ST8024 COM/SEG LCD Driver Datasheet Version 2.1 2009/08/19 Note: Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice. This is not a final specification. Some parameters are subject to change. ST8024 1 FEATURES Number of LCD drive outputs: 240 Supply voltage for LCD drive: +15.0 to +30.0 V Supply voltage for the logic system: +2.5 to +5.5 V Low power consumption Low output impedance (Segment mode) Shift clock frequency 20MHz(MAX.): VDD = +5.0 ± 0.5V 15MHz(MAX.): VDD = +3.0 to + 4.5V 12MHz(MAX.): VDD = +2.5 to + 3.0V Adopts a data bus system 4-bit/8-bit parallel input modes are selectable with a mode (MD) pin Automatic transfer function of an enable signal Automatic counting function which, in the chip selection mode, causes the internal clock to be stopped by automatically counting 240 bits of input data Line latch circuits are reset when /DISPOFF active 2 (Common mode) Shift clock frequency: 4 MHz (MAX.) Built-in 240-bit bi-directional shift register (divisible into 120 bits x 2) Available in a single mode (240-bit shift register) or in a dual mode (120-bit shift register x 2) Y1->Y240 Single mode Y240->Y1 Single mode Y1->Yl20, Y121->Y240 Dual mode Y240->Y121, Yl20->Y1 Dual mode The above 4 shift directions are pin-selectable Shift register circuits are reset when /DISPOFF active DESCRIPTION The ST8024 is a 240-output segment/common driver IC suitable for driving large/medium scale dot matrix LCD panels, and is used in personal computers/work stations. The ST8024 is good both as a segment driver and a common driver, and it can create a low power consuming, high-resolution LCD. Ver 2.1 Page 2/28 2009/08/19 ST8024 3 BLOCK DIAGRAM V0R FR /DISPOFF V12R V43R VSS Y1 Y2 Y239 Y240 VSS LEVEL SHIFTER 240-BIT 4-LEVEL DRIVER V43L 240 EIO1 EIO2 V12L 240-BIT LEVEL SHIFTER ACTIVE CONTROL V0L 240 240-BIT LINE LATCH/SHIFT REGISTER 16 LP XCK 16 16 8 BIT DATA LATCH CONTROL LOGIC 8 DATA CONTROL L/R MD SP CONVERSION & DATA CONTROL (4 to 8 or 8 to 8) S/C DI0 4 DI1 DI2 DI3 DI4 DI5 DI6 DI7 VDD V SS FUNCTIONAL OPERATIONS OF EACH BLOCK BLOCK FUNCTION In case of segment mode, controls the selection or non-selection of the chip. Following an LP signal input, and after the chip selection signal is input, a selection signal is generated internally until 240 bits of data have been read in. Once data input has been Active Control completed, a selection signal for cascade connection is output, and the chip is non-selected. In case of common mode, controls the input/output data of bi-directional pins. In case of segment mode, keeps input data which are 2 clocks of XCK at 4-bit parallel SP Conversion input mode in latch circuit, or keeps input data which are 1 clock of XCK at 8-bit parallel & Data Control input mode in latch circuit; after that they are put on the internal data bus 8 bits at a time. In case of segment mode, selects the state of the data latch which reads in the data bus Data Latch Control signals. The shift direction is controlled by the control logic. For every 16 bits of data read in, the selection signal shifts one bit based on the state of the control circuit. In case of segment mode, latches the data on the data bus. The latch state of each LCD Data Latch drive output pin is controlled by the control logic and the data latch control; 240 bits of data are read in 30 sets of 8 bits. In case of segment mode, all 240 bits which have been read into the data latch are Line Latch/ simultaneously latched at the falling edge of the LP signal, and are output to the level shifter block. In case of common mode, shifts data from the data input pin at the falling Shift Register edge of the LP signal. Level Shifter The logic voltage signal is level-shifted to the LCD drive voltage level, and is output to the driver block. Drives the LCD drive output pins from the line latch/shift register data, and selects one of 4-Level Driver 4 levels (V0, V12, V43 or Vss) based on the S/C, FR and /DISPOFF signals. Controls the operation of each block. In case of segment mode, when an LP signal has been input, all blocks are reset and the control logic waits for the selection signal output Control Logic from the active control block. Once the selection signal has been output, operation of the data latch and data transmission is controlled, 240 bits of data are read in, and the chip is non-selected. In case of common mode, controls the direction of data shift. Ver 2.1 Page 3/28 2009/08/19 ST8024 5 PIN DESCRIPTION (TCP TYPE) SYMBOL Y1-Y240 V0L, V0R V12L, V12R V43L, V43R L/R VDD S/C DESCRIPTION LCD drive output Power supply for LCD drive Power supply for LCD drive Power supply for LCD drive Display data shift direction selection Power supply for logic system (+2.5 to +5.5 V) Segment mode/common mode selection Input/output for chip selection at segment mode EIO2, EIO1 I/O Shift data input/output for shift register at common mode DI0-DI6 I Display data input at segment mode DI7 I Display data input at segment mode/Dual mode data input at common mode XCK I Clock input for taking display data at segment mode /DISPOFF I Control input for output of non-select level I Latch pulse input for display data at segment mode/ LP Shift clock input for shift register at common mode FR I AC-converting signal input for LCD drive waveform MD I 4 or 8 bits mode selection input VSS P Ground (0 V) TEST1 I Connect to GND or floating PS : Detail size see TCP drawing data Ver 2.1 I/O O P P P I P I Page 4/28 2009/08/19 ST8024 6 INPUT/OUTPUT CIRCUITS V DD I To Internal Circuit Applicable Pins L/R , S/C , DI6~DI0 , /DISPOFF , LP , FR , MD GND (0V) Figure 6-1 Input Circuit (1) V DD I To Internal Circuit Applicable Pins DI7 , XCK Control Signal GND (0V) GND (0V) Figure 6-2 Ver 2.1 Input Circuit (2) Page 5/28 2009/08/19 ST8024 V DD To Internal Circuit I/O Control Signal GND (0V) GND (0V) VDD Output Signal Application Pins EIO1 , EIO2 Control Signal GND (0V) Figure 6-3 Input/Output Circuit V0 V12 V0 Control Signal 1 Control Signal 2 Control Signal 3 Control Signal 4 O GND (0V) V43 Figure 6-4 Ver 2.1 GND (0V) Application Pins Y1~Y160 VSS LCD Drive Output Circuit Page 6/28 2009/08/19 ST8024 7 FUNCTIONAL DESCRIPTION 7.1 Pin Functions (Segment mode) SYMBOL VDD VSS V0L, V0R V12L, V12R V43L, V43R DI7-DI0 XCK LP L/R /DISPOFF FR MD S/C ElO1, EIO2 Ver 2.1 FUNCTION Logic system power supply pin, Connected to +2.5 to +5.5 V. Ground pin, connected to 0 V. Bias power supply pins for LCD drive voltage Normally use the bias voltages set by a resistor divider Ensure that voltages are set such that VSS < V43 < V12 < V0. ViL and ViR (i = 0,12, 43) must connect to an external power supply, and supply regular voltage which is assigned by specification for each power pin Input pins for display data In 4-bit parallel mode, DI3-DI0 are the display data input pins, and DI7-DI4 must be connected to LGND or VDD. In 8-bit parallel mode, All DI7-Dl0 pins are the display data input pins. Refer to section 7.2.2. Clock input pin for taking display data Data is read at the falling edge of the clock pulse. Latch pulse input pin for display data Data is latched at the falling edge of the clock pulse. Input pin for selecting the reading direction of display data When set to LGND level "L", data is read sequentially from Y240 to Y1. When set to VDD level "H", data is read sequentially from Y1 to Y240. Refer to section 7.2.2. Control input pin for output of non-select level The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the LCD drive circuit. When set to LGND level "L", the LCD drive output pins (Y1-Y240) are set to level Vss. When set to "L", the contents of the line latch are reset, but the display data are read in the data latch regardless of the condition of /DISPOFF. When the /DISPOFF function is canceled, the driver outputs non-select level (V12 or V43), then outputs the contents of the data latch at the next falling edge of the LP. At that time, if /DISPOFF removal time does not correspond to what is shown in AC characteristics, it can not output the reading data correctly. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. AC signal input pin for LCD drive waveform The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the LCD drive circuit. Normally it inputs a frame inversion signal. The LCD drive output pins' output voltage levels can be set using the line latch output signal and the FR signal. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. Mode selection pin When set to LGND level "L", 8-bit parallel input mode is set. When set to VDD level "H", 4-bit parallel input mode is set. Refer to section 7.2.2. Segment mode/common mode selection pin When set to VDD level "H", segment mode is set. Input/output pins for chip selection When L/R input is at LGND level "L", ElO1 is set for output, and EIO2 is set for input. When L/R input is at VDD level "H", ElO1 is set for input, and EIO2 is set for output. During output, set to "H" while LP • XCK is "H" and after 240 bits of data have been read, set to "L” for one cycle (from falling edge to failing edge of XCK), after which it returns to "H". During input, the chip is selected while El is set to "L" after the LP signal is input. The chip is non-selected after 240 bits of data have been read. Page 7/28 2009/08/19 ST8024 Y1 -Y240 (Common mode) SYMBOL VDD VSS V0L, V0R V12L, V12R V43L, V43R ElO1 EIO2 LP L/R /DISPOFF FR MD DI7 S/C Ver 2.1 LCD drive output pins Corresponding directly to each bit of the data latch, one level (V0, V12, V43, or VSS) is selected and output. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. FUNCTION Logic system power supply pin, connected to +2.5 to +5.5 V. Ground pin, connected to 0 V. Bias power supply pins for LCD drive voltage Normally use the bias voltages set by a resistor divider. Ensure that voltages are set such that VSS < V43 < V12 < V0. ViL and ViR (i = 0,12, 43) must connect to an external power supply, and supply regular voltage which is assigned by specification for each power pin. Shift data input/output pin for bi-directional shift register Output pin when L/R is at LGND level "L', input pin when L/R is at VDD level "H". When L/R = H, ElO1 is used as input pin, it will be pulled down. When L/R = L, ElO1 is used as output pin, it won't be pulled down. Refer to section 7.2.2. Shift data input/output pin for bi-directional shift register Input pin when L/R is at LGND level "L", output pin when L/R is at VDD level "H". When L/R = L, EIO2 is used as input pin, it will be pulled down. When L/R = H, EIO2 is used as output pin, it won't be pulled down. Refer to section 7.2.2. Shift clock pulse input pin for bi-directional shift register Data is shifted at the falling edge of the clock pulse. Input pin for selecting the shift direction of bi-directional shift register Data is shifted from Y240 to Y1 when set to LGND level "L", and data is shifted from Y1 to Y240 when set to VDD level "H". Refer to section 7.2.2. Control input pin for output of non-select level The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the LCD drive circuit. When set to LGND level "L", the LCD drive output pins (Y1-Y240) are set to level LGND. When set to "L”, the contents of the shift register are reset to not reading data. When the /DISPOFF function is canceled, the driver outputs non-select level (V12 or V43), and the shift data is read at the next falling edge of the LP. At that time, if /DISPOFF removal time does not correspond to what is shown in AC characteristics, the shift data is not read correctly. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. AC signal input pin for LCD drive waveform The input signal is level-shifted from logic voltage level to LCD drive voltage level, and controls the LCD drive circuit. Normally it inputs a frame inversion signal. The LCD drive output pins' output voltage levels can be set using the shift register output signal and the FR signal. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. Mode selection pin When set to LGND level "L", single mode operation is selected; when set to VDD level "H" dual mode operation is selected. Refer to section 7.2.2. Dual mode data input pin According to the data shift direction of the data shift register, data can be input starting from the 121st bit. When the chip is used in dual mode, DI7 will be pulled down. When the chip is used in single mode, DI7 won't be pulled down. Refer to section 7.2.2. Segment mode/common mode selection pin When set to LGND level "L", common mode is set. Page 8/28 2009/08/19 ST8024 DI6-DI0 XCK Y1 -Y240 7.2 7.2.1 Not used Connect DI6-DI0 to LGND or VDD, avoiding floating. Not used XCK is pulled down in common mode, so connect to LGND or open. LCD drive output pins Corresponding directly to each bit of the shift register, one level (V0, V12, V43, or VSS) is selected and output. Table of truth values is shown in "TRUTH TABLE" in Functional Operations. Functional Operations Truth table (Segment Mode) FR LATCH DATA L L L H H L H H X X /DISPOFF H H H H L LCD DRIVE OUTPUT VOLTAGE LEVEL (Y1-Y240) V43 VSS V12 V0 VSS (Common Mode) FR LATCH DATA /DISPOFF LCD DRIVE OUTPUT VOLTAGE LEVEL (Y1-Y240) L L H V43 L H H V0 H L H V12 H H H VSS X X L VSS NOTES: VSS < V43 < V12 < V0 L: LGND (0 V), H: VDD (+2.5 to +5.5 V), X: Don't care "Don't care" should be fixed to "H" or "L", avoiding floating. There are two kinds of power supply (logic level voltage and LCD drive voltage) for the LCD driver. Supply regular voltage which is assigned by specification for each power pin. Ver 2.1 Page 9/28 2009/08/19 ST8024 7.2.2 Relationship between the display data and LCD drive output Pins (Segment Mode) 4-bit Parallel Input Mode DATA NUMBER OF CLOCKS MD L/R EIO1 EI02 INPUT 60 CLOCK 59 CLOCK 58 CLOCK … 3 CLOCK 2 CLOCK 1 CLOCK DI0 Y1 Y5 Y9 … Y229 Y233 Y237 Dl1 Y2 Y6 Y10 … Y230 Y234 Y238 H L Output Input DI2 Y3 Y7 Y11 … Y231 Y235 Y239 DI3 Y4 Y8 Y12 … Y232 Y236 Y240 DI0 Y240 Y236 Y232 … Y12 Y8 Y4 Dl1 Y239 Y235 Y231 … Y11 Y7 Y3 H H Input Output DI2 Y238 Y234 Y230 … Y10 Y6 Y2 DI3 Y237 Y233 Y229 … Y9 Y5 Y1 8-bit Parallel Input Mode NUMBER OF CLOCKS DATA MD L/R EIO1 EI02 INPUT 30 CLOCK 29 CLOCK 28 CLOCK … 3 CLOCK 2 CLOCK 1 CLOCK DI0 Y1 Y9 Y17 … Y217 Y225 Y233 Dl1 Y2 Y10 Y18 … Y218 Y226 Y234 DI2 Y3 Y11 Y19 … Y219 Y227 Y235 DI3 Y4 Y12 Y20 … Y220 Y228 Y236 L L Output Input DI4 Y5 Y13 Y21 Y221 Y229 Y237 DI5 Y6 Y14 Y22 Y222 Y230 Y238 DI6 Y7 Y15 Y23 Y223 Y231 Y239 DI7 Y8 Y16 Y24 Y224 Y232 Y240 DI0 Y240 Y232 Y224 … Y24 Y16 Y8 Dl1 Y239 Y231 Y223 … Y23 Y15 Y7 DI2 Y238 Y230 Y222 … Y22 Y14 Y6 DI3 Y237 Y229 Y221 … Y21 Y13 Y5 L H Input Output DI4 Y236 Y228 Y220 … Y20 Y12 Y4 Dl5 Y235 Y227 Y219 … Y19 Y11 Y3 DI6 Y234 Y226 Y218 … Y18 Y10 Y2 DI7 Y233 Y225 Y217 … Y17 Y9 Y1 (Common Mode) MD L (Single) H (Dual) L/R L H L H DATA TRANSFER DIRECTION Y240 Y1 Y1 Y240 Y240 Y121 Y120 Y1 Y1 Y120 Y240 Y121 EIO1 Output Input EI02 Input Output DI7 X X Output Input Input Input Output Input NOTES: L: LGND (0 V), H: VDD (+2.5 to +5.5 V), X: Don't care "Don't care" should be fixed to "H" or "L", avoiding floating. Ver 2.1 Page 10/28 2009/08/19 ST8024 7.2.3 (a) Connection examples of plural segment drivers When L/R = “L” Top data Last data Data flow Y1 Y240 EIO2 Y240 EIO1 Y1 EIO2 EIO1 L/R Y240 Y1 EIO2 EIO1 L/R L/R DI7-DI0 FR MD LP XCK DI7-DI0 FR MD LP XCK DI7-DI0 FR MD LP XCK XCK LP MD FR DI7-DI0 8 LGND (b) When L/R = “H” VDD XCK LP MD FR DI7-DI0 8 DI7-DI0 FR MD LP L/R XCK DI7-DI0 FR MD LP XCK DI7-DI0 FR MD LP XCK L/R LGND L/R EIO1 EIO2 EIO1 EIO2 EIO1 EIO2 Y1 Y240 Y1 Y240 Y1 Y240 Data flow Last data Top data Ver 2.1 Page 11/28 2009/08/19 ST8024 7.2.4 Timing chart of 4-device cascade connection of segment drivers FR LP XCK TOP DATA DI7 - DI 0 n* 1 2 LAST DATA n* device A 1 2 n* device B 1 2 n* device C 1 2 n* 1 2 device D EI (device A) EO (device A) EO (device B) EO (device C) *n = 60 in 4-bit parallel input mode *n = 30 in 8-bit parallel input mode Ver 2.1 Page 12/28 2009/08/19 ST8024 7.2.5 (a) Connection examples for plural common drivers Single Mode (L/R = ”L”) Last First FLM Y240 Y1 Y240 Y1 Y240 Y1 EIO2 EIO1 EIO2 EIO1 EIO2 EIO1 FR L/R /DISPOFF DI7 MD LP FR L/R /DISPOFF DI7 MD LP FR /DISPOFF L/R DI7 MD LP LP LGND(VDD ) LGND /DISPOFF FR (b) Single Mode (L/R = “H”) FR /DISPOFF V DD LGND LGND (V DD) LP LP DI7 L/R Y1 EIO2 Y240 Last First Ver 2.1 EIO1 MD Y240 FR EIO2 /DISPOFF LP DI7 Y1 L/R EIO1 MD Y240 FR EIO2 /DISPOFF LP DI7 MD Y1 L/R FR EIO1 /DISPOFF FLM Page 13/28 2009/08/19 ST8024 (c) Dual Mode (L/R = “L”) Last 1 First Y240 Y1 EIO2 EIO1 FLM1 First 2 Last 2 Y240 Y121 Y120 Y1 EIO2 EIO1 Y240 Y1 EIO2 EIO1 FR L/R /DISPOFF MD LP DI7 FR L/R /DISPOFF MD LP DI7 FR L/R /DISPOFF MD LP DI7 LP FLM2 LGND (VDD) VDD LGND /DISPOFF FR (d) Dual mode (L/R = “H”) FR /DISPOFF VDD LGND LGND (VDD) FLM2 LP LP MD Page 14/28 Y1 DI7 Last 1 First 2 EIO1 L/R Y1 Y120 Y121 Y240 FR EIO2 /DISPOFF EIO1 LP MD DI7 L/R Y240 FR EIO2 /DISPOFF Ver 2.1 LP First 1 MD Y1 DI7 EIO1 L/R FR /DISPOFF FLM1 EIO2 Y240 Last 2 2009/08/19 ST8024 8 PRECAUTIONS Precautions when connecting or disconnecting the power supply This IC has a high-voltage LCD driver, so it may be permanently damaged by a high current which may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating. The details are as follows, When connecting the power supply, connect the LCD drive power after connecting the logic system power. Furthermore, when disconnecting the power, disconnect the logic system power after disconnecting the LCD drive power It is advisable to connect the serial resistor (50 to 100 ) or fuse to the LCD drive power V0 of the system as a current limiter. Set up a suitable value of the resistor in consideration of the display grade. And when connecting the logic power supply, the logic condition of this IC inside is insecure. Therefore connect the LCD drive power supply after resetting logic condition of this IC inside on /DISPOFF function. After that, cancel the /DISPOFF function after the LCD drive power supply has become stable. Furthermore, when disconnecting the power, set the LCD drive output pins to level LGND on /DISPOFF function. Then disconnect the logic system power after disconnecting the LCD drive power. When connecting the power supply, follow the recommended sequence shown here VDD VDD LGND VDD /DISPOFF LGND V0 V0 GND . Ver 2.1 Page 15/28 2009/08/19 ST8024 9 ABSOLUTE MAXIMUM RATINGS PARAMETER Supply voltage (1) Supply voltage (2) Input voltage SYMBOL VDD V0 V12 V43 VSS VI APPLICABLE PINS VDD V0L, V0R V12L, V12R V43L, V43R VSS DI7-DI0, XCK, LP, L/R, FR, MD, S/C, EIO1, EIO2, /DISPOFF RATING -0.3 to +7.0 -0.3 to +33.0 -0.3 to V0 + 0.3 -0.3 to V0 + 0.3 -0.3 to V0 + 0.3 UNIT V V V V V -0.3 to VDD + 0.3 V NOTE 1,2 Storage temperature TSTG -45 to +125 °C NOTES: 1. TA = +25 °C 2. The applicable voltage on logic pins with respect to LGND, high voltage pins with VSS (0 V). 3. Stress over the “Absolute Max. Ratings” conditions will damaged the device permanently. 10 RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL APPLICABLE PINS MIN. TYP. MAX. UNIT NOTE Supply voltage (1) VDD VDD +2.5 +5.5 V 1, 2 Supply voltage (2) V0 V0L, V0R +15.0 +30.0 V Operating temperature TOPR -25 +85 °C NOTES: 1. The applicable voltage on logic pins with respect to LGND, high voltage pins with VSS (0 V). 2. Ensure that voltages are set such that VSS < V43 < Vl2 < V0. Ver 2.1 Page 16/28 2009/08/19 ST8024 11 ELECTRICAL CHARACTERISTICS 11.1 DC Characteristics (Segment Mode) (LGND=VSS =GND = 0V, VDD = +2.5 ~ +5.5 V, V0 = + 15.0 ~ +30.0V, TOPR = -25 to +85°C) PARAMETER SYMBOL CONDITIONS APPLICABLE PINS MIN. TYP. MAX. UNIT NOTE DI 7 -DI 0 , XCK, LP, L/R, Input "Low" voltage VIL 0.2VDD V FR, MD, S/C, EIO1, 0.8VDD Input "High" voltage VIH VDD+0.7 V EIO2, /DISPOFF Output "Low" voltage VOL IOL = +0.4 mA +0.4 V EIO1, EIO2 Output "High" voltage VOH IOH = -0.4 mA VDD-0.4 V DI7-DI0, XCK, LP, L/R, µA ILIL VI = LGND -10.0 Input leakage current FR, MD, S/C, EIO1, µA +10.0 ILIH VI = VDD EIO2, /DISPOFF | VON| V0=30V 1.5 2.0 Output resistance RON Y1-Y240 k =0.5V V0=20V 2.0 2.5 µA Standby current ISTB LGND 75.0 1 Supply current (1) VDD 2.0 mA 2 IDD1 (Non-selection) Supply current (2) VDD 12.0 mA 3 IDD2 (Selection) Supply current (3) I0 V0L, V0R 1.5 mA 4 NOTES: 1. VDD = +5.0 V, V0 = +30.0 V, Vi = LGND. 2. VDD = +5.0 V, V0 = +30.0 V, fXCK = 20 MHz, no-load, El = VDD. The input data is turned over by data taking clock (4-bit parallel input mode). 3. VDD = +5.0 V, V0 = +30.0 V, fXCK = 20 MHz, no-load, El = LGND. The input data is turned over by data taking clock (4-bit parallel input mode). 4. VDD = +5.0 V, V0 = +30.0 V, fXCK = 20 MHz, fLP = 41.6 kHz, fFR = 80 Hz, no-load. The input data is turned over by data taking clock (4-bit parallel input mode). (Common Mode) (LGND=VSS =GND = 0V, VDD = +2.5 ~ +5.5V, V0 = + 15.0 ~ +30.0V, TOPR = -25 to +85 °C) PARAMETER SYMBOL CONDITIONS APPLICABL E PINS MIN. TYP. MAX. UNIT NOTE DI7-DI0, XCK, LP, L/R Input "Low" voltage VIL 0.2VDD V FR, MD, S/C, EIO1, V IH 0.8VDD Input "High" voltage VDD+0.7 V EIO2, /DISPOFF Output "Low" voltage VOL IOL = +0.4 mA +0.4 V EIO1, EIO2 Output "High" voltage VOH IOH = -0.4 mA VDD-0.4 V DI7-DI0, XCK, LP, L/R µA -10.0 ILIL VI = LGND FR, MD, S/C, EIO1, Input leakage current EIO2, /DISPOFF DI6-DI0, LP, L/R, FR, µA ILIH VI = VDD +10.0 MD, S/C, /DISPOFF Input pull-down µA VI = VDD DI7, XCK, EIO1, EIO2 100.0 IPD current | VON| V0=30V 1.5 2.0 Output resistance RON Y1-Y240 k =0.5V V0=20V 2.0 2.5 µA Standby current ISPD LGND 75.0 1 µA Supply current (1) IDD VDD 120.0 2 µA Supply current (2) I0 V0L, V0R 240.0 2 NOTES: 1. VDD = +5.0 V, V0 = +30.0 V, VI = LGND 2. VDD = +5.0 V, V0 = +30.0 V, fLP = 41.6 kHz, fFR = 80 Hz, 1/480 duty operation, no-load. Ver 2.1 Page 17/28 2009/08/19 ST8024 11.2 AC Characteristics (Segment Mode 1) (LGND=VSS = GND = 0 V, VDD = +5.0±0.5 V, V0 = + 15.0 ~ +30.0V, TOPR = -25 to +85 °C) PARAMETER SYMBOL CONDITIONS MIN TYP. MAX. UNIT NOTE Shift clock period tWCK tR,tF 10ns 50 ns 1 tWCKH ns Shift clock "H" pulse width 15 Shift clock "L" pulse width tWCKL 15 ns Data setup time tDS 10 ns Data hold time tDH 12 ns Latch pulse "H" pulse width tWLPH 15 ns Shift clock rise to latch pulse rise time tLD 0 ns Shift clock fall to latch pulse fall time tSL 30 ns Latch pulse rise to shift clock rise time tLS 25 ns Latch pulse fall to shift clock fall time tLH 25 ns Enable setup time tS 10 ns Input signal rise time tR 50 ns 2 Input signal fall time tF 50 ns 2 /DISPOFF removal time tSD 100 ns /DISPOFF "L" pulse width tWDL 1.2 µs Output delay time (1) tD CL = 15 pF 30 ns Output delay time (2) tPD1, tPD2 CL = 15 pF 1.2 µs Output delay time (3) tPD3 CL = 15 pF 1.2 µs NOTES: 1. Takes the cascade connection into consideration. 2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation. (Segment Mode 2) (LGND=VSS =GND = 0V, VDD = +3.0 ~ +4.5V, V0 = + 15.0 ~ +30.0V, TOPR = -25 to +85 °C) PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNIT NOTE Shift clock period tWCK tR,tF 10ns 66 ns 1 Shift clock "H" pulse width tWCKH 23 ns Shift clock "L” pulse width tWCKL 23 ns Data setup time tDS 15 ns Data hold time tDH 23 ns Latch pulse "H" pulse width tWLPH 30 ns Shift clock rise to latch pulse rise time tLD 0 ns Shift clock fall to latch pulse fall time tSL 50 ns Latch pulse rise to shift clock rise time tLS 30 ns Latch pulse fall to shift clock fall time tLH 30 ns Enable setup time tS 15 ns Input signal rise time tR 50 ns 2 Input signal fall time tF 50 ns 2 /DISPOFF removal time tSD 100 ns /DISPOFF "L" pulse width tWDL 1.2 µs Output delay time (1) tD CL = 15 pF 41 ns Output delay time (2) tPD1, tPD2 CL = 15 pF 1.2 µs Output delay time (3) tPD3 CL = 15 pF 1.2 µs NOTES: 1. Takes the cascade connection into consideration. 2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation. Ver 2.1 Page 18/28 2009/08/19 ST8024 (Segment Mode 3) (LGND=VSS =GND = 0V, VDD = +2.5 ~ +3.0V, V0 = + 15.0 ~ +30.0V, TOPR = -25 to+85 °C) PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNIT NOTE Shift clock period tWCK tR,tF 10ns 82 ns 1 Shift clock "H" pulse width tWCKH 28 ns Shift clock "L” pulse width tWCKL 28 ns Data setup time tDS 20 ns Data hold time tDH 23 ns Latch pulse "H" pulse width tWLPH 30 ns Shift clock rise to latch pulse rise time tLD 0 ns Shift clock fall to latch pulse fall time tSL 65 ns Latch pulse rise to shift clock rise time tLS 30 ns Latch pulse fall to shift clock fall time tLH 30 ns Enable setup time tS 15 ns Input signal rise time tR 50 ns 2 Input signal fall time tF 50 ns 2 /DISPOFF removal time tSD 100 ns /DISPOFF "L" pulse width tWDL 1.2 µs Output delay time (1) tD CL = 15 pF 57 ns Output delay time (2) tPD1, tPD2 CL = 15 pF 1.2 µs Output delay time (3) tPD3 CL = 15 pF 1.2 µs NOTES: 1. Takes the cascade connection into consideration. 2. (tWCK - tWCKH - tWCKL)/2 is maximum in the case of high speed operation. (Common Mode) (LGND=VSS = 0 V, VDD = +2.5 ~ +5.5V, V0 = +15.0 ~ +30.0V, TOPR = -25 to +85° C) CONDITIONS MIN. TYP. MAX. UNIT PARAMETER SYMBOL Shift clock period tWLP tR,tF 20ns 250 ns VDD = +5.0± 0.5V 15 ns Shift clock "H" pulse width tWLPH VDD = +2.5+ 4.5V 30 ns Data setup time tSU 30 ns Data hold time tH 50 ns Input signal rise time tR 50 ns Input signal fall time tF 50 ns /DISPOFF removal time tSD 100 ns /DISPOFF "L" pulse width tWDL 1.2 µs Output delay time (1) tDL CL = 15 pF 200 ns Output delay time (2) tPD1, t PD2 CL = 15 pF 1.2 µs Output delay time (3) t PD3 CL = 15 pF 1.2 µs Ver 2.1 Page 19/28 2009/08/19 ST8024 11.3 Timing Chart of Segment Mode tWLPH LP tLD tSL tLH tLS tWCKH tWCKL XCK tR tF tWCK tDS LAST DATA DI7 - DI0 tWDL tDH TOP DATA tSD /DISPOFF LP XCK 1 n* 2 tS EI tD EO *n = 60 in 4-bit parallel input mode *n = 30 in 8-bit parallel input mode FR tPD1 LP tPD2 /DISPOFF tPD3 Y1 - Y240 Figure 11-1 Ver 2.1 Timing Characteristics (3) Page 20/28 2009/08/19 ST8024 11.4 Timing Chart of Common Mode tWLP LP tR tWLPH t SU tF tH EIO2 t DL EIO1 tWDL tSD /DISPOFF FR tPD1 LP tPD2 /DISPOFF tPD3 Y1 - Y240 Ver 2.1 Page 21/28 2009/08/19 ST8024 12 APPLICATION CIRCUIT 12.1 Application Circuit for Module Ver 2.1 Page 22/28 2009/08/19 ST8024 13 PAD DIAGRAM Unit : um Pad# Name 1 VSS X Pad# Name -5464.70 Y -471.00 30 XCK X 1191.70 Y -471.00 2 VSS -5384.70 -471.00 31 DUMMY 1461.10 -471.00 3 GND -5308.70 -471.00 32 /DISPOFF 1730.50 -471.00 4 GND -5232.70 -471.00 33 DUMMY 1999.90 -471.00 5 VCC -5156.70 -471.00 34 LP 2269.30 -471.00 6 VCC -5080.70 -471.00 35 DUMMY 2538.70 -471.00 7 DUMMY -5004.50 -471.00 36 EIO1 2808.10 -471.00 8 DBLKB -4735.10 -471.00 37 DUMMY 3077.50 -471.00 9 DUMMY -4465.70 -471.00 38 FR 3346.90 -471.00 10 S/C -4196.30 -471.00 39 DUMMY 3616.30 -471.00 11 DUMMY -3926.90 -471.00 40 L/R 3885.70 -471.00 12 EIO2 -3657.50 -471.00 41 DUMMY 4155.10 -471.00 13 DUMMY -3388.10 -471.00 42 MD 4424.50 -471.00 14 DI0 -3118.70 -471.00 43 DUMMY 4693.90 -471.00 15 DUMMY -2849.30 -471.00 44 TEST1 4963.30 -471.00 16 DI1 -2579.90 -471.00 45 GND 5232.70 -471.00 17 DUMMY -2310.50 -471.00 46 GND 5308.70 -471.00 18 DI2 -2041.10 -471.00 47 VSS 5384.70 -471.00 19 DUMMY -1771.70 -471.00 48 VSS 5464.70 -471.00 20 DI3 -1502.30 -471.00 49 DUMMY 5551.50 -471.00 21 DUMMY -1232.90 -471.00 50 V34R 5557.00 -394.80 22 DI4 -963.50 -471.00 51 V34R 5557.00 -344.80 23 DUMMY -694.10 -471.00 52 V12R 5557.00 -294.80 24 DI5 -424.70 -471.00 53 V12R 5557.00 -244.80 25 DUMMY -155.30 -471.00 54 V0R 5557.00 -194.80 26 DI6 114.10 -471.00 55 V0R 5557.00 -144.80 27 DUMMY 383.50 -471.00 56 Y1 5557.00 -94.80 28 DI7 652.90 -471.00 57 Y2 5557.00 -44.80 29 DUMMY 922.30 -471.00 58 Y3 5557.00 5.20 Ver 2.1 Page 23/28 2009/08/19 ST8024 59 Y4 5557.00 55.20 109 Y53 3375.00 467.00 60 Y5 5557.00 105.20 110 Y54 3325.00 467.00 61 Y6 5557.00 155.20 111 Y55 3275.00 467.00 62 Y7 5557.00 205.20 112 Y56 3225.00 467.00 63 Y8 5557.00 255.20 113 Y57 3175.00 467.00 64 Y9 5557.00 305.20 114 Y58 3125.00 467.00 65 Y10 5557.00 355.20 115 Y59 3075.00 467.00 66 Y11 5557.00 405.20 116 Y60 3025.00 467.00 67 DUMMY 5551.50 474.00 117 Y61 2975.00 467.00 68 Y12 5425.00 467.00 118 Y62 2925.00 467.00 69 Y13 5375.00 467.00 119 Y63 2875.00 467.00 70 Y14 5325.00 467.00 120 Y64 2825.00 467.00 71 Y15 5275.00 467.00 121 Y65 2775.00 467.00 72 Y16 5225.00 467.00 122 Y66 2725.00 467.00 73 Y17 5175.00 467.00 123 Y67 2675.00 467.00 74 Y18 5125.00 467.00 124 Y68 2625.00 467.00 75 Y19 5075.00 467.00 125 Y69 2575.00 467.00 76 Y20 5025.00 467.00 126 Y70 2525.00 467.00 77 Y21 4975.00 467.00 127 Y71 2475.00 467.00 78 Y22 4925.00 467.00 128 Y72 2425.00 467.00 79 Y23 4875.00 467.00 129 Y73 2375.00 467.00 80 Y24 4825.00 467.00 130 Y74 2325.00 467.00 81 Y25 4775.00 467.00 131 Y75 2275.00 467.00 82 Y26 4725.00 467.00 132 Y76 2225.00 467.00 83 Y27 4675.00 467.00 133 Y77 2175.00 467.00 84 Y28 4625.00 467.00 134 Y78 2125.00 467.00 85 Y29 4575.00 467.00 135 Y79 2075.00 467.00 86 Y30 4525.00 467.00 136 Y80 2025.00 467.00 87 Y31 4475.00 467.00 137 Y81 1975.00 467.00 88 Y32 4425.00 467.00 138 Y82 1925.00 467.00 89 Y33 4375.00 467.00 139 Y83 1875.00 467.00 90 Y34 4325.00 467.00 140 Y84 1825.00 467.00 91 Y35 4275.00 467.00 141 Y85 1775.00 467.00 92 Y36 4225.00 467.00 142 Y86 1725.00 467.00 93 Y37 4175.00 467.00 143 Y87 1675.00 467.00 94 Y38 4125.00 467.00 144 Y88 1625.00 467.00 95 Y39 4075.00 467.00 145 Y89 1575.00 467.00 96 Y40 4025.00 467.00 146 Y90 1525.00 467.00 97 Y41 3975.00 467.00 147 Y91 1475.00 467.00 98 Y42 3925.00 467.00 148 Y92 1425.00 467.00 99 Y43 3875.00 467.00 149 Y93 1375.00 467.00 100 Y44 3825.00 467.00 150 Y94 1325.00 467.00 101 Y45 3775.00 467.00 151 Y95 1275.00 467.00 102 Y46 3725.00 467.00 152 Y96 1225.00 467.00 103 Y47 3675.00 467.00 153 Y97 1175.00 467.00 104 Y48 3625.00 467.00 154 Y98 1125.00 467.00 105 Y49 3575.00 467.00 155 Y99 1075.00 467.00 106 Y50 3525.00 467.00 156 Y100 1025.00 467.00 107 Y51 3475.00 467.00 157 Y101 975.00 467.00 108 Y52 3425.00 467.00 158 Y102 925.00 467.00 Ver 2.1 Page 24/28 2009/08/19 ST8024 159 Y103 875.00 467.00 209 Y153 -1625.00 467.00 160 Y104 825.00 467.00 210 Y154 -1675.00 467.00 161 Y105 775.00 467.00 211 Y155 -1725.00 467.00 162 Y106 725.00 467.00 212 Y156 -1775.00 467.00 163 Y107 675.00 467.00 213 Y157 -1825.00 467.00 164 Y108 625.00 467.00 214 Y158 -1875.00 467.00 165 Y109 575.00 467.00 215 Y159 -1925.00 467.00 166 Y110 525.00 467.00 216 Y160 -1975.00 467.00 167 Y111 475.00 467.00 217 Y161 -2025.00 467.00 168 Y112 425.00 467.00 218 Y162 -2075.00 467.00 169 Y113 375.00 467.00 219 Y163 -2125.00 467.00 170 Y114 325.00 467.00 220 Y164 -2175.00 467.00 171 Y115 275.00 467.00 221 Y165 -2225.00 467.00 172 Y116 225.00 467.00 222 Y166 -2275.00 467.00 173 Y117 175.00 467.00 223 Y167 -2325.00 467.00 174 Y118 125.00 467.00 224 Y168 -2375.00 467.00 175 Y119 75.00 467.00 225 Y169 -2425.00 467.00 176 Y120 25.00 467.00 226 Y170 -2475.00 467.00 177 Y121 -25.00 467.00 227 Y171 -2525.00 467.00 178 Y122 -75.00 467.00 228 Y172 -2575.00 467.00 179 Y123 -125.00 467.00 229 Y173 -2625.00 467.00 180 Y124 -175.00 467.00 230 Y174 -2675.00 467.00 181 Y125 -225.00 467.00 231 Y175 -2725.00 467.00 182 Y126 -275.00 467.00 232 Y176 -2775.00 467.00 183 Y127 -325.00 467.00 233 Y177 -2825.00 467.00 184 Y128 -375.00 467.00 234 Y178 -2875.00 467.00 185 Y129 -425.00 467.00 235 Y179 -2925.00 467.00 186 Y130 -475.00 467.00 236 Y180 -2975.00 467.00 187 Y131 -525.00 467.00 237 Y181 -3025.00 467.00 188 Y132 -575.00 467.00 238 Y182 -3075.00 467.00 189 Y133 -625.00 467.00 239 Y183 -3125.00 467.00 190 Y134 -675.00 467.00 240 Y184 -3175.00 467.00 191 Y135 -725.00 467.00 241 Y185 -3225.00 467.00 192 Y136 -775.00 467.00 242 Y186 -3275.00 467.00 193 Y137 -825.00 467.00 243 Y187 -3325.00 467.00 194 Y138 -875.00 467.00 244 Y188 -3375.00 467.00 195 Y139 -925.00 467.00 245 Y189 -3425.00 467.00 196 Y140 -975.00 467.00 246 Y190 -3475.00 467.00 197 Y141 -1025.00 467.00 247 Y191 -3525.00 467.00 198 Y142 -1075.00 467.00 248 Y192 -3575.00 467.00 199 Y143 -1125.00 467.00 249 Y193 -3625.00 467.00 200 Y144 -1175.00 467.00 250 Y194 -3675.00 467.00 201 Y145 -1225.00 467.00 251 Y195 -3725.00 467.00 202 Y146 -1275.00 467.00 252 Y196 -3775.00 467.00 203 Y147 -1325.00 467.00 253 Y197 -3825.00 467.00 204 Y148 -1375.00 467.00 254 Y198 -3875.00 467.00 205 Y149 -1425.00 467.00 255 Y199 -3925.00 467.00 206 Y150 -1475.00 467.00 256 Y200 -3975.00 467.00 207 Y151 -1525.00 467.00 257 Y201 -4025.00 467.00 208 Y152 -1575.00 467.00 258 Y202 -4075.00 467.00 Ver 2.1 Page 25/28 2009/08/19 ST8024 259 Y203 -4125.00 467.00 282 Y226 -5275.00 467.00 260 Y204 -4175.00 467.00 283 Y227 -5325.00 467.00 261 Y205 -4225.00 467.00 284 Y228 -5375.00 467.00 262 Y206 -4275.00 467.00 285 Y229 -5425.00 467.00 263 Y207 -4325.00 467.00 286 DUMMY -5551.50 474.00 264 Y208 -4375.00 467.00 287 Y230 -5557.00 405.20 265 Y209 -4425.00 467.00 288 Y231 -5557.00 355.20 266 Y210 -4475.00 467.00 289 Y232 -5557.00 305.20 267 Y211 -4525.00 467.00 290 Y233 -5557.00 255.20 268 Y212 -4575.00 467.00 291 Y234 -5557.00 205.20 269 Y213 -4625.00 467.00 292 Y235 -5557.00 155.20 270 Y214 -4675.00 467.00 293 Y236 -5557.00 105.20 271 Y215 -4725.00 467.00 294 Y237 -5557.00 55.20 272 Y216 -4775.00 467.00 295 Y238 -5557.00 5.20 273 Y217 -4825.00 467.00 296 Y239 -5557.00 -44.80 274 Y218 -4875.00 467.00 297 Y240 -5557.00 -94.80 275 Y219 -4925.00 467.00 298 V0L -5557.00 -144.80 276 Y220 -4975.00 467.00 299 V0L -5557.00 -194.80 277 Y221 -5025.00 467.00 300 V12L -5557.00 -244.80 278 Y222 -5075.00 467.00 301 V12L -5557.00 -294.80 279 Y223 -5125.00 467.00 302 V34L -5557.00 -344.80 280 Y224 -5175.00 467.00 303 V34L -5557.00 -394.80 281 Y225 -5225.00 467.00 304 DUMMY -5551.50 -471.00 13.1 Gold Bump Size Pad No. X Y 1~48(not DUMMY) 58 60 50~66,287~303 74 35 7~43(DUMMY only) 58 60 68~285 35 74 49,67,286,304 85 60 Wafer thickness = 675±20um, Bump pad height = 15um, strength=30g Ver 2.1 Page 26/28 2 Area (um ) 3480 2590 3480 2590 5100 2009/08/19 ST8024 14 APPLITION NOTE ( REFERENCE ONLY ) 14.1 PCB and ITO layout notice: Pin Name ITO Resistor Values Less than 75 when VDD ≧ 3.0V, and the smaller the better LGND, GND, VDD, Vss V0R, V0L Less than 150 , and the smaller the better V12R, V12L, V34R, V12L Less than 250 , and the smaller the better PS : Above resistor value test on 3” LCD panel. 14.2 We suggest the ITO resistor for LCD panel is less than 15Ω/Square, and the resistor value is as smaller as better. 14.3 Adjust V1 and V4 voltage to keep the V0-V1 = V4-VSS relation to get better display quality. The (V0-V1)-(V4-VSS) value had better less than 100mV. 14.4 Add 0.1uF high frequency by-pass capacitor to filter the noise on V0~V4 to VSS. 14.5 When OP follower circuit is used, please be sure the OP power is higher than V0 at least 1.5V. 14.6 EIO1 and EIO2 is enable pin for driver, please pay attention to the distance to avoid noise when cascade function is used. Two chip connecting distance is as shorter as better. Ver 2.1 Page 27/28 2009/08/19 ST8024 15 REVISION REVISION 0.20 0.21 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 DESCRIPTION Add pad location and gold bump data Add BLANK contrast control information Add TCP (F4) information Remove TCP information to another PDF file ST8024TCP(F4).PDF Gold bump strength=30g, update IC diagram Correct wrong word mistake Correct parameter name Correct DI to FLM Change operating temperature from -20°C~85°C to -25°C~85°C Change description of TEST1 pin in PIN DESCRIPTION(TCP) Add 1 and 48 Gold Bump size Modify TCP package Rename V5 to Vss and some pins' description Modify PAD sequence Add alignment mark Add max value for input high voltage Add wafer thickness information and roughly TCP drawing information. Modify chip size and thickness with scribe line and Spec arrangement Modify all the data about absolute max voltage and recommend max voltage Modify Pad Diagram Add application note Modify Pad Location PAGE DATE 16 2006/12/11 1-27 2006/12/25 2,16-19 2007/05/25 23 27 24 2008/1/14 2008/05/07 2009/0819 The above information is the exclusive intellectual property of Sitronix Technology Corp. and shall not be disclosed, distributed or reproduced without permission from Sitronix. Ver 2.1 Page 28/28 2009/08/19