SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 A Member of the MuxIt SN65LVDS151DA Serializer-Deserializer Building-Block Chip Family Supports Serialization of up to 10 Bits of Parallel Data Input at Rates up to 200 Mbps PLL Lock/Valid Input Provided to Enable Link Data Transfers Cascadable With Additional SN65LVDS151 MuxIt Serializer-Transmitters for Wider Parallel Input Data Channel Widths LVDS Compatible Differential Inputs and Outputs Meet or Exceed the Requirements of ANSI TIA/EIA-644-A LVDS Inputs and Outputs ESD Protection Exceeds 12 kV HBM LVTTL Compatible Inputs for Lock/Valid, Enables, and Parallel Data Inputs Are 5-V Tolerant Operates With 3.3 V Supply Packaged in 32-Pin DA Thin Shrink Small-Outline Package With 26 Mil Terminal Pitch (Marked as 65LVDS151) VCC GND LCRI+ LCRI– CI_EN DI–9 DI–8 DI–7 DI–6 DI–5 DI–4 DI–3 DI–2 DI–1 DI–0 GND 1 32 2 31 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 15 18 16 17 CI– CI+ LVI MCI– MCI+ GND VCC LCO+ LCO– VCC EN LCO_EN VCC5 GND DO+ DO– description MuxIt is a family of general-purpose, multiple-chip building blocks for implementing parallel data serializers and deserializers. The system allows for wide parallel data to be transmitted through a reduced number of transmission lines over distances greater than can be achieved with a single-ended (e.g., LVTTL or LVCMOS) data interface. The number of bits multiplexed per transmission line is user-selectable and allows for higher transmission efficiencies than with existing fixed ratio solutions. MuxIt utilizes the LVDS (TIA/EIA-644-A) low voltage differential signaling technology for communications between the data source and data destination. The MuxIt family initially includes three devices supporting simplex communications: the SN65LVDS150 phase locked loop frequency multiplier, the SN65LVDS151 serializer-transmitter, and the SN65LVDS152 receiver-deserializer. The SN65LVDS151 consists of a 10-bit parallel-in/serial-out shift register, three LVDS differential transmission line receivers, a pair of LVDS differential transmission line drivers, plus associated input buffers. It accepts up to 10 bits of user data on parallel data inputs (DI–0 → DI–9) and serializes (multiplexes) the data for transmission over an LVDS transmission line link. Two or more SN65LVDS151 units may be connected in series (cascaded) to accommodate wider parallel data paths for higher serialization values. Data is transmitted over the LVDS serial link at M times the input parallel data clock frequency. The multiplexing ratio M, or number of bits per data clock cycle, is programmed on the companion SN65LVDS150 MuxIt programmable PLL frequency multiplier with configuration pins (M1 → M5). The range of multiplexing ratio M supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier is between 4 and 40. Table 1 shows some of the combinations of LCRI and MCI supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MuxIt is a trademark of Texas Instruments. Copyright 2000, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 description (continued) Data is parallel loaded into the SN65LVDS151 input latches on the first rising edge of the M-clock input (MCI) signal following a rising edge of the link clock reference input (LCRI). The data is read out serially from the SN65LVDS151 shift registers on the rising edges of the M-clock input (MCI). The lowest order bit of parallel input data, DI – 0, is output from DO on the third rising edge of MCI following the rising edge of LCRI. The remaining bits of parallel input data, DI-1 → DI-(M-1) are clocked out sequentially, in ascending order, by subsequent MCI rising edges. The link clock output (LCO) signal rising edge is synchronized to the data output (DO) by an internal circuit clocked by MCI. The LCO signal rising edge follows the first rising edge of MCI after the rising edge of LCRI. Examples of operating waveforms for values of M = 4 and M = 10 are provided in Figure 1. Both the LCRI and MCI signals are intended to be sourced from the SN65LVDS150 MuxIt programmable frequency multiplier. They are carried over LVDS differential connections to minimize skew and jitter. The SN65LVDS151 includes LVDS differential line drivers for both the serialized data output (DO) stream and the link clock output (LCO). The cascade input (CI) is also an LVDS connection, and when it is used it is tied to the DO output of the preceding SN65LVDS151. An internal power-on reset (POR) and an enable input (EN) control the operation of the SN65LVDS151. When VCC is below 1.5 V, or when EN is low, the device is in a low-power disabled state, and the DO and LCO differential outputs are in a high-impedance state. When VCC is above 3 V and EN is high, the device and the two differential outputs are enabled and operating to specifications. The link clock output enable input (LCO_EN) is used to turn off the LCO output when it is not being used. Cascade input enable (CI_EN) is used to turn off the CI input when it is not being used. Serialized data bits are output from the DO output, starting in ascending order, from parallel input bit DI – 0. The number of serialized data bits output per data clock cycle is determined by the multiplexing ratio M. For values of M less than or equal to 10, the cascade input (CI±) is not used, and only the first M parallel input bits (DI – 0 thought DI – [M – 1]) are used. For values of M greater than 10, all ten parallel input bits (DI – 0 though DI – 9) are used, and the cascade input is used to shift in the remaining data bits from additional SN65LVDS151 serializers. Table 2 shows which input data bits are used as a function of the multiplier M. Table 1. Example Combinations of LCRI and MCI Supported by the SN65LVDS150 MuxIt Programmable PLL Frequency Multiplier LCRI, MHz 2 MCI, MHz M MINIMUM MAXIMUM MINIMUM MAXIMUM 4 5 50 20 200 10 5 20 50 200 20 5 10 100 200 40 5 5 200 200 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 description (continued) Table 2. Input Data Bits Used as a Function of the Multiplier M M=4 M=5 M=6 M=7 M=8 M=9 M = 10 M >10 1st bit output 2nd bit output DI-0 DI-0 DI-0 DI-0 DI-0 DI-0 DI-0 DI-0 DI-1 DI-1 DI-1 DI-1 DI-1 DI-1 DI-1 DI-1 3rd bit output 4th bit output DI-2 DI-2 DI-2 DI-2 DI-2 DI-2 DI-2 DI-2 DI-3 DI-3 DI-3 DI-3 DI-3 DI-3 DI-3 DI-3 5th bit output 6th bit output Invalid DI-4 DI-4 DI-4 DI-4 DI-4 DI-4 DI-4 Invalid Invalid DI-5 DI-5 DI-5 DI-5 DI-5 DI-5 7th bit output 8th bit output Invalid Invalid Invalid DI-6 DI-6 DI-6 DI-6 DI-6 Invalid Invalid Invalid Invalid DI-7 DI-7 DI-7 DI-7 9th bit output 10th bit output Invalid Invalid Invalid Invalid Invalid DI-8 DI-8 DI-8 Invalid Invalid Invalid Invalid Invalid Invalid DI-9 DI-9 11th + bits output Invalid Invalid Invalid Invalid Invalid Invalid Invalid CI bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 block diagram CI DI–9 DI–8 DI–7 DI–4 Shift Register DI–5 Input Latches DI–6 DI–3 DI–2 DI–1 DI–0 LCRI EN LVI DO Control Logic MCI LCO CI_EN LCO_EN † The CI input includes a 110 Ω termination resistor. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 M=4 DI–n Current Frame Next Frame Data Clock LCRI MCI LCO DO DI(3) DI(0) DI(1) DI(2) DI(3) DI(0) Current Frame M = 10 DI–n Current Frame Next Frame Data Clock LCRI MCI LCO DO DI(9) DI(0) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7) DI(8) DI(9) DI(0) Current Frame Figure 1. Operating Waveform Examples POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 equivalent input and output schematic diagrams VCC VCC 300 kΩ 300 kΩ LCRI–, MCI–, or CI– Inputs LCRI+, MCI+, or CI+ Inputs 4V 50 Ω 10 kΩ 4V 4V 110 Ω, (CI Input Only) VCC5 VCC DI-n Inputs Only EN, LVI, CI_EN, LCO_EN, or DI-n Inputs 400 Ω 6V 300 kΩ 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCO+, LCO–, DO+, or DO– Outputs SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 Terminal Functions TERMINAL NAME CI+, CI– CI_EN DO–, DO+ EN GND NO. I/O TYPE DESCRIPTION 31, 32 I LVDS Cascade input. This may be used to connect additional SN65LVDS151 units when the multiplexing ratio M value is greater than 10. This input has an internal 110-Ω nominal termination resistor. 5 I LVTTL Cascade input enable. Used to enable or disable the cascade input differential receiver. A high-level input enables the CI input, a low-level input disables the CI input. 17, 18 O LVDS Data output. This is the data being transmitted to the destination end of the serial link, or being supplied to another SN65LVDS151 unit in cascade. 22 I LVTTL Enable. Controls device operation. A high-level input enables the device; a low-level input disables and resets the device. When initially enabled, all outputs are in a low-level condition. 2, 16, 19, 27 NA Circuit ground 25, 24 O LVDS Link clock output This is the data block synchronization clock being transmitted to the destination end of the serial link. LCO_EN 21 I LVTTL Link clock output enable. Used to disable the link clock output when it is not being used. A high-level input enables the LCO output; a low-level input disables the LCO output. LCRI+, LCRI– 3, 4 I LVDS Link clock reference input. This is the clock for latching in the parallel data; it comes from the PLL frequency multiplier. LVI 30 I LVTTL Lock/valid input. This is a signal required for proper Muxlt system operation. It is directly connected to the LVO output of a SN65LVDS150. It is used to inhibit the operation of this device until after the PLL has stabilized. A low level input forces a reset of the internal latches and shift registers, and forces the DO and LCO outputs to a low level. A high level input enables operation. 28, 29 I LVDS M-clock input. This is the high frequency multiplied clock input from the local PLL frequency multiplier. It synchronizes the transmission of the link data 6-15 I LVTTL Parallel data inputs. Data is latched into the device on the first rising edge of MCI following a rising edge of LCRI. 1, 23, 26 NA Supply voltage 20 NA 5-V VCC tolerance bias. Tied to 5 V nominal when the LVTTL inputs are being driven by a device powered from a 5-V supply, otherwise tied to local VCC LCO+, LCO– MCI+, MCI– DI-9–DI-0 VCC VCC5 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V Voltage range: DI–0 through DI–9 inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC5 +0.5 V EN, CI_EN, LCO_EN, LVI inputs, VCC5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V CI±, LCRI±, or MCI± Inputs, DO±, or LCO± outputs . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to 4 V Electrostatic discharge, human body model (see Note 2): MCI±, LCRI±, CI±, DO±, LCO±, and GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±12 kV All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 kV Charged-device model (see Note 3): All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±500 V Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 2. Tested in accordance with JEDEC Standard 22, Test Method A114–B. 3. Tested in accordance with JEDEC Standard 22, Test Method C101. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 85°C POWER RATING DA 1453 mW 11.6 mW/°C 756 mW recommended operating conditions MIN Supply voltage, VCC 3 High-level input voltage, VIH 2 DI – 0 – DI – 9, 9 EN, EN LVI, LVI LCO_EN, LCO EN CI CI_EN EN Low-level input voltage, VIL UNIT 3.6 V V 0.1 |V ID 2 LCRI, MCI, CI MAX 0.8 Magnitude of differential input voltage, |VID| Common mode in ut voltage, VIC Common-mode input NOM 3.3 Operating free-air temperature, TA V 0.6 | |V V ID 2 VCC–0.8 2.4 – 40 | V V °C 85 timing requirements PARAMETERS TEST CONDITIONS tsu(1) th(1) LCRI↑setup time before MCI↑ tsu(2) th(2) Data setup time, DI – 0 – DI – 9 before MCI↑ after LCRI↑ See Figure 2 LCRI hold time after MCI↑ See Figure 3 Data hold time, DI – 0 – DI – 9 valid after MCI↑ after LCRI↑ TA ≤ 25°C TA = 85°C tsu(3) (3) CI setup time before MCI↑ th(3) CI hold time after MCI↑ tc Clock cycle time tw High-level clock pulse width duration ns 0.3 ns 0 ns 2 ns ns –1.1 See Figure 4 ns LCRI 20 200 MCI 5 50 0.4 tc 0.6 tc MCI, LCRI 0V LCRI 0V th(1) 0V MCI Figure 2. Clock Input Timing Requirements POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT 0.5 –0.8 tsu(1) 8 MAX 2.5 LCRI MCI MIN 0V ns ns SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 LCRI 0V LCRI tsu(1) tsu(1) MCI DI–n 0V 0V ÇÇÇÇ ÇÇÇÇ ÇÇÇÇ MCI 0V ÇÇÇÇ ÇÇÇÇ ÇÇÇÇ th(2) tsu(2) 1.4 V 1.4 V DI–n Figure 3. Data Input Timing Requirements MCI 0V MCI 0V th(3) tsu(3) +100 mV CI –100 mV +100 mV CI –100 mV Figure 4. Cascade Input Timing Requirements POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 electrical characteristics over recommended operating conditions (unless otherwise noted) ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁÁÁÁÁ Á ÁÁÁÁÁÁÁ Á ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER TEST CONDITIONS VITH+ VITH– Positive-going differential input voltage threshold |VOD(SS)| Steady-state differential output voltage magnitude ∆|VOD(SS)| Change in steady-state differential output voltage magnitude between logic states VOC(SS) Steady-stade common-mode output voltage ∆VOC(SS) Change in steady-state common-mode output voltage between logic states VOC(PP) Peak-to-peak change common-mode output voltage Negative-going differential input voltage threshold See Figure 5 See Figure 8 247 IID II Differential input current mV 50 mV 1.125 1.375 –50 50 mV 50 150 mV 22 30 0.5 1 RL = 100 Ω, 340 35 (II+ – II–) (LCRI, MCI inputs) VIC = 0.05 V to 2.35 V, VID = ±0.1 V LCRI MCI inputs LCRI, VI = 0 V VI = 2.4 V –1.2 CI input VI =0 V VI = 2.4 V – 2.4 IIH IIL High-level input current EN, LVI, DI–n, LCO_EN Low-level input current EN, LVI, DI–n, LCO_EN IOS Short circuit output current Short-circuit DO LCO DO, IOZ High-impedance output current CI input IO(OFF) Power-off output current CI Input capacitance LCRI, MCI inputs † All typical values are at TA = 25°C and with VCC = 3.3 V. 10 POST OFFICE BOX 655303 65 3 4.4 mA –2 2 µA –2 – 20 –4 – 40 LCRI, MCI inputs Power off output current Power-off 20 VCC = 0 V , V mA VID = 0.4 V, VIC = 2.2 V or 0.2 V II(OFF) mV –50 (II+ – II–) (CI input) Input current UNIT 100 mV f(MCI) = 200 MHz, f(LCRI) = 20 MHz, RL = 100 Ω, DI–n= 1010101010 Supply current MAX 454 Disabled ICC TYP† –100 RL = 100 Ω, Ω VID = ±100 mV mV, See Figures 6 and 7 Enabled, MIN 36V VI = 3.6 40 VIH = 2 V VIL = 0.8 V µA A µA A µA 20 µA 10 µA VO+ or VO – = 0 V VOD = 0 V –10 10 –10 10 VO = 0 V or VCC –5 5 µA VCC = 1.5 V , VI = 3.6 V VID = (0.4sin(4E6πt) + 0.5) V –5 5 µA • DALLAS, TEXAS 75265 3 mA pF SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 switching characteristics over recommended operating conditions (unless otherwise noted) ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ Á ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER TEST CONDITIONS td(1) Propagation delay time time, MCI↑ to DO↑ TA ≤ 25°C TA = 85°C td(2) Propagation delay time time, MCI↑ to DO↓ TA ≤ 25°C TA = 85°C td(3) Propagation delay time time, MCI↑ to LCO↑ TA ≤ 25°C TA = 85°C tr tf Differential output signal rise time tsk(p) tsk(pp) Pulse skew (| tPHL – tPLH|), DO tsk(ω) tPZL Multiple-frequency skew, LCO↑ to DO↑ or DO↓ tPLZ tPHZ Propagation delay time, low-level to high-impedance Differential output signal fall time RL = 100 Ω, CL = 10 pF, F, See Figure 9 g MIN TYP MAX 3 5 5.8 3 5 6.1 3 5 5.8 3 5 6.1 3 5 5.8 3 5 6.1 0.3 ns ns ns 0.8 1.5 ns RL = 100 Ω, CL = 10 pF, F, See Figure 10 g 0.3 0.8 1.5 ns –250 0 250 ps 0 2.3 ns See Figure 11 –250 0 250 ps 3 20 ns 3 10 ns 4 10 ns Part-to-part output skew, Do Propagation delay time, high-impedance to low-level EN input i t to t DO, DO LCO output output, See Figure 12 Propagation delay time, high-level to high-impedance POST OFFICE BOX 655303 UNIT • DALLAS, TEXAS 75265 11 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION + VID – VI+ (VI+ + VI–)/2 VIC VI– Figure 5. Receiver Voltage Definitions ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Table 3. Receiver Minimum and Maximum Input Threshold Test Voltages APPLIED VOLTAGES RESULTING DIFFERENTIAL INPUT VOLTAGE RESULTING COMMONMODE INPUT VOLTAGE VI+ 1.25 V VI– 1.15 V VID 100 mV VIC 1.2 V 1.15 V 1.25 V –100 mV 1.2 V 2.4 V 2.3 V 100 mV 2.35 V 2.3 V 2.4 V –100 mV 2.35 V 0.1 V 0V 100 mV 0.05 V 0V 0.1 V –100 mV 0.05 V 1.5 V 0.9 V 600 mV 1.2 V 0.9 V 1.5 V –600 mV 1.2 V 2.4 V 1.8 V 600 mV 2.1 V 1.8 V 2.4 V –600 mV 2.1 V 0.6 V 0V 600 mV 0.3 V 0V 0.6 V –600 mV 0.3 V + IO+ IO– VOD VO+ – VO– VOC (VO+ + VO–)/2 Figure 6. Driver Voltage and Current Definitions 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION 3.74 kΩ + VOD + _ 100 Ω 0 V ≤ Vtest ≤ 2.4 V – 3.74 kΩ Figure 7. VOD Test Circuit 49.9 Ω ±1% (2 PLCS) VOC(PP) + VOC(SS) VOC – 50 pF VOC NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, Pulse width = 500 ± 10 ns . CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3 dB bandwidth of at least 5 GHz. Figure 8. Test Circuit and Definitions for the Driver Common-Mode Output Voltage 0V MCI td(1) DO td(2) 0V DO td(3) LCO 0V MCI 0V td(3) 0V LCO 0V Figure 9. Output Timing Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION 0.4 V MCI DI (0–9) LCRI 0V –0.4 V + VOD Logic tPLH 100 Ω ±1% tPHL 100% 80% – MCI CL = 10 pF (2 PLCS) VOD(H) DO, LCO 0V DUT VOD(L) 20% 0% tr tf NOTE A: All input pulses are supplied by generators having the following characteristics: tr or tf ≤ 1 ns, MCI pulse repetition rate (PRR) = 50 Mpps, MCI Pulse width = 10 ± 0.2 ns, LCRI pulse repetition rate (PRR) = 5 Mpps, LCRI pulse width = 100 ±20 ns. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. Figure 10. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal 0V LCO tsk(ϖ) DO 0V Figure 11. LCO to DO Multiple-Frequency Skew Waveforms 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION ±1% + DI (0–9) VOD Logic LCRI – MCI 50 Ω ±1% + _ 1.2 V CL = 10 pF (2 PLCS) DUT 2V 1.4 V Input 0.8 V ≅ 0.34 V 0.1 V 0V VOD tPHZ 0V –0.1 V ≅ –0.34 V VOD tPLZ tPZL Figure 12. Enable/Disable Time Waveforms TYPICAL CHARACTERISTICS AVERAGE SUPPLY CURRENT vs FREQUENCY I CC – Average Supply Current – mA 40 VCC = 3.3 V, TA = 25°C 35 30 25 20 15 10 5 0 0 50 100 150 200 f – Frequency – Hz Figure 13. Average Supply Current vs Frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SN65LVDS151 MuxIt SERIALIZER-TRANSMITTER SLLS444A – DECEMBER 2000 MECHANICAL INFORMATION DA (R-PDSO-G**) PLASTIC SMALL-OUTLINE 38 PINS SHOWN 0,30 0,19 0,65 38 0,13 M 20 6,20 NOM 8,40 7,80 0,15 NOM Gage Plane 1 19 0,25 A 0°–8° 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 30 32 38 A MAX 11,10 11,10 12,60 A MIN 10,90 10,90 12,40 DIM 4040066 / D 11/98 NOTES: A. B. C. D. 16 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 8-Aug-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN65LVDS151DA ACTIVE TSSOP DA 32 SN65LVDS151DAR ACTIVE TSSOP DA SN65LVDS151DARG4 ACTIVE TSSOP DA 46 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 32 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 32 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated