HITACHI HA12206NT

HA12206NT
Audio Signal Processor for Cassette Deck
ADE-207-198B (Z)
3rd Edition
Jun. 1999
Description
HA12206NT is silicon monolithic bipolar IC providing music sensor system, ALC, REC equalizer system
and each electronic control switch in one chip.
Functions
• REC equalizer
× 2 channel
• Line Amp.
× 2 channel
• ALC (Automatic Level Control)
• MS (Music Sensor)
• Each electronic control switch to change REC equalizer, bias, etc.
• REC mute
Features
• REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics.
• Correspondence with normal position (TYPE I) / high position (TYPE II).
• TYPE I / TYPE II and PB equalizer fully electronic control switching built-in.
• Controllable from direct micro-computer output.
• Available to reduce substrate-area because of high integration and small external parts.
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal,
The value in the table show typical value.)
Pin No.
Pin Name
Note
2
PB-Ain (R)
V=0
Equivalent Circuit
Pin Description
A Deck PB input
V
100k
29
PB-Ain (L)
4
PB-Bin (R)
27
PB-Bin (L)
5
REC-in (R)
26
REC-in (L)
9
EQ-in (R)
22
EQ-in (L)
12
MIMS
3
AB out (R)
28
AB out (L)
6
ATT (R)
B Deck PB input
REC input
Equalizer input
MS Gain control
V=0
14.9k
10.6k
V
V=0
V
25
ATT (L)
7
RPOUT (R)
VCC
VEE
24
RPOUT (L)
Rev.3, Jun. 1999, page 2 of 32
Time constant for
NAB standard
Variable
impedance for
attenuation
REC or PB output
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal,
The value in the table show typical value.) (cont)
Pin No.
Pin Name
8
ADD in (R)
Note
Equivalent Circuit
Pin Description
Adder input
100k
100k
23
100k
8
100k
23
ADD in (L)
10
EQOUT (R)
100k
V = 0V
Equalizer output
100k
V
21
EQOUT (L)
11
IREF
V = 1.2V
Equalizer
reference current
input
V
13
DET MS
V = VCC – 4.2V
15
DET ALC
V = 2.3V
16
MS
V
Time constant for
rectifier
MS output
Rev.3, Jun. 1999, page 3 of 32
HA12206NT
Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal,
The value in the table show typical value.) (cont)
Pin No.
Pin Name
Note
17
Acr
V = 0V
Equivalent Circuit
Pin Description
VCC
Mode control
22k
100k
V
18
Bcr
19
REC MUTE
20
REC / A / B
1
VEE
VEE pin
14
VCC
VCC pin
30
GND
GND pin
V = 2.5V
Rev.3, Jun. 1999, page 4 of 32
VEE
−7V
1
3
PB Ain
(R)
AINR ABOUTR
C1R
4700p
2
1k
REC
5
PB Bin
(R)
+
−
C4L
0.1µ
7
8
R2R
2.2k
C4R
0.1µ
RECOUT
(R)
or
PBOUT
(R)
+
C3R
20dB
SW3L
100k
22
Mute
R3R
SW4L
−5dBs
SW4R
20
EQOUT
(R)
VEE
R4
IREF
10 (436mV) 11
(38.8mV)
EQINR EQOR
9
100k −26dBs
SW3R
20dB
67k
Mute
21
100k
+
−
13
18
BCR
MIMS DETMS
R5
68k
C6
C5 0.33µ +
2200p
12
19
EQOL RECAB RECMUTE
15
16
MS
VCC
+7V
C7
10µ +
DETALC
14
MS
DET
ALC
DET
17
ACR
Acr
(SW2)
C/N
R6
330k
RECMUTE Bcr
(SW3)
(SW2)
EQOUT (SW1)
REC/A/B ON/OFF
C/N
(L)
ADDER
R3L
EQINL
67k
23
ATTR RPOUTR ADDINR
6
(580mV)
−2.5dBs
24
−2.5dBs
(580mV)
(1.64Vpp)
25
−30dBs
C
N
REC in
(R)
−12.7dBs
(180mV)
R1R
15k
BINR RECINR
C2R
0.1µ
4
−30dBs
14.9k
22.7k
10.6k
+ 27.5dB
−
SW2R
B
SW1R
−
+
A
N
C
SW2L
27.5dB
10.6k
22.7k
14.9k
C3L
+
ATTL RPOUTL ADDINL
−30dBs
26
−30dBs
27
R2L
2.2k
SW1L
REC
1k
28
C2L
0.1µ
BINL RECINL
R1L
15k
REC in
(L)
A
(24.5mV)
−30dBs
100k
100k
100k
100k
100k
100k
B
29
C1L
4700p
AINL ABOUTL
−30dBs
30
GND
PB Bin
(L)
+
−
PB Ain
(L)
REC⋅EQ
REC⋅EQ
RECOUT
(L)
or
PBOUT
(L)
R7
1M
5V
Unit R : Ω
C:F
R8
3.9k
HA12206NT
Block Diagram
Rev.3, Jun. 1999, page 5 of 32
HA12206NT
Truth Table
Parallel Data Format
NAB SW Position (SW 2)
REC / A / B (Pin 20)
Acr (Pin 17)
Bcr (Pin 18)
L
M
H
REC-EQ Mode
L
L
TYPE I
TYPE I
TYPE I
TYPE I
L
H
TYPE II
TYPE I
TYPE I
TYPE II
H
L
TYPE I
TYPE II
TYPE I
TYPE I
H
H
TYPE II
TYPE II
TYPE I
TYPE II
Line Amp (SW 1)
B
A
REC
ALC
OFF
OFF
*1
OFF
ON
ON
REC-EQ Behind (SW 4)
Note:
1. Follow the position of REC-MUTE pin.
REC-MUTE (Pin 19)
REC-EQ Before (SW 3)
ALC
L
Active
ON
H
MUTE
OFF
Control Pin Position Under the Open Case
Acr (Pin 17)
L
Bcr (Pin 18)
L
REC-MUTE (Pin 19)
L
REC / A / B (Pin 20)
M
Rev.3, Jun. 1999, page 6 of 32
2
3
4
5
6
7
Acr
Bcr
REC-MUTE
RECAB
GV(1)
GV(2)
2-3
(VIH)
3-1
3-2
Ain
Bin
EQin
RECin
1kHz, –30dBs RECin
1kHz
Ain
1kHz, –30dBs Ain
1kHz, –0.7dBs RECin
8
9
6
6
9
GV(3)
GV(4)
Vomax
THD(1)
THD(2)
3-4
4
5-1
5-2
10kHz, –30dBs Bin
1kHz, –30dBs Bin
1kHz, –30dBs Ain
10kHz, –30dBs
10kHz, –30dBs
1kHz, –26dBs
1kHz, –30dBs
1kHz, –30dBs Bin
1kHz, –30dBs Ain
VIM
(Acr, Bcr)
VIH
AC VM2
AC VM2 V(AC VM2)
AC VM2
(dB) (0.5dB)
AC VM2
RPOUT Distortion 400 to 30kHz BPF
Analyzer
RPOUT AC VM2 Vi=V(AC VM2) at SW5, SW6=REC
RPOUT AC VM2 Vo=V(AC VM2) at T.H.D=1%
RPOUT Distortion 400 to 30kHz BPF
Analyzer
RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)}
AC VM2
RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)}
AC VM2
V(DC SOURCE 1)
GV=20 log {V(AC VM2 / Vi)}
Vomax=20 log (Vo / 580mV)
(RECAB)
VIH
0.3dB
VIH
60dB
V(DC SOURCE 1)
(REC-MUTE)
(dB)
V(AC VM2)
VIM
(0.5dB)
V(DC SOURCE 1)
V(DC SOURCE 1)
VIL
(0.5dB)
RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)}
AC VM2
RPOUT
RPOUT
EQOUT
RPOUT
(dB)
RPOUT AC VM2
RPOUT AC VM2 V(AC VM2)
(dB)
PBOUT AC VM2
PBOUT AC VM2 V(AC VM2)
EQOUT AC VM2
Ain
Bin
EQin
Measure Other
IQ=I (DC SOURCE 3)
—
Output
—
Input
—
3-3
2-2
(VIM)
5
5
Set No. SG.
—
1
10kHz, –30dBs
2
10kHz, –30dBs
3
1kHz, –26dBs
4
RECAB
RECAB
Test No. Symbol
IQ
1
2-1
Acr
(VIL)
Bcr
REC-MUTE
HA12206NT
Test Conditions
Rev.3, Jun. 1999, page 7 of 32
Rev.3, Jun. 1999, page 8 of 32
VOL
GV REC N1
GV REC N2
GV REC N3
GV REC C1
GV REC C2
GV REC C3
R-MUTE ATT
Vomax REC
THD REC
S/N REC
11
12-1
12-2
12-3
13-1
13-2
13-3
14
15
16
17
EQout
Ain
EQin
EQin
EQin
EQin
EQin
EQin
EQin
EQin
EQin
—
1kHz, –30dBs
1kHz, –46dBs
8kHz, –46dBs
12kHz, –46dBs
1kHz, –46dBs
8kHz, –46dBs
12kHz, –46dBs
1kHz, –14dBs*
1kHz
1kHz, –26dBs
—
6
13
13
13
13
13
13
14
13
13
13
RPOUT
EQout
EQout
EQout
EQout
EQout
EQout
EQout
EQout
EQout
—
Ain
Ain/Bin
RECin
Ain
—
1kHz, –18dBs*
1kHz, –18dBs*
1kHz, –0.7dBs
5kHz
Output
RPOUT
RPOUT
RPOUT
RPOUT
RPOUT
RPOUT
Input
—
SG.
—
Set No.
6
9
10
11
12
6
Note: or large level without dipping
Test No. Symbol
6-1
S/N (1)
S/N (2)
6-2
CT R/L
7
CT A/B
8
ALC
9
VON
10
Noise
Meter
DC VM
AC VM2
AC VM2
AC VM2
AC VM2
AC VM2
AC VM2
AC VM2
AC VM2
Distortion
Analyzer
Measure
—
—
AC VM2
AC VM2
AC VM2
AC VM2
DC VM
S/N=20 log {436mV / V(AC VM2)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
GV REC=20 log {V(AC VM2) / V(AC VM1)}
R-MUTE ATT=20 log {436mV / V(AC VM2)}
at T.H.D=1%
400 to 30kHz BPF
S/N=20 log {580mV / V(Noise)} CCIR / ARM
CT=20 log {580mV / V(AC VM2)}
CT=20 log {580mV / V(AC VM2)}
ALC=20 log {V(AC VM2) / 580mV}
VON=20 log {V(AC VM2) / 580mV} at DC VM=
Other
S/N=20 log {580mV / V(Noise)} CCIR / ARM
HA12206NT
Test Conditions (cont)
SW-Position
1
2
OFF
*1
*2
A
*2
B
*2
EQ
*2
B
*2
A
*2
B
*2
B
*2
REC
R⇔L
A
*2
A⇔B
*2
REC
EQ
*2
*2
EQ
A
*2
EQ
*2
3
*1
A
B
EQ
B
A
B
B
REC
A
A⇔B
REC
EQ
EQ
A
EQ
2. Measured channel Lch or Rch
Note: 1. Either will do
Set No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4
*1
*2
*2
*2
*2
*2
*2
*2
*2
L⇔R
*2
*2
*2
*2
*2
*2
5
*1
RP
RP
EQ
RP
RP
RP
RP
RP
RP
RP
RP
EQ
EQ
RP
EQ
6
*1
RP
RP
EQ
RP
RP
RP
RP
RP
RP
RP
RP
EQ
EQ
RP
EQ
7
L
M
L
L
L
L
L
L
L
L
L
L
L
L
L
L
8
L
L
M
L
L
L
L
H
L
L
L
L
L
L
L
L
9
L
L
L
M
L
H
H
H
H
H
H
L
L
H
H
L
10
M
OFF
L
H
M
M
L
L
H
M
L⇔M
H
M
M
M
M
DC-SOURCE(V)
1
2
2.5V
5V
0 to VCC 5V
0 to VCC 5V
0 to VCC 5V
0 to VCC 5V
2.5V
5V
*1
5V
*1
5V
*1
5V
2.5V
5V
2.5V
5V
*1
5V
2.5V
5V
2.5V
5V
2.5V
5V
2.5V
5V
3
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–6V
–6V
4
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–7V
–6V
–6V
HA12206NT
Test Conditions (cont)
SW Position (Pre-Set for Each TEST)
Rev.3, Jun. 1999, page 9 of 32
HA12206NT
Functional Description
Power Supply Range
Table 1 Supply Voltage
Power Supply Range
Item
VCC
VEE
| VCC | – | VEE |
Single Supply
6.0V to 7.5V
–7.5V to –6.0V
Inside 1.0V
Note: HA12206NT is designed to operate on split supply.
As VEE pin is joined the substrate of chip, there is the possibility of latch-up in such case that the other pin is
supplied a voltage and VEE pin is open.
Therefore please use as VEE pin become the lowest voltage of low impedance all the time. When power
supply is thrown into this IC, that caution is necessary especially.
Operating Mode Control
HA12206NT provides fully electronic switching circuits. And each operating mode control is controlled by
parallel data (DC voltage).
Table 2 shows the control voltage of each control input pin.
Table 2
Control Voltage
Pin No.
Lo
Mid
Hi
Unit
17, 18, 19
0.0 to 1.0
—
4.0 to VCC
V
20
0.0 to 1.0
2.0 to 3.0
4.0 to VCC
V
Note:
Test Condition
Input Pin
Measure
1. Each pin is pulled down with 100kΩ internal resistor. 17 to 19 pins are low-level, 20 pin is midlevel, when each pin is open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: Less than VCC, Low: More than –0.2V)
Rev.3, Jun. 1999, page 10 of 32
HA12206NT
PB Equalizer
By switching logical input level of pin17 (for Ain) or pin18 (for Bin), you can equalize corresponding to
tape position at play back mode.
Frequency characteristics of high position (TYPE II) depends on capacitor C1 on the block diagram figure.
Figure 1 is shown by a motive of the NAB standard.
GV
τ1 = C1 • (10.6k+14.9k)
τ2 = C1 • 14.9k
f
τ1
τ2
Figure 1 Frequency Characteristics of PB Equalizer
Music Sensor
VCC
0.33µ
330k
13
to ALC
D VCC
(5V)
100k
C4 L
100k
23
22k
100k
+
–
C4 R
43p
8
MS
DET
16
100k
100k
100k
to ALC
12
LR addend stage
Detection stage Output stage
R5
68k
C5
2200p
Amplification stage
Figure 2 Music Sensor Block Diagram
Rev.3, Jun. 1999, page 11 of 32
HA12206NT
The Sensitivity of Music Sensor
Frequency characteristics of MS amplification stage is shown by figure 3.
GV
f2
1
[Hz]
2π • C5 • (R5 + 100k)
f2 =
1
[Hz]
2π • C5 • R5
f3 = 25k
f
f1
f1 =
[Hz]
f3
Figure 3 Frequency Characteristic of MS AMP
Occasion of the external component of figure 2, f1 is 430Hz and f2 is 1.1kHz.
As the MS sensitivity is prescribed at 5kHz, this stage’s gain is 7.9dB. But in only one-sided channel input
case, this gain is considered as –6dB down, because the other channel input pin is imaginary earth. That is,
the gain from RPOUT to MSDET is 1.86dB.
As the detection sensitivity at MSDET is fixed 130mVrms, the sensitivity at RPOUT (8 pin or 23 pin) is
calculated by the following formula.
130mV = 105mV
1.86
20
10 ^
Because of RPOUT=580mVrms=0dB, therefore, the MS sensitivity becomes –14.8dB.
That is the detection level.
Time Constant of Detection
Figure 4 (1) generally shows that detection time is in proportion to value of capacitor C16. But, with
1
2
Attack* and Recovery* the detection time differs exceptionally.
Non-music → Music
Note: 1. Attack :
Recovery
Attack
Recovery
Detection time
Detection time
Detection time
2. Recovery : Music → Non-music
Attack
C6
R6
Detection level
Function Characteristics of MS (1)
Function Characteristics of MS (2)
Recovery
Attack
Input level
Function Characteristics of MS (3)
Figure 4 Function Characteristic of MS
Like the figure 4 (2), Recovery time is variably possible by value of resistor R6. But Attack time gets about
fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is
short tendency.
Rev.3, Jun. 1999, page 12 of 32
HA12206NT
Music Sensor Output (MSOUT)
Because MS out pin is connected to the collector of NPN type directly, it is requested to use pull up resistor
(RL=10k to 22kΩ)
Output level is “High” sensing no signal. And output level is “Low” sensing signal.
Please take notice of MS Low level voltage (GND+0.9V).
The connected supply voltage must be less than VCC voltage, with MSOUT pull up resistor.
Automatic Level Control (ALC)
RPOUT
ALC is the input decay rate variable system.
It has internal variable resistors of pin6 (pin25) by RECOUT signal that is inputted to pin8 (pin23).
The operation is similitude to MS, detected by pin15.
The signal input pin is pin5 (pin26). Resistor R1, R2 and capacitor C2, external components, for the input
circuit are commended as figure 6. These are requested to use value of the block diagram figure for
performance maintenance of S/N, T.H.D. etc.
Figure 5 shows the relation with R1 front REC IN point and RPOUT.
ALC operation level is 775mVrms {standard level (580mVrms) +2.5dB}. And it is designed to operate
from 0dB to +15dB as 775mVrms=0dB.
Adopted maximum value circuit, ALC is operated by a large channel of a signal.
ALC on/off is linked with REC mute. When REC mute is on, ALC is off.
775mV
580mV
2.5dB
15dB
RECIN
Figure 5 ALC Operation Level
R1
RECIN
C2
5
Input
RPOUT
580mV
24.5mV 27.5dB
7
Output
C4
6
ATT
ALC
8
ADDIN
R7
R2
DETALC
15
VCC
+
C7
Figure 6 ALC Block Diagram
REC-Equalizer
REC mute is located at input-part of REC-equalizer. Therefore it has realized low pop noise.
But because there is deference DC offset at the each mode of REC-equalizer, it is necessary for a coupling
capacitor between EQOUT pin and recording head.
Rev.3, Jun. 1999, page 13 of 32
HA12206NT
Absolute Maximum Rating (Ta = 25°C)
Item
Symbol
Rating
Unit
Max supply voltage
VCC max
+8
V
Max supply voltage
VEE max
–8
V
Power dissipation
Pd
500
mW
Operating temperature
Topr
–40 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Operating voltage
Vopr
VCC=–VEE=6 to 7.5
V
Rev.3, Jun. 1999, page 14 of 32
Note
Ta≤75°C
ALC
VON
VOL
ALC operation level
MS sensing level
MS output low level
dB
dB
dB
dB
mA
V
V
V
dB
dB
dB
dB
dB
%
%
0.0 2.5 5.5 dB
–18.7 –14.7 –10.7 dB
—
1.0 1.5 V
3. For inputting signal to one side channel
2. From REC in point
Note: 1. VCC(VEE) = ±6.0V
CT R/L
CT A/B
Channel separation
Crosstalk
—
—
S/N(2)
80
70
—
81
73
S/N(1)
Signal to noise ratio
Maximum output
THD
70
60
—
78
70
IQ
VIL
VIM
VIH
GV(1)
GV(2)
GV(3)
GV(4)
Vomax
THD(1)
THD(2)
Quiescent current
Logical threshold
Line amp. gain
22.0
1.0
3.0
VCC
29.0
29.0
24.9
29.0
—
0.3
3.0
16.0
—
—
—
27.5
27.5
22.9
27.5
13.0
0.05
1.0
10.0
–0.2
2.0
4.0
26.0
26.0
20.9
26.0
12.0
—
—
Symbol
Item
fin
(Hz)
—
—
—
TYPE I
TYPE I
TYPE I
TYPE I
TYPE I
TYPE I
TYPE I
—
—
—
—
—
—
TYPE I 1k
TYPE I 1k
TYPE II 10k
TYPE I 1k
TYPE I 1k
TYPE I 1k
TYPE I 1k
Mute TYPE I TYPE I —
—
—
—
Mute
Mute
Mute
Mute
Mute
Mute
Active
Active TYPE I TYPE I —
Bcr
–18
–18
–0.7
—
—
REC Active TYPE I TYPE I 1k
A
Mute TYPE I TYPE I 5k
A
Mute TYPE I TYPE I —
—
—
—
—
—
—
–30
–30
–30
–30
—
–30
–0.7
2
4
4
5
2
2
5
R
7
7
7
7
7
7
7
R
+12dB (ALC ON)
24
24
24
24
24
24
24
24
24
L
7
7
7
COM
14
17 to 20
20
17 to 20
24
24
24 16
24 7
7 24
29
29
27
26
29
29
+12dB
+12dB
2
2
4
5
2
2
29 7
Rg=2.2kΩ, CCIR/ARM 2
S=580mVrms
29 7
29
27
27
26
29
29
26
L
Application Terminal
Input Output
Rg=10kΩ, CCIR/ARM 2
S=580mVrms
0dB
0dB
0dB
0dB
THD=1%
0dB, BW 400Hz to 30kHz
+12dB (ALC ON)
BW 400Hz to 30kHz
No signal
Vin
(dBs) Other
Mute TYPE I TYPE I 1k
Mute TYPE I TYPE I 1k
A
A/B
REC Mute TYPE I TYPE I —
A
A
—
—
—
A
B
B
REC
A
A
REC
Test Condition
IC Condition
REC/ REC
Min Typ Max Unit A/B MUTE Acr
2, 3
3
2
1
Note
HA12206NT
Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs
(Vout))
Rev.3, Jun. 1999, page 15 of 32
Rev.3, Jun. 1999, page 16 of 32
GV REC-N1
GV REC-N2
GV REC-N3
GV REC-C1
GV REC-C2
GV REC-C3
R-MUTE ATT
REC-EQ frequency
response
Normal speed
Normal tape
REC-EQ frequency
response
Normal speed
Chrom tape
REC-MUTE
attenuation
Note: 4. VCC=±6.0V (V)
21.7
27.1
34.4
25.6
32.5
39.4
—
7.0 —
0.35 0.7
60 —
18.7 20.2
23.1 25.1
28.4 31.4
22.6 24.1
28.5 30.5
33.2 36.4
70 80
REC-EQ maximum output Vomax REC 4.0
REC-EQ THD
THD REC
—
REC-EQ S/N
S/N REC
52
Symbol
Item
A
A
A
A
A
A
A
dBs A
A
%
dB A
dB
dB
dB
dB
dB
dB
dB
fin
(Hz)
TYPE I TYPE I 1k
TYPE I TYPE I 8k
TYPE I TYPE I 12k
TYPE I TYPE II 1k
TYPE I TYPE II 8k
TYPE I TYPE II 12k
TYPE I TYPE I 1k
Bcr
Active TYPE I TYPE I 1k
Active TYPE I TYPE I 1k
Active TYPE I TYPE I —
Active
Active
Active
Active
Active
Active
Mute
Test Condition
IC Condition
REC/ RECMin Typ Max Unit A/B MUTE Acr
—
–26
—
–46
–46
–46
–46
–46
–46
–14
Rg=5.1kΩ, A-WTG
S=–5dBs
THD=1%
+12dB
EQin
(dBs) Other
9
9
9
9
9
9
9
9
9
9
R
R
10
10
10
10
10
10
10
L COM
21
21
21
21
21
21
21
22 10 21
22 10 21
22 10 21
22
22
22
22
22
22
22
L
Application Terminal
Input Output
4
Note
HA12206NT
Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs
(Vout)) (cont)
HA12206NT
Test Circuit
Rev.3, Jun. 1999, page 17 of 32
HA12206NT
Characteristic Curves
Quiescent Current vs. Supply Voltage (PB mode)
18
Ta=25˚C
Ain,
Bin,
Ain,
Bin,
Quiescent Current ICC (mA)
17
, Nor
, Nor
, Cro
, Cro
16
15
14
13
12
5
6
7
8
Supply Voltage VCC (V)
9
Quiescent Current vs. Supply Voltage (REC mode)
18
Ta=25˚C
Ain,
Bin,
Ain,
Bin,
Quiescent Current ICC (mA)
17
, Nor
, Nor
, Cro
, Cro
16
15
14
13
12
5
Rev.3, Jun. 1999, page 18 of 32
6
7
8
Supply Voltage VCC (V)
9
HA12206NT
Quiescent Current vs. Supply Voltage (PB mode)
–12
Quiescent Current IEE (mA)
–13
Ta=25˚C
Ain,
Bin,
Ain,
Bin,
, Nor
, Nor
, Cro
, Cro
–14
–15
–16
–17
–18
–5
–6
–9
–7
–8
Supply Voltage VEE (V)
Quiescent Current vs. Supply Voltage (REC mode)
–12
Quiescent Current IEE (mA)
–13
Ta=25˚C
Ain,
Bin,
Ain,
Bin,
, Nor
, Nor
, Cro
, Cro
–14
–15
–16
–17
–18
–5
–6
–7
–8
Supply Voltage VEE (V)
–9
Rev.3, Jun. 1999, page 19 of 32
HA12206NT
RPOUT vs. Frequency (1) Ain mode
30
28
VCC=7V
Ta=25˚C
120µ
26
GV RPOUT (dB)
24
22
70µ
20
18
16
14
12
10
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
RPOUT vs. Frequency (2) Rin mode
30
28
VCC=7V
Ta=25˚C
26
GV RPOUT (dB)
24
22
20
18
16
14
12
10
10
100
Rev.3, Jun. 1999, page 20 of 32
1k
10k
Frequency (Hz)
HA12206NT
RPOUT Total Harmonic Distortion vs. Input Level
Total Harmonic Distortion T.H.D. (%)
10
VCC=7V, f=1kHz,
Vout=580mVrms
Ta=25˚C
Ain (NORM)
Ain (CROM)
Bin (NORM)
1.0
0.1
0.01
–20
–10
0
Input Level Vin (dB)
20
10
RPOUT Total Harmonic Distortion vs. Output Level
Total Harmonic Distortion T.H.D. (%)
10
VCC=7V, f=1kHz,
Vout=580mVrms
Ta=25˚C
Rin (RM-ON)
Rin (RM-OFF)
1.0
0.1
0.01
–20
–10
0
10
Output Level Vout (dB)
20
Rev.3, Jun. 1999, page 21 of 32
HA12206NT
RPOUT Maximum Output Level vs. Supply Voltage
Maximum Output Level Vomax (dB)
20
15
Ta=25˚C, f=1kHz,
RPOUT=580mVrms=0dB
Ain
Bin
Rin RM-ON (ALC OFF)
Rin RM-OFF (ALC ON)
10
5
0
4
5
6
7
Supply Voltage VCC (V)
8
9
RPOUT Signal to Noise Ratio vs. Supply Voltage
Signal to Noise Ratio S/N (dB)
85
80
Ta=25˚C, CCIR/ARM
RPOUT=580mVrms=0dB
Ain NORM
Ain CROM
Bin
Rin RM-ON
Rin RM-OFF
75
70
65
4
Rev.3, Jun. 1999, page 22 of 32
5
6
7
Supply Voltage VCC (V)
8
9
HA12206NT
Line Amp. Crosstalk vs. Frequency
0
Line Amp. Crosstalk (dB)
VCC=7V, Ta=25˚C,
0dB=RPOUT=580mV,
–10
Vin=+10dB,
Normal, Ain mode
–20
–30
–40
Bin mode
–50
–60
–70
Rin mode
(REC)
–80
–90
–100
100
1k
10k
100k
Frequency (Hz)
1M
10M
1M
10M
Line Amp. Channel Separation vs. Frequency
0
Line Amp. Channel Separation (dB)
–10
–20
VCC=7V, Ta=25˚C,
0dB=RPOUT=580mV,
Vin=+10dB,
Normal, Ain mode
–30
–40
–50
L→R
–60
R→L
–70
–80
–90
–100
100
1k
10k
100k
Frequency (Hz)
Rev.3, Jun. 1999, page 23 of 32
HA12206NT
EQOUT vs. Frequency
50
VCC=7V
Ta=25˚C
GV EQOUT (dB)
40
Chrom
30
20
Norm
10
10
100
1k
Frequency (Hz)
100k
10k
REC-EQ Total Harmonic Distortion (Normal) vs. Output Level
Total Harmonic Distortion T.H.D. (%)
VCC=7V, Ta=25˚C,
400 to 30kHz BPF
10.0
5kHz
1.0
0.1
–10
Rev.3, Jun. 1999, page 24 of 32
1kHz
–5
0
5
Output Level Vout (dBs)
10
15
HA12206NT
REC-EQ Total Harmonic Distortion (Chrom) vs. Output Level
Total Harmonic Distortion T.H.D. (%)
VCC=7V, Ta=25˚C,
400 to 30kHz BPF
10.0
1.0
5kHz
1kHz
0.1
–10
–5
0
5
Output Level Vout (dBs)
10
REC-EQ Maximum Output Level vs. Supply Voltage
Maximum Output Level Vomax (dBs)
20
Norm
Crom
T.H.D≥1%
Ta=25˚C
15
10
5
0
4
5
6
7
Supply Voltage VCC (V)
8
9
Rev.3, Jun. 1999, page 25 of 32
HA12206NT
REC-EQ Signal to Noise Ratio vs. Supply Voltage
70
REC-EQ Signal to Noise Ratio S/N (dB)
0dB=Vout=-5dBs,
A-WTG, Ta=25˚C
65
Normal
Chrom
60
55
50
4
5
6
7
Supply Voltage VCC (V)
9
8
REQ-EQ Channel Separation vs. Frequency
60
REQ-EQ Channel Separation (dB)
40
VCC=7V, Ta=25˚C,
Vin=+12dB, Normal mode
R→R
20
reference
0
–20
R→L
–40
–60
L→R
–80
–100
–120
–140
10
Rev.3, Jun. 1999, page 26 of 32
100
1k
Frequency (Hz)
10k
100k
HA12206NT
REQ-EQ Mute Attenuation vs. Frequency
60
40
VCC=7V, Ta=25˚C,
Vin=+20dB, Normal mode
reference
,
0
–20
, MUTE
–40
–60
B, MUTE
–80
–100
–120
–140
10
100
1k
Frequency (Hz)
100k
10k
ALC Operate Level vs Input Level
30
VCC=7V, Ta=25˚C,
Single or Both input
100Hz to 10kHz
Output Level (dB) 0dB=580mVrms
REQ-EQ Mute Attenuation (dB)
20
20
10
0
–10
–20
–20
–10
0
10
20
Input Level Vin (dB) Rin=180mVrms=0dB
30
Rev.3, Jun. 1999, page 27 of 32
HA12206NT
ALC Total Harmonic Distortion vs. Input Level
Total Harmonic Distortion T.H.D. (%)
VCC=7V, Ta=25˚C,
Single or Both input
1.0
0.5
10kHz
100Hz
0.1
0.05
1kHz
0.01
–20
–10
0
10
20
Input Level Vin (dB) Rin=180mVrms=0dB
30
ALC Operate Level vs. Frequency
10
Output Level (dB)
VCC=7V, Vin=+12dB,
Vout=580mVrms=0dB
Ta=25˚C
Single input
Both input
5
0
–5
10
50
Rev.3, Jun. 1999, page 28 of 32
100
500 1k
Frequency (Hz)
5k
10k
50k 100k
HA12206NT
MS Sensing Level vs Frequency
0
VCC=7V, Ta=25˚C,
Lo→Hi
–2 MSOUT
Hi→Lo
MS Sensing Level (dB)
–4
–6
–8
–10
–12
–14
–16
–18
–20
100
500
1k
5k
Frequency (Hz)
10k
50k
100k
Singnal Sensing Time vs. Capacitor
100
Singnal Sensing Time (ms)
VCC=7V, Ta=25˚C, f=5kHz MSOUT
50 Ain→RPOUT=580mVrms=0dB
0dB
–5dB
–10dB
20
VCC 14
10
5
330kΩ
MSDET 13
2
PBOUT
1
MSOUT
0.5
0.2
0.1
0.01
0.05
0.1
Capacitor (mF)
0.5
1.0
Rev.3, Jun. 1999, page 29 of 32
HA12206NT
No Signal Sensing Time vs. Resistor
No Signal Sensing Time (ms)
1000
VCC=7V, Ta=25˚C, f=5kHz MSOUT
Ain→RPOUT=580mVrms=0dB
500
0dB
–5dB
200
V
14
CC
0.33µF
100
+
MSDET 13
50
20
10
5
PBOUT
MSOUT
2
1
10k
50k
100k
Resistor (W)
500k
1M
VMSOUT vs. Resistor RL
5
VCC=7V, Ta=25˚C, f=5kHz MSOUT
Ain→RPOUT=580mVrms=0dB
Vin=0dB
5V
4
RL
VMSOUT (V)
MSOUT 16
3
2
1
0
100
500
Rev.3, Jun. 1999, page 30 of 32
1k
5k 10k
Resistor RL (Ω)
50k 100k
500k 1M
HA12206NT
Package Dimensions
Unit: mm
27.10
28.10 Max
8.8
1.0
15
0.48 ± 0.10
0.51 Min
1.78 ± 0.25
10.16
5.06 Max
1.5 Max
2.54 Min
1
10.0 Max
16
30
+ 0.10
0.25 – 0.05
1˚ – 13˚
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
DP-30S
—
Conforms
1.98 g
Rev.3, Jun. 1999, page 31 of 32
HA12206NT
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.3, Jun. 1999, page 32 of 32