TI SN75LBC776DW

SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
D
D
D
D
D
D
D
D
Single-Chip Interface Solution for the
9-terminal GeoPort Host (DTE)
Designed to Operate up to 4 Mbit/s Full
Duplex
Single 5-V Supply Operation
6-kV ESD Protection on All Terminals
Backward compatible With AppleTalk and
LocalTalk
Combines Multiple Components into a
Single-chip Solution
Complements the SN75LBC777 9-Terminal
GeoPort Peripheral (DCE) Interface Device
LinBiCMOS Process Technology
DW PACKAGE
(TOP VIEW)
DA1
VEE
C–
C+
SHDN
DZ2
DY2
GND
DEN
DA2
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
GND
VCC
DY1
RY3
RB3
RA2
RY2
RB1
RA1
RY1
description
The SN75LBC776 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin
GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/TIA-423-B drivers and receivers to
transmit data up to four megabits per second (Mbit/s) full duplex. GeoPort is a serial communications standard
that is intended to replace the RS-232, Appletalk, and LocalTalk printer ports all in one connector in addition
to providing real-time data transfer capability. It provides point-to-point connections between
GeoPort-compatible devices with data transmission rates up to 4 Mbit/s full duplex and a hot-plug feature.
Applications include connection to telephony, integrated services digital network (ISDN), digital sound and
imaging, fax-data modems, and other serial and parallel connections. The GeoPort is backwardly compatible
to both LocalTalk and AppleTalk.
While the SN75LBC776 is powered-off (VCC = 0) the outputs are in a high-impedance state. When the shutdown
(SHDN) terminal is high, the charge pump is powered down and the outputs are in a high-impedance state. The
driver enable (DEN) terminal sends the outputs of the differential driver into a high-impedance state with a high
input signal. All drivers and receivers have fail-safe mechanisms to ensure a high output state when the inputs
are left open.
A switched-capacitor voltage converter generates the negative voltage required from a single 5-V supply using
four 0.1-µF capacitors, two capacitors between the C+ and C- terminals and two capacitors between VEE and
ground.
The SN75LBC776 is characterized for operation over the 0°C to 70°C temperature range.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated.
LinBiCMOS is a trademark of Texas Instruments Incorporated.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
DRIVER FUNCTION TABLE†
INPUT
DA1
INPUT
DA2
ENABLE
SHDN
ENABLE
DEN
H
X
L
L
X
L
X
H
OUTPUT
OUTPUT
DY1
DY2
DZ2
X
L
X
X
X
H
X
X
L
L
X
H
L
H
X
L
L
L
X
L
OPEN
OPEN
L
L
L
H
L
X
X
H
X
Z
Z
Z
X
X
X
H
X
Z
Z
X
X
OPEN
OPEN
Z
Z
Z
† H = high level
L = low level
X = irrelevant
? = indeterminate
Z = high impedance (off)
RECEIVER FUNCTION TABLE†
INPUT
RA1 RB1
INPUT
RA2 & RB3
ENABLE
SHDN
OUTPUT
RY1
OUTPUT
RY2
OUTPUT
RY3
H
L
H
L
H
H
L
L
H
L
L
L
L
H
OPEN
OPEN
L
H
H
H
SHORT‡
SHORT‡
L
?
?
?
X
H
Z
Z
Z
Z
Z
X
X
X
X
X
† H = high level L = low level
‡ – 0.2 V < VID < 0.2 V
OPEN
X = irrelevant
Z
? = indeterminate
Z = high impedance (off)
function logic diagram (positive logic)
DA2
DEN
RY1
DA1
7
10
6
9
11
1
14
RY3
17
SHDN
VCC
GND
2
DZ2
12
RA1
13
RB1
18
15
RY2
DY2
16
DY1
RA2
RB3
5
19
20
Charge
Pump
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
VEE (– 5 V)
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Positive supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 to 7 V
Negative supply voltage range, VEE (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 7 to 0.5 V
Receiver input voltage range (RA, RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V to 15 V
Receiver differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 12 to 12 V
Receiver output voltage range (RY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 5.5 V
Driver output voltage range (Power Off) (DY1, DY2, DZ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V to 15 V
Driver output voltage range (Power On) (DY1, DY2, DZ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 11 V to 11 V
Driver input voltage range (DA, SHND, DEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to VCC+ 0.4 V
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 kV
(Bus terminals), Class 3, B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V
(All terminals), Class 3, A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 kV
(All terminals), Class 3, B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
2. This parameter is measured in accordance with MIL-STD-883C, Method 3015.7.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
OPERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
DW
1125 mW
9.0 mW/°C
720 mW
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
recommended operating conditions
Supply voltage, VCC
High-level input voltage, VIH
DA, SHDN, DEN
Low-level input voltage, VIL
DA, SHDN, DEN
MIN
NOM
MAX
UNIT
4.75
5
5.25
V
5.25
V
0.8
V
V
2
Receiver common-mode input voltage, VIC
–7
7
Receiver differential input voltage, VID
–12
12
Voltage-converter filter capacitance
0.2
Voltage-converter filter-capacitor equivalent series resistance (ESR)
Operating free-air temperature, TA
V
µF
0
0.2
Ω
70
°C
driver electrical characteristics over operating free-air temperature range (unless otherwise
noted)
PARAMETER
VOH
TEST CONDITIONS
High level output voltage
High-level
Single
g ended,,
See Figure 1
VOL
Low level output voltage
Low-level
|VOD|
Magnitude of differential output voltage
|(V(DY) – V(DZ)|
∆|VOD|
Change in differential voltage magnitude
VOC
Common-mode output voltage
|∆VOC(SS)|
Magnitude of change, common-mode steady
state output voltage
|∆VOC(PP)|
Magnitude of change, common-mode
peak-to-peak output voltage
ICC
Supply current
IOZ
IOS
High-impedance output current
RL = 120 Ω,,
TYP
RL = 12 kΩ
3.6
4.53
RL = 120 Ω
2
3.63
V
V
– 3.6
V
RL = 120 Ω
– 2.7
– 1.8
V
4
V
250
3
200
See Figure 3
700
SHDN = DEN = 0 V,
No load
SHDN = DEN = 5 V,
No load
VO = –10 V to 10 V,
VO = – 5 V to 5 V
VCC = 0 or 5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
– 4.53
–1
Short-circuit output current (see Note 3)
MAX
RL = 12 kΩ
g
See Figure
2
NOTE 3: Not more than one output should be shorted at one time.
4
MIN
7
± 170
mV
V
mV
mV
15
mA
100
µA
±100
µA
± 450
mA
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
driver switching characteristics over operating free-air temperature range (unless otherwise
noted)
TYP
MAX
tPHL
tPLH
Propagation delay time, high-to-low level output
PARAMETER
42
75
Propagation delay time, low-to-high level output
41
75
ns
tPZL
tPZH
Driver output enable time to low-level output
25
100
µs
25
100
µs
tPLZ
tPHZ
Driver output disable time from low-level output
28
100
ns
37
100
ns
tr
tf
Rise time
10
25
75
ns
Fall time
10
23
75
ns
tPHL
tPLH
Propagation delay time, high-to-low level output
40
75
ns
Propagation delay time, low-to-high level output
42
75
ns
tPZL
Driver output enable time to low-level
low level output
SHDN
25
100
µs
DEN
29
150
ns
SHDN
25
100
µs
35
150
ns
28
100
ns
DEN
34
100
ns
SHDN
37
100
ns
DEN
34
100
ns
tPZH
tPLZ
TEST CONDITIONS
Driver output enable time to high-level output
MIN
Single
g ended,,
See Figure 4
SHDN
Driver output disable time from high-level output
high level output
Driver output enable time to high-level
Driver output disable time from low-level
low level output
DEN
Differential,,
See Figure 5
SHDN
UNIT
ns
tPHZ
Driver output disable time from high-level
high level output
tr
tf
Rise time
10
27
75
ns
Fall time
10
26
75
ns
tSK(p)
Pulse skew, |tPLH – tPHL|
22
ns
receiver electrical characteristics over operating free-air temperature range (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
VIT+
VIT–
Positive-going input threshold voltage
Vhys
VOH
Differential input voltage hysteresis (VIT+ – VIT–)
VOL
Low-level output voltage
IOS
Short circuit output current
Short-circuit
VO = 0
VO = VCC
RI
Input resistance
VCC = 0 or 5.25 V,
VI = –12 V to 12 V
TYP
MAX
200
See Figure 6
Negative-going input threshold voltage
High-level output voltage (see Note 4)
MIN
– 200
50
VIC = 0,
VIC = 0,
IOH = –2 mA,
IOL = 2 mA,
See Figure 6
2
See Figure 6
– 85
6
V
0.8
– 45
47
30
mV
mV
4.9
0.2
UNIT
+ 85
V
mA
kΩ
NOTE 4: When the inputs are left unconnected, receivers one and two interpret these as high-level inputs and receiver three interprets these
as low-level inputs so that all outputs are at a high level.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
receiver switching characteristics over operating free-air temperature range (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TYP
MAX
31
75
ns
30
75
ns
15
30
ns
15
30
ns
20
ns
Receiver output enable time to low level output
35
100
ns
tPZH
tPLZ
Receiver output enable time to high level output
32
100
ns
21
100
ns
tPHZ
tPZL
Receiver output disable time from high level output
21
100
ns
Receiver output enable time to low level output
12
25
µs
tPZH
tPLZ
Receiver output enable time to high level output
12
25
µs
25
100
ns
tPHZ
Receiver output disable time from high level output
125
400
ns
tPHL
tPLH
Propagation delay time, high-to-low-level output
tr
tf
Rise time
tSK(P)
tPZL
Pulse skew |tPLH–tPHL|
6
Propagation delay time, low-to-high level output
RL = 2 kΩ,
kΩ
See Figure 6
CL = 15 pF,
F
Fall time
Receiver output disable time from low level output
Receiver output disable time from low level output
Differential,,
See Figure 7
Single
g ended,
See Figure 7
POST OFFICE BOX 655303
CL =50 pF,,
CL =50 pF,
• DALLAS, TEXAS 75265
MIN
UNIT
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
PARAMETER MEASUREMENT INFORMATION
CL
IO
CL
II
IO
DY1
II
DA1
VO
CL
DA2
RL
VI
RL
DY2
VO
VI
SHDN
IO
DZ2
VO
SHDN
or
DEN
NOTE A: CL = 50 pF
RL
TEST CIRCUIT
Figure 1. Single-Ended Driver DC Parameter Test
60 Ω
DY2
II
IO
VOD
DA2
VI
60 Ω
DZ2
50 pF
SHDN
or
DEN
TEST CIRCUIT
Figure 2. Differential Driver DC Parameter Test
60 Ω
DY2
VOD
DA2
VI
DZ2
60 Ω
VOC
15 pF
SHDN
or
DEN
TEST CIRCUIT (see Note A)
3V
VI
1.5 v
1.5 v
0V
VOC
0V
V
VOC(PP) OC(SS)
VOLTAGE WAVEFORM
NOTE A: Measured 3dB bandwidth = 300 MHz
Figure 3. Differential-Driver Common-Mode Output Voltage Tests
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
PARAMETER MEASUREMENT INFORMATION
CL
IO
CL = 50 pF
II
DY1
DA1
RL
DY2
VO
CL
DA2
RL = 120 Ω
VO
VI
SHDN
IO
DZ2
RL
VO
SHDN
or
DEN
TEST CIRCUIT
(see Note A)
3V
SHDN
or
DEN
1.5 V
1.5 V
1.5 V
1.5 V
0V
3V
1.5 V
DA
1.5 V
0V
tPLH
tPHL
tPLZ
tPZL
90%
DY1, DZ2
tPHZ
90%
10%
90%
50%
10%
10%
90%
0V
50%
10%
VOL
tPZH
tf
tPLZ
tr
tPHL
tPHZ
tPLH
VOH
tPZH
DY2
90%
90%
tPZL
90%
50%
10%
10%
VOH
90%
50%
10%
tf
tr
VOLTAGE WAVEFORM
(see Note B)
NOTES: A. CL = 50 pF, RL = 120 Ω
B. The input waveform tr, tf ≤ 10 ns.
Figure 4. Single-Ended Driver Propagation and Transition Times
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
0V
10%
VOL
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
PARAMETER MEASUREMENT INFORMATION
RL = 60 Ω
DY2
VOD
DA2
VI
RL = 60 Ω
DZ2
50 pF
SHDN
or
DEN
TEST CIRCUIT
3V
SHDN
or
DEN
1.5 V
1.5 V
1.5 V
1.5 V
0V
3V
1.5 V
DA
1.5 V
0V
tPHL
tPLH
tPHZ
tPZH
90%
VOD
90%
90%
VOD(H)
90%
10%
50%
tPLZ
50%
10%
0V
10%
10%
tPZL
VOD(L)
tf
tr
VOLTAGE WAVEFORM
(see Note A)
Figure 5. Differential Driver Propagation and Transition Times
VCC
II
Input
VI
2.5 V
VI
2 kΩ
RA +
RB _
RY
15 pF
0V
0V
– 2.5 V
IO
tPLH
Output
VO
SHDN
VO
tPHL
90%
90%
10%
tr
TEST CIRCUIT
VOH
1.5 V
10% V
OL
tf
VOLTAGE WAVEFORM
(see Note A)
Figure 6. Receiver Propagation and Transition Times
NOTE A: The input waveform tr, tf ≤ 10 ns.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
PARAMETER MEASUREMENT INFORMATION
VCC
– 2.5 V or 2.5 V
RA +
RB _
RY
RL = 500 Ω
S1
CL = 50 pF
SHDN
TEST CIRCUIT
3V
SHDN
1.5 V
1.5 V
0V
tPLZ
tPZL
VCC
S1 at VCC
90%
10%
VO
tPHZ
VOL
tPZH
VOH
90%
S1 at GND
10%
0V
VOLTAGE WAVEFORM
(see Note A)
NOTE A: The input waveform tr, tf ≤ 10 ns.
Figure 7. Receiver Enable and Disable Test Circuit and Waveforms
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
APPLICATION INFORMATION
RxD
GeoPort
Controller
and USART
11
TxD
10
SHDN
DTR
5
RTXC
CTS
RTS
VCC
0.1 µF
+
0.1 µF
Standard
Host
19
SN75LBC776
9-Terminal
DTE
4
+
3
GeoPort
Host
SN75LBC776
9-Terminal
DTE
1 RESET/ATT
14 SCLK
17 TxHS/WAKE-UP
9
13
RxD –
12
RxD +
13
RxD –
12
RxD +
7
6
TxD +
TxD –
18
15
GND
RESET/ATT
SCLK
Power
16
TxHS/WAKE-UP
16 TxHS/WAKE-UP
7
TxD +
6
TxD –
6
3
–5 V
(see Note A)
0.1 µF
VEE
+
0.1 µF
GND
2
+
8
20
GeoPort
Peripheral
Device
9-Pin
DCE
18
RESET/ATT
15
SCLK
7
VCC
8
4
9
1
2
5
Power
NOTE A: The AVX 0603YC104MATXA or equivalent is one of the possible capacitors that can be used as the charge pump capacitor.
Figure 8. GeoPort 9-Terminal DTE Connection Application
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
APPLICATION INFORMATION
generator characteristics
PARAMETER
TEST CONDITIONS
EIA/TIA-232/V.28
MIN
Open circuit
|VO|
Output voltage magnitude
3 kΩ ≤ RL ≤ 7 kΩ
RL = 450 Ω
VO(RING)
IOS
Output voltage ringing
Power off output current
Power-off
SR
Output voltage slew rate
300
VCC = 0, |VO| < 6 V
NA
Transition time
25
4
6
15
NA
3.7
V
3.6
NA
V
NA
± 3 V to ± 3 V
10% to 90%
0.04
60
mA
Ω
300
±100
V
5%
150
NA
MAX
13.2
10%
100
30
± 3.3 V to ± 3.3 V
MIN
UNIT
MAX
NA
VO = 0
VCC = 0, |VO| < 2 V
562
MIN
NA
Short-circuit output current
IO(OFF)
tt
5
EIA/TIA-423/V.10
MAX
µA
NA
NA
4
30
V/µs
NA
0.22
2.1
NA
µs
ui†
NA
ui†
NA
NA
0.3
† ui is the unit interval and is the inverse of the signaling rate (bit transmit time).
receiver characteristics
PARAMETER
|VI|
Input voltage magnitude
VIT
Input voltage threshold
RI
Input resistance
12
TEST CONDITIONS
EIA/TIA-232/V.28
MIN
MAX
EIA/TIA-423/V.10
MIN
25
|VI| < 15 V
–3
|VI| < 10 V
NA
3 V < |VI| < 15 V
|VI| < 10 V
POST OFFICE BOX 655303
3
3
NA
• DALLAS, TEXAS 75265
MIN
10
NA
– 0.2
7
MAX
562
25
–3
0.2
MAX
3
NA
NA
3
4
NA
7
UNIT
V
V
kΩ
kΩ
SN75LBC776
SINGLE-CHIP GeoPort TRANSCEIVER
SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996
MECHANICAL INFORMATION
DW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
16 PIN SHOWN
PINS **
0.050 (1,27)
16
20
24
28
A MAX
0.410
(10,41)
0.510
(12,95)
0.610
(15,49)
0.710
(18,03)
A MIN
0.400
(10,16)
0.500
(12,70)
0.600
(15,24)
0.700
(17,78)
DIM
0.020 (0,51)
0.014 (0,35)
16
0.010 (0,25) M
9
0.419 (10,65)
0.400 (10,15)
0.010 (0,25) NOM
0.299 (7,59)
0.293 (7,45)
Gage Plane
0.010 (0,25)
1
8
0°– 8°
A
0.050 (1,27)
0.016 (0,40)
Seating Plane
0.104 (2,65) MAX
0.012 (0,30)
0.004 (0,10)
0.004 (0,10)
4040000 / B 10/94
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MS-013
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated