PF0030 Series MOS FET Power Amplifier ADE-208-460 (Z) 1st Edition July 1996 Features • High stability: Load VSWR = 20 : 1 • Low power control current: 400 µA • Thin package: 5 mmt Ordering Information Type No Operating Frequency Application PF0030 824 to 849 MHz AMPS PF0032 872 to 905 MHz E-TACS Pin Arrangement • RF-B2 5 4 3 2 5 1 1: Pin 2: VAPC 3: VDD 4: Pout 5: GND PF0030 Series Internal Diagram and External Circuit G G GND GND Pin1 Pin Pin2 VAPC C1 Z1 Pin FB1 Pin3 VDD FB2 C3 VAPC Pin4 Pout C2 VDD Z2 Pout C1 = C2 = 0.01 µF (Ceramic chip capacitor) C3 = 10 µF (Aluminum Electrolyte Capacitor) FB = Ferrite bead BL01RN1-A62-001 (Manufacture: MURATA) or equivalent Z1 = Z2 = 50 Ω (Microstrip line) Absolute Maximum Ratings (Ta = 25°C) Item Symbol Rating Unit Supply voltage VDD 17 V Supply current I DD 3 A APC voltage VAPC ±8 V Input power Pin 20 mW Operating case temperature Tc (op) –30 to +110 °C Storage temperature Tstg –40 to +110 °C 2 PF0030 Series Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test Condition Drain cutoff current I DS — — 500 µA VDD = 17 V, VAPC = 0 V Total efficiency ηT 35 40 — % Pin = 2 mW, 2nd harmonic distortion 2nd H.D. — –50 –30 dB VDD = 12.5 V, 3rd harmonic distortion 3rd H.D. — –50 –30 dB Pout = 6 W (at APC controlled) Input VSWR VSWR (in) — 1.5 3 — Zin = Zout = 50 Ω Output VSWR VSWR (out) — 1.5 — — Stability — No parasitic oscillation — Pin = 2 mW, VDD = 12.5 V, Pout = 6 W (at APC controlled), Zin = 50 Ω, Output VSWR = 20:1 All phases, t = 20 sec Test System Diagram S.G VAPC VDD Power Meter L.P.F Spectrum Analyzer 3dB ATT Test Fixture Directional Coupler Power Meter Directional Coupler 3 PF0030 Series Test Fixture Pattern Unit: mm 26.5 28 2.88 6 4 4 1.5 3.5 2.88 16 4.5 3 VAPC 3.5 16.5 4 15 4 4 2.88 2.88 80 VDD 100 Grass Epoxy Double sided PCB (t = 1.6 mm, εr = 4.8) Mechanical Characteristics Item Conditions Spec Torque for screw up the heatsink flange M3 Screw Bolts 4 to 6 kg•cm Warp size of the heatsink flange: S S=0 +0.3/–0 mm S 4 PF0030 Series Note for Use • • • • • • • • • • • • • • Unevenness and distortion at the surface of the heatsink attached module should be less than 0.05 mm. It should not be existed any dust between module and heatsink. MODULE should be separated from PCB less than 1.5 mm. Soldering temperature and soldering time should be less than 230°C, 10 sec. (Soldering position spaced from the root point of the lead frame: 2 mm) Recommendation of thermal joint compounds is TYPE G746. (Manufacturer: Shin-Etsu Chemical, Co., Ltd.) To protect devices from electro-static damage, soldering iron, measuring-equipment and human body etc. should be grounded. Torque for screw up the heatsink flange should be 4 to 6 kg · cm with M3 screw bolts. Don’t solder the flange directly. It should make the lead frame as straight as possible. The module should be screwed up before lead soldering. It should not be given mechanical and thermal stress to lead and flange of the module. When the external parts (Isolator, Duplexer, etc.) of the module are changed, the electrical characteristics should be evaluated enough. Don’t washing the module except lead pins. To get good stability, ground impedance between the module GND flange and PCB GND pattern should be designed as low as possible. 5 PF0030 Series Characteristics Curve PF0030 Pout, ηT vs. VDD (1) 50 20 40 12 30 8 20 Pout 4 0 f = 824 MHz Pin = 2 mW VAPC = 4 V 0 4 8 12 16 Supply Voltage VDD (V) Efficiency ηT (%) Output Power Pout (W) ηT 16 10 0 20 20 50 16 40 ηT 12 30 8 20 Pout 4 0 6 f = 849 MHz Pin = 2 mW VAPC = 4 V 0 4 8 12 16 Supply Voltage VDD (V) 10 0 20 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. VDD (2) PF0030 Series PF0030 (cont) VAPC, ηT, VSWR (in) vs. Frequency 6 10 60 Pin = 2 mW VDD = 12.5 V Pout = 6 W 3 ηT 6 40 4 30 VAPC 2 2 Efficiency ηT (%) 4 50 8 Apc Voltage VAPC (V) V.S.W.R. (in) 5 20 VSWRin 0 824 1 829 834 839 844 10 849 Frequency f (MHz) Pout, ηT, VSWR (in) vs. Frequency 20 16 3 2 Output Power Pout (W) V.S.W.R. (in) 5 4 60 Pin = 2 mW VDD = 12.5 V VAPC = 4 V 50 ηT 12 40 8 30 Pout 4 Efficiency ηT (%) 6 20 VSWRin 1 0 824 829 834 839 844 10 849 Frequency f (MHz) 7 PF0030 Series PF0030 (cont) Pout, ηT vs. Pin (1) 60 20 ηT 50 40 12 Pout 8 30 4 f = 824 MHz 20 VDD = 12.5 V VAPC = 4 V 0 0 2 4 6 8 Efficiency ηT (%) Output Power Pout (W) 16 10 10 Input Power Pin (mW) Pout, ηT vs. Pin (2) 60 20 50 ηT 40 12 Pout 8 30 4 f = 849 MHz 20 VDD = 12.5 V VAPC = 4 V 0 0 2 4 6 Input Power Pin (mW) 8 8 10 10 Efficiency ηT (%) Output Power Pout (W) 16 PF0030 Series PF0030 (cont) Pout, ηT vs. VAPC (1) 20 50 ηT Output Power Pout (W) 30 12 Pout 20 8 4 0 f = 824 MHz Pin = 2 mW VDD = 12.5 V 0 2 4 6 Apc Voltage VAPC (V) 8 Efficiency ηT (%) 40 16 10 0 10 Pout, ηT vs. VAPC (2) 50 20 16 40 12 30 Pout 20 8 4 0 f = 849 MHz Pin = 2 mW VDD = 12.5 V 0 2 4 6 Apc Voltage VAPC (V) 8 Efficiency ηT (%) Output Power Pout (W) ηT 10 0 10 9 PF0030 Series PF0030 (cont) ηT vs. TC (1) 70 f = 824 MHz Efficiency ηT (%) 60 VDD = 12.5 V Pin = 2 mW Pout = 6 W 50 40 30 20 −40 0 40 80 120 Case Temperature TC (°C) ηT vs. TC (2) 70 f = 849 MHz Efficiency ηT (%) 60 VDD = 12.5 V Pin = 2 mW Pout = 6 W 50 40 30 20 −40 0 40 80 Case Temperature TC (°C) 10 120 PF0030 Series PF0030 (cont) Pout vs. TC (1) f = 824 MHz Output Power Pout (W) 20 VDD = 12.5 V Pin = 2 mW VAPC = 7.0 V 10 0 −40 0 40 80 120 Case Temperature TC (°C) Pout vs. TC (2) f = 849 MHz Output Power Pout (W) 20 VDD = 12.5 V Pin = 2 mW VAPC = 7.0 V 10 0 −40 0 40 80 120 Case Temperature TC (°C) 11 PF0030 Series PF0032 60 16 50 ηT 12 40 8 30 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. VDD (1) 20 Pout 4 0 f = 872 MHz Pin = 2 mW VAPC = 4 V 0 4 8 12 16 Supply Voltage VDD (V) 20 10 20 20 60 16 50 12 40 ηT 30 8 Pout 4 20 f = 905 MHz Pin = 2 mW VAPC = 4 V 0 12 0 4 8 12 16 Supply Voltage VDD (V) 10 20 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. VDD (2) PF0030 Series PF0032 (cont) VAPC, ηT, VSWR (in) vs. Frequency 6 10 60 Pin = 2 mW VDD = 12.5 V Pout = 6 W 3 ηT 6 40 4 30 VAPC 2 2 Efficiency ηT (%) 4 50 8 Apc Voltage VAPC (V) V.S.W.R. (in) 5 20 VSWRin 0 872 1 883 894 10 905 Frequency f (MHz) 6 20 5 16 3 2 Pin = 2 mW VDD = 12.5 V VAPC = 4 V 60 50 ηT 12 40 8 30 Efficiency ηT (%) 4 Output Power Pout (W) V.S.W.R. (in) Pout, ηT, VSWR (in) vs. Frequency Pout 4 20 VSWRin 1 0 872 883 894 10 905 Frequency f (MHz) 13 PF0030 Series PF0032 (cont) Pout, ηT vs. Pin (1) 60 20 50 ηT 40 12 Pout 8 30 4 f = 872 MHz 20 VDD = 12.5 V VAPC = 4 V 0 0 2 4 6 Input Power Pin (mW) 8 Efficiency ηT (%) Output Power Pout (W) 16 10 10 60 16 50 ηT 12 8 14 30 Pout f = 905 MHz 20 VDD = 12.5 V VAPC = 4 V 4 0 40 0 2 4 6 Input Power Pin (mW) 8 10 10 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. Pin (2) 20 PF0030 Series PF0032 (cont) 60 16 50 ηT 40 12 Pout 30 8 4 f = 872 MHz Pin = 2 mW VDD = 12.5 V 0 0 2 4 6 Apc Voltage VAPC (V) 8 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. VAPC (1) 20 20 10 10 20 60 16 50 12 40 ηT 30 8 Efficiency ηT (%) Output Power Pout (W) Pout, ηT vs. VAPC (2) Pout 4 f = 905 MHz Pin = 2 mW VDD = 12.5 V 0 0 2 4 6 Apc Voltage VAPC (V) 8 20 10 10 15 PF0030 Series PF0032 (cont) ηT vs. TC (1) 70 f = 872 MHz Efficiency ηT (%) 60 VDD = 12.5 V Pin = 2 mW Pout = 6 W 50 40 30 20 −40 0 40 80 120 Case Temperature TC (°C) ηT vs. TC (2) 70 f = 905 MHz Total Efficiency ηT (%) 60 VDD = 12.5 V Pin = 2 mW Pout = 6 W 50 40 30 20 −40 0 40 80 Case Temperature TC (°C) 16 120 PF0030 Series PF0032 (cont) Pout vs. TC (1) f = 872 MHz Output Power Pout (W) 20 VDD = 12.5 V Pin = 2 mW VAPC = 7.0 V 10 0 −40 0 40 80 120 Case Temperature TC (°C) Pout vs. TC (2) f = 905 MHz Output Power Pout (W) 20 VDD = 12.5 V Pin = 2 mW VAPC = 7.0 V 10 0 −40 0 40 80 120 Case Temperature TC (°C) 17 PF0030 Series Package Dimensions 60.5 ± 0.5 57.5 ± 0.5 3 13.0 ± 1 49.8 ± 0.5 0.25 2.3 0.6 5.0 +– 0.3 0.5 4 3.3 2 5±1 1 R1.6 6.35 ± 0.5 11.0 ± 0.3 12.7 ± 0.5 Unit: mm 9.2 ± 1 8.0 ± 1 22.0 ± 1 Hitachi Code JEDEC EIAJ Weight (reference value) 18 RF-B2 — — 16 g Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http:semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia (Singapore) : http://www.has.hitachi.com.sg/grp3/sicd/index.htm Asia (Taiwan) : http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533 Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180 Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.