open
Open
500 Ω
500 Ω
3.6 V or GND
5.5 V or GND
30 pF
50 pF
tPLZ/tPZL
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2 × VCC
2 × VCC
500 Ω
500 Ω
GND
GND
30 pF
50 pF
0.15 V
0.3 V
tPHZ/tPZH
2.5 V ± 0.2 V
3.3 V ± 0.3 V
Open
Open
500 Ω
500 Ω
3.6 V
5.5 V
30 pF
50 pF
0.15 V
0.3 V
V∆
VCC
Output
Control
(VIN)
VCC/2
VCC
VCC/2
VCC/2
0V
tPLH
VOH
Output
VCC/2
VCC/2
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES (tpd(s))
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLZ
VCC
VCC/2
VOL + V∆
VOL
tPZH
tPHL
VCC/2
0V
tPZL
Output
Control
(VIN)
Open
GND
Output
Waveform 2
S1 at Open
(see Note B)
tPHZ
VOH
VCC/2
VOH − V∆
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd(s). The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance
of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
H. All parameters and waveforms are not applicable to all devices.
Figure 2. Test Circuit and Voltage Waveforms
6
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE
vs
INPUT VOLTAGE
OUTPUT VOLTAGE
vs
INPUT VOLTAGE
4.0
VCC = 2.3 V
IO = 1 µA
TA = 25°C
3.0
V − Output Voltage − V
O
V − Output Voltage − V
O
4.0
2.0
1.0
0.0
VCC = 3 V
IO = 1 µA
TA = 25°C
3.0
2.0
1.0
0.0
0.0
1.0
2.0
3.0
4.0
VI − Input Voltage − V
5.0
6.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
VI − Input Voltage − V
Figure 3. Data Output Voltage vs Data Input Voltage
7
SN74CB3T3245
8-BIT FET BUS SWITCH
2.5-V/3.3-V LOW-VOLTAGE WITH 5-V-TOLERANT LEVEL SHIFTER
www.ti.com
SCDS136 – OCTOBER 2003 – REVISED MARCH 2005
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
VCC = 2.3 V to 3.6 V
VI = 5.5 V
TA = 85°C
3.5
100 µA
8 mA
16 mA
24 mA
3.0
2.5
2.0
VOH − Output Voltage High − V
4.0
4.0
VOH − Output Voltage High − V
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
1.5
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.5
VCC = 2.3 V to 3.6 V
VI = 5.5 V
TA = 25°C
2.5
2.0
2.5
VCC − Supply Voltage − V
100 µA
2.7
2.9
3.1
3.3
VCC − Supply Voltage − V
OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE
8 mA
16 mA
24 mA
VOH − Output Voltage High − V
4.0
3.5
VCC = 2.3 V to 3.6 V
VI = 5.5 V
TA = –40°C
100 µA
8 mA
16 mA
24 mA
3.0
2.5
2.0
1.5
2.3
2.5
2.7
2.9
3.1
3.3
VCC − Supply Voltage − V
Figure 4. VOH Values
8
8 mA
16 mA
24 mA
3.0
1.5
2.3
3.7
100 µA
3.5
3.7
3.5
3.7
PACKAGE OPTION ADDENDUM
www.ti.com
24-May-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74CB3T3245DBQRE4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
74CB3T3245DBQRG4
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
74CB3T3245DGVRE4
ACTIVE
TVSOP
DGV
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74CB3T3245DGVRG4
ACTIVE
TVSOP
DGV
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DBQR
ACTIVE
SSOP/
QSOP
DBQ
20
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
SN74CB3T3245DGVR
ACTIVE
TVSOP
DGV
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DW
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DWG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DWR
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DWRE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245DWRG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PW
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PWE4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PWG4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74CB3T3245PWRG4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
24-May-2007
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
6.5
9.0
2.1
8.0
16.0
Q1
SN74CB3T3245DBQR
SSOP/
QSOP
DBQ
20
2500
330.0
16.4
SN74CB3T3245DGVR
TVSOP
DGV
20
2000
330.0
12.4
7.0
5.6
1.6
8.0
12.0
Q1
SN74CB3T3245DWR
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
SN74CB3T3245PWR
TSSOP
PW
20
2000
330.0
16.4
6.95
7.1
1.6
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74CB3T3245DBQR
SSOP/QSOP
DBQ
20
2500
346.0
346.0
33.0
SN74CB3T3245DGVR
TVSOP
DGV
20
2000
346.0
346.0
29.0
SN74CB3T3245DWR
SOIC
DW
20
2000
346.0
346.0
41.0
SN74CB3T3245PWR
TSSOP
PW
20
2000
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated