EM83040B LCD CONTROLLER i n ar y m i l e r P GENERAL DESCRIPTION The EM83040B is a dot matrix LCD driver, which is fabricated by low power CMOS technology. This chip includes 80-bits shift register, 80 bits data latch and 80 bits level driver. A LCD RAM inside can be mapping to LCD signal. It converts RAM data to parallel data and output waveform to LCD. FEATURES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Supply power: 2.5~5.5V LCD drive voltage: 3.6 to15V Internal RAM: 2.5k x 4 bits RAM can be controlled by eight signals including four bits data bus. Duty: 1/32, 1/48, 1/64, 1/80 Build in DC/DC converter: double, triple, quad and five times. Modularized function: connect to another 83040B to extent LCD matrix One DC converter enabled and other 83040B can share with this. Internal regulator output for DC/DC converter controlled by control register. Chip form (EM83040BH), 128 pin package (14mm x 20mm EM83040BAQ), 160 pin package (EM83040BBQ) (11) Bias: 1/5 (32 COMMON), 1/7 (48 COMMON), 1/9 (64 and 80 COMMON) fixed by internal circuit. (12) Internal RC clock about 250 KHz. APPLICATION (1) (2) (3) Data Bank LCD toy Education computer * This specification are subject to be changed without notice. 9.14.2001 1 EM83040B LCD CONTROLLER inary m i l e r P PIN ASSIGNMENTS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 EM83040BAQ 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 O53 O52 O51 NC NC NC NC NC O50 O49 O48 O47 O46 O45 O44 O43 O42 O41 O40 O39 O38 O37 O36 O35 O34 O33 O32 O31 O30 NC NC NC NC NC NC O29 O28 O27 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 MAIN M1 M0 EN NC NC NC NC RAMEN RAMADS RAMW RAMR RAMD3 RAMD2 RMAD1 RAMD0 LOAD VDD GND VOUT VSS4 VSS3 CB CA VSS2+ VSS2V1 V2 VREG NC NC NC NC NC V3 V4 V5 O0 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 O79 O78 O77 O76 O75 O74 O73 O72 O71 O70 O69 O68 O67 O66 O65 O64 O63 O62 O61 O60 O59 O58 O57 O56 O55 O54 EM83040BAQ * This specification are subject to be changed without notice. 9.14.2001 2 EM83040B LCD CONTROLLER i n ar y m i l e r P EM83040BBQ VOUT VSS4 VSS3 EM83040BBQ + - VREG * This specification are subject to be changed without notice. 9.14.2001 3 EM83040B LCD CONTROLLER inary m i l e r P BLOCK DIAGRAM VOUT VSS4 VSS3 CA CB VSS2+ VSS2- REG(5~0) Regulator VREG M1,M0 IR(2~0) Resistance ratio V1 Buffer1 Buffer2 Buffer3 Buffer4 Buffer5 * This specification are subject to be changed without notice. MUX ::::: BIAS 9.14.2001 4 EM83040B LCD CONTROLLER PIN DESCRIPTIONS Symbol I/O VDD GND VOUT Power Power Power VSS4 Power VSS3 Power VSS2+ Power VSS2VREG Power Power MAIN I EN I M1 M0 RAMEN I I RAMADS RAMW RAMR RAMD3~RAM D0 LOAD CA CB V1~V5 O1~O80 i n ar y m i l e r P I/O I I I O Function System power supply Ground Voltage converter input/output pin Connect this pin to GND through capacitor EN=1,VOUT=VDD Step-up capacitor EN=1, VSS4=VDD Step-up capacitor EN=1, VSS3=VDD Step-up capacitor EN=1, VSS2=VDD Step-up capacitor Output voltage regulator terminal. Provides the voltage between V1 and GND through a resistive voltage divider. Master or slave control signal. MAIN=1, master unit MAIN=0, slave unit This pin control whole chip power. This chip will work when this pin is connected to ground. And whole chip will disable when connect to VDD voltage. EN=0 and MAIN=1 the chip will generate VSS2+, VSS2VSS3, VSS4, VOUT, LOAD signal and internal RC clock. EN=1, standby mode Mode select Mode select RAM read and write control signal. 1 => can not read and write. 0=> can read and write. RAM data select signal 1=> RAM Data, 0=>Address RAM write signal, low write RAM read signal, low read RAM data or address bus LCD load signal between one COMMON signal to another. MAIN=1, the master unit will output LOAD signal. MAIN=0, the slave will accept the signal from master unit. Coupling capacitor Coupling capacitor Reference voltage input, highest V1°K lowest V5 LCD waveform output * This specification are subject to be changed without notice. 9.14.2001 5 EM83040B LCD CONTROLLER inary m i l e r P FUNCTION DESCRIPTIONS (1)User can use MAIN pin to chose master unit or slave unit. MAIN 1 0 Unit MASTER SLAVE Function Generate these signals: Load, CA, CB, VSS2+, VSS2-, VSS3, VSS4, VOUT Internal RC clock Accept these Master unit signals Load, VOUT, V1, V2, V3, V4, V5 No internal RC clock (2)User can use M1,M2 to choose four modes. As followed MASTER MAIN M1 M0 Segment Mode1 1 0 0 O(16:1)=S(16:1) Mode2 1 0 1 Mode3 1 1 0 O(32:1)=S(32:1) Mode4 1 1 1 O(48:1)=S(48:1) SLAVE MAIN M1 M0 Segment Mode1 0 0 0 O(80:1)=S(80:1) Mode2 0 0 1 O(80:1)=S(80:1) Mode3 0 1 0 O(80:1)=S(80:1) Mode4 0 1 1 O(80:1)=S(80:1) * S=Segment, C=Common * (M1, M0) for Master must same as Slave unit Common O(80:17)=C(64:1) O(80:1)=C(80:1) O(80:33)=C(48:1) O(80:49)=C(32:1) Common BIAS 1/9 1/9 1/7 1/5 BIAS 1/9 1/9 1/7 1/5 (3)RAM control Write mode FIG. 3 LCD RAM can be written or read with control signal. The RAMEN pin can select a RAM which can be read or write. The RAMADS pin can select whether * This specification are subject to be changed without notice. 9.14.2001 6 EM83040B LCD CONTROLLER i n ar y m i l e r P RAMD(3:0) are data or address of RAM. At the address mode, RAMADS is low and user should sent address three times, from address (11:8) to address (3:0). Then it will go into data mode when RAMADS is high. In data mode, user can sent one or more nibble data which address can be increased by internal counter. Once the RAMEN pin is high, the RAM can not read and write. (4)Read control Ten RAM disable RAM enable RAMEN ADDRESS RAMADS A3 A2 RAMD(3:0) Tdd DATA A1 D1 D2 D3 Tdh RAMW Tdv RAMR A3=address (11:8) A2=address(7:4) A1=address(3:0) FIG. 4 As same as write mode, user has to sent address three times. And read data from RAM one by one which address can be increased by internal counter. Note!! Be sure to make RAMR low pulse 2uS (Tdv +data) width and 2uS (Tdd) high width at least. (5) RAM mapping RAM address is from 0 to address 2562 User fill “1” to LCD RAM, LCD driver will generate “light” waveform. Otherwise, it will generate a “dark” waveform. The LCD RAM area is mapped to segment 1 to segment 80 from address 0 to address 19. And user can refer to fig.5 and Table 1 to get the idea of LCD ram mapping. The other RAM can use as general RAM for data storage if not mapping to LCD display. And the RAM of address 2560, 2561 and 2562 is control registers. Table 1: LCD mapping RAM area Common Segment 32 48 32 80 48 32 48 80 64 16 64 80 80 0 80 80 Any Any Master/slave Master Slave Master Slave Master Slave Master Slave Any * This specification are subject to be changed without notice. Display area 1,2,3 1,2,3,4 1,2,5,6 1,2,3,4,5,6,7 1,5,8 1,2,3,4,5,6,7,8,9 No mapping RAM 1,2,3,4,5,6,7,8,9,10 Area 11 is general RAM 9.14.2001 7 EM83040B LCD CONTROLLER inary m i l e r P Address 2560,2561 2562 Control register Address 2560,2561,2562 Control register address2559 ................... address2547 ......................................................................................................................... address2528 COM80 Area 11 address2047 ................... : : : : address1535 ................... : address2035 ......................................................................................address2019...............address2016 Area 9 : : : : : Area 7 : Area 6 Area 5 : address1011 .......................address1003 ............................................................................. address0992 Area 4 Area 3 : Area 2 COM64 Area 8 address1523 ............................................................address1511........................................address1504 : address1023 ................... : Area 10 LCD RAM EMPTY AREA COM48 COM32 Area 1 : address0063 ................... address0051 ................... ..................................... .......................... ................................... address0032 COM2 address0031 ................... address0019 ................... address0011................ address7........... address0003............... address0000 COM1 b3 b2 b1 b0 ................... s80s79s78s77 b3 b2 b1 b0 s48 s32 s16 s4 s3 s2 s1 Fig.5 As same as write mode , user has to sent address three times. And read data from RAM one by one which address can be increased by internal counter. NOTE!! Be sure to make RAMR low pulse 2 µS (Tdv+data) width and 2 µS (Tdd) high width at least. (5) RAM mapping RAM address is from 0 to address 2559 User fill “1” to LCD RAM , LCD driver will generate “light” waveform. Otherwise , it will generate a “dark” waveform. The LCD RAM area is mapped to segment 1 to segment 80 from address 0 to address 19. And user can refer to fig.5 to get the idea of LCD ram mapping. The other RAM can use as general RAM for data storage. And the RAM of address 2560 is a control register. * This specification are subject to be changed without notice. 9.14.2001 8 EM83040B LCD CONTROLLER i n ar y m i l e r P (6) LCD waveform frame V1 V2 V3 V4 V5 GND com0 V1 V2 V3 V4 V5 GND com1 V1 V2 V3 V4 V5 GND com2 V1 V2 V3 V4 V5 GND seg dark V1 V2 V3 V4 V5 GND seg light Fig.6 * This specification are subject to be changed without notice. 9.14.2001 9 EM83040B LCD CONTROLLER inary m i l e r P (7) Control register Address Bit3 Bit2 Bit1 Bit0 2560 IRS IR2 IR1 IR0 2561 REG3 REG2 REG1 REG0 2562 PS1 PS0 REG5 REG4 X: don’t care Default status of Address 2560,2561 and 2562, respectively: 0010, 0000, 0000 Address 2562 bit3~2(PS1, PS0) be selected: Use settings Only the internal power supply is used Only the V regulator circuit and the V/F circuit are used Only the V/F circuit is used Only the external power supply is used PS1 PS0 Step-up circuit V regulator circuit V/F circuit External voltage input 1 1 Ο O O X 1 0 X O O VOUT 0 1 X X O V1 0 0 X X X V1 to V5 Address 2562 bit1~0 and 2561 bit3~0 (Reg5~Reg0) is selected the VEV value REG5~REG0 000000 000001 ↓ 011111 100000 ↓ 111110 111111 VEV 1.2 V 1.212 V ↓ 1.572 V 1.584 V ↓ 1.944 V 1.956 V VEV step 0.012V VOUT V1 Rb V EV VREG Ra Fig.7 * This specification are subject to be changed without notice. 9.14.2001 10 EM83040B LCD CONTROLLER i n ar y m i l e r P Address 2560 bit3 (IRS) is internal resistor selected IRS=0: internal regulator resistor is used. IRS=1: internal regulator resistor is not used. (External resistor is used) Address 2560 bit0~2(IR2, IR1, IR0) is selected for the V1 voltage regulator internal resistance ratio IR2~IR0 Resistor ratio (1+Rb/Ra) 000 3.0 001 3.5 010 4.0 011 4.5 100 5.0 101 5.5 110 6.0 111 6.5 The V1 voltage can be calculated using equation A over the range where VDD < V1 ≤ VOUT V1=(1+Rb/Ra) • VEV *(94%~97%) (Equation A) (94%~97%) depend on loading Example: Default: IRS=0 (internal regulator resistor is used), (IR2, IR1, IR0)=(0, 1, 0), and (REG5~0)=(000000) V1=(1+Rb/Ra) • VEV*(94%~97%)=4.0 • 1.2*(94%~97%)= 4.51 V~4.65V When IRS=0 (internal regulator resistor is used), (IR2, IR1, IR0)=(0, 1, 1), and (REG5~0)=(100000) V1=(1+Rb/Ra) • VEV*(94%~97%)=4.5 • 1.584*(94%~97%)= 6.7~6.91 V FIG. 8 show the V1 voltage measured by values of the internal resistance ratio resistor (1+Rb/Ra) for V1 voltage adjustment and electric volume resister (REG5~REG0). FIG. 8 The output voltage V1 is determined by function of the V1 voltage regulator ratio register (1+Rb/Ra), and the electric volume resister (REG5~REG0). (8) The step-up voltage circuit Case of the double step-up, the triple step-up and Case of the quad step-up VOUT is output voltage pin the bias voltage V1 is supported from VREG. (a) Double step-up, (b) Triple step-up, (c) Quad step-up (d) five times step-up C1=0.47 to 1.0£gf, C2=1.0 to 4.7uf VOUT VSS4 VOUT VOUT VSS4 VSS4 VOUT C2 VSS4 C2 C2 VSS2- EM83040B C2 VSS2- VSS2+ CB C2 C2 CA CA CA EM83040B EM83040B CB C2 CA C2 C2 CB C2 VSS2+ VREG C2 VSS2+ C2 VSS2- C2 VSS2+ C2 VSS2VREG VREG VREG EM83040B CB VSS3 VSS3 VSS3 VSS3 C1 V1 V2 V3 V4 V5 (a) VOUT=2*VDD V1 V2 V3 V4 V5 C1 (b) VOUT=3*VDD * This specification are subject to be changed without notice. V1 V2 V3 V4 V5 C1 (c) VOUT=4*VDD FIG. 9 V1 V2 V3 V4 V5 C1 (d) VOUT=5*VDD 9.14.2001 11 EM83040B LCD CONTROLLER inary m i l e r P (9) Reference circuit examples are as following FIG. 10 (a) Only the internal power supply is used, control register (PS1, PS0, IRS)=(1,1,0) (b) Only the internal power supply is used, control register (PS1, PS0, IRS)=(1,1,1) When internal regulator resistor is not used (external resistor is used), V1=VREG*(1+Rb’/Ra’) (c) Only the V regulator circuit and the V/F circuit are used, control register (PS1, PS0, IRS)=(1,0,0) (d) Only the V regulator circuit and the V/F circuit are used, control register (PS1, PS0, IRS)=(1,0,1), When internal regulator resistor is not used (external resistor is used), V1=VREG*(1+Rb’/Ra’) (e) Only the V/F circuit is used, control register (PS1, PS0)=(0,1) (f) Only the external power supply is used, control register (PS1, PS0)=(0,0) VOUT VDD MAIN VOUT VDD MAIN VSS4 VSS3 VSS4 C2 VSS3 C2 VSS3 C2 CB CB CB C2 C2 CA CA VSS2+ C2 VSS2VREG EM83040B CA EM83040B MAIN VSS4 C2 EXTERNAL POWER SUPPLY VOUT EM83040B VDD VSS2+ C2 VSS2Ra’ VREG VSS2+ VSS2VREG Rb’ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 C1 (a) (b) EXTERNAL POWER SUPPLY VOUT (c) VOUT VDD VOUT VDD VSS4 VSS4 VSS3 VSS3 VSS3 CB CB CA CA CA CB VSS2+ VSS2VREG Ra’ VSS2+ VSS2- EXTERNAL POWER SUPPLY VREG EM83040B VSS4 EM83040B EM83040B VDD C1 C1 VSS2+ VSS2VREG Rb’ V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 C1 (d) V1 V2 V3 V4 V5 EXTERNAL POWER SUPPLY C1 (e) (f) FIG. 10 * This specification are subject to be changed without notice. 9.14.2001 12 EM83040B LCD CONTROLLER i n ar y m i l e r P ABSOLUTE MAXIMUM RATINGS Rating Symbol DC SUPPLY VOLTAGE INPUT VOLTAGE OPERATING TEMPERATURE RANGE STEP-UP VOLTAGE Value VDD Vin Ta VOUT Unit <3.5 -0.5 TO Vdd ±0.5 -30 TO 80 <18 V V °C V DC ELECTRICAL CHARACTERISTICS (TA= -30°C ~ 80°C, VDD=3V±5%, VSS=0V) Parameter Input voltage Output Low current Standby current Operating voltage Current of a buffer (V1 toV5) Voltage variation of regulator Regulator current BIAS resister Sym. Min. VDD IOL ISD IOP Typ. Max. 2.5 5.5 2.5 2.5 5.5 4.0 2.5 -100 3.3 Ibuf 4 Vreg V-0.1 Ireg R_bias 1800 Unit Condition With double step-up V 1 180 4 220 µA µA µA 40 70 µA 6 10 V V+0.1 10 15 2000 2200 µA V µA kΩ With triple step-up With quad step-up With five times step-up VDD=3V EN=1 EN=0, MAIN =1(MASTER) , DC converter enable, Five times step-up (M1, M0)=(1,1) V1=11V, 250KHz clock, No load EN=0 . MAIN =0 (SLAVE) ,DC converter enable, Five times step-up (M1, M0)=(1,1) V1=11V, 250KHz clock, No load Current of a buffer AC ELECTRICAL CHARACTERISTICS (TA= -30°C ~ 80°C, VDD=3V VSS=0V) Parameter Sym. RC clock variable Vrc Frame period Load period Enable time Write low pulse Data hold time Data to data time Data valid time Tframe Tload Ten Tw Tdh Tdd Tdv * This specification are subject to be changed without notice. Min. Typ. -20 1/64 31 30 2 500 2 1500 Max. Unit +20 % S µS µS µS nS µS nS 9.14.2001 13 EM83040B LCD CONTROLLER inary m i l e r P AC TIMING LCD control timing EN Tframe POSITIVE FRAME FRAME NEGATIVE FRAME LOAD C0 C1 S0 CM C0 Tload S1 S2 S3 SN Fig .11 LCD control timing Ten RAM disable RAM enable RAMEN RAMADS ADDRESS RAMD(3:0) A3 DATA Tdd A2 A1 D1 D2 D3 Tdh RAMW Tw RAMR A3=address(11:8) A2=address(7:4) A1=address(3:0) Fig .12 LCD RAM write mode * This specification are subject to be changed without notice. 9.14.2001 14 EM83040B LCD CONTROLLER i n ar y m i l e r P Ten RAM disable RAM enable RAMEN RAMADS ADDRESS RAMD(3:0) A3 A2 Tdd DATA A1 D1 D2 Tdv RAMW D3 Tdh RAMR A3=address (11:8) A2=address(7:0) A1=address(3:0) D1= first nibble D2=second nibble D3=third nibble data Fig .13 LCD RAM read mode APPLICATION CIRCUIT (1) C32 x S48 VDD VDD VDD VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 NC NC Fig .14 * This specification are subject to be changed without notice. 9.14.2001 15 EM83040B LCD CONTROLLER inary m i l e r P (2) C32 x S128 C31 : : C0 LCD 32*128 S127 ...... S80 VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) VDD VDD VDD LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 S79 ...... S0 LOAD VOUT VSS VDD VDD NC MASTER VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT NC NC NC NC NC NC NC CONNECT TO MASTER CHIP SLAVE Fig .15 (3) C48 x S112 LCD 48*112 C47 : : C0 S79 ...... S0 S111 ...... S80 VDD VDD GND VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT VSS VDD GND NC MASTER VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT NC NC NC NC NC NC NC CONNECT TO MASTER CHIP SLAVE Fig .16 * This specification are subject to be changed without notice. 9.14.2001 16 EM83040B LCD CONTROLLER i n ar y m i l e r P (4) C64 x S96 LCD 64*96 C63 : : C0 S79 ...... S0 S95 ...... S80 VDD GND GND VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT VSS GND GND NC MASTER VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT NC NC NC NC NC NC NC CONNECT TO MASTER CHIP SLAVE Fig .17 * This specification are subject to be changed without notice. 9.14.2001 17 EM83040B LCD CONTROLLER inary m i l e r P (5) C80 x S160 LCD 80*160 C79 : : C0 S79 ...... S0 VDD GND GND VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT VSS GND VDD NC MASTER LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT NC NC NC NC NC NC NC CONNECT TO MASTER CHIP SLAVE1 S159 ...... S80 VSS GND VDD VDD GND MAIN M1 M0 EN RAMEN RAMADS RAMW RAMR RAMD(3:0) LOAD VOUT VSS4 VSS3 CB CA VSS2+ VSS2VREG V1 V2 V3 V4 V5 LOAD VOUT NC NC NC NC NC NC NC CONNECT TO MASTER CHIP SLAVE2 Fig .18 * This specification are subject to be changed without notice. 9.14.2001 18 EM83040B LCD CONTROLLER OP_51_ OP_52_ OP_53_ OP_54_ OP_55_ OP_56_ OP_57_ OP_58_ OP_59_ OP_60_ OP_61_ OP_62_ OP_63_ OP_64_ OP_65_ OP_66_ OP_67_ OP_69_ OP_70_ OP_71_ OP_72_ OP_73_ OP_74_ OP_75_ OP_76_ OP_77_ 2 OP_78_ M1 3 OP_79_ M0 4 MAIN ENB PAD DIAGRAM OP_68_ i n ar y m i l e r P 1 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 RAMENB 9 94 OP_50_ RAMADS 10 93 OP_49_ RAMW 11 92 OP_48_ RAMR 12 91 OP_47_ RAMD_3_ 13 90 OP_46_ RAMD_2_ 14 89 OP_45_ RAMD_1_ 15 88 OP_44_ RAMD_0_ 16 87 OP_43_ LOAD 17 86 OP_42_ VDD 18 85 OP_41_ GND 19 84 OP_40_ VOUT 20 83 OP_39_ VSS4 21 82 OP_38_ VSS3 22 81 OP_37_ CB 23 80 OP_36_ CA 24 79 OP_35_ VSS2A 25 78 OP_34_ VSS2B 26 77 OP_33_ VV1 27 76 OP_32_ V2 28 75 OP_31_ VREG 29 74 OP_30_ V5 OP_0_ OP_1_ OP_2_ OP_3_ OP_4_ OP_5_ OP_6_ OP_7_ OP_8_ OP_9_ OP_10_ OP_11_ OP_12_ 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 OP_29_ V4 51 OP_28_ 50 OP_27_ 49 OP_26_ 48 OP_25_ 47 OP_24_ 46 OP_23_ 45 OP_22_ 44 OP_21_ 43 OP_20_ 42 OP_19_ 41 OP_18_ 40 OP_17_ 39 OP_16_ 38 OP_15_ 37 OP_14_ 36 OP_13_ 35 V3 (0,0) Chip Size : 3890 µm x 2500 µm Pad No. Sym. 1 MAIN 2 M1 3 M0 4 ENB(EN) 5 6 7 8 9 RAMENB(RAMEN) 10 RAMADS 11 RAMW 12 RAMR 13 RAMD_3_ 14 RAMD_2_ 15 RAMD_1_ 16 RAMD_0_ 17 LOAD 18 VDD 20 GND * This specification are subject to be changed without notice. X -1370.0 -1480.0 -1590.0 -1700.0 Y 1120.0 1120.0 1120.0 1120.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 1065.0 955.0 845.0 735.0 630.0 525.0 420.0 315.0 210.0 105.0 0.0 9.14.2001 19 EM83040B LCD CONTROLLER inary m i l e r P Pad No. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Sym. VSS4 VSS3 CB CA VSS2A(VSS2+) VSS2B(VSS2-) VV1(V1) V2 VREG X -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 -1820.0 Y -210.0 -315.0 -420.0 -525.0 -630.0 -735.0 -845.0 -955.0 -1065.0 V3 V4 V5 OP_0_ OP_1_ OP_2_ OP_3_ OP_4_ OP_5_ OP_6_ OP_7_ OP_8_ OP_9_ OP_10_ OP_11_ OP_12_ OP_13_ OP_14_ OP_15_ OP_16_ OP_17_ OP_18_ OP_19_ OP_20_ OP_21_ OP_22_ OP_23_ OP_24_ OP_25_ OP_26_ OP_27_ -1700.0 -1590.0 -1480.0 -1370.0 -1265.0 -1160.0 -1055.0 -950.0 -845.0 -740.0 -635.0 -530.0 -425.0 -320.0 -215.0 -110.0 -5.0 100.0 205.0 310.0 415.0 520.0 625.0 730.0 835.0 940.0 1045.0 1150.0 1255.0 1365.0 1475.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 -1120.0 * This specification are subject to be changed without notice. 9.14.2001 20 EM83040B LCD CONTROLLER i n ar y m i l e r P Pad No. 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 Sym. OP_28_ OP_29_ X 1585.0 1695.0 Y -1120.0 -1120.0 OP_30_ OP_31_ OP_32_ OP_33_ OP_34_ OP_35_ OP_36_ OP_37_ OP_38_ OP_39_ OP_40_ OP_41_ OP_42_ OP_43_ OP_44_ OP_45_ OP_46_ OP_47_ OP_48_ OP_49_ OP_50_ 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1820.0 1660.0 -1065.0 -955.0 -845.0 -735.0 -630.0 -525.0 -420.0 -315.0 -210.0 -105.0 0.0 105.0 210.0 315.0 420.0 525.0 630.0 740.0 850.0 960.0 1115.0 OP_51_ OP_52_ OP_53_ OP_54_ OP_55_ OP_56_ OP_57_ OP_58_ OP_59_ OP_60_ 1695.0 1585.0 1475.0 1365.0 1255.0 1150.0 1045.0 940.0 835.0 730.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 * This specification are subject to be changed without notice. 9.14.2001 21 EM83040B LCD CONTROLLER inary m i l e r P Pad No. 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 Sym. OP_61_ OP_62_ OP_63_ OP_64_ OP_65_ OP_66_ OP_67_ OP_68_ OP_69_ OP_70_ OP_71_ OP_72_ OP_73_ OP_74_ OP_75_ OP_76_ OP_77_ OP_78_ OP_79_ X 625.0 520.0 415.0 310.0 205.0 100.0 -5.0 -110.0 -215.0 -320.0 -425.0 -530.0 -635.0 -740.0 -845.0 -950.0 -1055.0 -1160.0 -1265.0 Y 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 1120.0 * The substrate must be fixed at GND level or floating, cannot fixed to VDD level. * This specification are subject to be changed without notice. 9.14.2001 22