HITACHI PF0030

PF0030 Series
MOS FET Power Amplifier
ADE-208-460 (Z)
1st Edition
July 1996
Features
• High stability: Load VSWR = 20 : 1
• Low power control current: 400 µA
• Thin package: 5 mmt
Ordering Information
Type No
Operating Frequency
Application
PF0030
824 to 849 MHz
AMPS
PF0032
872 to 905 MHz
E-TACS
Pin Arrangement
• RF-B2
5
4
3
2
5
1
1: Pin
2: VAPC
3: VDD
4: Pout
5: GND
PF0030 Series
Internal Diagram and External Circuit
G
G
GND
GND
Pin1
Pin
Pin2
VAPC
C1
Z1
Pin
FB1
Pin3
VDD
FB2
C3
VAPC
Pin4
Pout
C2
VDD
Z2
Pout
C1 = C2 = 0.01 µF (Ceramic chip capacitor)
C3 = 10 µF (Aluminum Electrolyte Capacitor)
FB = Ferrite bead BL01RN1-A62-001 (Manufacture: MURATA) or equivalent
Z1 = Z2 = 50 Ω (Microstrip line)
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Rating
Unit
Supply voltage
VDD
17
V
Supply current
I DD
3
A
APC voltage
VAPC
±8
V
Input power
Pin
20
mW
Operating case temperature
Tc (op)
–30 to +110
°C
Storage temperature
Tstg
–40 to +110
°C
2
PF0030 Series
Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Drain cutoff current
I DS
—
—
500
µA
VDD = 17 V, VAPC = 0 V
Total efficiency
ηT
35
40
—
%
Pin = 2 mW,
2nd harmonic distortion
2nd H.D.
—
–50
–30
dB
VDD = 12.5 V,
3rd harmonic distortion
3rd H.D.
—
–50
–30
dB
Pout = 6 W (at APC controlled)
Input VSWR
VSWR (in)
—
1.5
3
—
Zin = Zout = 50 Ω
Output VSWR
VSWR (out) —
1.5
—
—
Stability
—
No parasitic oscillation
—
Pin = 2 mW, VDD = 12.5 V,
Pout = 6 W (at APC controlled),
Zin = 50 Ω,
Output VSWR = 20:1 All phases,
t = 20 sec
Test System Diagram
S.G
VAPC VDD
Power
Meter
L.P.F
Spectrum
Analyzer
3dB
ATT
Test
Fixture
Directional
Coupler
Power Meter
Directional
Coupler
3
PF0030 Series
Test Fixture Pattern
Unit: mm
26.5
28
2.88
6 4
4
1.5
3.5
2.88
16
4.5 3
VAPC
3.5
16.5
4
15
4
4
2.88
2.88
80
VDD
100
Grass Epoxy Double sided PCB
(t = 1.6 mm, εr = 4.8)
Mechanical Characteristics
Item
Conditions
Spec
Torque for screw up the heatsink flange
M3 Screw Bolts
4 to 6 kg•cm
Warp size of the heatsink flange: S
S=0
+0.3/–0 mm
S
4
PF0030 Series
Note for Use
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Unevenness and distortion at the surface of the heatsink attached module should be less than 0.05 mm.
It should not be existed any dust between module and heatsink.
MODULE should be separated from PCB less than 1.5 mm.
Soldering temperature and soldering time should be less than 230°C, 10 sec.
(Soldering position spaced from the root point of the lead frame: 2 mm)
Recommendation of thermal joint compounds is TYPE G746.
(Manufacturer: Shin-Etsu Chemical, Co., Ltd.)
To protect devices from electro-static damage, soldering iron, measuring-equipment and human body etc.
should be grounded.
Torque for screw up the heatsink flange should be 4 to 6 kg · cm with M3 screw bolts.
Don’t solder the flange directly.
It should make the lead frame as straight as possible.
The module should be screwed up before lead soldering.
It should not be given mechanical and thermal stress to lead and flange of the module.
When the external parts (Isolator, Duplexer, etc.) of the module are changed, the electrical characteristics
should be evaluated enough.
Don’t washing the module except lead pins.
To get good stability, ground impedance between the module GND flange and PCB GND pattern should
be designed as low as possible.
5
PF0030 Series
Characteristics Curve
PF0030
Pout, ηT vs. VDD (1)
50
20
40
12
30
8
20
Pout
4
0
f = 824 MHz
Pin = 2 mW
VAPC = 4 V
0
4
8
12
16
Supply Voltage VDD (V)
Efficiency ηT (%)
Output Power Pout (W)
ηT
16
10
0
20
20
50
16
40
ηT
12
30
8
20
Pout
4
0
6
f = 849 MHz
Pin = 2 mW
VAPC = 4 V
0
4
8
12
16
Supply Voltage VDD (V)
10
0
20
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. VDD (2)
PF0030 Series
PF0030 (cont)
VAPC, ηT, VSWR (in) vs. Frequency
6
10
60
Pin = 2 mW
VDD = 12.5 V
Pout = 6 W
3
ηT
6
40
4
30
VAPC
2
2
Efficiency ηT (%)
4
50
8
Apc Voltage VAPC (V)
V.S.W.R. (in)
5
20
VSWRin
0
824
1
829
834
839
844
10
849
Frequency f (MHz)
Pout, ηT, VSWR (in) vs. Frequency
20
16
3
2
Output Power Pout (W)
V.S.W.R. (in)
5
4
60
Pin = 2 mW
VDD = 12.5 V
VAPC = 4 V
50
ηT
12
40
8
30
Pout
4
Efficiency ηT (%)
6
20
VSWRin
1
0
824
829
834
839
844
10
849
Frequency f (MHz)
7
PF0030 Series
PF0030 (cont)
Pout, ηT vs. Pin (1)
60
20
ηT
50
40
12
Pout
8
30
4
f = 824 MHz 20
VDD = 12.5 V
VAPC = 4 V
0
0
2
4
6
8
Efficiency ηT (%)
Output Power Pout (W)
16
10
10
Input Power Pin (mW)
Pout, ηT vs. Pin (2)
60
20
50
ηT
40
12
Pout
8
30
4
f = 849 MHz 20
VDD = 12.5 V
VAPC = 4 V
0
0
2
4
6
Input Power Pin (mW)
8
8
10
10
Efficiency ηT (%)
Output Power Pout (W)
16
PF0030 Series
PF0030 (cont)
Pout, ηT vs. VAPC (1)
20
50
ηT
Output Power Pout (W)
30
12
Pout
20
8
4
0
f = 824 MHz
Pin = 2 mW
VDD = 12.5 V
0
2
4
6
Apc Voltage VAPC (V)
8
Efficiency ηT (%)
40
16
10
0
10
Pout, ηT vs. VAPC (2)
50
20
16
40
12
30
Pout
20
8
4
0
f = 849 MHz
Pin = 2 mW
VDD = 12.5 V
0
2
4
6
Apc Voltage VAPC (V)
8
Efficiency ηT (%)
Output Power Pout (W)
ηT
10
0
10
9
PF0030 Series
PF0030 (cont)
ηT vs. TC (1)
70
f = 824 MHz
Efficiency ηT (%)
60
VDD = 12.5 V
Pin = 2 mW
Pout = 6 W
50
40
30
20
−40
0
40
80
120
Case Temperature TC (°C)
ηT vs. TC (2)
70
f = 849 MHz
Efficiency ηT (%)
60
VDD = 12.5 V
Pin = 2 mW
Pout = 6 W
50
40
30
20
−40
0
40
80
Case Temperature TC (°C)
10
120
PF0030 Series
PF0030 (cont)
Pout vs. TC (1)
f = 824 MHz
Output Power Pout (W)
20
VDD = 12.5 V
Pin = 2 mW
VAPC = 7.0 V
10
0
−40
0
40
80
120
Case Temperature TC (°C)
Pout vs. TC (2)
f = 849 MHz
Output Power Pout (W)
20
VDD = 12.5 V
Pin = 2 mW
VAPC = 7.0 V
10
0
−40
0
40
80
120
Case Temperature TC (°C)
11
PF0030 Series
PF0032
60
16
50
ηT
12
40
8
30
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. VDD (1)
20
Pout
4
0
f = 872 MHz
Pin = 2 mW
VAPC = 4 V
0
4
8
12
16
Supply Voltage VDD (V)
20
10
20
20
60
16
50
12
40
ηT
30
8
Pout
4
20
f = 905 MHz
Pin = 2 mW
VAPC = 4 V
0
12
0
4
8
12
16
Supply Voltage VDD (V)
10
20
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. VDD (2)
PF0030 Series
PF0032 (cont)
VAPC, ηT, VSWR (in) vs. Frequency
6
10
60
Pin = 2 mW
VDD = 12.5 V
Pout = 6 W
3
ηT
6
40
4
30
VAPC
2
2
Efficiency ηT (%)
4
50
8
Apc Voltage VAPC (V)
V.S.W.R. (in)
5
20
VSWRin
0
872
1
883
894
10
905
Frequency f (MHz)
6
20
5
16
3
2
Pin = 2 mW
VDD = 12.5 V
VAPC = 4 V
60
50
ηT
12
40
8
30
Efficiency ηT (%)
4
Output Power Pout (W)
V.S.W.R. (in)
Pout, ηT, VSWR (in) vs. Frequency
Pout
4
20
VSWRin
1
0
872
883
894
10
905
Frequency f (MHz)
13
PF0030 Series
PF0032 (cont)
Pout, ηT vs. Pin (1)
60
20
50
ηT
40
12
Pout
8
30
4
f = 872 MHz 20
VDD = 12.5 V
VAPC = 4 V
0
0
2
4
6
Input Power Pin (mW)
8
Efficiency ηT (%)
Output Power Pout (W)
16
10
10
60
16
50
ηT
12
8
14
30
Pout
f = 905 MHz 20
VDD = 12.5 V
VAPC = 4 V
4
0
40
0
2
4
6
Input Power Pin (mW)
8
10
10
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. Pin (2)
20
PF0030 Series
PF0032 (cont)
60
16
50
ηT
40
12
Pout
30
8
4
f = 872 MHz
Pin = 2 mW
VDD = 12.5 V
0
0
2
4
6
Apc Voltage VAPC (V)
8
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. VAPC (1)
20
20
10
10
20
60
16
50
12
40
ηT
30
8
Efficiency ηT (%)
Output Power Pout (W)
Pout, ηT vs. VAPC (2)
Pout
4
f = 905 MHz
Pin = 2 mW
VDD = 12.5 V
0
0
2
4
6
Apc Voltage VAPC (V)
8
20
10
10
15
PF0030 Series
PF0032 (cont)
ηT vs. TC (1)
70
f = 872 MHz
Efficiency ηT (%)
60
VDD = 12.5 V
Pin = 2 mW
Pout = 6 W
50
40
30
20
−40
0
40
80
120
Case Temperature TC (°C)
ηT vs. TC (2)
70
f = 905 MHz
Total Efficiency ηT (%)
60
VDD = 12.5 V
Pin = 2 mW
Pout = 6 W
50
40
30
20
−40
0
40
80
Case Temperature TC (°C)
16
120
PF0030 Series
PF0032 (cont)
Pout vs. TC (1)
f = 872 MHz
Output Power Pout (W)
20
VDD = 12.5 V
Pin = 2 mW
VAPC = 7.0 V
10
0
−40
0
40
80
120
Case Temperature TC (°C)
Pout vs. TC (2)
f = 905 MHz
Output Power Pout (W)
20
VDD = 12.5 V
Pin = 2 mW
VAPC = 7.0 V
10
0
−40
0
40
80
120
Case Temperature TC (°C)
17
PF0030 Series
Package Dimensions
60.5 ± 0.5
57.5 ± 0.5
3
13.0 ± 1
49.8 ± 0.5
0.25
2.3
0.6
5.0 +– 0.3
0.5
4
3.3
2
5±1
1
R1.6
6.35 ± 0.5
11.0 ± 0.3
12.7 ± 0.5
Unit: mm
9.2 ± 1
8.0 ± 1
22.0 ± 1
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
18
RF-B2
—
—
16 g
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Stra§e 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.