TI TPS74701DRCR

TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
500mA Low-Dropout Linear Regulator with Programmable Soft-Start
FEATURES
1
•
•
•
•
2
•
•
•
•
•
Ultra-Low VIN and VOUT Range: 0.8V to 5.5V
VBIAS Range 2.7V to 5.5V
Low Dropout: 50mV typ at 500mA, VBIAS = 5V
Power Good (PG) Output Allows Supply
Monitoring or Provides a Sequencing Signal
for Other Supplies
2% Accuracy Over Line/Load/Temperature
Programmable Soft-Start Provides Linear
Voltage Startup
VBIAS Permits Low VIN Operation with Good
Transient Response
Stable with Any Output Capacitor ≥ 2.2µF
Available in a Small 3mm × 3mm × 1mm
SON-10 Package
APPLICATIONS
•
•
•
•
•
FPGA Applications
DSP Core and I/O Voltages
Post-Regulation Applications
Applications with Special Start-Up Time or
Sequencing Requirements
Hot-Swap and Inrush Controls
DESCRIPTION
The TPS74701 low-dropout (LDO) linear regulator
provides an easy-to-use, robust power management
solution for a wide variety of applications.
User-programmable soft-start minimizes stress on the
input power source by reducing capacitive inrush
current on start-up. The soft-start is monotonic and
well-suited for powering many different types of
processors and ASICs. The enable input and power
good output allow easy sequencing with external
regulators. This complete flexibility permits the user to
configure a solution that meets the sequencing
requirements of FPGAs, DSPs, and other
applications with special start-up requirements.
A precision reference and error amplifier deliver 2%
accuracy over load, line, temperature, and process.
The device is stable with any type of capacitor
greater than or equal to 2.2µF, and is fully specified
from –40°C to +125°C. The TPS74701 is offered in a
small 3mm × 3mm SON-10 package for compatibility
with the TPS74801.
CSS = 0nF
CSS = 560pF
VIN
IN
PG
CSS = 5600pF
0.5V/div
CIN
R3
BIAS
EN
VBIAS
TPS74701
R1
SS
GND
CBIAS
CSS
VOUT
VOUT
OUT
COUT
FB
3.8V
VEN
R2
1V/div
1.8V
Time (2ms/div)
Figure 1. Typical Application Circuit (Adjustable)
Figure 2. Turn-On Response
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007, Texas Instruments Incorporated
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
ORDERING INFORMATION (1)
VOUT (2)
PRODUCT
TPS747xxyyyz
(1)
XX is nominal output voltage (for example, 12 = 1.2V, 15 = 1.5V, 01 = Adjustable). (3)
YYY is package designator.
Z is package quantity.
For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Fixed output voltages from 0.8V to 3.3V are available; minimum order quantities may apply. Contact factory for details and availability.
For fixed 0.8V operation, tie FB to OUT.
(2)
(3)
ABSOLUTE MAXIMUM RATINGS (1)
At TJ = –40°C to +125°C, unless otherwise noted. All voltages are with respect to GND.
TPS74701
UNIT
VIN, VBIAS
Input voltage range
–0.3 to +6
V
VEN
Enable voltage range
–0.3 to +6
V
VPG
Power good voltage range
–0.3 to +6
V
IPG
PG sink current
0 to +1.5
mA
VSS
Soft-start voltage range
–0.3 to +6
V
VFB
Feedback voltage range
–0.3 to +6
V
VOUT
Output voltage range
–0.3 to VIN + 0.3
V
IOUT
Maximum output current
Internally limited
Output short-circuit duration
Indefinite
PDISS
Continuous total power dissipation
TJ
Operating junction temperature range
–40 to +125
°C
TSTG
Storage junction temperature range
–55 to +150
°C
(1)
See Dissipation Ratings Table
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.
DISSIPATION RATINGS
(1)
(2)
2
PACKAGE
θJA
θJC
TA < +25°C
POWER RATING
DERATING FACTOR
ABOVE TA = +25°C
DRC (SON) High-K (1) (2)
65°C/W
4°C/W
1.92 W
15.4mW/°C
The JEDEC High-K (2s2p) board design used to derive this data was a 3 inch x 3 inch multilayer board with 1-ounce internal power and
ground planes and 2-ounce copper traces on the top and bottom of the board
See the Layout Recommendations and Power Dissipation section for additional thermal information.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
ELECTRICAL CHARACTERISTICS
At VEN = 1.1V, VIN = VOUT + 0.3V, CBIAS = 0.1µF, CIN = COUT = 10µF, CNR = 1nF, IOUT = 50mA, VBIAS = 5.0V, and TJ = –40°C to
+125°C, unless otherwise noted. Typical values are at TJ = +25°C.
TPS74701
PARAMETER
TEST CONDITIONS
VIN
Input voltage range
VBIAS
Bias pin voltage range
VREF
Internal reference (Adj.)
Output voltage range
VOUT
Accuracy (1)
VOUT/VIN
Line regulation
VOUT/IOUT
Load regulation
VBIAS dropout voltage
(2)
ICL
Current limit
IBIAS
Bias pin current
ISHDN
Shutdown supply current
(IGND)
IFB
Feedback pin current
Power-supply rejection
(VIN to VOUT)
PSRR
Power-supply rejection
(VBIAS to VOUT)
MAX
UNIT
VOUT + VDO
5.5
V
2.7
5.5
V
0.804
V
3.6
V
2
%
TJ = +25°C
0.796
VIN = 5V, IOUT = 500mA
VREF
2.97V ≤ VBIAS ≤ 5.5V,
50mA ≤ IOUT ≤ 500mA
–2
VOUT
VIN dropout voltage (2)
VDO
MIN
+ 0.3 ≤ VIN ≤ 5.5V
TYP
0.8
±0.5
0.03
%/V
50mA ≤ IOUT ≤ 500mA
0.09
%/A
IOUT = 500mA,
VBIAS – VOUT (NOM) ≥ 1.62V (3)
50
(NOM)
IOUT = 500mA, VIN = VBIAS
VOUT = 80% × VOUT (NOM)
1.31
–1
mV
1.39
V
1350
mA
1
2
mA
1
50
µA
0.150
1
µA
800
VEN ≤ 0.4V
120
1kHz, IOUT = 500mA,
VIN = 1.8V, VOUT = 1.5V
60
300kHz, IOUT = 500mA,
VIN = 1.8V, VOUT = 1.5V
30
1kHz, IOUT = 500mA,
VIN = 1.8V, VOUT = 1.5V
50
300kHz, IOUT = 500mA,
VIN = 1.8V, VOUT = 1.5V
30
dB
dB
Noise
Output noise voltage
100Hz to 100kHz,
IOUT = 500mA, CSS = 0.001µF
25 × VOUT
tSTR
Minimum startup time
RLOAD for IOUT = 1.0A, CSS = open
200
µs
ISS
Soft-start charging current
VSS = 0.4V
440
nA
VEN,
µVRMS
HI
Enable input high level
1.1
5.5
V
VEN,
LO
Enable input low level
0
0.4
V
VEN,
HYS
Enable pin hysteresis
50
VEN,
DG
Enable pin deglitch time
20
IEN
Enable pin current
VIT
PG trip threshold
VHYS
PG trip hysteresis
VPG, LO
PG output low voltage
IPG, LKG
PG leakage current
TJ
Operating junction
temperature
TSD
Thermal shutdown
temperature
(1)
(2)
(3)
VEN = 5V
VOUT decreasing
85
mV
µs
0.1
1
µA
90
94
%VOUT
3
IPG = 1mA (sinking), VOUT < VIT
VPG = 5.25V, VOUT > VIT
0.1
–40
Shutdown, temperature increasing
+165
Reset, temperature decreasing
+140
%VOUT
0.3
V
1
µA
+125
°C
°C
Adjustable devices tested at 0.8V; resistor tolerance is not taken into account.
Dropout is defined as the voltage from VIN to VOUT when VOUT is 3% below nominal.
1.62V is a test condition of this device and can be adjusted by referring to Figure 8.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
3
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
FUNCTIONAL BLOCK DIAGRAM
IN
Current
Limit
BIAS
UVLO
OUT
Thermal
Limit
0.44mA
VOUT
R1
SS
CSS
Soft-Start
Discharge
0.8V
Reference
FB
PG
EN
Hysteresis
and Deglitch
R2
0.9 ´ VREF
GND
Table 1. Standard 1% Resistor Values for Programming the Output Voltage (1)
(1)
R1 (kΩ)
R2 (kΩ)
VOUT (V)
Short
Open
0.8
0.619
4.99
0.9
1.13
4.53
1.0
1.37
4.42
1.05
1.87
4.99
1.1
2.49
4.99
1.2
4.12
4.75
1.5
3.57
2.87
1.8
3.57
1.69
2.5
3.57
1.15
3.3
VOUT = 0.8 × (1 + R1/R2).
Table 2. Standard Capacitor Values for Programming the Soft-Start Time (1)
(1)
4
CSS
SOFT-START TIME
Open
0.1ms
270pF
0.5ms
560pF
1ms
2.7nF
5ms
5.6nF
10ms
0.01µF
18ms
tSS(s) = 0.8 × CSS(F)/4.4 × 10 .
–7
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
DEVICE INFORMATION
DRC PACKAGE
3mm × 3mm SON
(TOP VIEW)
IN 1
10 OUT
9 OUT
IN 2
PG 3
BIAS 4
EN 5
Thermal
Pad
8 FB
7 SS
6 GND
PIN DESCRIPTIONS
TPS74701
NAME
PIN #
IN
1, 2
DESCRIPTION
EN
5
SS
7
Soft-Start pin. A capacitor connected on this pin to ground sets the start-up time. If this pin is left
unconnected, the regulator output soft-start ramp time is typically 200µs.
BIAS
4
Bias input voltage for error amplifier, reference, and internal control circuits.
PG
3
Power Good pin. An open-drain, active-high output that indicates the status of VOUT. When VOUT
exceeds the PG trip threshold, the PG pin goes into a high-impedance state. When VOUT is
below this threshold the pin is driven to a low-impedance state. A pull-up resistor from 10kΩ to
1MΩ should be connected from this pin to a supply of up to 5.5V. The supply can be higher than
the input voltage. Alternatively, the PG pin can be left unconnected if output monitoring is not
necessary.
FB
8
Feedback pin. The feedback connection to the center tap of an external resistor divider network
that sets the output voltage. This pin must not be left floating.
OUT
9, 10
Regulated output voltage. A small capacitor (total typical capacitance ≥ 2.2µF, ceramic) is
needed from this pin to ground to assure stability.
NC
N/A
No connection. This pin can be left floating or connected to GND to allow better thermal contact
to the top-side plane.
GND
6
Ground
Thermal Pad
—
Should be soldered to the ground plane for increased thermal performance.
Input to the device.
Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into
shutdown mode. This pin must not be left unconnected.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
5
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
TYPICAL CHARACTERISTICS
At TJ = +25°C, VIN = VOUT(TYP) + 0.3V, VBIAS = 5V, IOUT = 50mA, VEN = VIN, CIN = 1µF, CBIAS = 4.7µF, and COUT = 10µF,
unless otherwise noted.
VIN LINE REGULATION
VBIAS LINE REGULATION
0.20
0.5
0.15
0.4
Change in VOUT (%)
Change in VOUT (%)
0.3
0.10
-40°C
0.05
0
+25°C
+125°C
-0.05
0.2
-40°C
0.1
0
-0.1
+125°C
+25°C
-0.2
-0.01
-0.3
-0.15
-0.4
-0.20
-0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
5.0
1.0
1.5
2.0
VIN - VOUT (V)
2.5
3.0
3.5
4.0
VBIAS - VOUT (V)
Figure 3.
Figure 4.
LOAD REGULATION
LOAD REGULATION
1.2
0.5
0.4
0.3
Change in VOUT (%)
Change in VOUT (%)
1.0
0.8
0.6
0.4
0.2
+125°C
0.1
0
-0.1
-40°C
+25°C
-0.2
-0.3
0.2
-0.4
0
-0.5
10
20
30
40
100
300
200
400
500
IOUT (mA)
IOUT (mA)
Figure 5.
Figure 6.
DROPOUT VOLTAGE vs
IOUT AND TEMPERATURE (TJ)
DROPOUT VOLTAGE vs
(VBIAS – VOUT) AND TEMPERATURE (TJ)
100
200
90
180
80
160
70
60
50
40
+125°C
30
+25°C
20
IOUT = 0.5A
140
120
100
+25°C
80
+125°C
60
40
10
-40°C
20
-40°C
0
0
6
0
50
VDO (VIN - VOUT) (mV)
VDO (VIN - VOUT) (mV)
0
100
200
300
400
0
500
0
0.5
1.0
1.5
2.0
2.5
IOUT (mA)
VBIAS - VOUT (V)
Figure 7.
Figure 8.
Submit Documentation Feedback
3.0
3.5
4.0
4.5
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
TYPICAL CHARACTERISTICS (continued)
At TJ = +25°C, VIN = VOUT(TYP) + 0.3V, VBIAS = 5V, IOUT = 50mA, VEN = VIN, CIN = 1µF, CBIAS = 4.7µF, and COUT = 10µF,
unless otherwise noted.
VBIAS DROPOUT VOLTAGE vs
IOUT AND TEMPERATURE (TJ)
VBIAS PSRR vs FREQUENCY
2200
Power-Supply Rejection Ratio (dB)
90
VDO (VBIAS - VOUT) (mV)
2000
1800
1600
1400
+125°C
1200
1000
+25°C
-40°C
800
600
80
IOUT = 0.1A
70
60
50
40
IOUT = 0.5A
30
VIN = 1.8V
VOUT = 1.2V
VBIAS = 5V
CSS = 1nF
20
10
0
0
100
300
200
400
500
10
100
1k
IOUT (mA)
10k
Figure 9.
VIN PSRR vs FREQUENCY
10M
VIN PSRR vs (VIN – VOUT)
90
80
70
60
IOUT = 100mA
50
40
30
VIN = 1.8V
VOUT = 1.2V
COUT = 10mF
CSS = 1nF
20
10
0
IOUT = 500mA
Power-Supply Rejection Ratio (dB)
Power-Supply Rejection Ratio (dB)
1M
Figure 10.
90
80
1kHz
70
60
10kHz
50
40
100kHz
30
500kHz
20
VOUT = 1.2V
IOUT = 500mA
CSS = 1nF
10
0
10
100
1k
10k
100k
1M
0
10M
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 2.25
VIN - VOUT (V)
Frequency (Hz)
Figure 11.
Figure 12.
NOISE SPECTRAL DENSITY
BIAS PIN CURRENT vs
IOUT AND TEMPERATURE (TJ)
2.0
1
IOUT = 100mA
VOUT = 1.2V
1.8
+125°C
1.6
1.4
IBIAS (mA)
Output Spectral Noise Density (mV/ÖHz)
100k
Frequency (Hz)
CSS = 0nF
0.1
1.2
1.0
0.8
+25°C
0.6
CSS = 10nF
CSS = 1nF
-40°C
0.4
0.2
0
0.01
100
1k
10k
100k
0
100
200
300
400
500
IOUT (mA)
Frequency (Hz)
Figure 13.
Figure 14.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
7
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
TYPICAL CHARACTERISTICS (continued)
At TJ = +25°C, VIN = VOUT(TYP) + 0.3V, VBIAS = 5V, IOUT = 50mA, VEN = VIN, CIN = 1µF, CBIAS = 4.7µF, and COUT = 10µF,
unless otherwise noted.
BIAS PIN CURRENT vs
VBIAS AND TEMPERATURE (TJ)
SOFT-START CHARGING CURRENT (ISS) vs
TEMPERATURE (TJ)
2.0
500
1.8
475
+125°C
1.6
450
425
1.2
ISS (nA)
IBIAS (mA)
1.4
+25°C
1.0
0.8
400
375
0.6
-40°C
350
0.4
325
0.2
300
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
-50
50
75
Figure 15.
Figure 16.
100
125
CURRENT LIMIT vs (VBIAS – VOUT)
1.0
1.5
0.9
1.4
0.8
1.3
0.7
1.2
Current Limit (A)
VOL Low-Level PG Voltage (V)
25
Junction Temperature (°C)
LOW-LEVEL PG VOLTAGE vs CURRENT
0.6
0.5
0.4
0.3
VOUT = 0.8V
+125°C
1.1
1.0
-40°C
0.9
+25°C
0.8
0.2
0.7
0.1
0.6
0
0.5
0
2
4
6
8
10
12
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VBIAS - VOUT (V)
PG Current (mA)
Figure 17.
8
0
-25
VBIAS (V)
Figure 18.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
TYPICAL CHARACTERISTICS
At TJ = +25°C, VIN = VOUT(TYP) + 0.3V, VBIAS = 5V, IOUT = 1A, VEN = VIN = 1.8V, VOUT = 1.5V, CIN = 1µF, CBIAS = 4.7µF, and
COUT = 10µF, unless otherwise noted.
VBIAS LINE TRANSIENT
VIN LINE TRANSIENT
CSS = 1nF
COUT = 2.2mF (Ceramic)
COUT = 2.2mF (Ceramic)
50mV/div
50mV/div
CSS = 1nF
3.8V
5.0V
1V/div
1V/div
1V/ms
3.3V
1V/ms
1.8V
Time (50ms/div)
Time (50ms/div)
Figure 19.
Figure 20.
OUTPUT LOAD TRANSIENT RESPONSE
TURN-ON RESPONSE
CSS = 0nF
COUT = 470mF (OSCON)
100mV/div
CSS = 560pF
CSS = 1nF
CSS = 5600pF
0.5V/div
VOUT
100mV/div
COUT = 10mF (Ceramic)
100mV/div
3.8V
COUT = 2.2mF (Ceramic)
1V/div
500mA/div
VEN
1.8V
1A/ms
50mA
Time (50ms/div)
Time (2ms/div)
Figure 21.
Figure 22.
POWER-UP/POWER-DOWN
1V/div
VIN = VBIAS = VEN
VOUT
VPG
Time (20ms/div)
Figure 23.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
9
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
APPLICATION INFORMATION
The TPS74701 belongs to a family of low-dropout
regulators that feature soft-start capability. These
regulators use a low current bias input to power all
internal control circuitry, allowing the NMOS pass
transistor to regulate very low input and output
voltages.
The use of an NMOS-pass FET offers several critical
advantages for many applications. Unlike a PMOS
topology device, the output capacitor has little effect
on loop stability. This architecture allows the
TPS74701 to be stable with any capacitor type of
value 2.2µF or greater. Transient response is also
superior to PMOS topologies, particularly for low VIN
applications.
using the formula shown in Figure 24. Refer to
Table 1 for sample resistor values of common output
voltages. In order to achieve the maximum accuracy
specifications, R2 should be less than or equal to
4.99kΩ.
INPUT, OUTPUT, AND BIAS CAPACITOR
REQUIREMENTS
The device is designed to be stable for all available
types and values of output capacitors greater than or
equal to 2.2µF. The device is also stable with multiple
capacitors in parallel, which can be of any type or
value.
The
TPS74701
features
a
programmable
voltage-controlled soft-start circuit that provides a
smooth, monotonic start-up and limits startup inrush
currents that may be caused by large capacitive
loads. A power good (PG) output is available to allow
supply monitoring and sequencing of other supplies.
An enable (EN) pin with hysteresis and deglitch
allows slow-ramping signals to be used for
sequencing the device. The low VIN and VOUT
capability allows for inexpensive, easy-to-design, and
efficient linear regulation between the multiple supply
voltages often present in processor-intensive
systems.
The capacitance required on the IN and BIAS pins
strongly depends on the input supply source
impedance. To counteract any inductance in the
input, the minimum recommended capacitor for VIN
and VBIAS is 1µF. If VIN and VBIAS are connected to
the same supply, the recommended minimum
capacitor for VBIAS is 4.7µF. Good quality, low ESR
capacitors should be used on the input; ceramic X5R
and X7R capacitors are preferred. These capacitors
should be placed as close the pins as possible for
optimum performance.
Figure 24 illustrates the typical application circuit for
the TPS74701 adjustable output device.
The TPS74701 was designed to have excellent
transient response for most applications with a small
amount of output capacitance. In some cases, the
transient response may be limited by the transient
response of the input supply. This limitation is
especially true in applications where the difference
between the input and output is less than 300mV. In
this case, adding additional input capacitance
improves the transient response much more than just
adding additional output capacitance would do. With
a solid input supply, adding additional output
capacitance reduces undershoot and overshoot
during a transient event; refer to Figure 21 in the
Typical Characteristics section. Because the
TPS74701 is stable with output capacitors as low as
2.2µF, many applications may then need very little
capacitance at the LDO output. For these
applications, local bypass capacitance for the
powered device may be sufficient to meet the
transient requirements of the application. This design
reduces the total solution cost by avoiding the need
to use expensive, high-value capacitors at the LDO
output.
VIN
IN
CIN
1mF
PG
R3
BIAS
EN
VBIAS
TPS74701
R1
SS
CBIAS
1mF
VOUT
OUT
FB
GND
CSS
COUT
10mF
R2
(
VOUT = 0.8 ´ 1 +
R1
R2
)
Figure 24. Typical Application Circuit for the
TPS74701 (Adjustable)
R1 and R2 can be calculated for any output voltage
10
TRANSIENT RESPONSE
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
DROPOUT VOLTAGE
VIN
The TPS74701 offers very low dropout performance,
making it well-suited for high-current, low VIN/low
VOUT applications. The low dropout of the TPS74701
allows the device to be used in place of a dc/dc
converter and still achieve good efficiency. This
feature provides designers with the power
architecture for their applications to achieve the
smallest, simplest, and lowest cost solution.
There are two different specifications for dropout
voltage with the TPS74701. The first specification
(shown in Figure 25) is referred to as VIN Dropout and
is used when an external bias voltage is applied to
achieve low dropout. This specification assumes that
VBIAS is at least 1.62V (1) above VOUT, which is the
case for VBIAS when powered by a 3.3V rail with 5%
tolerance and with VOUT = 1.5V. If VBIAS is higher than
VOUT +1.62V (1), VIN dropout is less than specified.
BIAS
Reference
IN
BIAS
Reference
IN
VBIAS = 3.3V ±5%
VIN = 3.3V ± 5V
VOUT = 1.5V
IOUT = 1.5A
Efficiency = 45%
OUT
VOUT
COUT
FB
Simplified Block Diagram
Figure 26. Typical Application of the TPS74701
Without an Auxiliary Bias Rail
PROGRAMMABLE SOFT-START
VBIAS = 5V ±5%
VIN = 1.8V
VOUT = 1.5V
IOUT = 1.5A
Efficiency = 83%
OUT
VOUT
COUT
FB
Simplified Block Diagram
Figure 25. Typical Application of the TPS74701
Using an Auxiliary Bias Rail
The second specification (shown in Figure 26) is
referred to as VBIAS Dropout and applies to
applications where IN and BIAS are tied together.
This option allows the device to be used in
applications where an auxiliary bias voltage is not
available or low dropout is not required. Dropout is
limited by BIAS in these applications because VBIAS
provides the gate drive to the pass FET; therefore,
VBIAS must be 1.39V above VOUT. Because of this
usage, IN and BIAS tied together easily consume
huge power. Pay attention not to exceed the power
rating of the IC package.
The TPS74701 features a programmable, monotonic,
voltage-controlled soft-start that is set with an
external capacitor (CSS). This feature is important for
many applications because it eliminates power-up
initialization problems when powering FPGAs, DSPs,
or other processors. The controlled voltage ramp of
the output also reduces peak inrush current during
start-up, minimizing start-up transient events to the
input power bus.
To achieve a linear and monotonic soft-start, the
TPS74701 error amplifier tracks the voltage ramp of
the external soft-start capacitor until the voltage
exceeds the internal reference. The soft-start ramp
time depends on the soft-start charging current (ISS),
soft-start capacitance (CSS), and the internal
reference voltage (VREF), and can be calculated using
Equation 1:
(VREF ´ CSS)
tSS =
ISS
(1)
If large output capacitors are used, the device current
limit (ICL) and the output capacitor may set the
start-up time. In this case, the start-up time is given
by Equation 2:
(VOUT(NOM) ´ COUT)
tSSCL =
ICL(MIN)
(2)
where:
VOUT(NOM) is the nominal output voltage,
COUT is the output capacitance, and
ICL(MIN) is the minimum current limit for the device.
(1)
1.62V is a test condition of this device and can be adjusted by
referring to Figure 8.
In applications where monotonic startup is required,
the soft-start time given by Equation 1 should be set
greater than Equation 2.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
11
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
The maximum recommended soft-start capacitor is
0.015µF. Larger soft-start capacitors can be used and
do not damage the device; however, the soft-start
capacitor discharge circuit may not be able to fully
discharge the soft-start capacitor when enabled.
Soft-start capacitors larger than 0.015µF could be a
problem in applications where it is necessary to
rapidly pulse the enable pin and still require the
device to soft-start from ground. CSS must be
low-leakage; X7R, X5R, or C0G dielectric materials
are preferred. Refer to Table 2 for suggested
soft-start capacitor values.
SEQUENCING REQUIREMENTS
VIN, VBIAS, and VEN can be sequenced in any order
without causing damage to the device. However, for
the soft-start function to work as intended, certain
sequencing rules must be applied. Connecting EN to
IN is acceptable for most applications, as long as VIN
is greater than 1.1V and the ramp rate of VIN and
VBIAS is faster than the set soft-start ramp rate. If the
ramp rate of the input sources is slower than the set
soft-start time, the output tracks the slower supply
minus the dropout voltage until it reaches the set
output voltage. If EN is connected to BIAS, the device
soft-starts as programmed, provided that VIN is
present before VBIAS. If VBIAS and VEN are present
before VIN is applied and the set soft-start time has
expired, then VOUT tracks VIN. If the soft-start time has
not expired, the output tracks VIN until VOUT reaches
the value set by the charging soft-start capacitor.
Figure 27 shows the use of an RC-delay circuit to
hold off VEN until VBIAS has ramped. This technique
can also be used to drive EN from VIN. An external
control signal can also be used to enable the device
after VIN and VBIAS are present.
NOTE: When VBIAS and VEN are present and VIN is
not supplied, this device outputs approximately 50µA
of current from OUT. Although this condition does not
cause any damage to the device, the output current
may charge up the OUT node if total resistance
between OUT and GND (including external feedback
resistors) is less than 10kΩ.
VIN
IN
VOUT
OUT
R1
CIN
BIAS TPS74701
FB
EN
SS
COUT
R2
R
VBIAS
CBIAS
GND
C
CSS
Figure 27. Soft-Start Delay Using an RC Circuit to
Enable the Device
12
OUTPUT NOISE
The TPS74701 provides low output noise when a
soft-start capacitor is used. When the device reaches
the end of the soft-start cycle, the soft-start capacitor
serves as a filter for the internal reference. By using a
0.001µF soft-start capacitor, the output noise is
reduced by half and is typically 30µVRMS for a 1.2V
output (10Hz to 100kHz). Further increasing CSS has
little effect on noise. Because most of the output
noise is generated by the internal reference, the
noise is a function of the set output voltage. The RMS
noise with a 0.001µF soft-start capacitor is given in
Equation 3:
(
VN(mVRMS) = 25
mVRMS
V
)x V
OUT(V)
(3)
The low output noise of the TPS74701 makes it a
good choice for powering transceivers, PLLs, or other
noise-sensitive circuitry.
ENABLE/SHUTDOWN
The enable (EN) pin is active high and is compatible
with standard digital signaling levels. VEN below 0.4V
turns the regulator off, while VEN above 1.1V turns the
regulator on. Unlike many regulators, the enable
circuitry has hysteresis and deglitching for use with
relatively slowly ramping analog signals. This
configuration allows the TPS74701 to be enabled by
connecting the output of another supply to the EN
pin. The enable circuitry typically has 50mV of
hysteresis and a deglitch circuit to help avoid on-off
cycling as a result of small glitches in the VEN signal.
The enable threshold is typically 0.8V and varies with
temperature and process variations. Temperature
variation is approximately –1mV/°C; process variation
accounts for most of the rest of the variation to the
0.4V and 1.1V limits. If precise turn-on timing is
required, a fast rise-time signal must be used to
enable the TPS74701.
If not used, EN can be connected to either IN or
BIAS. If EN is connected to IN, it should be
connected as close as possible to the largest
capacitance on the input to prevent voltage droops on
that line from triggering the enable circuit.
POWER GOOD
The power good (PG) pin is an open-drain output and
can be connected to any 5.5V or lower rail through an
external pull-up resistor. This pin requires at least
1.1V on VBIAS in order to have a valid output. The PG
output is high-impedance when VOUT is greater than
VIT + VHYS. If VOUT drops below VIT or if VBIAS drops
below 1.9V, the open-drain output turns on and pulls
the PG output low. The PG pin also asserts when the
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
device is disabled. The recommended operating
condition of the PG pin sink current is up to 1mA, so
the pull-up resistor for PG should be in the range of
10kΩ to 1MΩ. If output voltage monitoring is not
needed, the PG pin can be left floating.
INTERNAL CURRENT LIMIT
The TPS74701 features a factory-trimmed, accurate
current limit that is flat over temperature and supply
voltage. The current limit allows the device to supply
surges of up to 1A and maintain regulation. The
current limit responds in about 10µs to reduce the
current during a short-circuit fault.
The internal current limit protection circuitry of the
TPS74701 is designed to protect against overload
conditions. It is not intended to allow operation above
the rated current of the device. Continuously running
the TPS74701 above the rated current degrades
device reliability.
THERMAL PROTECTION
Thermal protection disables the output when the
junction temperature rises to approximately +160°C,
allowing the device to cool. When the junction
temperature cools to approximately +140°C, the
output circuitry is enabled. Depending on power
dissipation, thermal resistance, and ambient
temperature the thermal protection circuit may cycle
on and off. This cycling limits the dissipation of the
regulator, protecting it from damage as a result of
overheating.
Activation of the thermal protection circuit indicates
excessive
power
dissipation
or
inadequate
heatsinking.
For
reliable
operation,
junction
temperature should be limited to +125°C maximum.
To estimate the margin of safety in a complete design
(including
heatsink),
increase
the
ambient
temperature until thermal protection is triggered; use
worst-case loads and signal conditions. For good
reliability, thermal protection should trigger at least
+40°C above the maximum expected ambient
condition of the application. This condition produces a
worst-case junction temperature of +125°C at the
highest
expected
ambient
temperature
and
worst-case load.
The internal protection circuitry of the TPS74701 is
designed to protect against overload conditions. It is
not intended to replace proper heatsinking.
Continuously running the TPS74701 into thermal
shutdown degrades device reliability.
LAYOUT RECOMMENDATIONS AND POWER
DISSIPATION
An optimal layout can greatly improve transient
performance, PSRR, and noise. To minimize the
voltage drop on the input of the device during load
transients, the capacitance on IN and BIAS should be
connected as close as possible to the device. This
capacitance also minimizes the effects of parasitic
inductance and resistance of the input source and
can therefore improve stability. To achieve optimal
transient performance and accuracy, the top side of
R1 in Figure 24 should be connected as close as
possible to the load. If BIAS is connected to IN, it is
recommended to connect BIAS as close to the sense
point of the input supply as possible. This connection
minimizes the voltage drop on BIAS during transient
conditions and can improve the turn-on response.
Knowing the device power dissipation and proper
sizing of the thermal plane that is connected to the
thermal pad is critical to avoiding thermal shutdown
and ensuring reliable operation. Power dissipation of
the device depends on input voltage and load
conditions and can be calculated using Equation 4:
PD = (VIN - VOUT) ´ IOUT
(4)
Power dissipation can be minimized and greater
efficiency can be achieved by using the lowest
possible input voltage necessary to achieve the
required output voltage regulation.
On the SON (DRC) package, the primary conduction
path for heat is through the exposed pad to the
printed circuit board (PCB). The pad can be
connected to ground or be left floating; however, it
should be attached to an appropriate amount of
copper PCB area to ensure the device will not
overheat. The maximum junction to ambient thermal
resistance depends on the maximum ambient
temperature, maximum device junction temperature,
and power dissipation of the device, and can be
calculated using Equation 5:
(+125°C - TA)
RqJA =
PD
(5)
Knowing the maximum RθJA and system air flow, the
minimum amount of PCB copper area needed for
appropriate heatsinking can be calculated using
Figure 28 through Figure 30.
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
13
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
PCB Top View
PCB Cross Section
TJ
RqJC
TC
RqCS
0.062"
TS
0.5 in2
RqSA
4-layer, 0.062” FR4.
Vias are 0.012” diameter, plated.
Top/Bottom layers are 2oz. copper.
Inner layers are 1oz. copper.
1.0 in2
TA
2.0 in2
RqJA = RqJC + RqCS + RqSA
90
85
0 LFM
80
75
qJA (°C/W)
150 LFM
70
65
250 LFM
60
55
50
45
40
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
2
Area (in )
Figure 28. DRC (3 x 3 SON) PCB Layout and Corresponding RθJA Data, No Vias Under Thermal Pad
14
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
PCB Top View
PCB Cross Section
TJ
RqJC
TC
RqCS
0.062"
TS
0.5 in2
RqSA
4-layer, 0.062” FR4.
Vias are 0.012” diameter, plated.
Top/Bottom layers are 2oz. copper.
Inner layers are 1oz. copper.
1.0 in2
TA
2.0 in2
RqJA = RqJC + RqCS + RqSA
90
85
80
qJA (°C/W)
75
70
65
0 LFM
60
150 LFM
55
50
45
250 LFM
40
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Area (in2)
Figure 29. DRC (3 x 3 SON) PCB Layout and Corresponding RθJA Data, Vias Under Thermal Pad
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
15
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
PCB Top View
PCB Cross Section
TJ
RqJC
TC
RqCS
0.062"
TS
RqSA
4-layer, 0.062” FR4.
Vias are 0.012” diameter, plated.
Top/Bottom layers are 2oz. copper.
Inner layers are 1oz. copper.
0.5 in2
TA
1.0 in2
RqJA = RqJC + RqCS + RqSA
2.0 in2
90
85
80
qJA (°C/W)
75
0 LFM
70
65
60
150 LFM
55
250 LFM
50
45
40
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
2
Area (in )
Figure 30. DRC (3 x 3 SON) PCB Layout and Corresponding RθJA Data, Top Layer Only
16
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
TPS74701
www.ti.com
SBVS099A – NOVEMBER 2007 – REVISED NOVEMBER 2007
Changes from Revision original (November 2007) to Revision A ................................................................................. Page
•
Changed min, max, and unit values in ICL row of Electrical Characteristics table ................................................................. 3
Submit Documentation Feedback
Copyright © 2007, Texas Instruments Incorporated
Product Folder Link(s): TPS74701
17
PACKAGE OPTION ADDENDUM
www.ti.com
14-Dec-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TPS74701DRCR
ACTIVE
SON
DRC
10
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
TPS74701DRCT
ACTIVE
SON
DRC
10
250
CU NIPDAU
Level-2-260C-1 YEAR
Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Dec-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TPS74701DRCR
DRC
10
SITE 41
330
12
3.3
3.3
1.1
8
12
Q2
TPS74701DRCT
DRC
10
SITE 41
180
12
3.3
3.3
1.1
8
12
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-Dec-2007
Device
Package
Pins
Site
Length (mm)
Width (mm)
TPS74701DRCR
DRC
10
SITE 41
346.0
346.0
29.0
TPS74701DRCT
DRC
10
SITE 41
190.0
212.7
31.75
Pack Materials-Page 2
Height (mm)
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated