HA12206NT Audio Signal Processor for Cassette Deck ADE-207-198B (Z) 3rd Edition Jun. 1999 Description HA12206NT is silicon monolithic bipolar IC providing music sensor system, ALC, REC equalizer system and each electronic control switch in one chip. Functions • REC equalizer × 2 channel • Line Amp. × 2 channel • ALC (Automatic Level Control) • MS (Music Sensor) • Each electronic control switch to change REC equalizer, bias, etc. • REC mute Features • REC equalizer is very small number of external parts, built-in 2 types of frequency characteristics. • Correspondence with normal position (TYPE I) / high position (TYPE II). • TYPE I / TYPE II and PB equalizer fully electronic control switching built-in. • Controllable from direct micro-computer output. • Available to reduce substrate-area because of high integration and small external parts. HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) Pin No. Pin Name Note 2 PB-Ain (R) V=0 Equivalent Circuit Pin Description A Deck PB input V 100k 29 PB-Ain (L) 4 PB-Bin (R) 27 PB-Bin (L) 5 REC-in (R) 26 REC-in (L) 9 EQ-in (R) 22 EQ-in (L) 12 MIMS 3 AB out (R) 28 AB out (L) 6 ATT (R) B Deck PB input REC input Equalizer input MS Gain control V=0 14.9k 10.6k V V=0 V 25 ATT (L) 7 RPOUT (R) VCC VEE 24 RPOUT (L) Rev.3, Jun. 1999, page 2 of 32 Time constant for NAB standard Variable impedance for attenuation REC or PB output HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name 8 ADD in (R) Note Equivalent Circuit Pin Description Adder input 100k 100k 23 100k 8 100k 23 ADD in (L) 10 EQOUT (R) 100k V = 0V Equalizer output 100k V 21 EQOUT (L) 11 IREF V = 1.2V Equalizer reference current input V 13 DET MS V = VCC – 4.2V 15 DET ALC V = 2.3V 16 MS V Time constant for rectifier MS output Rev.3, Jun. 1999, page 3 of 32 HA12206NT Pin Description, Equivalent Circuit (VCC = 7.0V, VEE = –7.0V, Ta = 25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 17 Acr V = 0V Equivalent Circuit Pin Description VCC Mode control 22k 100k V 18 Bcr 19 REC MUTE 20 REC / A / B 1 VEE VEE pin 14 VCC VCC pin 30 GND GND pin V = 2.5V Rev.3, Jun. 1999, page 4 of 32 VEE −7V 1 3 PB Ain (R) AINR ABOUTR C1R 4700p 2 1k REC 5 PB Bin (R) + − C4L 0.1µ 7 8 R2R 2.2k C4R 0.1µ RECOUT (R) or PBOUT (R) + C3R 20dB SW3L 100k 22 Mute R3R SW4L −5dBs SW4R 20 EQOUT (R) VEE R4 IREF 10 (436mV) 11 (38.8mV) EQINR EQOR 9 100k −26dBs SW3R 20dB 67k Mute 21 100k + − 13 18 BCR MIMS DETMS R5 68k C6 C5 0.33µ + 2200p 12 19 EQOL RECAB RECMUTE 15 16 MS VCC +7V C7 10µ + DETALC 14 MS DET ALC DET 17 ACR Acr (SW2) C/N R6 330k RECMUTE Bcr (SW3) (SW2) EQOUT (SW1) REC/A/B ON/OFF C/N (L) ADDER R3L EQINL 67k 23 ATTR RPOUTR ADDINR 6 (580mV) −2.5dBs 24 −2.5dBs (580mV) (1.64Vpp) 25 −30dBs C N REC in (R) −12.7dBs (180mV) R1R 15k BINR RECINR C2R 0.1µ 4 −30dBs 14.9k 22.7k 10.6k + 27.5dB − SW2R B SW1R − + A N C SW2L 27.5dB 10.6k 22.7k 14.9k C3L + ATTL RPOUTL ADDINL −30dBs 26 −30dBs 27 R2L 2.2k SW1L REC 1k 28 C2L 0.1µ BINL RECINL R1L 15k REC in (L) A (24.5mV) −30dBs 100k 100k 100k 100k 100k 100k B 29 C1L 4700p AINL ABOUTL −30dBs 30 GND PB Bin (L) + − PB Ain (L) REC⋅EQ REC⋅EQ RECOUT (L) or PBOUT (L) R7 1M 5V Unit R : Ω C:F R8 3.9k HA12206NT Block Diagram Rev.3, Jun. 1999, page 5 of 32 HA12206NT Truth Table Parallel Data Format NAB SW Position (SW 2) REC / A / B (Pin 20) Acr (Pin 17) Bcr (Pin 18) L M H REC-EQ Mode L L TYPE I TYPE I TYPE I TYPE I L H TYPE II TYPE I TYPE I TYPE II H L TYPE I TYPE II TYPE I TYPE I H H TYPE II TYPE II TYPE I TYPE II Line Amp (SW 1) B A REC ALC OFF OFF *1 OFF ON ON REC-EQ Behind (SW 4) Note: 1. Follow the position of REC-MUTE pin. REC-MUTE (Pin 19) REC-EQ Before (SW 3) ALC L Active ON H MUTE OFF Control Pin Position Under the Open Case Acr (Pin 17) L Bcr (Pin 18) L REC-MUTE (Pin 19) L REC / A / B (Pin 20) M Rev.3, Jun. 1999, page 6 of 32 2 3 4 5 6 7 Acr Bcr REC-MUTE RECAB GV(1) GV(2) 2-3 (VIH) 3-1 3-2 Ain Bin EQin RECin 1kHz, –30dBs RECin 1kHz Ain 1kHz, –30dBs Ain 1kHz, –0.7dBs RECin 8 9 6 6 9 GV(3) GV(4) Vomax THD(1) THD(2) 3-4 4 5-1 5-2 10kHz, –30dBs Bin 1kHz, –30dBs Bin 1kHz, –30dBs Ain 10kHz, –30dBs 10kHz, –30dBs 1kHz, –26dBs 1kHz, –30dBs 1kHz, –30dBs Bin 1kHz, –30dBs Ain VIM (Acr, Bcr) VIH AC VM2 AC VM2 V(AC VM2) AC VM2 (dB) (0.5dB) AC VM2 RPOUT Distortion 400 to 30kHz BPF Analyzer RPOUT AC VM2 Vi=V(AC VM2) at SW5, SW6=REC RPOUT AC VM2 Vo=V(AC VM2) at T.H.D=1% RPOUT Distortion 400 to 30kHz BPF Analyzer RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 V(DC SOURCE 1) GV=20 log {V(AC VM2 / Vi)} Vomax=20 log (Vo / 580mV) (RECAB) VIH 0.3dB VIH 60dB V(DC SOURCE 1) (REC-MUTE) (dB) V(AC VM2) VIM (0.5dB) V(DC SOURCE 1) V(DC SOURCE 1) VIL (0.5dB) RPOUT AC VM1 GV=20 log {V(AC VM2) / V(AC VM1)} AC VM2 RPOUT RPOUT EQOUT RPOUT (dB) RPOUT AC VM2 RPOUT AC VM2 V(AC VM2) (dB) PBOUT AC VM2 PBOUT AC VM2 V(AC VM2) EQOUT AC VM2 Ain Bin EQin Measure Other IQ=I (DC SOURCE 3) — Output — Input — 3-3 2-2 (VIM) 5 5 Set No. SG. — 1 10kHz, –30dBs 2 10kHz, –30dBs 3 1kHz, –26dBs 4 RECAB RECAB Test No. Symbol IQ 1 2-1 Acr (VIL) Bcr REC-MUTE HA12206NT Test Conditions Rev.3, Jun. 1999, page 7 of 32 Rev.3, Jun. 1999, page 8 of 32 VOL GV REC N1 GV REC N2 GV REC N3 GV REC C1 GV REC C2 GV REC C3 R-MUTE ATT Vomax REC THD REC S/N REC 11 12-1 12-2 12-3 13-1 13-2 13-3 14 15 16 17 EQout Ain EQin EQin EQin EQin EQin EQin EQin EQin EQin — 1kHz, –30dBs 1kHz, –46dBs 8kHz, –46dBs 12kHz, –46dBs 1kHz, –46dBs 8kHz, –46dBs 12kHz, –46dBs 1kHz, –14dBs* 1kHz 1kHz, –26dBs — 6 13 13 13 13 13 13 14 13 13 13 RPOUT EQout EQout EQout EQout EQout EQout EQout EQout EQout — Ain Ain/Bin RECin Ain — 1kHz, –18dBs* 1kHz, –18dBs* 1kHz, –0.7dBs 5kHz Output RPOUT RPOUT RPOUT RPOUT RPOUT RPOUT Input — SG. — Set No. 6 9 10 11 12 6 Note: or large level without dipping Test No. Symbol 6-1 S/N (1) S/N (2) 6-2 CT R/L 7 CT A/B 8 ALC 9 VON 10 Noise Meter DC VM AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 AC VM2 Distortion Analyzer Measure — — AC VM2 AC VM2 AC VM2 AC VM2 DC VM S/N=20 log {436mV / V(AC VM2)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} GV REC=20 log {V(AC VM2) / V(AC VM1)} R-MUTE ATT=20 log {436mV / V(AC VM2)} at T.H.D=1% 400 to 30kHz BPF S/N=20 log {580mV / V(Noise)} CCIR / ARM CT=20 log {580mV / V(AC VM2)} CT=20 log {580mV / V(AC VM2)} ALC=20 log {V(AC VM2) / 580mV} VON=20 log {V(AC VM2) / 580mV} at DC VM= Other S/N=20 log {580mV / V(Noise)} CCIR / ARM HA12206NT Test Conditions (cont) SW-Position 1 2 OFF *1 *2 A *2 B *2 EQ *2 B *2 A *2 B *2 B *2 REC R⇔L A *2 A⇔B *2 REC EQ *2 *2 EQ A *2 EQ *2 3 *1 A B EQ B A B B REC A A⇔B REC EQ EQ A EQ 2. Measured channel Lch or Rch Note: 1. Either will do Set No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4 *1 *2 *2 *2 *2 *2 *2 *2 *2 L⇔R *2 *2 *2 *2 *2 *2 5 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 6 *1 RP RP EQ RP RP RP RP RP RP RP RP EQ EQ RP EQ 7 L M L L L L L L L L L L L L L L 8 L L M L L L L H L L L L L L L L 9 L L L M L H H H H H H L L H H L 10 M OFF L H M M L L H M L⇔M H M M M M DC-SOURCE(V) 1 2 2.5V 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 0 to VCC 5V 2.5V 5V *1 5V *1 5V *1 5V 2.5V 5V 2.5V 5V *1 5V 2.5V 5V 2.5V 5V 2.5V 5V 2.5V 5V 3 –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –6V –6V 4 –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –7V –6V –6V HA12206NT Test Conditions (cont) SW Position (Pre-Set for Each TEST) Rev.3, Jun. 1999, page 9 of 32 HA12206NT Functional Description Power Supply Range Table 1 Supply Voltage Power Supply Range Item VCC VEE | VCC | – | VEE | Single Supply 6.0V to 7.5V –7.5V to –6.0V Inside 1.0V Note: HA12206NT is designed to operate on split supply. As VEE pin is joined the substrate of chip, there is the possibility of latch-up in such case that the other pin is supplied a voltage and VEE pin is open. Therefore please use as VEE pin become the lowest voltage of low impedance all the time. When power supply is thrown into this IC, that caution is necessary especially. Operating Mode Control HA12206NT provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 shows the control voltage of each control input pin. Table 2 Control Voltage Pin No. Lo Mid Hi Unit 17, 18, 19 0.0 to 1.0 — 4.0 to VCC V 20 0.0 to 1.0 2.0 to 3.0 4.0 to VCC V Note: Test Condition Input Pin Measure 1. Each pin is pulled down with 100kΩ internal resistor. 17 to 19 pins are low-level, 20 pin is midlevel, when each pin is open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: Less than VCC, Low: More than –0.2V) Rev.3, Jun. 1999, page 10 of 32 HA12206NT PB Equalizer By switching logical input level of pin17 (for Ain) or pin18 (for Bin), you can equalize corresponding to tape position at play back mode. Frequency characteristics of high position (TYPE II) depends on capacitor C1 on the block diagram figure. Figure 1 is shown by a motive of the NAB standard. GV τ1 = C1 • (10.6k+14.9k) τ2 = C1 • 14.9k f τ1 τ2 Figure 1 Frequency Characteristics of PB Equalizer Music Sensor VCC 0.33µ 330k 13 to ALC D VCC (5V) 100k C4 L 100k 23 22k 100k + – C4 R 43p 8 MS DET 16 100k 100k 100k to ALC 12 LR addend stage Detection stage Output stage R5 68k C5 2200p Amplification stage Figure 2 Music Sensor Block Diagram Rev.3, Jun. 1999, page 11 of 32 HA12206NT The Sensitivity of Music Sensor Frequency characteristics of MS amplification stage is shown by figure 3. GV f2 1 [Hz] 2π • C5 • (R5 + 100k) f2 = 1 [Hz] 2π • C5 • R5 f3 = 25k f f1 f1 = [Hz] f3 Figure 3 Frequency Characteristic of MS AMP Occasion of the external component of figure 2, f1 is 430Hz and f2 is 1.1kHz. As the MS sensitivity is prescribed at 5kHz, this stage’s gain is 7.9dB. But in only one-sided channel input case, this gain is considered as –6dB down, because the other channel input pin is imaginary earth. That is, the gain from RPOUT to MSDET is 1.86dB. As the detection sensitivity at MSDET is fixed 130mVrms, the sensitivity at RPOUT (8 pin or 23 pin) is calculated by the following formula. 130mV = 105mV 1.86 20 10 ^ Because of RPOUT=580mVrms=0dB, therefore, the MS sensitivity becomes –14.8dB. That is the detection level. Time Constant of Detection Figure 4 (1) generally shows that detection time is in proportion to value of capacitor C16. But, with 1 2 Attack* and Recovery* the detection time differs exceptionally. Non-music → Music Note: 1. Attack : Recovery Attack Recovery Detection time Detection time Detection time 2. Recovery : Music → Non-music Attack C6 R6 Detection level Function Characteristics of MS (1) Function Characteristics of MS (2) Recovery Attack Input level Function Characteristics of MS (3) Figure 4 Function Characteristic of MS Like the figure 4 (2), Recovery time is variably possible by value of resistor R6. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Rev.3, Jun. 1999, page 12 of 32 HA12206NT Music Sensor Output (MSOUT) Because MS out pin is connected to the collector of NPN type directly, it is requested to use pull up resistor (RL=10k to 22kΩ) Output level is “High” sensing no signal. And output level is “Low” sensing signal. Please take notice of MS Low level voltage (GND+0.9V). The connected supply voltage must be less than VCC voltage, with MSOUT pull up resistor. Automatic Level Control (ALC) RPOUT ALC is the input decay rate variable system. It has internal variable resistors of pin6 (pin25) by RECOUT signal that is inputted to pin8 (pin23). The operation is similitude to MS, detected by pin15. The signal input pin is pin5 (pin26). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 6. These are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 5 shows the relation with R1 front REC IN point and RPOUT. ALC operation level is 775mVrms {standard level (580mVrms) +2.5dB}. And it is designed to operate from 0dB to +15dB as 775mVrms=0dB. Adopted maximum value circuit, ALC is operated by a large channel of a signal. ALC on/off is linked with REC mute. When REC mute is on, ALC is off. 775mV 580mV 2.5dB 15dB RECIN Figure 5 ALC Operation Level R1 RECIN C2 5 Input RPOUT 580mV 24.5mV 27.5dB 7 Output C4 6 ATT ALC 8 ADDIN R7 R2 DETALC 15 VCC + C7 Figure 6 ALC Block Diagram REC-Equalizer REC mute is located at input-part of REC-equalizer. Therefore it has realized low pop noise. But because there is deference DC offset at the each mode of REC-equalizer, it is necessary for a coupling capacitor between EQOUT pin and recording head. Rev.3, Jun. 1999, page 13 of 32 HA12206NT Absolute Maximum Rating (Ta = 25°C) Item Symbol Rating Unit Max supply voltage VCC max +8 V Max supply voltage VEE max –8 V Power dissipation Pd 500 mW Operating temperature Topr –40 to +75 °C Storage temperature Tstg –55 to +125 °C Operating voltage Vopr VCC=–VEE=6 to 7.5 V Rev.3, Jun. 1999, page 14 of 32 Note Ta≤75°C ALC VON VOL ALC operation level MS sensing level MS output low level dB dB dB dB mA V V V dB dB dB dB dB % % 0.0 2.5 5.5 dB –18.7 –14.7 –10.7 dB — 1.0 1.5 V 3. For inputting signal to one side channel 2. From REC in point Note: 1. VCC(VEE) = ±6.0V CT R/L CT A/B Channel separation Crosstalk — — S/N(2) 80 70 — 81 73 S/N(1) Signal to noise ratio Maximum output THD 70 60 — 78 70 IQ VIL VIM VIH GV(1) GV(2) GV(3) GV(4) Vomax THD(1) THD(2) Quiescent current Logical threshold Line amp. gain 22.0 1.0 3.0 VCC 29.0 29.0 24.9 29.0 — 0.3 3.0 16.0 — — — 27.5 27.5 22.9 27.5 13.0 0.05 1.0 10.0 –0.2 2.0 4.0 26.0 26.0 20.9 26.0 12.0 — — Symbol Item fin (Hz) — — — TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I TYPE I — — — — — — TYPE I 1k TYPE I 1k TYPE II 10k TYPE I 1k TYPE I 1k TYPE I 1k TYPE I 1k Mute TYPE I TYPE I — — — — Mute Mute Mute Mute Mute Mute Active Active TYPE I TYPE I — Bcr –18 –18 –0.7 — — REC Active TYPE I TYPE I 1k A Mute TYPE I TYPE I 5k A Mute TYPE I TYPE I — — — — — — — –30 –30 –30 –30 — –30 –0.7 2 4 4 5 2 2 5 R 7 7 7 7 7 7 7 R +12dB (ALC ON) 24 24 24 24 24 24 24 24 24 L 7 7 7 COM 14 17 to 20 20 17 to 20 24 24 24 16 24 7 7 24 29 29 27 26 29 29 +12dB +12dB 2 2 4 5 2 2 29 7 Rg=2.2kΩ, CCIR/ARM 2 S=580mVrms 29 7 29 27 27 26 29 29 26 L Application Terminal Input Output Rg=10kΩ, CCIR/ARM 2 S=580mVrms 0dB 0dB 0dB 0dB THD=1% 0dB, BW 400Hz to 30kHz +12dB (ALC ON) BW 400Hz to 30kHz No signal Vin (dBs) Other Mute TYPE I TYPE I 1k Mute TYPE I TYPE I 1k A A/B REC Mute TYPE I TYPE I — A A — — — A B B REC A A REC Test Condition IC Condition REC/ REC Min Typ Max Unit A/B MUTE Acr 2, 3 3 2 1 Note HA12206NT Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs (Vout)) Rev.3, Jun. 1999, page 15 of 32 Rev.3, Jun. 1999, page 16 of 32 GV REC-N1 GV REC-N2 GV REC-N3 GV REC-C1 GV REC-C2 GV REC-C3 R-MUTE ATT REC-EQ frequency response Normal speed Normal tape REC-EQ frequency response Normal speed Chrom tape REC-MUTE attenuation Note: 4. VCC=±6.0V (V) 21.7 27.1 34.4 25.6 32.5 39.4 — 7.0 — 0.35 0.7 60 — 18.7 20.2 23.1 25.1 28.4 31.4 22.6 24.1 28.5 30.5 33.2 36.4 70 80 REC-EQ maximum output Vomax REC 4.0 REC-EQ THD THD REC — REC-EQ S/N S/N REC 52 Symbol Item A A A A A A A dBs A A % dB A dB dB dB dB dB dB dB fin (Hz) TYPE I TYPE I 1k TYPE I TYPE I 8k TYPE I TYPE I 12k TYPE I TYPE II 1k TYPE I TYPE II 8k TYPE I TYPE II 12k TYPE I TYPE I 1k Bcr Active TYPE I TYPE I 1k Active TYPE I TYPE I 1k Active TYPE I TYPE I — Active Active Active Active Active Active Mute Test Condition IC Condition REC/ RECMin Typ Max Unit A/B MUTE Acr — –26 — –46 –46 –46 –46 –46 –46 –14 Rg=5.1kΩ, A-WTG S=–5dBs THD=1% +12dB EQin (dBs) Other 9 9 9 9 9 9 9 9 9 9 R R 10 10 10 10 10 10 10 L COM 21 21 21 21 21 21 21 22 10 21 22 10 21 22 10 21 22 22 22 22 22 22 22 L Application Terminal Input Output 4 Note HA12206NT Electrical Characteristics (Ta=25°C, VCC=±7.0V (VEE), 0dB=580mVrms=–2.52dBs (Vout)) (cont) HA12206NT Test Circuit Rev.3, Jun. 1999, page 17 of 32 HA12206NT Characteristic Curves Quiescent Current vs. Supply Voltage (PB mode) 18 Ta=25˚C Ain, Bin, Ain, Bin, Quiescent Current ICC (mA) 17 , Nor , Nor , Cro , Cro 16 15 14 13 12 5 6 7 8 Supply Voltage VCC (V) 9 Quiescent Current vs. Supply Voltage (REC mode) 18 Ta=25˚C Ain, Bin, Ain, Bin, Quiescent Current ICC (mA) 17 , Nor , Nor , Cro , Cro 16 15 14 13 12 5 Rev.3, Jun. 1999, page 18 of 32 6 7 8 Supply Voltage VCC (V) 9 HA12206NT Quiescent Current vs. Supply Voltage (PB mode) –12 Quiescent Current IEE (mA) –13 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro –14 –15 –16 –17 –18 –5 –6 –9 –7 –8 Supply Voltage VEE (V) Quiescent Current vs. Supply Voltage (REC mode) –12 Quiescent Current IEE (mA) –13 Ta=25˚C Ain, Bin, Ain, Bin, , Nor , Nor , Cro , Cro –14 –15 –16 –17 –18 –5 –6 –7 –8 Supply Voltage VEE (V) –9 Rev.3, Jun. 1999, page 19 of 32 HA12206NT RPOUT vs. Frequency (1) Ain mode 30 28 VCC=7V Ta=25˚C 120µ 26 GV RPOUT (dB) 24 22 70µ 20 18 16 14 12 10 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M RPOUT vs. Frequency (2) Rin mode 30 28 VCC=7V Ta=25˚C 26 GV RPOUT (dB) 24 22 20 18 16 14 12 10 10 100 Rev.3, Jun. 1999, page 20 of 32 1k 10k Frequency (Hz) HA12206NT RPOUT Total Harmonic Distortion vs. Input Level Total Harmonic Distortion T.H.D. (%) 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25˚C Ain (NORM) Ain (CROM) Bin (NORM) 1.0 0.1 0.01 –20 –10 0 Input Level Vin (dB) 20 10 RPOUT Total Harmonic Distortion vs. Output Level Total Harmonic Distortion T.H.D. (%) 10 VCC=7V, f=1kHz, Vout=580mVrms Ta=25˚C Rin (RM-ON) Rin (RM-OFF) 1.0 0.1 0.01 –20 –10 0 10 Output Level Vout (dB) 20 Rev.3, Jun. 1999, page 21 of 32 HA12206NT RPOUT Maximum Output Level vs. Supply Voltage Maximum Output Level Vomax (dB) 20 15 Ta=25˚C, f=1kHz, RPOUT=580mVrms=0dB Ain Bin Rin RM-ON (ALC OFF) Rin RM-OFF (ALC ON) 10 5 0 4 5 6 7 Supply Voltage VCC (V) 8 9 RPOUT Signal to Noise Ratio vs. Supply Voltage Signal to Noise Ratio S/N (dB) 85 80 Ta=25˚C, CCIR/ARM RPOUT=580mVrms=0dB Ain NORM Ain CROM Bin Rin RM-ON Rin RM-OFF 75 70 65 4 Rev.3, Jun. 1999, page 22 of 32 5 6 7 Supply Voltage VCC (V) 8 9 HA12206NT Line Amp. Crosstalk vs. Frequency 0 Line Amp. Crosstalk (dB) VCC=7V, Ta=25˚C, 0dB=RPOUT=580mV, –10 Vin=+10dB, Normal, Ain mode –20 –30 –40 Bin mode –50 –60 –70 Rin mode (REC) –80 –90 –100 100 1k 10k 100k Frequency (Hz) 1M 10M 1M 10M Line Amp. Channel Separation vs. Frequency 0 Line Amp. Channel Separation (dB) –10 –20 VCC=7V, Ta=25˚C, 0dB=RPOUT=580mV, Vin=+10dB, Normal, Ain mode –30 –40 –50 L→R –60 R→L –70 –80 –90 –100 100 1k 10k 100k Frequency (Hz) Rev.3, Jun. 1999, page 23 of 32 HA12206NT EQOUT vs. Frequency 50 VCC=7V Ta=25˚C GV EQOUT (dB) 40 Chrom 30 20 Norm 10 10 100 1k Frequency (Hz) 100k 10k REC-EQ Total Harmonic Distortion (Normal) vs. Output Level Total Harmonic Distortion T.H.D. (%) VCC=7V, Ta=25˚C, 400 to 30kHz BPF 10.0 5kHz 1.0 0.1 –10 Rev.3, Jun. 1999, page 24 of 32 1kHz –5 0 5 Output Level Vout (dBs) 10 15 HA12206NT REC-EQ Total Harmonic Distortion (Chrom) vs. Output Level Total Harmonic Distortion T.H.D. (%) VCC=7V, Ta=25˚C, 400 to 30kHz BPF 10.0 1.0 5kHz 1kHz 0.1 –10 –5 0 5 Output Level Vout (dBs) 10 REC-EQ Maximum Output Level vs. Supply Voltage Maximum Output Level Vomax (dBs) 20 Norm Crom T.H.D≥1% Ta=25˚C 15 10 5 0 4 5 6 7 Supply Voltage VCC (V) 8 9 Rev.3, Jun. 1999, page 25 of 32 HA12206NT REC-EQ Signal to Noise Ratio vs. Supply Voltage 70 REC-EQ Signal to Noise Ratio S/N (dB) 0dB=Vout=-5dBs, A-WTG, Ta=25˚C 65 Normal Chrom 60 55 50 4 5 6 7 Supply Voltage VCC (V) 9 8 REQ-EQ Channel Separation vs. Frequency 60 REQ-EQ Channel Separation (dB) 40 VCC=7V, Ta=25˚C, Vin=+12dB, Normal mode R→R 20 reference 0 –20 R→L –40 –60 L→R –80 –100 –120 –140 10 Rev.3, Jun. 1999, page 26 of 32 100 1k Frequency (Hz) 10k 100k HA12206NT REQ-EQ Mute Attenuation vs. Frequency 60 40 VCC=7V, Ta=25˚C, Vin=+20dB, Normal mode reference , 0 –20 , MUTE –40 –60 B, MUTE –80 –100 –120 –140 10 100 1k Frequency (Hz) 100k 10k ALC Operate Level vs Input Level 30 VCC=7V, Ta=25˚C, Single or Both input 100Hz to 10kHz Output Level (dB) 0dB=580mVrms REQ-EQ Mute Attenuation (dB) 20 20 10 0 –10 –20 –20 –10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB 30 Rev.3, Jun. 1999, page 27 of 32 HA12206NT ALC Total Harmonic Distortion vs. Input Level Total Harmonic Distortion T.H.D. (%) VCC=7V, Ta=25˚C, Single or Both input 1.0 0.5 10kHz 100Hz 0.1 0.05 1kHz 0.01 –20 –10 0 10 20 Input Level Vin (dB) Rin=180mVrms=0dB 30 ALC Operate Level vs. Frequency 10 Output Level (dB) VCC=7V, Vin=+12dB, Vout=580mVrms=0dB Ta=25˚C Single input Both input 5 0 –5 10 50 Rev.3, Jun. 1999, page 28 of 32 100 500 1k Frequency (Hz) 5k 10k 50k 100k HA12206NT MS Sensing Level vs Frequency 0 VCC=7V, Ta=25˚C, Lo→Hi –2 MSOUT Hi→Lo MS Sensing Level (dB) –4 –6 –8 –10 –12 –14 –16 –18 –20 100 500 1k 5k Frequency (Hz) 10k 50k 100k Singnal Sensing Time vs. Capacitor 100 Singnal Sensing Time (ms) VCC=7V, Ta=25˚C, f=5kHz MSOUT 50 Ain→RPOUT=580mVrms=0dB 0dB –5dB –10dB 20 VCC 14 10 5 330kΩ MSDET 13 2 PBOUT 1 MSOUT 0.5 0.2 0.1 0.01 0.05 0.1 Capacitor (mF) 0.5 1.0 Rev.3, Jun. 1999, page 29 of 32 HA12206NT No Signal Sensing Time vs. Resistor No Signal Sensing Time (ms) 1000 VCC=7V, Ta=25˚C, f=5kHz MSOUT Ain→RPOUT=580mVrms=0dB 500 0dB –5dB 200 V 14 CC 0.33µF 100 + MSDET 13 50 20 10 5 PBOUT MSOUT 2 1 10k 50k 100k Resistor (W) 500k 1M VMSOUT vs. Resistor RL 5 VCC=7V, Ta=25˚C, f=5kHz MSOUT Ain→RPOUT=580mVrms=0dB Vin=0dB 5V 4 RL VMSOUT (V) MSOUT 16 3 2 1 0 100 500 Rev.3, Jun. 1999, page 30 of 32 1k 5k 10k Resistor RL (Ω) 50k 100k 500k 1M HA12206NT Package Dimensions Unit: mm 27.10 28.10 Max 8.8 1.0 15 0.48 ± 0.10 0.51 Min 1.78 ± 0.25 10.16 5.06 Max 1.5 Max 2.54 Min 1 10.0 Max 16 30 + 0.10 0.25 – 0.05 1˚ – 13˚ Hitachi Code JEDEC EIAJ Weight (reference value) DP-30S — Conforms 1.98 g Rev.3, Jun. 1999, page 31 of 32 HA12206NT Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.3, Jun. 1999, page 32 of 32