ETC PF08107B

PF08107B
MOS FET Power Amplifier Module
for E-GSM and DCS1800 Dual Band Handy Phone
ADE-208-787G (Z)
Rev.7
Dec. 2001
Application
• Dual band amplifier for E-GSM (880 MHz to 915 MHz) and DCS1800 (1710 MHz to 1785 MHz).
• For 3.5 V nominal operation
Features
• 2 in / 2 out dual band amplifier
• Simple external circuit including output matching circuit
• Simple power control
• High gain 3stage amplifier : 0 dBm input Typ
• Lead less thin & Small package : 8 × 13.75 × 1.6 mm Typ
• High efficiency : 50 % Typ at 35.0 dBm for E-GSM
43 % Typ at 32.0 dBm for DCS1800
Pin Arrangement
• RF-K-8
5
G6
8 7
G
12
G
4
G 3
1: Pin GSM
2: Vapc
3: Vdd1
4: Pout GSM
5: Pout DCS
6: Vdd2
7: Vctl
8: Pin DCS
G: GND
PF08107B
Absolute Maximum Ratings
(Tc = 25°C)
Item
Symbol
Rating
Unit
Supply voltage
Vdd
8
V
Supply current
Idd GSM
3.5
A
Idd DCS
2
A
Vctl
4
V
Vctl voltage
Vapc voltage
Vapc
4
V
Input power
Pin
10
dBm
Operating case temperature
Tc (op)
−30 to +100
°C
Storage temperature
Tstg
−30 to +100
°C
Output power
Pout GSM
5
W
Pout DCS
3
W
Note: The maximum ratings shall be valid over both the E-GSM-band (880 to 915 MHz),
and the DCS1800-band (1710 to 1785 MHz).
Electrical Characteristics for DC
(Tc = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Drain cutoff current
Ids


20
µA
Vdd = 4.7 V, Vapc = 0 V,
Vctl = 0.2 V


300
µA
Vdd = 8 V, Vapc = 0 V,
Vctl = 0.2 V,
Tc = −20 to +70°C
Vapc control current
Iapc


3
mA
Vapc = 2.2 V
Vctl control current
Ictl


2
µA
Vctl = 3 V
Rev.7, Dec. 2001, page 2 of 44
PF08107B
Electrical Characteristics for E-GSM mode
(Tc = 25°C)
Test conditions unless otherwise noted:
f = 880 to 915 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 2.0 V, Rg = Rl = 50 Ω, Tc = 25°C,
Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used.
Item
Symbol
Min
Typ
Max
Unit
Frequency range
F
880

915
MHz
Test Condition
Band select (GSM active)
Vctl
2.0

2.8
V
Input power
Pin
–2
0
2
dBm
Control voltage range
Vapc
0.2

2.2
V
Supply voltage
Vdd
3.0
3.5
4.5
V
Total efficiency
ηT
43
50

%
2nd harmonic distortion
2nd H.D.

−45
−35
dBc
3rd harmonic distortion
3rd H.D.

−45
−35
dBc
4th~8th harmonic distortion
4th~8th H.D.


−35
dBc
Input VSWR
VSWR (in)

1.5
3

Output power (1)
Pout (1)
35.0
36.0

dBm
Vapc = 2.2 V
Output power (2)
Pout (2)
33.5
34.5

dBm
Vdd = 3.1 V, Vapc = 2.2 V,
Tc = +70°C
Isolation


−42
−37
dBm
Vapc = 0.2 V, Pin = 2 dBm
Isolation at
DCS RF-output
when GSM is active


−30
−20
dBm
Pout GSM = 35 dBm,
Measured at f = 1760 to 1830 MHz
Switching time
t r, t f

1
2
µs
Pout GSM = 0 to 35.0 dBm
Stability

No parasitic oscillation

Vdd = 3.1 to 4.5 V, Pout ≤ 35.0 dBm,
Vapc GSM ≤ 2.2 V,
Rg = 50 Ω, Tc = 25°C,
Output VSWR = 6 : 1 All phases
Load VSWR tolerance

No degradation

Vdd = 3.1 to 4.5 V,
Pout GSM ≤ 35.0 dBm,
Vapc GSM ≤ 2.2 V,
Rg = 50 Ω, t = 20 sec., Tc = 25°C,
Output VSWR = 10 : 1 All phases
Noise power
Pnoise1


−80
dBm
f0 = 915 MHz, frx = f0 +10 MHz,
Pout GSM = 35 dBm,
RES BW = 100 kHz
Pnoise2


−84
dBm
f0 = 915 MHz, frx = f0 +20 MHz,
Pout GSM = 35 dBm,
RES BW = 100 kHz
Pout GSM = 35 dBm,
Vapc = controlled
Rev.7, Dec. 2001, page 3 of 44
PF08107B
Electrical Characteristics for E-GSM mode (cont)
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Slope Pout/Vapc



200
dB/V
Pout GSM = 5 to 35 dBm
Phase shift



20
deg
Pout GSM = 33.5 to 34.5 dBm
Total conversion gain1



−5
dB
f0 = 915 MHz,
Other sig. = 895 MHz (−40 dBm)
Pout GSM = 33.5 dBm
Total conversion gain2



−5
dB
f0 = 915 MHz,
Other sig. = 905 MHz (−40 dBm)
Pout GSM = 33.5 dBm
AM output



40
%
Pout GSM = +5 dBm,
4%AM modulation at input
50 kHz modulation frequency
Rev.7, Dec. 2001, page 4 of 44
PF08107B
Electrical Characteristics for DCS1800 mode
(Tc = 25°C)
Test conditions unless otherwise noted:
f = 1710 to 1785 MHz, Vdd1 = Vdd2 = 3.5 V, Pin = 0 dBm, Vctl = 0 V, Rg = Rl = 50 Ω, Tc = 25°C,
Pulse operation with pulse width 577 µs and duty cycle 1:8 shall be used.
Item
Symbol
Min
Typ
Max
Unit
Test Condition
Frequency range
F
1710

1785
MHz
DCS1800 (1710 to 1785)
Band select (DCS active)
Vctl
0

0.1
V
Input power
Pin
–2
0
2
dBm
Control voltage range
Vapc
0.2

2.2
V
Supply voltage
Vdd
3.0
3.5
4.5
V
Total efficiency
ηT
37
43

%
2nd harmonic distortion
2nd H.D.

−45
−35
dBc
3rd harmonic distortion
3rd H.D.

−45
−35
dBc
4th~8th harmonic distortion
4th~8th H.D.


–35
dBc
Input VSWR
VSWR (in)

1.5
3

Output power (1)
Pout (1)
32.0
33

dBm
Vapc = 2.2 V
Output power (2)
Pout (2)
30.5
31.5

dBm
Vdd = 3.1 V, Vapc = 2.2 V,
Tc = +70°C
Isolation


−42
−37
dBm
Vapc = 0.2 V, Pin DCS = 2 dBm
Switching time
t r, t f

1
2
µs
Pout DCS = 0 to 32.0 dBm
Stability

No parasitic oscillation

Vdd = 3.1 to 4.5 V, Pout DCS ≤ 32.0 dBm,
Vapc ≤ 2.2 V, Rg = 50 Ω,
Output VSWR = 6 : 1 All phases
Load VSWR tolerance

No degradation

Vdd = 3.1 to 4.5 V, Pout DCS ≤ 32.0 dBm,
Vapc ≤ 2.2 V, Rg = 50 Ω, t = 20 sec.,
Output VSWR = 10 : 1 All phases
Noise power
Pnoise


−77
dBm
f0 = 1785 MHz, frx = f0 +20 MHz,
Pout DCS = 32.0 dBm,
RES BW = 100 kHz
Slope Pout/Vapc



200
dB/V
Pout DCS = 0 to 32.0 dBm
Phase shift



20
deg
Pout DCS = 30.5 to 31.5 dBm
Total conversion gain1



−5
dB
f0 = 1785 MHz, Pout DCS = 30.5 dBm,
Other sig. = 1765 MHz (−40 dBm)
AM output



40
%
Pout DCS = 0 dBm,
4%AM modulation at input
50 kHz modulation frequency
Pout DCS = 32.0 dBm,
Vapc = controlled
Rev.7, Dec. 2001, page 5 of 44
PF08107B
Internal Diagram and External Circuit
PIN8
Pin DCS
PIN5
Pout DCS
PIN1
Pin GSM
Z1
PIN4
Pout GSM
Z2
Z3
Z4
Bias circuit
PIN2
Vapc
PIN7
Vctl
PIN3
Vdd1
C1
C3
FB
Pin Pin
Vapc
C4
FB
Vctl
PIN6
Vdd2
C2
FB
C5
FB
Vdd1
C6
FB
Vdd2
Pout GSM Pout DCS
Note: C1 to C4 = 0.01 µF CERAMIC CHIP
C5 = C6 = 4.7 µF TANTALUM ELECTROLYTE
FB = FERRITE BEAD BLO1RN1-A62-001 (MURATA) or equivalent
Z1 = Z2 = Z3 = Z4 = 50 Ω MICRO STRIP LINE
Rev.7, Dec. 2001, page 6 of 44
PF08107B
Characteristic Curves
Vapc vs Pout – Vdd Dependence
880 MHz Pout vs. Vapc
38
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
37
36
Pout (dBm)
35
34
33
32
31
30
29
28
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
915 MHz Pout vs. Vapc
38
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
37
36
Pout (dBm)
35
34
33
32
31
30
29
28
0
0.5
1
1.5
Vapc (V)
2
Rev.7, Dec. 2001, page 7 of 44
PF08107B
Vapc vs Efficiency – Vdd Dependence
880 MHz Efficiency vs. Vapc
60
Po = 35 dBm,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
915 MHz Efficiency vs. Vapc
60
Po = 35 dBm,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
Rev.7, Dec. 2001, page 8 of 44
0
0.5
1
1.5
Vapc (V)
2
PF08107B
Vapc vs Pout – Temperature Dependence
880 MHz Pout vs. Vapc
40
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
35
Pout (dBm)
30
25
20
15
10
5
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
915 MHz Pout vs. Vapc
40
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
35
Pout (dBm)
30
25
20
15
10
5
0
0
0.5
1
1.5
Vapc (V)
2
Rev.7, Dec. 2001, page 9 of 44
PF08107B
Vapc vs Efficiency – Temperature Dependence
880 MHz Efficiency vs. Vapc
60
Po = 35 dBm,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
−20°C
25°C
75°C
50
Efficiency (%)
40
30
20
10
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
915 MHz Efficiency vs. Vapc
60
Po = 35 dBm,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
−20°C
25°C
75°C
50
Efficiency (%)
40
30
20
10
0
0
Rev.7, Dec. 2001, page 10 of 44
0.5
1
1.5
Vapc (V)
2
PF08107B
Pin vs Pout – Vdd Dependence
880 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
5
10
915 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
0
−20
−15
−10
−5
Pin (dBm)
0
Rev.7, Dec. 2001, page 11 of 44
PF08107B
Pin vs Efficiency – Vdd Dependence
880 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
10
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
915 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
10
0
−20
Rev.7, Dec. 2001, page 12 of 44
−15
−10
−5
Pin (dBm)
0
5
10
PF08107B
Pin vs Pout – Temperature Dependence
880 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
5
10
915 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
0
−20
−15
−10
−5
Pin (dBm)
0
Rev.7, Dec. 2001, page 13 of 44
PF08107B
Pin vs Efficiency – Temperature Dependence
880 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
10
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
915 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
10
0
−20
Rev.7, Dec. 2001, page 14 of 44
−15
−10
−5
Pin (dBm)
0
5
10
PF08107B
Pout vs Efficiency – Vdd Dependence
880 MHz Efficiency vs. Pout
60
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
915 MHz Efficiency vs. Pout
60
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
5
10
15
20
25
Pout (dBm)
30
Rev.7, Dec. 2001, page 15 of 44
PF08107B
Pout vs Idd – Vdd Dependence
880 MHz Idd, Iapc vs. Pout
3
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
Iapc (3.5 V)
Idd (A), Iapc (mA)
2.5
2
1.5
1
0.5
0
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
915 MHz Idd, Iapc vs. Pout
3
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
Iapc (3.5 V)
Idd (A), Iapc (mA)
2.5
2
1.5
1
0.5
0
0
Rev.7, Dec. 2001, page 16 of 44
5
10
15
20
25
Pout (dBm)
30
PF08107B
Pout vs Harmonic Distortion – Vdd Dependence
880 MHz 2fo vs. Pout
−35
−40
2fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
30
35
40
30
35
40
915 MHz 2fo vs. Pout
−35
−40
2fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
Rev.7, Dec. 2001, page 17 of 44
PF08107B
Pout vs Harmonic Distortion – Vdd Dependence (cont)
880 MHz 3fo vs. Pout
−35
−40
3fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
30
35
40
30
35
40
915 MHz 3fo vs. Pout
−35
−40
3fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
Rev.7, Dec. 2001, page 18 of 44
5
10
15
20
25
Pout (dBm)
PF08107B
Pout vs Slope, AM-AM conversion
880 MHz AM/AM, Slope vs. Pout
500
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
AM (%)
SLP (dB/V)
AM/AM (%)
80
400
60
300
40
200
20
100
0
−60
−40
−20
0
Pout (dBm)
Slope (dB/V)
100
0
40
20
915 MHz AM/AM, Slope vs. Pout
500
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
AM (%)
SLP (dB/V)
AM/AM (%)
80
400
60
300
40
200
20
100
0
−60
−40
−20
0
Pout (dBm)
20
Slope (dB/V)
100
0
40
Rev.7, Dec. 2001, page 19 of 44
PF08107B
Pout vs Input VSWR
880 MHz VSWR in vs. Pout
4
3.5
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
VSWR in
VSWR in
3
2.5
2
1.5
1
−60
−40
−20
0
Pout (dBm)
20
40
915 MHz VSWR in vs. Pout
4
3.5
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
VSWR in
VSWR in
3
2.5
2
1.5
1
−60
Rev.7, Dec. 2001, page 20 of 44
−40
−20
0
Pout (dBm)
20
40
PF08107B
Frequency vs Pout, Efficiency – Vdd Dependence
GSM Pout vs. Frequency
37.5
37
36.5
Pout (dBm)
36
35.5
35
34.5
34
33.5
33
Vapc = 2.2 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
880
890
900
Frequency (MHz)
910
920
GSM Efficiency vs. Frequency
60
55
Efficiency (%)
50
45
40
35
30
Vapc = 2.2 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
880
890
900
Frequency (MHz)
910
920
Rev.7, Dec. 2001, page 21 of 44
PF08107B
Pout – Temperature Dependence
GSM Pout vs. Tc
37.0
Pout (dBm)
36.5
36.0
35.5
35.0
Vapc = 2.2 V,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
f = 880 MHz
f = 915 MHz
34.5
−25
Rev.7, Dec. 2001, page 22 of 44
0
25
Tc (°C)
50
75
PF08107B
Vapc vs Pout – Vdd Dependence
1710 MHz Pout vs. Vapc
36
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
35
34
Pout (dBm)
33
32
31
30
29
28
27
26
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
1785 MHz Pout vs. Vapc
36
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
35
34
Pout (dBm)
33
32
31
30
29
28
27
26
0
0.5
1
1.5
Vapc (V)
2
Rev.7, Dec. 2001, page 23 of 44
PF08107B
Vapc vs Efficiency – Vdd Dependence
1710 MHz Efficiency vs. Vapc
60
Po = 32 dBm,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
1785 MHz Efficiency vs. Vapc
60
Po = 32 dBm,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
Rev.7, Dec. 2001, page 24 of 44
0.5
1
1.5
Vapc (V)
2
2.5
3
PF08107B
Vapc vs Pout – Temperature Dependence
1710 MHz Pout vs. Vapc
40
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
35
Pout (dBm)
30
25
20
15
10
5
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
2.5
3
1785 MHz Pout vs. Vapc
40
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
35
Pout (dBm)
30
25
20
15
10
5
0
0
0.5
1
1.5
Vapc (V)
2
Rev.7, Dec. 2001, page 25 of 44
PF08107B
Vapc vs Efficiency – Temperature Dependence
1710 MHz Efficiency vs. Vapc
60
Po = 32 dBm,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
−20°C
25°C
75°C
50
Efficiency (%)
40
30
20
10
0
0
0.5
1
1.5
Vapc (V)
2
2.5
3
1785 MHz Efficiency vs. Vapc
60
Po = 32 dBm,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
−20°C
25°C
75°C
50
Efficiency (%)
40
30
20
10
0
0
Rev.7, Dec. 2001, page 26 of 44
0.5
1
1.5
Vapc (V)
2
2.5
3
PF08107B
Pin vs Pout – Vdd Dependence
1710 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
5
10
1785 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
0
−20
−15
−10
−5
Pin (dBm)
0
Rev.7, Dec. 2001, page 27 of 44
PF08107B
Pin vs Efficiency – Vdd Dependence
1710 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
30
20
10
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
5
10
1785 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
Vapc = 2.2 V,
Tc = 25°C,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
30
20
10
0
−20
Rev.7, Dec. 2001, page 28 of 44
−15
−10
−5
Pin (dBm)
0
PF08107B
Pin vs Pout – Temperature Dependence
1710 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
5
10
1785 MHz Pout vs. Pin
40
35
Pout (dBm)
30
25
20
15
10
5
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
0
−20
−15
−10
−5
Pin (dBm)
0
Rev.7, Dec. 2001, page 29 of 44
PF08107B
Pin vs Efficiency – Temperature Dependence
1710 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
10
0
−20
−15
−10
−5
Pin (dBm)
0
5
10
1785 MHz Efficiency vs. Pin
60
50
Efficiency (%)
40
30
20
Vapc = 2.2 V,
Vdd = 3.5 V,
Zg = Zl = 50 Ω
−20°C
25°C
75°C
10
0
−20
Rev.7, Dec. 2001, page 30 of 44
−15
−10
−5
Pin (dBm)
0
5
10
PF08107B
Pout vs Efficiency – Vdd Dependence
1710 MHz Efficiency vs. Pout
60
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
1785 MHz Efficiency vs. Pout
60
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
50
Efficiency (%)
40
30
20
10
0
0
5
10
15
20
25
Pout (dBm)
30
Rev.7, Dec. 2001, page 31 of 44
PF08107B
Pout vs Idd – Vdd Dependence
1710 MHz Idd, Iapc vs. Pout
3
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
Iapc (3.5 V)
Idd (A), Iapc (mA)
2.5
2
1.5
1
0.5
0
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
1785 MHz Idd, Iapc vs. Pout
3
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
Iapc (3.5 V)
Idd (A), Iapc (mA)
2.5
2
1.5
1
0.5
0
0
Rev.7, Dec. 2001, page 32 of 44
5
10
15
20
25
Pout (dBm)
30
PF08107B
Pout vs Harmonic Distortion – Vdd Dependence
1710 MHz 2fo vs. Pout
−35
−40
2fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
1785 MHz 2fo vs. Pout
−35
−40
2fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
30
Rev.7, Dec. 2001, page 33 of 44
PF08107B
Pout vs Harmonic Distortion – Vdd Dependence
1710 MHz 3fo vs. Pout
−35
−40
3fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
5
10
15
20
25
Pout (dBm)
30
35
40
35
40
1785 MHz 3fo vs. Pout
−35
−40
3fo (dBc)
−45
−50
−55
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
−60
−65
0
Rev.7, Dec. 2001, page 34 of 44
5
10
15
20
25
Pout (dBm)
30
PF08107B
Pout vs Slope, AM-AM conversion
1710 MHz AM/AM, Slope vs. Pout
500
100
400
60
300
40
200
20
100
0
−60
−40
−20
0
Pout (dBm)
20
Slope (dB/V)
AM/AM (%)
80
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
AM (%)
SLP (dB/V)
0
40
1785 MHz AM/AM, Slope vs. Pout
500
100
400
60
300
40
200
20
100
0
−60
−40
−20
0
Pout (dBm)
20
Slope (dB/V)
AM/AM (%)
80
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω
AM (%)
SLP (dB/V)
0
40
Rev.7, Dec. 2001, page 35 of 44
PF08107B
Pout vs Input VSWR
1710 MHz VSWR in vs. Pout
4
3.5
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
VSWR in
VSWR in
3
2.5
2
1.5
1
−60
−40
−20
0
Pout (dBm)
20
40
1785 MHz VSWR in vs. Pout
4
3.5
Vdd = 3.5 V,
Tc = 25°C,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
VSWR in
VSWR in
3
2.5
2
1.5
1
−60
Rev.7, Dec. 2001, page 36 of 44
−40
−20
0
Pout (dBm)
20
40
PF08107B
Frequency vs Pout, Efficiency – Vdd Dependence
DCS Pout vs. Frequency
34
33.5
Pout (dBm)
33
32.5
32
31.5
31
30.5
Vapc = 2.2 V,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
30
1710 1720 1730 1740 1750 1760 1770 1780 1790
Frequency (MHz)
DCS Efficiency vs. Frequency
60
55
Efficiency (%)
50
Vapc = 2.2 V,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
Vdd = 3.5 V
Vdd = 3.2 V
Vdd = 3.0 V
45
40
35
30
1710 1720 1730 1740 1750 1760 1770 1780 1790
Frequency (MHz)
Rev.7, Dec. 2001, page 37 of 44
PF08107B
Pout – Temperature Dependence
DCS Pout vs. Tc
34.0
33.5
Pout (dBm)
33.0
32.5
32.0
31.5
Vapc = 2.2 V,
Vdd = 3.5 V,
Pin = 0 dBm,
Zg = Zl = 50 Ω,
f = 1710 MHz
f = 1785 MHz
31.0
−25
Rev.7, Dec. 2001, page 38 of 44
0
25
Tc (°C)
50
75
PF08107B
Pout, Eff vs Load inpedance for PF08107B (f = 880 MHz)
f = 880 MHz
Pin = 0 dBm
Vdd = 3.5 V
Vapc = 2.2 V
Tc = 25°C
36.5 dBm
37 dBm
36 dBm
35.5 dBm
35.8 dBm
short
open
35 dBm
50 Ω
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Pout vs. Load impedance (f = 880 MHz)
f = 880 MHz
Pin = 0 dBm
Vdd = 3.5 V
Pout = 35 dbm
Tc = 25°C
35%
short
open
50 Ω
40%
1.2 : 1
45%
50%
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Eff vs. Load impedance (f = 880 MHz)
Rev.7, Dec. 2001, page 39 of 44
PF08107B
Pout, Eff vs Load inpedance for PF08107B (f = 915 MHz)
36 dBm
f = 915 MHz
Pin = 0 dBm
Vdd = 3.5 V
Vapc = 2.2 V
Tc = 25°C
35.5 dBm
36.5 dBm
35 dBm
34.5 dBm
34 dBm
33.5 dBm
short
open
50 Ω
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Pout vs. Load impedance (f = 915 MHz)
f = 915 MHz
Pin = 0 dBm
Vdd = 3.5 V
Pout = 35 dBm
Tc = 25°C
45%
47%
50%
52%
short
open
50 Ω
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Eff vs. Load impedance (f = 915 MHz)
Rev.7, Dec. 2001, page 40 of 44
PF08107B
Pout, Eff vs Load inpedance for PF08107B (f = 1710 MHz)
33.5 dBm
f = 1710 MHz
Pin = 0 dBm
Vdd = 3.5 V
Vapc = 2.2 V
Tc = 25°C
33 dBm
32.5 dBm
short
32 dBm
open
50 Ω
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Pout vs. Load impedance (f = 1710 MHz)
f = 1710 MHz
Pin = 0 dBm
Vdd = 3.5 V
Pout = 32 dBm
Tc = 25°C
35%
37%
40%
42%
short
open
50 Ω
1.2 : 1
45%
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Eff vs. Load impedance (f = 1710 MHz)
Rev.7, Dec. 2001, page 41 of 44
PF08107B
Pout, Eff vs Load inpedance for PF08107B (f = 1785 MHz)
f = 1785 MHz
Pin = 0 dBm
Vdd = 3.5 V
Vapc = 2.2 V
Tc = 25°C
33 dBm
33.5 dBm
32.5 dBm
32 dBm
31.5 dBm
31 dBm
short
open
50 Ω
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Pout vs. Load impedance (f = 1785 MHz)
f = 1785 MHz
Pin = 0 dBm
Vdd = 3.5 V
Pout = 32 dBm
Tc = 25°C
45%
44%
43%
42%
41%
50 Ω 40%
open
1.2 : 1
1.5 : 1
1.86 : 1
2.33 : 1
VSWR
SMTH CHART
Eff vs. Load impedance (f = 1785 MHz)
Rev.7, Dec. 2001, page 42 of 44
PF08107B
Package Dimensions
Unit: mm
1.6 ± 0.2
7
G
6
5
G
8.0 ± 0.3
8.0 ± 0.3
8
G
1
2
G
3
(Upper side)
4
5
G6
8 7
G
13.75 ± 0.3
(5.375)
(5.375)
(3.275) (3.275)
(1.4)
(1.6) (1.6)
(3.7)
(1.6) (1.6)
(3.7)
(2.4)
(1.4)
(1.4) (2.4)
(3.7)
(3.7)
(Bottom side)
(2.2)
(3.7)
(0.7)
(1.5) (1.5)
(1.3)
12
G
4
G 3
1: Pin GSM
2: Vapc
3: Vdd1
4: Pout GSM
5: Pout DCS
6: Vdd2
7: Vctl
8: Pin DCS
G: GND
Remark:
Coplanarity of bottom side of terminals
are less than 0 ± 0.1mm.
Hitachi Code
JEDEC
JEITA
Mass (reference value)
RF-K-8



Rev.7, Dec. 2001, page 43 of 44
PF08107B
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe Ltd.
Electronic Components Group
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585200
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://semiconductor.hitachi.com.sg
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen
Postfach 201, D-85619 Feldkirchen
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road
Hung-Kuo Building
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://semiconductor.hitachi.com.hk
Copyright © Hitachi, Ltd., 2001. All rights reserved. Printed in Japan.
Colophon 5.0
Rev.7, Dec. 2001, page 44 of 44