PF08107B MOS FET Power Amplifier Module for E-GSM and DCS1800 Dual Band Handy Phone ADE-208-787G (Z) Rev.7 Dec. 2001 Application • Dual band amplifier for E-GSM (880 MHz to 915 MHz) and DCS1800 (1710 MHz to 1785 MHz). • For 3.5 V nominal operation Features • 2 in / 2 out dual band amplifier • Simple external circuit including output matching circuit • Simple power control • High gain 3stage amplifier : 0 dBm input Typ • Lead less thin & Small package : 8 × 13.75 × 1.6 mm Typ • High efficiency : 50 % Typ at 35.0 dBm for E-GSM 43 % Typ at 32.0 dBm for DCS1800 Pin Arrangement • RF-K-8 5 G6 8 7 G 12 G 4 G 3 1: Pin GSM 2: Vapc 3: Vdd1 4: Pout GSM 5: Pout DCS 6: Vdd2 7: Vctl 8: Pin DCS G: GND PF08107B Absolute Maximum Ratings (Tc = 25°C) Item Symbol Rating Unit Supply voltage Vdd 8 V Supply current Idd GSM 3.5 A Idd DCS 2 A Vctl 4 V Vctl voltage Vapc voltage Vapc 4 V Input power Pin 10 dBm Operating case temperature Tc (op) −30 to +100 °C Storage temperature Tstg −30 to +100 °C Output power Pout GSM 5 W Pout DCS 3 W Note: The maximum ratings shall be valid over both the E-GSM-band (880 to 915 MHz), and the DCS1800-band (1710 to 1785 MHz). Electrical Characteristics for DC (Tc = 25°C) Item Symbol Min Typ Max Unit Test Condition Drain cutoff current Ids 20 µA Vdd = 4.7 V, Vapc = 0 V, Vctl = 0.2 V 300 µA Vdd = 8 V, Vapc = 0 V, Vctl = 0.2 V, Tc = −20 to +70°C Vapc control current Iapc 3 mA Vapc = 2.2 V Vctl control current Ictl 2 µA Vctl = 3 V Rev.7, Dec. 2001, page 2 of 44 PF08107B Electrical Characteristics for E-GSM mode (Tc = 25°C) Test conditions unless otherwise noted: f = 880 to 915 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 2.0 V, Rg = Rl = 50 Ω, Tc = 25°C, Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used. Item Symbol Min Typ Max Unit Frequency range F 880 915 MHz Test Condition Band select (GSM active) Vctl 2.0 2.8 V Input power Pin –2 0 2 dBm Control voltage range Vapc 0.2 2.2 V Supply voltage Vdd 3.0 3.5 4.5 V Total efficiency ηT 43 50 % 2nd harmonic distortion 2nd H.D. −45 −35 dBc 3rd harmonic distortion 3rd H.D. −45 −35 dBc 4th~8th harmonic distortion 4th~8th H.D. −35 dBc Input VSWR VSWR (in) 1.5 3 Output power (1) Pout (1) 35.0 36.0 dBm Vapc = 2.2 V Output power (2) Pout (2) 33.5 34.5 dBm Vdd = 3.1 V, Vapc = 2.2 V, Tc = +70°C Isolation −42 −37 dBm Vapc = 0.2 V, Pin = 2 dBm Isolation at DCS RF-output when GSM is active −30 −20 dBm Pout GSM = 35 dBm, Measured at f = 1760 to 1830 MHz Switching time t r, t f 1 2 µs Pout GSM = 0 to 35.0 dBm Stability No parasitic oscillation Vdd = 3.1 to 4.5 V, Pout ≤ 35.0 dBm, Vapc GSM ≤ 2.2 V, Rg = 50 Ω, Tc = 25°C, Output VSWR = 6 : 1 All phases Load VSWR tolerance No degradation Vdd = 3.1 to 4.5 V, Pout GSM ≤ 35.0 dBm, Vapc GSM ≤ 2.2 V, Rg = 50 Ω, t = 20 sec., Tc = 25°C, Output VSWR = 10 : 1 All phases Noise power Pnoise1 −80 dBm f0 = 915 MHz, frx = f0 +10 MHz, Pout GSM = 35 dBm, RES BW = 100 kHz Pnoise2 −84 dBm f0 = 915 MHz, frx = f0 +20 MHz, Pout GSM = 35 dBm, RES BW = 100 kHz Pout GSM = 35 dBm, Vapc = controlled Rev.7, Dec. 2001, page 3 of 44 PF08107B Electrical Characteristics for E-GSM mode (cont) Item Symbol Min Typ Max Unit Test Condition Slope Pout/Vapc 200 dB/V Pout GSM = 5 to 35 dBm Phase shift 20 deg Pout GSM = 33.5 to 34.5 dBm Total conversion gain1 −5 dB f0 = 915 MHz, Other sig. = 895 MHz (−40 dBm) Pout GSM = 33.5 dBm Total conversion gain2 −5 dB f0 = 915 MHz, Other sig. = 905 MHz (−40 dBm) Pout GSM = 33.5 dBm AM output 40 % Pout GSM = +5 dBm, 4%AM modulation at input 50 kHz modulation frequency Rev.7, Dec. 2001, page 4 of 44 PF08107B Electrical Characteristics for DCS1800 mode (Tc = 25°C) Test conditions unless otherwise noted: f = 1710 to 1785 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 0 V, Rg = Rl = 50 Ω, Tc = 25°C, Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used. Item Symbol Min Typ Max Unit Test Condition Frequency range F 1710 1785 MHz DCS1800 (1710 to 1785) Band select (DCS active) Vctl 0 0.1 V Input power Pin –2 0 2 dBm Control voltage range Vapc 0.2 2.2 V Supply voltage Vdd 3.0 3.5 4.5 V Total efficiency ηT 37 43 % 2nd harmonic distortion 2nd H.D. −45 −35 dBc 3rd harmonic distortion 3rd H.D. −45 −35 dBc 4th~8th harmonic distortion 4th~8th H.D. –35 dBc Input VSWR VSWR (in) 1.5 3 Output power (1) Pout (1) 32.0 33 dBm Vapc = 2.2 V Output power (2) Pout (2) 30.5 31.5 dBm Vdd = 3.1 V, Vapc = 2.2 V, Tc = +70°C Isolation −42 −37 dBm Vapc = 0.2 V, Pin DCS = 2 dBm Switching time t r, t f 1 2 µs Pout DCS = 0 to 32.0 dBm Stability No parasitic oscillation Vdd = 3.1 to 4.5 V, Pout DCS ≤ 32.0 dBm, Vapc ≤ 2.2 V, Rg = 50 Ω, Output VSWR = 6 : 1 All phases Load VSWR tolerance No degradation Vdd = 3.1 to 4.5 V, Pout DCS ≤ 32.0 dBm, Vapc ≤ 2.2 V, Rg = 50 Ω, t = 20 sec., Output VSWR = 10 : 1 All phases Noise power Pnoise −77 dBm f0 = 1785 MHz, frx = f0 +20 MHz, Pout DCS = 32.0 dBm, RES BW = 100 kHz Slope Pout/Vapc 200 dB/V Pout DCS = 0 to 32.0 dBm Phase shift 20 deg Pout DCS = 30.5 to 31.5 dBm Total conversion gain1 −5 dB f0 = 1785 MHz, Pout DCS = 30.5 dBm, Other sig. = 1765 MHz (−40 dBm) AM output 40 % Pout DCS = 0 dBm, 4%AM modulation at input 50 kHz modulation frequency Pout DCS = 32.0 dBm, Vapc = controlled Rev.7, Dec. 2001, page 5 of 44 PF08107B Internal Diagram and External Circuit PIN8 Pin DCS PIN5 Pout DCS PIN1 Pin GSM Z1 PIN4 Pout GSM Z2 Z3 Z4 Bias circuit PIN2 Vapc PIN7 Vctl PIN3 Vdd1 C1 C3 FB Pin Pin Vapc C4 FB Vctl PIN6 Vdd2 C2 FB C5 FB Vdd1 C6 FB Vdd2 Pout GSM Pout DCS Note: C1 to C4 = 0.01 µF CERAMIC CHIP C5 = C6 = 4.7 µF TANTALUM ELECTROLYTE FB = FERRITE BEAD BLO1RN1-A62-001 (MURATA) or equivalent Z1 = Z2 = Z3 = Z4 = 50 Ω MICRO STRIP LINE Rev.7, Dec. 2001, page 6 of 44 PF08107B Characteristic Curves Vapc vs Pout – Vdd Dependence 880 MHz Pout vs. Vapc 38 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 37 36 Pout (dBm) 35 34 33 32 31 30 29 28 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 915 MHz Pout vs. Vapc 38 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 37 36 Pout (dBm) 35 34 33 32 31 30 29 28 0 0.5 1 1.5 Vapc (V) 2 Rev.7, Dec. 2001, page 7 of 44 PF08107B Vapc vs Efficiency – Vdd Dependence 880 MHz Efficiency vs. Vapc 60 Po = 35 dBm, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 915 MHz Efficiency vs. Vapc 60 Po = 35 dBm, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 Rev.7, Dec. 2001, page 8 of 44 0 0.5 1 1.5 Vapc (V) 2 PF08107B Vapc vs Pout – Temperature Dependence 880 MHz Pout vs. Vapc 40 Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω −20°C 25°C 75°C 35 Pout (dBm) 30 25 20 15 10 5 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 915 MHz Pout vs. Vapc 40 Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω −20°C 25°C 75°C 35 Pout (dBm) 30 25 20 15 10 5 0 0 0.5 1 1.5 Vapc (V) 2 Rev.7, Dec. 2001, page 9 of 44 PF08107B Vapc vs Efficiency – Temperature Dependence 880 MHz Efficiency vs. Vapc 60 Po = 35 dBm, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, −20°C 25°C 75°C 50 Efficiency (%) 40 30 20 10 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 915 MHz Efficiency vs. Vapc 60 Po = 35 dBm, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, −20°C 25°C 75°C 50 Efficiency (%) 40 30 20 10 0 0 Rev.7, Dec. 2001, page 10 of 44 0.5 1 1.5 Vapc (V) 2 PF08107B Pin vs Pout – Vdd Dependence 880 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 5 10 915 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 0 −20 −15 −10 −5 Pin (dBm) 0 Rev.7, Dec. 2001, page 11 of 44 PF08107B Pin vs Efficiency – Vdd Dependence 880 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 10 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 915 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 10 0 −20 Rev.7, Dec. 2001, page 12 of 44 −15 −10 −5 Pin (dBm) 0 5 10 PF08107B Pin vs Pout – Temperature Dependence 880 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 5 10 915 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 0 −20 −15 −10 −5 Pin (dBm) 0 Rev.7, Dec. 2001, page 13 of 44 PF08107B Pin vs Efficiency – Temperature Dependence 880 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 10 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 915 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 10 0 −20 Rev.7, Dec. 2001, page 14 of 44 −15 −10 −5 Pin (dBm) 0 5 10 PF08107B Pout vs Efficiency – Vdd Dependence 880 MHz Efficiency vs. Pout 60 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 915 MHz Efficiency vs. Pout 60 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 5 10 15 20 25 Pout (dBm) 30 Rev.7, Dec. 2001, page 15 of 44 PF08107B Pout vs Idd – Vdd Dependence 880 MHz Idd, Iapc vs. Pout 3 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V Iapc (3.5 V) Idd (A), Iapc (mA) 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 915 MHz Idd, Iapc vs. Pout 3 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V Iapc (3.5 V) Idd (A), Iapc (mA) 2.5 2 1.5 1 0.5 0 0 Rev.7, Dec. 2001, page 16 of 44 5 10 15 20 25 Pout (dBm) 30 PF08107B Pout vs Harmonic Distortion – Vdd Dependence 880 MHz 2fo vs. Pout −35 −40 2fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) 30 35 40 30 35 40 915 MHz 2fo vs. Pout −35 −40 2fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) Rev.7, Dec. 2001, page 17 of 44 PF08107B Pout vs Harmonic Distortion – Vdd Dependence (cont) 880 MHz 3fo vs. Pout −35 −40 3fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) 30 35 40 30 35 40 915 MHz 3fo vs. Pout −35 −40 3fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 Rev.7, Dec. 2001, page 18 of 44 5 10 15 20 25 Pout (dBm) PF08107B Pout vs Slope, AM-AM conversion 880 MHz AM/AM, Slope vs. Pout 500 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω AM (%) SLP (dB/V) AM/AM (%) 80 400 60 300 40 200 20 100 0 −60 −40 −20 0 Pout (dBm) Slope (dB/V) 100 0 40 20 915 MHz AM/AM, Slope vs. Pout 500 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω AM (%) SLP (dB/V) AM/AM (%) 80 400 60 300 40 200 20 100 0 −60 −40 −20 0 Pout (dBm) 20 Slope (dB/V) 100 0 40 Rev.7, Dec. 2001, page 19 of 44 PF08107B Pout vs Input VSWR 880 MHz VSWR in vs. Pout 4 3.5 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, VSWR in VSWR in 3 2.5 2 1.5 1 −60 −40 −20 0 Pout (dBm) 20 40 915 MHz VSWR in vs. Pout 4 3.5 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, VSWR in VSWR in 3 2.5 2 1.5 1 −60 Rev.7, Dec. 2001, page 20 of 44 −40 −20 0 Pout (dBm) 20 40 PF08107B Frequency vs Pout, Efficiency – Vdd Dependence GSM Pout vs. Frequency 37.5 37 36.5 Pout (dBm) 36 35.5 35 34.5 34 33.5 33 Vapc = 2.2 V, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 880 890 900 Frequency (MHz) 910 920 GSM Efficiency vs. Frequency 60 55 Efficiency (%) 50 45 40 35 30 Vapc = 2.2 V, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 880 890 900 Frequency (MHz) 910 920 Rev.7, Dec. 2001, page 21 of 44 PF08107B Pout – Temperature Dependence GSM Pout vs. Tc 37.0 Pout (dBm) 36.5 36.0 35.5 35.0 Vapc = 2.2 V, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, f = 880 MHz f = 915 MHz 34.5 −25 Rev.7, Dec. 2001, page 22 of 44 0 25 Tc (°C) 50 75 PF08107B Vapc vs Pout – Vdd Dependence 1710 MHz Pout vs. Vapc 36 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 35 34 Pout (dBm) 33 32 31 30 29 28 27 26 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 1785 MHz Pout vs. Vapc 36 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 35 34 Pout (dBm) 33 32 31 30 29 28 27 26 0 0.5 1 1.5 Vapc (V) 2 Rev.7, Dec. 2001, page 23 of 44 PF08107B Vapc vs Efficiency – Vdd Dependence 1710 MHz Efficiency vs. Vapc 60 Po = 32 dBm, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 1785 MHz Efficiency vs. Vapc 60 Po = 32 dBm, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 Rev.7, Dec. 2001, page 24 of 44 0.5 1 1.5 Vapc (V) 2 2.5 3 PF08107B Vapc vs Pout – Temperature Dependence 1710 MHz Pout vs. Vapc 40 Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω −20°C 25°C 75°C 35 Pout (dBm) 30 25 20 15 10 5 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 2.5 3 1785 MHz Pout vs. Vapc 40 Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω −20°C 25°C 75°C 35 Pout (dBm) 30 25 20 15 10 5 0 0 0.5 1 1.5 Vapc (V) 2 Rev.7, Dec. 2001, page 25 of 44 PF08107B Vapc vs Efficiency – Temperature Dependence 1710 MHz Efficiency vs. Vapc 60 Po = 32 dBm, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, −20°C 25°C 75°C 50 Efficiency (%) 40 30 20 10 0 0 0.5 1 1.5 Vapc (V) 2 2.5 3 1785 MHz Efficiency vs. Vapc 60 Po = 32 dBm, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, −20°C 25°C 75°C 50 Efficiency (%) 40 30 20 10 0 0 Rev.7, Dec. 2001, page 26 of 44 0.5 1 1.5 Vapc (V) 2 2.5 3 PF08107B Pin vs Pout – Vdd Dependence 1710 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 5 10 1785 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 0 −20 −15 −10 −5 Pin (dBm) 0 Rev.7, Dec. 2001, page 27 of 44 PF08107B Pin vs Efficiency – Vdd Dependence 1710 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 30 20 10 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 5 10 1785 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 Vapc = 2.2 V, Tc = 25°C, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 30 20 10 0 −20 Rev.7, Dec. 2001, page 28 of 44 −15 −10 −5 Pin (dBm) 0 PF08107B Pin vs Pout – Temperature Dependence 1710 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 5 10 1785 MHz Pout vs. Pin 40 35 Pout (dBm) 30 25 20 15 10 5 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 0 −20 −15 −10 −5 Pin (dBm) 0 Rev.7, Dec. 2001, page 29 of 44 PF08107B Pin vs Efficiency – Temperature Dependence 1710 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 10 0 −20 −15 −10 −5 Pin (dBm) 0 5 10 1785 MHz Efficiency vs. Pin 60 50 Efficiency (%) 40 30 20 Vapc = 2.2 V, Vdd = 3.5 V, Zg = Zl = 50 Ω −20°C 25°C 75°C 10 0 −20 Rev.7, Dec. 2001, page 30 of 44 −15 −10 −5 Pin (dBm) 0 5 10 PF08107B Pout vs Efficiency – Vdd Dependence 1710 MHz Efficiency vs. Pout 60 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 1785 MHz Efficiency vs. Pout 60 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 50 Efficiency (%) 40 30 20 10 0 0 5 10 15 20 25 Pout (dBm) 30 Rev.7, Dec. 2001, page 31 of 44 PF08107B Pout vs Idd – Vdd Dependence 1710 MHz Idd, Iapc vs. Pout 3 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V Iapc (3.5 V) Idd (A), Iapc (mA) 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 1785 MHz Idd, Iapc vs. Pout 3 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V Iapc (3.5 V) Idd (A), Iapc (mA) 2.5 2 1.5 1 0.5 0 0 Rev.7, Dec. 2001, page 32 of 44 5 10 15 20 25 Pout (dBm) 30 PF08107B Pout vs Harmonic Distortion – Vdd Dependence 1710 MHz 2fo vs. Pout −35 −40 2fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 1785 MHz 2fo vs. Pout −35 −40 2fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) 30 Rev.7, Dec. 2001, page 33 of 44 PF08107B Pout vs Harmonic Distortion – Vdd Dependence 1710 MHz 3fo vs. Pout −35 −40 3fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 5 10 15 20 25 Pout (dBm) 30 35 40 35 40 1785 MHz 3fo vs. Pout −35 −40 3fo (dBc) −45 −50 −55 Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V −60 −65 0 Rev.7, Dec. 2001, page 34 of 44 5 10 15 20 25 Pout (dBm) 30 PF08107B Pout vs Slope, AM-AM conversion 1710 MHz AM/AM, Slope vs. Pout 500 100 400 60 300 40 200 20 100 0 −60 −40 −20 0 Pout (dBm) 20 Slope (dB/V) AM/AM (%) 80 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω AM (%) SLP (dB/V) 0 40 1785 MHz AM/AM, Slope vs. Pout 500 100 400 60 300 40 200 20 100 0 −60 −40 −20 0 Pout (dBm) 20 Slope (dB/V) AM/AM (%) 80 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω AM (%) SLP (dB/V) 0 40 Rev.7, Dec. 2001, page 35 of 44 PF08107B Pout vs Input VSWR 1710 MHz VSWR in vs. Pout 4 3.5 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, VSWR in VSWR in 3 2.5 2 1.5 1 −60 −40 −20 0 Pout (dBm) 20 40 1785 MHz VSWR in vs. Pout 4 3.5 Vdd = 3.5 V, Tc = 25°C, Pin = 0 dBm, Zg = Zl = 50 Ω, VSWR in VSWR in 3 2.5 2 1.5 1 −60 Rev.7, Dec. 2001, page 36 of 44 −40 −20 0 Pout (dBm) 20 40 PF08107B Frequency vs Pout, Efficiency – Vdd Dependence DCS Pout vs. Frequency 34 33.5 Pout (dBm) 33 32.5 32 31.5 31 30.5 Vapc = 2.2 V, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 30 1710 1720 1730 1740 1750 1760 1770 1780 1790 Frequency (MHz) DCS Efficiency vs. Frequency 60 55 Efficiency (%) 50 Vapc = 2.2 V, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, Vdd = 3.5 V Vdd = 3.2 V Vdd = 3.0 V 45 40 35 30 1710 1720 1730 1740 1750 1760 1770 1780 1790 Frequency (MHz) Rev.7, Dec. 2001, page 37 of 44 PF08107B Pout – Temperature Dependence DCS Pout vs. Tc 34.0 33.5 Pout (dBm) 33.0 32.5 32.0 31.5 Vapc = 2.2 V, Vdd = 3.5 V, Pin = 0 dBm, Zg = Zl = 50 Ω, f = 1710 MHz f = 1785 MHz 31.0 −25 Rev.7, Dec. 2001, page 38 of 44 0 25 Tc (°C) 50 75 PF08107B Pout, Eff vs Load inpedance for PF08107B (f = 880 MHz) f = 880 MHz Pin = 0 dBm Vdd = 3.5 V Vapc = 2.2 V Tc = 25°C 36.5 dBm 37 dBm 36 dBm 35.5 dBm 35.8 dBm short open 35 dBm 50 Ω 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Pout vs. Load impedance (f = 880 MHz) f = 880 MHz Pin = 0 dBm Vdd = 3.5 V Pout = 35 dbm Tc = 25°C 35% short open 50 Ω 40% 1.2 : 1 45% 50% 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Eff vs. Load impedance (f = 880 MHz) Rev.7, Dec. 2001, page 39 of 44 PF08107B Pout, Eff vs Load inpedance for PF08107B (f = 915 MHz) 36 dBm f = 915 MHz Pin = 0 dBm Vdd = 3.5 V Vapc = 2.2 V Tc = 25°C 35.5 dBm 36.5 dBm 35 dBm 34.5 dBm 34 dBm 33.5 dBm short open 50 Ω 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Pout vs. Load impedance (f = 915 MHz) f = 915 MHz Pin = 0 dBm Vdd = 3.5 V Pout = 35 dBm Tc = 25°C 45% 47% 50% 52% short open 50 Ω 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Eff vs. Load impedance (f = 915 MHz) Rev.7, Dec. 2001, page 40 of 44 PF08107B Pout, Eff vs Load inpedance for PF08107B (f = 1710 MHz) 33.5 dBm f = 1710 MHz Pin = 0 dBm Vdd = 3.5 V Vapc = 2.2 V Tc = 25°C 33 dBm 32.5 dBm short 32 dBm open 50 Ω 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Pout vs. Load impedance (f = 1710 MHz) f = 1710 MHz Pin = 0 dBm Vdd = 3.5 V Pout = 32 dBm Tc = 25°C 35% 37% 40% 42% short open 50 Ω 1.2 : 1 45% 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Eff vs. Load impedance (f = 1710 MHz) Rev.7, Dec. 2001, page 41 of 44 PF08107B Pout, Eff vs Load inpedance for PF08107B (f = 1785 MHz) f = 1785 MHz Pin = 0 dBm Vdd = 3.5 V Vapc = 2.2 V Tc = 25°C 33 dBm 33.5 dBm 32.5 dBm 32 dBm 31.5 dBm 31 dBm short open 50 Ω 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Pout vs. Load impedance (f = 1785 MHz) f = 1785 MHz Pin = 0 dBm Vdd = 3.5 V Pout = 32 dBm Tc = 25°C 45% 44% 43% 42% 41% 50 Ω 40% open 1.2 : 1 1.5 : 1 1.86 : 1 2.33 : 1 VSWR SMTH CHART Eff vs. Load impedance (f = 1785 MHz) Rev.7, Dec. 2001, page 42 of 44 PF08107B Package Dimensions Unit: mm 1.6 ± 0.2 7 G 6 5 G 8.0 ± 0.3 8.0 ± 0.3 8 G 1 2 G 3 (Upper side) 4 5 G6 8 7 G 13.75 ± 0.3 (5.375) (5.375) (3.275) (3.275) (1.4) (1.6) (1.6) (3.7) (1.6) (1.6) (3.7) (2.4) (1.4) (1.4) (2.4) (3.7) (3.7) (Bottom side) (2.2) (3.7) (0.7) (1.5) (1.5) (1.3) 12 G 4 G 3 1: Pin GSM 2: Vapc 3: Vdd1 4: Pout GSM 5: Pout DCS 6: Vdd2 7: Vctl 8: Pin DCS G: GND Remark: Coplanarity of bottom side of terminals are less than 0 ± 0.1mm. Hitachi Code JEDEC JEITA Mass (reference value) RF-K-8 Rev.7, Dec. 2001, page 43 of 44 PF08107B Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109 URL http://www.hitachisemiconductor.com/ For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585200 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://semiconductor.hitachi.com.hk Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan. Colophon 5.0 Rev.7, Dec. 2001, page 44 of 44