NT7701 160 Output LCD Segment/Common Driver Features ! Available in a single mode (160-bits shift register) or in a dual mode (80-bits shift register x 2) 1. Y1 → Y160 Single mode 2. Y160 → Y1 Single mode 3. Y1 → Y80, Y81 → Y160 Dual mode 4. Y160 → Y81, Y80 → Y1 Dual mode The above 4 shift directions are pin-selectable (Segment mode) ! Shift Clock frequency : 14 MHz (Max.) (VDD = 5V ± 10%) 8 MHz (Max.) (VDD = 2.5V - 4.5V) ! Adopts a data bus system ! 4-bit/8-bit parallel input modes are selectable with a mode (MD) pin ! Automatic transfer function with an enable signal ! Automatic counting function when in the chip select mode, causes the internal clock to be stopped by automatically counting 160 bits of input data (Both segment mode and common mode) ! Supply voltage for LCD drive: 15.0 to 30.0V ! Number of LCD driver outputs: 160 ! Low output impedance ! Low power consumption ! Supply voltage for the logic system: +2.5 to +5.5V ! COMS process ! Package : 190pin TCP (Tape Carrier Package) ! Not designed or rated as radiation hardened (Common mode) ! Shift clock frequency: 4.0MHz (Max.) ! Built-in 160-bits bidirectional shift register (divisible into 80-bits x 2) General Description The NT7701 is a 160-bit output segment/common driver LSI suitable for driving the large scale dot matrix LCD panels used by PDA's, personal computers and work stations for example. Through the use of SST (Super Slim TCP) technology, it is ideal for substantially decreasing the size of the frame section of the LCD module. The NT7701 is good as both a segment driver and a common driver, and a low power consuming, high-precision LCD panel display can be assembled using the NT7701. In the segment mode, the data input is selected 4bit parallel input mode or as 8bit parallel input mode by a mode (MD) pin. In common mode, the data input/output pins are bi-directional and the four data shift directions are pin-selectable. Pin Configuration D U M M Y D U M M Y Y 1 6 0 Y 1 5 9 Y 1 5 8 Y 1 5 7 Y 1 5 6 Y 1 5 5 190 189 188 187 186 185 Y 8 3 Y 8 2 Y 8 1 Y 8 0 Y 7 9 Y 7 8 113 112 111 110 109 108 Y 6 Y 5 Y 4 Y 3 Y 2 D D U U M M Y M M 1 Y Y 36 35 34 33 32 31 NT7701 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 D V V V V V L V S E D D D D D D D D X D L E F M T T V V V V V D U 0 1 4 5 S / D / I 0 1 2 3 4 5 6 7 C I P I R D E E S 5 4 1 O U M L 2 3 L S R D C O K S O S S S R 3 2 R M M M P L L 2 1 T T R R Y Y O 1 2 F F 1 V2.0 NT7701 Pad Configuration 199 54 200 53 NT7701 216 37 1 36 Block Diagram V0R V12R V43R V5R Y1 Y2 Y159 Y160 V5L FR 160 Bits 4 Level Driver Level Shifter V43L V12L DISPOFF /160 V0L 160 Bits Level Shifter EIO1 V5R /160 Active Control 160 Bits Line Latch/Shift Register EIO2 /16 LP /16 /16 /16 /16 /16 /16 /16 /16 /16 8Bits x 2 Data Latch Control Logic XCK Data Latch Control L/R /8 MD SP Conversion & Data Control (4 to 8 or 8 to 8) S/C DI0 DI1 DI2 DI3 DI4 DI5 DI6 DI7 2 VDD VSS VSS NT7701 Pin Description Pin No. Designation I/O Description 1 V0L P Power supply for LCD driver 2 V12L P Power supply for LCD driver 3 V43L P Power supply for LCD driver 4 V5L P Power supply for LCD driver 5 VSS P Ground (0V), these two pads must be connected to each other 6 L/R I Display data shift direction selection 7 VDD P Power supply for the logic system (+2.5 to +5.5V) 8 S/C I Segment mode / common mode selection 9 EIO2 I/O 10 - 16 D0 - D6 I Display data input for segment mode 17 D7 I Display data input for Segment mode / Dual mode data input 18 XCK I Display data shift clock input for segment mode 19 DISPOFF I Control input for deselect output level 20 LP I Latch pulse input/shift clock input for the shift register 21 EIO1 I/O 22 FR I AC-converting signal input for LCD driver waveform 23 MD I Mode selection input 24 TEST1 I Test pin, no connection for user 25 TEST2 I Test pin, no connection for user 26 VSS P Ground (0V), these two pads must be connected to each other 27 V5R P Power supply for LCD driver 28 V43R P Power supply for LCD driver 29 V12R P Power supply for LCD driver 30 V0R P Power supply for LCD driver 31 - 190 Y1 - Y160 O LCD driver output Input / output for chip select or data of shift register Input / output for chip select or data of the shift register 3 NT7701 Pad Description Pad No. Designation I/O Description 1, 2 L/R I Display data shift direction selection 3, 4 VDD P Power supply for the logic system (+2.5 to + 5.5V) 5, 6 S/C I Segment mode/common mode selection 7, 8 EIO2 I/O 9,10 - 21, 22 D0 - D6 I Display data input for segment mode 23, 24 D7 I Display data input for Segment mode / Dual mode data input 25, 26 XCK I Display data shift clock input for segment mode 27, 28 DISPOFF I Control input for deselect output level 29, 30 LP I Latch pulse input / shift clock input for the shift register 31, 32 EIO1 I/O Input/output for chip select or data of the shift register 33, 34 FR I AC-converting signal input for LCD driver waveform 35, 36 MD I Mode selection input 37, 38, VSS P Ground (0V), these two pads must be connected to each other 39, 40 V5R P Power supply for LCD driver 41, 42 V43R P Power supply for LCD driver 43, 44 V12R P Power supply for LCD driver 45, 46 V0R P Power supply for LCD driver 47 - 206 Y1 - Y160 O LCD driver output 207, 208 V0L P Power supply for LCD driver 209, 210 V12L P Power supply for LCD driver 211, 212 V43L P Power supply for LCD driver 213, 214 V5L P Power supply for LCD driver 215, 216 VSS P Ground (0V), these two pads must be connected to each other Input/output for chip select or data of shift register 4 NT7701 Input / Output Circuits VDD I Input Signal Applicable Pins L/R, S/C, D0 - D6, DISPOFF , LP, FR, MD VSS Input Circuit (1) VDD I Input Signal Control Signal VSS VSS Input Circuit (2) 5 Applicable Pins D7, XCK NT7701 VDD Input Signal Control Signal VSS VDD VSS Output Signal I/O Control Signal Applicable Pins EIO1, EIO2 VSS Input / Output Circuit V0 V12 Control Signal 1 Control Signal 2 Control Signal 3 Control Signal 4 O Applicable Pins Y1 to Y160 V43 VSS LCD Driver Output circuit 6 V5 NT7701 Pad Description Segment mode Symbol Function VDD Logic system power supply pin connects to +2.5 to +5.5V VSS Ground pin connects to 0V VOR, VOL V12R, V12L V43R, V43L V5R, V5L D0 - D7 XCK Power supply pin for LCD driver voltage bias # Normally, the bias voltage used is set by a resistor divider # Ensure that the voltages are set such that VSS ≤ V5 < V43 < V12 < V0 # To further reduce the differences between the output waveforms of the LCD driver output pins Y1 and Y160, externally connect ViR and ViL (I = 0, 12, 43) Input pin for display data # In 4-bit parallel input mode, input data into the 4 pins D0 - D3. Connect D4 - D7 to VSS or VDD # In 8-bit parallel input mode, input data into the 8 pins D0 - D7 Clock input pin for taking display data # Data is read on the falling edge of the clock pulse LP Latch pulse input pin for display data # Data is latched on the falling edge of the clock pulse L/R Direction selection pin for reading display data # When set to VSS level "L", data is read sequentially from Y160 to Y1 # When set to VDD level "H", data is read sequentially from Y1 to Y160 Control input pin for output deselect level # The input signal is level-shifted from logic voltage level to LCD driver voltage level, and controls LCD driver circuit # When set to VSS level “L”, the LCD driver output pins (Y1 - Yl60) are set to level V5 DISPOFF # While DISPOFF is set to “L”, the contents of the line latch are reset, but the display data in the data latch are read regardless of the condition of DISPOFF . When the DISPOFF function is canceled, the driver outputs deselect level (V12 or V43), then outputs the contents of the date latch onto the next falling edge of the LP. That time, if DISPOFF removal time can not keep regulation what is shown AC characteristics, can not output the reading data correctly FR AC signal input for LCD driving waveform # The input signal is level-shifted from the logic voltage level to the driver voltage level, and controls LCD driver circuit # Normally inputs a frame inversion signal The LCD driver output pin’s output voltage level can be set to the line latch output signal and the FR signal MD Mode selection pin # When set to VSS level “L”, 4-bit parallel input mode is set # When set to VDD level “H", 8-bit parallel input mode is set 7 NT7701 Segment mode continued Symbol S/C Function Segment mode/common mode selection pin # When set to VDD level "H", segment mode is set. # When set to VSS level "L", common mode is set. EIO1, EIO2 Input/output pin for chip selection # When L/R input is at VSS level “L”, EIO1 is set for output, and EIO2 is set for input. # When L/R input is at VDD level “H”, EIO1 is set for input, and EIO2 is set for output. # During output, it is set to “H” while LP* XCK is “H” and after 160-bits of data have been read, it is set to “L” for one cycle (from falling edge to falling edge of XCK), after which it returns to “H” # During input, after the LP signal is input, the chip is selected while EI is set to “L”. After 160-bits of data have been read, the chip is deselected Y1 - Y160 LCD driver output pins These corresponding directly to each bit of the data latch, one level (V0, V12, V43, or V5) is selected and output Common mode Symbol Function VDD Logic system power supply pin connects to +2.5 to +5.5V VSS Ground pin connects to 0V V0R, V0L V12R, V12L V43R, V43L V5R, V5L Power supply pin for LCD driver voltage bias. # Normally, the bias voltage used is set by a resistor divider # Ensure that the voltages are set such that VSS ≤ V5 <V43 < V12 < V0 # To further reduce the differences between the output waveforms of the LCD driver output pins Y1 and Y160, externally connect ViR and ViL (I = 0, 12, 43) EIO1 Bi-directional shift register shift data input/output pin # Is an Output pin when L/R is at VSS level “L” and an input pin when L/R is at VDD level “H” # When EIO1 is used as an input pin, it will be pulled-down # When EIO1 is used as an output pin, it won’t be pulled-down EIO2 Bi-directional shift register shift data input/output pin # Is an Input pin when L/R is at VSS level “L” and an output pin when L/R is at VDD level “H” # When EIO2 is used as an input pin, it will be pulled-down # When EIO2 is used as an output pin, it won’t be pulled-down LP Bi-directional shift register shift clock pulse input pin # Data is shifted on the falling edge of the clock pulse L/R Bi-directional shift register shift direction selection pin # Data is shifted from Y160 to Y1 when it is set to VSS level “L”, and data is shifted from Y1 to Y160 when it is set to VDD level “H” 8 NT7701 Common mode continued Symbol Function Control input pin for output deselect level # The input signal is level-shifted from the logic voltage level to the LCD driver voltage level and it controls the LCD driver circuit # When set to VSS level “L”, the LCD driver output pins (Y1 - Y160) are set to level V5 DISPOFF # While set to “L”, the contents of the shift resister are reset and not reading data. When the DISPOFF function is canceled, the driver outputs deselect level (V12 or V34), and the shift data is read on the falling edge of the LP. That time, if DISPOFF removal time can not keep regulation what is shown AC characteristics, the shift data is not reading correctly FR AC signal input for LCD driving waveform # The input signal is level-shifted from the logic voltage level to the LCD driver voltage level, and controls the LCD driver circuit # Normally, inputs a frame inversion signal The LCD driver output pin’s output voltage level can be set using the shift register output signal and the FR signal MD Mode selection pin # When set to VSS level “L”, Single Mode operation is selected. When set to VDD level “H”, Dual Mode operation is selected D7 Dual Mode data input pin # According to the data shift direction of the data shift register, data can be input starting from the 81st bit When the chip is used as Dual Mode, D7 will be pulled-down When the chip is used as Single Mode, D7 won’t be pulled-down S/C Segment mode/common mode selection pin # When set to VSS level “L”, common mode is set D0 - D6 Not used # Connect D0-D6 to VSS or VDD. Avoiding floating XCK Y1 - Y160 Not used # XCK is pulled-down in common mode, so connect to VSS or open LCD driver output pins # These corresponding directly Corresponding directly to each bit of the shift register, one level (V0, V12, V43, or V5) is selected and output 9 NT7701 Functional Description 1. Block description 1.1. Active Control In the case of segment mode, controls the selection or deselection of the chip. Following a LP signal input, and after the select signal is input, a select signal is generated internally until 160 bits of data have been read in. Once data input has been completed, a select signal for cascade connection is output, and the ship is deselected. 1.5. Line Latch / Shift Register In the case of the segment mode, all 160 bits which have been read into the data latch, are simultaneously latched on to the falling edge of the LP signal, and output to the level shift block. In the case of the common mode, shifts data from the data input pin on to the falling edge of the LP signal. In the case of common mode, controls the input/output data of bidirectional pins. 1.2. SP Conversion & Data Control In the case of segment mode, keep input data which are 2 clocks of XCK at 4-bit parallel mode into latch circuit, or keep input data which are 1 clock of XCK at 8-bit parallel mode into latch circuit, after that they are put on the internal data bus 8 bits at a time. 1.3. Data Latch Control In the case of the segment mode, it selects the state of the data latch, which reads in the data bus signals. The shift direction is controlled by the control logic and for every 16 bits of data read in, the selection signal shifts one bit, based on the state of the control circuit. 1.4. Data Latch In the case of the segment mode, it latches the data on the data bus. The latched state of each LCD driver output pin is controlled by the control logic and the data latch control 160 bits of data are read in 20 sets of 8 bits. 1.6. Level Shifter The logic voltage signal is level-shifted to the LCD driver voltage level, and output to the driver block. 1.7. 4-Level Driver It drives the LCD driver output pins from the line latch/shift register data, selecting one of 4 levels (V0, V12, V43, VSS) based on the S/C, FR and DISPOFF signals. 1.8. Control Logic It controls the operation of each block. In the case of the segment mode, when an LP signal has been input, all blocks are reset and the control logic waits for the selection signal output from the active control block. Once the selection signal has been output, operation of the data latch and data transmission are controlled, 160 bits of data are read in, and the chip is deselected. In the case of the common mode, it controls the direction of the data shift. 10 NT7701 2. LCD Driver Output Voltage Level The relationship amongst the data bus signal, AC converted signal FR and LCD driver output voltage is as shown in the table below: 2.1. Segment Mode FR Latch Data DISPOFF Driver Output Voltage Level (Y1 - Y160) L L H V43 L H H V5 H L H V12 H H H V0 X X L V5 Here, VSS ≤ V5 < V43 < V12 <V0, H: VDD (+2.5 to +5.5V), L: VSS (0V), X: Don't care 2.2. Common Mode FR Latch Data DISPOFF Driver Output Voltage Level (Y1 - Y160) L L H V43 L H H V0 H L H V12 H H H V5 X X L V5 Here, VSS ≤ V5 < V43 < V12 < V0, H: VDD (+2.5 to +5.5V), L: VSS (0V), X: Don't care Note: There are two kinds of power supply (logic level voltage, LCD driver voltage) for the LCD driver. Please supply regular voltage, which assigned by specification for each power pin. That time "Don't care" should be fixed to "H" or "L", avoiding floating. 11 NT7701 3. Relationship between the Display Data and Driver Output Pins 3.1. Segment Mode: (a) 4-bit Parallel Mode MD L/R L L L H EIO1 EIO2 Output Input Input Output Data Input D0 D1 D2 D3 D0 D1 D2 D3 40clock Y1 Y2 Y3 Y4 Y160 Y159 Y158 Y157 39clock Y5 Y6 Y7 Y8 Y156 Y155 Y154 Y153 Number of Clock 38clcok ~ 3clock ~ Y9 Y149 ~ Y10 Y150 ~ Y11 Y151 ~ Y12 Y152 ~ Y152 Y12 ~ Y151 Y11 ~ Y150 Y10 ~ Y149 Y9 2clock Y153 Y154 Y155 Y156 Y8 Y7 Y6 Y5 1clock Y157 Y158 Y159 Y160 Y4 Y3 Y2 Y1 19clock Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y152 Y151 Y150 Y149 Y148 Y147 Y146 Y145 Number of Clock 18clcok ~ 3clock Y17 ~ Y137 Y18 ~ Y138 Y19 ~ Y139 Y20 ~ Y140 Y21 ~ Y141 Y22 ~ Y142 Y23 ~ Y143 Y24 ~ Y144 Y144 ~ Y24 Y143 ~ Y23 Y142 ~ Y22 Y141 ~ Y21 Y140 ~ Y20 Y139 ~ Y19 Y138 ~ Y18 Y137 ~ Y17 2clock Y145 Y146 Y147 Y148 Y149 Y150 Y151 Y152 Y16 Y15 Y14 Y13 Y12 Y11 Y10 Y9 1clock Y153 Y154 Y155 Y156 Y157 Y158 Y159 Y160 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 (b) 8-bit Parallel Mode MD L/R H L H H EIO1 EIO2 Output Input Input Output Data Input D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3 D4 D5 D6 D7 20clock Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y160 Y159 Y158 Y157 Y156 Y155 Y154 Y153 12 NT7701 3.2. Common Mode MD L/R Data Transfer Direction EIO1 EIO2 D7 L (Single) L (shift to left) Y160 to Y1 Output Input X H (shift to right) Y1 to Y160 Input Output X Output Input Input Input Output Input Y160 to Y81 L (shift to left) Y80 to Y1 H (Dual) Y1 to Y80 H (shift to right) Y81 to Y160 Here, L: VSS (0V), H: VDD (+2.5V to +5.5V), X: Don't care Note: "Don't care" should be fixed to "H" or "L", avoiding floating. 13 NT7701 4. Connection Examples of Segment Drivers 4.1. Case of L/R = “L” last data first data (data taking flow) Y160 ---------------------->Y1 Y160 ---------------------->Y1 Y160 ---------------------->Y1 EIO2 EIO2 EIO2 EIO1 EIO1 DI0~DI7 FR MD L/R LP DI0~DI7 FR MD LP L/R XCK DI0~DI7 FR MD LP XCK L/R XCK EIO1 XCK LP MD FR D0 - D7 /8 VSS 4.2 Case of L/R = “H” VDD D0 - D7 /8 FR MD LP L/R VSS L/R EIO1 EIO2 Y1 ---------------------->Y160 XCK LP MD FR DI0 - DI7 XCK LP MD FR DI0 - DI7 XCK LP MD FR DI0 - DI7 XCK L/R EIO1 EIO2 Y1 ---------------------->Y160 EIO1 EIO2 Y1 ---------------------->Y160 (data taking flow) first data last data 14 NT7701 5. Timing Waveform of 4-Device Cascade Connection of Segment Drivers. FR LP XCK First data D0 - D7 n 1 2 Last data n 1 2 device A n 1 2 device B n 1 2 device C EI (device A) n 1 2 device D H L EO (device A) EO (device B) EO (device C) n: 4-bit parallel mode 40 8-bit parallel mode 20 15 NT7701 6. Connection Examples for Common Drivers First FR DISPOFF LP D7 LP L/R EIO1 MD EIO2 D7 EIO1 FR EIO2 DISPOFF EIO1 L/R EIO2 MD Y1 FR Y160 DISPOFF Y1 L/R Y160 MD Y1 D7 Y160 LP D Last LP VSS(VDD) VSS VSS DISPOFF FR Single Mode (Shifting towards the left) FR CS DISPOFF VDD VSS VSS(VDD) EIO1 Y1 EIO2 Y160 EIO1 EIO2 Y1 Y160 First EIO1 Y1 EIO2 Y160 Last Single Mode (Sifting towards the right) 16 LP DI7 MD L/R DISPOFF CS FR LP DI7 MD L/R DISPOFF CS FR LP DI7 MD L/R DISPOFF DI CS FR LP NT7701 Last2 Y80 EIO1 D7 FR FR EIO2 DISPOFF EIO1 L/R Y1 MD Y160 LP Y1 DISPOFF MD Y81 D7 LP EIO2 FR EIO1 DISPOFF EIO2 L/R Y160 MD Y1 D7 Y160 LP D1 Last1 First2 L/R First1 LP D2 VSS (VDD) VDD VSS DISPOFF FR Dual mode (Shifting towards the left) FR DISPOFF VDD VDD VSS (VDD) D2 D1 EIO1 EIO2 EIO1 Y1 Y160 Y1 First1 EIO2 Y80 Y81 Y160 Last1 First2 Dual mode (Shifting towards the right) 17 LP D7 MD L/R DISPOFF FR LP D7 MD L/R DISPOFF FR LP D7 MD L/R DISPOFF FR LP EIO1 EIO2 Y1 Y160 Last2 NT7701 7. Precaution Be careful when connecting or disconnecting the power This LSI has a high-voltage LCD driver, so it may be permanently damaged by a high current, which may occur, if a voltage is supplied to the LCD driver power supply while the logic system power supply is floating. The details are as follows: ! ! When connecting the power supply, connect the LCD driver power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD driver power. We recommend that you connect a serial resistor (50-100Ω) or fuse to the LCD driver power V0 of the system as a current limiting device. Also, set a suitable value for the resistor in consideration of the LCD display grade. In addition, when connecting the logic power supply, the logic condition of the LSI inside is insecure. Therefore connect the LCD driver power supply after resetting logic condition of this LSI inside on DISPOFF function. After that, the DISPOFF cancel the function after the LCD driver power supply has become stable. Furthermore, when disconnecting the power, set the LCD driver output pins to level VSS on the DISPOFF function. After that, disconnect the logic system power after disconnecting the LCD driver power. When connecting the power supply, follow the recommended sequence shown. VDD VDD VSS VDD DISPOFF VSS V0 V0 VSS 18 NT7701 Absolute Maximum Rating* *Comments DC Supply Voltage VDD . . . . . . . . . . . . -0.3V to +7.0V Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. DC Supply Voltage V0 . . . . . . . . . . . . . -0.3V to +30V Input Voltage . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3V Operating Ambient Temperature . . . . -30°C to +85°C Storage Temperature . . . . . . . . . . . . .-45°C to +125°C Electrical Characteristics DC Characteristics Segment Mode (VSS = V5 = 0V, VDD = 2.5 - 5.5V, V0 = 15 to 30 V, and TA = -30 to +85°C, unless otherwise noted) Parameter Symbol Min. Typ. Max. Unit VDD 2.5 - 5.5 V Operating Voltage V0 15 - 30 V Input high voltage VIH 0.8 VDD - - V D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, Input low voltage VIL - - 0.2 VDD V EIO2 and DISPOFF pins Output high voltage VOH VDD - 0.4 - - V EIO1, EIO2 pins, IOH = -0.4mA Output low voltage VOL - - +0.4 V EIO1, EIO2 pins, IOL = +0.4mA Input leakage current 1 IIH - - +1 µA D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and DISPOFF pins, VI = VDD Input leakage current 2 IIL - - -1 µA D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and DISPOFF pins, VI = VSS - 1.0 1.5 - 1.5 2.0 Operating Voltage Condition V0 = +30.0V Output resistance RON Stand-by current ISB - - 5 µA VSS pin, Note 1 Consumed current (1) (Deselection) IDD1 - - 2.0 mA VDD pin, Note 2 Consumed current (2) (Selection) IDD2 - - 8.0 mA VDD pin, Note 3 I0 - - 1.0 mA V0 pin, Note 4 Consumed current kΩ V0 = +20.0V Note: 1. VDD = +5.0V, V0 = +30V, VI = VSS 2. VDD = +5.0V, V0 = +30V, fXCK = 14MHz, No-load, EI = VDD The input data is turned over by the data taking clock (4-bit parallel input mode) 3. VDD = +5.0V, V0 = +30V, fXCK = 14MHz, No-load. EI = VSS The input data is turned over by the data taking clock (4-bit parallel input mode) 4. VDD = +5.0V, V0 = +30V, fXCK = 14MHz, fLP = 41.6kHz. fFR = 80 Hz, No-load The input data is turned over by the data taking clock (4-bit parallel-input mode) 19 Y1 - Y160 pins, ∆V O N = 0.5V NT7701 Common Mode (VSS = V5 = 0V, VDD = 2.5 - 5.5V, V0 = 15 to 30V, and TA = -30 to +85°C, unless otherwise noted) Parameter Symbol Min. Typ. Max. Unit Condition Operating Voltage VDD 2.5 - 5.5 V Operating Voltage V0 15 - 30 V Input high voltage VIH 0.8 VDD - - V D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, Input low voltage VIL - - 0.2 VDD V EIO2 and DISPOFF pins Output high voltage VOH VDD - 0.4 - - V EIO1, EIO2 pins, IOH = -0.4mA Output low voltage VOL - - +0.4 V EIO1, EIO2 pins, IOL = +0.4mA Input leakage current 1 IIH - - +10.0 µA Input leakage current 2 IIL - - -10.0 µA - 1.0 1.5 - 1.5 2.0 D0 - 6, LP, L/R, FR, MD, S/C and DISPOFF pins, VI = VDD D0 - 7, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2 and DISPOFF pins, VI = VSS V0 = +30.0V Output resistance RON Stand-by current ISB - - 50 µA VSS pin, Note 1 Consumed current (1) IDD - - 80 µA VDD pin, Note 2 Consumed current (2) I0 - - 160 µA V0 pin, Note 2 kΩ V0 = +20.0V Note: 1. VDD = +5.0V, V0 = +30V, fLP = 0 - 41.6kHz 2. VDD = +5.0V, V0 = +30V, fLP = 41.6KHz, fFR = 80Hz, case of 1/480 duty operation, No-load 20 Y1 - Y160 pins, ∆V O N = 0.5V NT7701 AC Characteristics Segment Mode 1 (VSS = V5 = 0V, VDD = 4.5 - 5.5V, V0 = 15 to 30, and TA = -30 to +85°C, unless otherwise noted) Parameter Symbol Min. Typ. Shift clock period tWCK 71 - ns Shift clock "H" pulse width tWCKH 23 - ns Shift clock "L" pulse width tWCKL 23 - ns Data setup time tDS 10 - ns Data hole time tDH 20 - ns tWLPH 23 - ns Shift clock rise to Latch pulse rise time tLD 0 - ns Shift clock fall to Latch pulse fall time tSL 25 - ns Latch pulse rise to Shift clock rise time tLS 25 - ns Latch pulse fall to Shift clock rise time tLH 25 - ns Latch pulse "H" pulse width Max. Unit Condition tr, tf ≦ 10ns, Note 1 Input signal rise time tr - 50 ns Note 2 Input signal fall time tf - 50 ns Note 2 Enable setup time tS 21 - ns DISPOFF Removal time tSD 100 - ns tWDL 1.2 - µs DISPOFF enable pulse width Output delay time (1) tD - 40 ns CL = 15pF Output delay time (2) tpd1, tpd2 - 1.2 µs CL = 15pF Output delay time (3) tpd3 - 1.2 µs CL = 15pF Note 1. Take the cascade connection into consideration. 2. (Tck - tWCKII - twckl)/2 is the maximum in the case of high speed operation. 21 NT7701 Segment Mode 2 (VSS = V5 = 0V, VDD = 2.5 - 4.5V, V0 = 15 to 30, and TA = -30 to +85°C, unless otherwise noted) Parameter Symbol Min. Typ. Shift clock period tWCK 125 - ns Shift clock "H" pulse width tWCKH 51 - ns Shift clock "L" pulse width tWCKL 51 - ns Data setup time tDS 30 - ns Data hole time tDH 40 - ns tWLPH 51 - ns Shift clock rise to Latch pulse rise time tLD 0 - ns Shift clock fall to Latch pulse fall time tSL 51 - ns Latch pulse rise to Shift clock rise time tLS 51 - ns Latch pulse fall to Shift clock fall time tLH 51 - ns Latch pulse "H" pulse width Max. Unit Condition tr, tf ≦ 11ns, Note 1 Input signal rise time tr - 50 ns Note 2 Input signal fall time tf - 50 ns Note 2 Enable setup time tS 36 - ns DISPOFF Removal time tSD 100 - ns tWDL 1.2 - µs DISPOFF enable pulse width Output delay time (1) tD - 78 ns CL = 15pF Output delay time (2) tpd1, tpd2 - 1.2 µs CL = 15pF Output delay time (3) tpd3 - 1.2 µs CL = 15pF Note 1. Take the cascade connection into consideration. 2. (tCK - tWCKII - tWCKL)/2 is the maximum in the case of high speed operation. 22 NT7701 Timing waveform of the Segment Mode tWLPH LP tLD tSL tLH tLS tWCKH tWCKL XCK D0 - D7 tr tr tWCK tDS LAST DATA tDH TOP DATA tWDL tSD DISPOFF LP 1 XCK 2 n tS EI tD EO n: 4-bit parallel mode 40 8-bit parallel mode 20 FR tpd1 LP tpd2 DISPOFF tpd3 Y1 - Y160 23 NT7701 Common Mode (VSS = V5 = 0V, VDD = 2.5 - 5.5V, V0 = 15 to 30V and TA = -30 to +85°C, unless otherwise noted) Parameter Symbol Min. Typ. Max. Unit Condition Shift clock period tWLP 250 - - ns tr, tf ≦ 20ns Shift clock "H" pulse width tWLPH 15 - - ns VDD = +5.0V ± 10% 30 - - ns VDD = +2.5 - +4.5V Data setup time tSU 30 - - ns Data hole time tH 50 - - ns Input signal rise time tr - 50 ns Input signal fall time tf - 50 ns tSD 100 - - ns tWDL 1.2 - - µs Output delay time (1) tDL - - 200 ns CL = 15pF Output delay time (2) tpd1, tpd2 - - 1.2 µs CL = 15pF Output delay time (3) tpd3 - - 1.2 µs CL = 15pF DISPOFF Removal time DISPOFF enable pulse width 24 NT7701 Timing Characteristics of Common Mode tWLP LP tr tWLPH tSU tf tH EIO2 (D7) tDL EIO1 tWDL tSD DISPOFF FR tpd1 LP tpd2 DISPOFF tpd3 Y1 - Y160 L/R = "L" 25 NT7701 Application Circuit (for reference only) EIO1 Y1~Y160 MD FR S/C LP L/R DISPOFF XCK EIO2 EIO1 Y1~Y160 MD FR S/C L/R LP DISPOFF 640*480 DOT MATRIX LCD PANEL D0~D7 D0~D7 NT7701*4 SEG640 SEG639 EIO2 XCK EIO1 Y1~Y160 MD FR S/C LP L/R DISPOFF XCK D0~D7 EIO2 EIO1 Y1~Y160 MD SEG3 SEG2 FR S/C SEG1 C O M 4 7 9 L/R DISPOFF XCK D0~D7 EIO2 XCK EIO2 LP DISPOFF D0~D7 L/R Y1~Y160 FR S/C MD EIO1 XCK EIO2 DISPOFF LP L/R D0~D7 S/C EIO1 FR XCK EIO2 LP DISPOFF L/R D0~D7 FR S/C MD NT7701*3 EIO1 LP C O M 4 8 0 /8 Y1~Y160 C O M 3 Y1~Y160 C O M 2 MD C O M 1 /5 /5 VEE V0 R V1 (n-4)R V2 R V3 R V4 V5 VDD VSS 26 LCD controller XD0~XD7 XCK LP DISPOFF FR YD (case of 1/n bias) 50~100Ω /8 R NT7701 Bonding Diagram 7664um 199 54 200 53 Y NT7701 986um X (0,0) ALK_L ALK_R 216 37 1 36 Pad Location Pad No. Designation X Y Pad No. Designation X Y 1 LR -3600 -440 31 EIO1 2160 -440 2 LR -3440 -440 32 EIO1 2320 -440 3 VDD -3280 -440 33 FR 2480 -440 4 VDD -3120 -440 34 FR 2640 -440 5 SC -2000 -440 35 MD 2800 -440 6 SC -1840 -440 36 MD 2960 -440 7 EIO2 -1680 -440 37 GND 3779 -410 8 EIO2 -1520 -440 38 GND 3779 -350 9 D0 -1360 -440 39 V5R 3779 -300 10 D0 -1200 -440 40 V5R 3779 -250 11 D1 -1040 -440 41 V43R 3779 -200 12 D1 -880 -440 42 V43R 3779 -150 13 D2 -720 -440 43 V12R 3779 -100 14 D2 -560 -440 44 V12R 3779 -50 15 D3 -400 -440 45 V0R 3779 0 16 D3 -240 -440 46 V0R 3779 50 17 D4 -80 -440 47 Y1 3779 100 18 D4 80 -440 48 Y2 3779 150 19 D5 240 -440 49 Y3 3779 200 20 D5 400 -440 50 Y4 3779 250 21 D6 560 -440 51 Y5 3779 300 22 D6 720 -440 52 Y6 3779 350 23 D7 880 -440 53 Y7 3779 410 24 D7 1040 -440 54 Y8 3635 440 25 XCK 1200 -440 55 Y9 3575 440 26 XCK 1360 -440 56 Y10 3525 440 27 DISPOFF 1520 -440 57 Y11 3475 440 28 DISPOFF 1680 -440 58 Y12 3425 440 29 LP 1840 -440 59 Y13 3375 440 30 LP 2000 -440 60 Y14 3325 440 27 NT7701 Pad Location (continued) Pad No. Designation X Y Pad No. Designation X Y 61 Y15 3275 440 101 Y55 1275 440 62 Y16 3225 440 102 Y56 1225 440 63 Y17 3175 440 103 Y57 1175 440 64 Y18 3125 440 104 Y58 1125 440 65 Y19 3075 440 105 Y59 1075 440 66 Y20 3025 440 106 Y60 1025 440 67 Y21 2975 440 107 Y61 975 440 68 Y22 2925 440 108 Y62 925 440 69 Y23 2875 440 109 Y63 875 440 70 Y24 2825 440 110 Y64 825 440 71 Y25 2775 440 111 Y65 775 440 72 Y26 2725 440 112 Y66 725 440 73 Y27 2675 440 113 Y67 675 440 74 Y28 2625 440 114 Y68 625 440 75 Y29 2575 440 115 Y69 575 440 76 Y30 2525 440 116 Y70 525 440 77 Y31 2475 440 117 Y71 475 440 78 Y32 2425 440 118 Y72 425 440 79 Y33 2375 440 119 Y73 375 440 80 Y34 2325 440 120 Y74 325 440 81 Y35 2275 440 121 Y75 275 440 82 Y36 2225 440 122 Y76 225 440 83 Y37 2175 440 123 Y77 175 440 84 Y38 2125 440 124 Y78 125 440 85 Y39 2075 440 125 Y79 75 440 86 Y40 2025 440 126 Y80 25 440 87 Y41 1975 440 127 Y81 -25 440 88 Y42 1925 440 128 Y82 -75 440 89 Y43 1875 440 129 Y83 -125 440 90 Y44 1825 440 130 Y84 -175 440 91 Y45 1775 440 131 Y85 -225 440 92 Y46 1725 440 132 Y86 -275 440 93 Y47 1675 440 133 Y87 -325 440 94 Y48 1625 440 134 Y88 -375 440 95 Y49 1575 440 135 Y89 -425 440 96 Y50 1525 440 136 Y90 -475 440 97 Y51 1475 440 137 Y91 -525 440 98 Y52 1425 440 139 Y92 -575 440 99 Y53 1375 440 139 Y93 -625 440 100 Y54 1325 440 140 Y94 -675 440 28 NT7701 Pad Location (continued) Pad No. Designation X Y Pad No. Designation X Y 141 Y95 -725 440 181 Y135 -2725 440 142 Y96 -775 440 182 Y136 -2775 440 143 Y97 -825 440 183 Y137 -2825 440 144 Y98 -875 440 184 Y138 -2875 440 145 Y99 -925 440 185 Y139 -2925 440 146 Y100 -975 440 186 Y140 -2975 440 147 Y101 -1025 440 187 Y141 -3025 440 148 Y102 -1075 440 188 Y142 -3075 440 149 Y103 -1125 440 189 Y143 -3125 440 150 Y104 -1175 440 190 Y144 -3175 440 151 Y105 -1225 440 191 Y145 -3225 440 152 Y106 -1275 440 192 Y146 -3275 440 153 Y107 -1325 440 193 Y147 -3325 440 154 Y108 -1375 440 194 Y148 -3375 440 155 Y109 -1425 440 195 Y149 -3425 440 156 Y110 -1475 440 196 Y150 -3475 440 157 Y111 -1525 440 197 Y151 -3525 440 158 Y112 -1575 440 198 Y152 -3575 440 159 Y113 -1625 440 199 Y153 -3635 440 160 Y114 -1675 440 200 Y154 -3779 410 161 Y115 -1725 440 201 Y155 -3779 350 162 Y116 -1775 440 202 Y156 -3779 300 163 Y117 -1825 440 203 Y157 -3779 250 164 Y118 -1875 440 204 Y158 -3779 200 165 Y119 -1925 440 205 Y159 -3779 150 166 Y120 -1975 440 206 Y160 -3779 100 167 Y121 -2025 440 207 V0L -3779 50 168 Y122 -2075 440 208 V0L -3779 0 169 Y123 -2125 440 209 V12L -3779 -50 170 Y124 -2175 440 210 V12L -3779 -100 171 Y125 -2225 440 211 V43L -3779 -150 172 Y126 -2275 440 212 V43L -3779 -200 173 Y127 -2325 440 213 V5L -3779 -250 174 Y128 -2375 440 214 V5L -3779 -300 175 Y129 -2425 440 215 GND -3779 -350 176 Y130 -2475 440 216 GND -3779 -410 177 Y131 -2525 440 ALK_L -3438 -323 ALK_R 3438 -323 178 Y132 -2575 440 179 Y133 -2625 440 180 Y134 -2675 440 29 NT7701 Dummy Pad Location (Total: 10 pin) NO X Y NO X Y NO X Y NO X Y 0 -2960 -440 3 -2480 -440 6 3120 -440 9 3600 -440 1 -2800 -440 4 -2320 -440 7 3280 -440 2 -2640 -440 5 -2160 -440 8 3440 -440 30 NT7701 Package Information A1 D3 D3 C1 n3 n3 m3 m2 m2 NT7701 m2 n2 15× n2× J m3 n2A n2A n2B D1 A2 n3 C2 n2 m3 D3 A1 D1 144× m2× A2 n3 C1 m3 D3 n2B n2A n2B m2 D1 m2 m2 n2 r f e f 15× n2× J f e f H D3 H m1 m3 C1 D3 m3 n1 n3 n3 C2 D2 B 37× m1× Chip Outline Dimensions B unit: µm Symbol Dimensions in µm Symbol Dimensions in µm A1 197 n1 56 A2 53 n2 67 B 232 n2A 35 C1 83 n2B 32 C2 53 n3 60 D1 50 r 35 D2 160 e 24 D3 60 f 23 m1 54 H 120 m2 32 J 202 m3 52 31 C1 NT7701 TCP Pin Layout DUMMY DUMMY Y1 31 Y2 32 Y3 33 Y5 34 Y4 35 Y6 36 Y78 108 Y79 109 Y80 110 Y81 111 Y82 112 Y83 113 NT7701 DUMMY 30 V0R 29 V12R 28 V43R 27 V5R 26 VSS 25 TEST2 24 TEST1 23 MD 22 FR 21 EIO1 20 LP 19 DISPOFF 18 XCK 17 D7 16 D6 15 D5 14 D4 13 D3 12 D2 11 D1 10 D0 9 EIO2 8 S/C 7 VDD 6 L/R 5 VSS 4 V5L 3 V43L 2 V12L 1 V0L DUMMY Y155 185 Y156 186 Y157 187 Y158 188 Y159 189 Y160 190 DUMMY DUMMY (COPPER SIDE VIEW) 32 NT7701 External view of TCP pins 33 NT7701 Cautions concerning storage: 1. When storing the product, it is recommended that it be left in its shipping package. After the seal of the packing bag has been broken, store the products in a nitrogen atmosphere. 2. Storage conditions : Storage state Storage conditions Temperature: 5 to 30℃; humidity: 80%RH or less unopened (less than 90 days) 3. 4. 5. 6. After seal of broken (less than 30 days) Room temperature, dry nitrogen atmosphere Don't store in a location exposed to corrosive gas or excessive dust. Don't store in a location exposed to direct sunlight of subject to sharp changes in temperature. Don't store the product such that it is subjected to an excessive load weight, such as by stacking. Deterioration of the plating may occur after long-term storage, so special care is required. It is recommended that the products be inspected before use. 34 NT7701 Tray Information f Y e 7*33 X X W1 W2 T2 T1 SECTION Y-Y c d Y g h W1 W2 a b e g f h T2 T1 SECTION X-X Symbol Dimensions in mm Symbol Dimensions in mm a 1.46 g 0.84 b 2.04 h 4.20 c 8.16 W1 76.0 d 9.50 W2 68.0 e 1.60 T1 71.0 f 1.40 T2 68.3 35 NT7701 Ordering Information Part No. NT7701H-BDT NT7701H-TABF3 Package Au bump on chip tray TCP Form 36 NT7701 Product Spec. Change Notice NT7701 Specification Revision History Version Content Date 2.0 ˙Chip size modified ( Due to scribe-line modified, change 7720μm x 1030μm to 7664μm x 986μm , Page 27 ) ˙Gold bump size modified ( Page 31 ) Jul. 2002 1.0 Formal version release Oct. 2000 37