TI TAS5026IPAG

Data Manual
November 2002
DAV Digital Audio/Speaker
SLES041B
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265
Copyright  2002, Texas Instruments Incorporated
Contents
Contents
Section
1
2
3
Page
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1
Clock and Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
Normal-Speed, Double-Speed, and Quad-Speed Selection . . . . . . . . . . . . . . . . . . .
2.1.2
Clock Master/Slave Mode (M_S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3
Clock Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4
Clock Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.5
PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.6
DCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.7
Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2
Reset, Power Down, and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1
Reset—RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2
Power Down—PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3
Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1
Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2
Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3
Auto Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.4
Individual Channel Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.5
De-Emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
Pulse Width Modulator (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1
Clipping Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.2
Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.3
Individual Channel Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.4
PWM DC-Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.5
Inter-Channel Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.6
PWM/H-Bridge and Discrete H-Bridge Driver Interface . . . . . . . . . . . . . . . . . . . . . . .
2.5
I2C Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1
Single Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2
Multiple Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3
Single Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.4
Multiple Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Control Interface Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
General Status Register (x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Error Status Register (x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
System Control Register 0 (x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
System Control Register 1 (x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
Error Recovery Register (x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6
Automute Delay Register (x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7
DC-Offset Control Registers (x06–x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8
Interchannel Delay Registers (x0C–x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
November 2002
SLES041B
1
1
2
3
4
4
6
6
6
7
7
8
10
10
10
15
15
16
16
17
17
18
18
18
18
19
19
19
20
20
20
20
21
22
22
22
23
24
25
25
25
26
26
26
27
27
iii
List of Illustrations
4
5
6
7
3.9
Individual Channel Mute Register (x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Absolute Maximum Ratings Over Operating Temperature Ranges . . . . . . . . . . . . . . . . . . . . . . .
5.2
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
Static Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Digital Interpolation Filter and PWM Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3
TAS5026/TAS5100 System Performance Measured at the Speaker Terminals . . .
5.4
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1
Command Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2
Serial Audio Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3
Serial Control Port—I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
Serial Audio Interface Clock Master and Slave Interface Configuration . . . . . . . . . . . . . . . . . . .
6.1.1
Slave Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.2
Master Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
28
29
29
29
29
29
29
30
30
30
34
37
38
39
39
39
40
List of Illustrations
Figure
Title
Page
2–1 Crystal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 External PLL Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 I2S 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 I2S 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 Left-Justified 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Left-Justified 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Right-Justified 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 Right-Justified 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 DSP Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–10 Attenuation Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–11 De-Emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–12 PWM Outputs and H-Bridge Driven in BTL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–13 Typical I2C Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–14 Single Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–15 Multiple Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–16 Single Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–17 Multiple Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–1 RESET During System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–1 RESET Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–2 Power-Down and Power-Up Timing—RESET Preceding PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–3 Power-Down and Power-Up Timing—RESET Following PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–4 Error Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–5 Mute Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
SLES041B
8
10
11
12
12
13
13
14
14
17
19
21
21
22
22
22
23
28
30
31
32
33
33
November 2002
List of Tables
5–6 Right-Justified, IIS, Left-Justified Serial Protocol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–7 Right, Left, and IIS Serial Mode Timing Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–8 Serial Audio Ports Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–9 DSP Serial Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–10 DSP Serial Port Expanded Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–11 DSP Absolute Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–12 SCL and SDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–13 Start and Stop Conditions Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–1 Typical TAS5026 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–2 TAS5026 Serial Audio Port—Slave Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6–3 TAS5026 Serial Audio Port—Master Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
35
35
35
36
36
37
37
38
39
39
List of Tables
Table
Title
Page
2–1 Normal-Speed, Double-Speed, and Quad-Speed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Master and Slave Clock Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 LRCLK, MCLK_IN, and External PLL Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 DCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 Supported Word Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 Device Outputs During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Values Set During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–8 Device Outputs During Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–9 Volume Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–10 De-Emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–11 Device Outputs During Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 General Status Register (Read Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3 Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–4 System Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 System Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–6 Error Recovery Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–7 Automute Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–8 DC-Offset Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–9 Six Inter-Channel Delay Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–10 Individual Channel Mute Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
November 2002
SLES041B
7
9
9
10
11
15
15
16
18
18
19
24
25
25
25
26
26
26
27
27
27
v
Introduction
1
Introduction
The TAS5026 is an innovative, cost-effective, high-performance 24-bit six-channel digital pulse width
modulator (PWM) based on Equibit technology. Combined with a TI digital amplifier power stage, these
devices use noise-shaping and sophisticated error correction algorithms to achieve high power efficiency and
high-performance digital audio reproduction. The TAS5026 is designed to drive up to six digital power devices
to provide six channels of digital audio amplification. The digital power devices can be six conventional
monolithic power stages (such as TAS5110) or six discrete differential power stages using gate drivers and
MOSFETs.
The TAS5026 has six independent volume controls and mute. It is designed to drive a digital amplifier power
stage (such as the TAS5182) in an H-bridge (bridge tied load) configuration. The device operates in AD mode.
This all-digital audio system contains only two analog components in the signal chain—an LC low-pass filter
at each speaker terminal and can provide up to 96-dB SNR at the speaker terminals. The TAS5026 has a wide
variety of serial input options including right justified (16, 20, or 24 bit), I2S (16, 20, or 24 bit) left justified, or
DSP (16-bit) data formats. The device is fully compatible with AES standard sampling rates of 44.1 kHz, 48
kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz including de-emphasis for 44.1-kHz and 48-kHz sample rates.
The TAS5026 was designed for home theater applications such as DVD minicomponent systems, home
theater in a box (HTIB), DVD receiver, A/V receiver, or TV sets.
1.1
Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
True Digital Audio Amplifier
High Quality Audio
– 96-dB SNR
– <0.1% THD+N
Six-Channel Volume Control
– Patented Soft Volume
– Patented Soft Mute
16-, 20-, or 24-Bit Input Data
Sampling Rates: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz
Supports Master and Slave Modes
3.3-V Power Supply Operation
Economical 64-Pin TQFP Package
Digital De-Emphasis: 32 kHz, 44.1 kHz, and 48 kHz
High Power Efficiency
Clock Oscillator Circuit for Master Modes
Low Jitter Internal PLL
Soft Volume and Mute Update
Excellent PSRR
Equibit is a trademark of Texas Instruments Incorporated.
SLES041B—November 2002
TAS5026
1
Introduction
DVSS_PWM
DVDD_PWM
DVSS_RCL
DVDD_RCL
VREGC_CAP
VREGB_CAP
VREGA_CAP
AVSS_PLL
Functional Block Diagram
AVDD_PLL
1.2
Power Supply
PWM
Section
MCLK_IN
XTAL_OUT
XTAL_IN
PLL_FLT_OUT
PLL_FLT_RET
SCLK
LRCLK
Clock,
PLL
and
Serial
Data
I/F
Signal
Processing
RESET
PDN
Serial
Control
I/F
Reset,
Pwr Dwn
and
Status
PWM_AP_2
PWM_AM_2
Valid_2
PWM Ch.
MCLKOUT
SDIN1
SDIN2
SDIN3
SDA
SCL
CSO
PWM_AM_1
Valid_1
PWM Ch.
Auto Mute
De-emphasis
Soft Volume
Error Recovery
Soft Mute
Clip Detect
PWM Ch.
PWM Ch.
Output Control
CSS
M_S
PWM_AP_1
PWM AP_3
PWM AM_3
Valid_3
PWM_AP_4
PWM_AM_4
Valid_4
PWM_AP_5
PWM_AM_5
PWM Ch.
Valid_5
PWM Ch.
PWM_AP_6
PWM_AM_6
Valid_6
CLIP
MUTE
ERR_RCVY
2
TAS5026
SLES041B—November 2002
Introduction
1.3
Terminal Assignments
AVDD_OSC
XTL_IN
XTL_OUT
AVSS_OSC
DVSS
PWM_AP_1
PWM_AM_1
VALID_1
PWM_AP_2
PWM_AM_2
VALID_2
PWM_AP_3
PWM_AM_3
VALID_3
NC
NC
PAG PACKAGE
(TOP VIEW)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NC
MCLK_IN
AVDD_PLL
PLL_FLT_OUT
PLL_FLT_RET
AVSS_PLL
NC
DVSS1
RST
ERR_RCVY
MUTE
PDN
SDA
SCL
CS0
DVSS1
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
DVDD_RCL
DVSS_RCL
NC
DVDD_PWM
DVSS_PWM
PWM_AP_4
PWM_AM_4
VALID_4
PWM_AP_5
PWM_AM_5
VALID_5
PWM_AP_6
PWM_AM_6
VALID_6
NC
NC
DBSPD
CLIP
SDIN1
SDIN2
SDIN3
MCLK_OUT
SCLK
LRCLK
DVDD
DVSS1
NC
DEM_SEL2
DEM_SEL1
M_S
DVSS1
DVSS1
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
SLES041B—November 2002
TAS5026
3
Introduction
1.4
Ordering Information
T
AS
5026
C
PAG
Texas Instruments
Audio Solutions
Device Number
Temperature Range
Package Type
AVAILABLE OPTIONS
PACKAGE
1.5
TA
PLASTIC 64-PIN TQFP
(PAG)
0°C to 70°C
TAS5026CPAG
–40°C to 85°C
TAS5026IPAG
Terminal Functions
TERMINAL
NAME
I/O
DESCRIPTION
AVDD_OSC
64
PWR
Analog power supply for internal oscillator cells
AVDD_PLL
3
PWR
3.3-V analog power supply for PLL
AVSS_OSC
61
AOUT
Analog ground for internal oscillator cells
AVSS_PLL
6
PWR
Analog ground for PLL
CLIP
18
O
CS0
15
I
Digital clipping indicator, active low
I2C device address select. This is an active high pin.
DBSPD
17
I
Sample rate is double speed (88.2 kHz or 96 kHz), active high
DM_SEL1
29
I
De-emphasis select bit 1 (0 = none, 01 = 32 kHz, 10 = 44.1 kHz
DM_SEL2
28
I
De-emphasis select bit 2, 10 = 48 kHz, 11= undefined (none)
DVDD_PWM
45
PWR
3.3-V digital power supply for PWM
DVDD_RCL
48
PWR
3.3-V digital power supply for re-clocker
DVDD
25
PWR
3.3-V digital power supply for digital core and most of I/O buffers
DVSS
60
I
DVSS_PWM
44
PWR
Digital ground for PWM
DVSS_RCL
47
PWR
Digital ground for re-clocker
8, 26,
31, 32
PWR
Digital ground for digital core and most of I/O buffers
DVSS1
4
NO.
Voltage regulator enable, active low
ERR_RCVY
10
I
LRCLK
24
I/O
M_S
30
I
Master/slave mode input signal (master = 1, slave = 0)
MCLK_IN
2
I
MCLK input, slave mode
MCLK_OUT
22
O
MCLK output buffered system clock output M_S = 1; otherwise set to 0
TAS5026
Error recovery, active low
Serial audio data left / right clock (sampling rate clock) (input when M_S = 0; output when M_S
= 1)
SLES041B—November 2002
Introduction
TERMINAL
NAME
NO.
MUTE
NC
11
I/O
I
1, 7,
27, 49,
50
DESCRIPTION
Mute input signal, active low
No connection
PDN
12
I
Power down. This signal is active low.
PLL_FLT_OUT
4
I
PLL external filter
PLL_FLT_RET
5
I
PLL external filter
PWM_AM_1
58
O
PWM 1 output (differential -); {Positive H-bridge side}
PWM_AM_2
55
O
PWM 2 output (differential -); {Positive H-bridge side}
PWM_AM_3
52
O
PWM 3 output (differential -); {Positive H-bridge side}
PWM_AM_4
42
O
PWM 4 output (differential -); {Positive H-bridge side}
PWM_AM_5
39
O
PWM 5 output (differential -); {Positive H-bridge side}
PWM_AM_6
36
O
PWM 6 output (differential -); {Positive H-bridge side}
PWM_AP_1
59
O
PWM 1 output (differential +); {Positive H-bridge side}
PWM_AP_2
56
O
PWM 2 output (differential +); {Positive H-bridge side}
PWM_AP_3
53
O
PWM 3 output (differential +); {Positive H-bridge side}
PWM_AP_4
43
O
PWM 4 output (differential +); {Positive H-bridge side}
PWM_AP_5
40
O
PWM 5 output (differential +); {Positive H-bridge side}
PWM_AP_6
37
O
PWM 6 output (differential +); {Positive H-bridge side}
RST
9
I
System reset input. This signal is an active low.
SCL
14
I
I2C clock signal
SCLK
23
I/O
Serial audio data clock (master mode = output, slave mode = input)
SDA
13
I/O
I2C data signal
SDIN1
19
I
Serial audio data 1 input
SDIN2
20
I
Serial audio data 2 input
SDIN3
21
I
Serial audio data 3 input
VALID_1
57
O
Output indicating validity of PWM outputs, channel 1, active high
VALID_2
54
O
Output indicating validity of PWM outputs, channel 2, active high
VALID_3
51
O
Output indicating validity of PWM outputs, channel 3, active high
VALID_4
41
O
Output indicating validity of PWM outputs, channel 4, active high
VALID_5
38
O
Output indicating validity of PWM outputs, channel 5, active high
VALID_6
35
O
Output indicating validity of PWM outputs, channel 6, active high
XTL_IN
63
AIN
XTL_OUT
62
AOUT
SLES041B—November 2002
Crystal or TTL level clock input
Crystal output (not for external usage)
TAS5026
5
Architecture Overview
2
Architecture Overview
The TAS5026 is composed of six functional elements:
•
•
•
•
•
•
2.1
Clock, PLL, and serial data interface (IIS)
Reset/power down circuitry
Serial control interface (IIC)
Signal processing unit
Pulse width modulator (PWM)
Power supply
Clock and Serial Data Interface
The TAS5026 clock and serial data interface contains an input serial data slave and the clock master/ slave
interface.
The serial data slave interface receives information from a digital source such as a DSP, S/PDIF receiver,
analog-to-digital converter (ADC), digital audio processor (DAP) such as the TAS3103, or other serial bus
master at sample rates of for sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz,176.4 kHz, and 192
kHz. The serial data interface has three serial data inputs that can accept up to six channels of data. The serial
data interfaces support left justified and right justified for 16-, 20-, and 24-bits. In addition, the serial data
interfaces support the DSP protocol for 16 bits and the I2S protocal for 24 bits. The received data is data
passed to the TAS5026 signal-processing unit.
The TAS5026 can function as a receiver or a generator for the MCLK_IN (master clock), SCLK (shift clock),
and LRCLK (left/right clock) signals that control the flow of data on the three serial data interfaces. The
TAS5026 is a clock master when it generates these clocks and is a clock slave when it receives these clocks.
The TAS5026 is a synchronous design that relies upon master clock to provide a reference clock for all of the
device operations. When operating as a slave, this reference clock is MCLK_IN. When operating as a master,
the reference clock is either TTL clock input to XTAL_IN or a crystal attached across XTAL_IN and XTAL_OUT.
If the master clock stops, the TAS5026 will perform a clock error recovery sequence. The clock error recovery
sequence temporarily suspends processing, places the PWM outputs in a hard mute (PWM_P outputs are
low; PWM_M outputs are high, and all VALID signals are low), resets all internal processes, sets the volumes
to mute, and suspends all I2C operations.
When the master clock is resumed, the TAS5026 exits the clock error recovery sequence by performing a
4.3-ms partial re-initialization, noiselessly restarting the PWM output, and ramping the volume up to the level
specified in the volume control registers. The volume update is performed over a 43-ms. interval. The
TAS5026 preserves all control register settings that were set prior to the clock interruption.
If a clock error occurs while the ERR_RCVRY pin is asserted (LOW), the TAS5026 will perform the error
recovery sequence up to the unmute sequence. In this case, the volume remains at full attenuation with the
PWM output at a 50% duty cycle. The volume can be restored from this state by triggering a mute/unmute
sequence via the mute pin LOW then HIGH.
The clock and serial data interface has two control parameters: data sample rate and clock master or slave.
2.1.1 Normal-Speed, Double-Speed, and Quad-Speed Selection
The sampling rate is selected through a pin (DBSPD) or the serial control register 0 (X02). When a sample
rate is selected, the system automatically performs an error recovery sequence and switches to the new
sampling rate. As shown in subsequent sections, the sample rate control sets the frequencies of the SCLK
and LRCLK in clock slave mode and the output frequencies of SCLK and LRCLK in clock master mode.
During the error recovery sequence, the TAS5026 temporarily suspends processing, places the PWM outputs
in a hard mute (PWM P outputs LOW; PWM M outputs HIGH, and all VALID signals LOW), resets all internal
processes, and suspends all I2C operations. The TAS5026 then performs a 4.3-ms partial re-initialization and
noiselessly restarts the PWM output. The TAS5026 preserves all control register settings through out the error
recovery sequence.
6
TAS5026
SLES041B—November 2002
Architecture Overview
There are three data rates: normal speed, double speed, and quad speed.
Normal-speed mode supports data rates of 32 kHz, 44.1 kHz, and 48 kHz. Normal speed is supported in the
master and slave modes. The PWM is placed in normal speed by setting the DBSPD terminal low or by setting
the normal mode bits in the system control register through the serial control interface. Following this
operation, the PWM performs an error recovery sequence automatically and operates in the normal speed
mode.
Double-speed mode is used to support sampling rates of 88.2 kHz and 96 kHz. Double speed is supported
in master and slave modes. The PWM is placed in double speed mode by setting the DBSPD terminal high
or by setting the double speed bits in the system control register through the serial control interface. Following
this operation, the PWM performs an error recovery sequence automatically and operate in double speed
mode.
Quad-speed mode is used to support sampling rates of 176.4 kHz and 192 kHz. Quad-speed mode is auto
detected supported in slave mode and invoked by control in master mode in slave mode, if the device is not
in double speed mode, quad-speed mode is automatically detected when MCLK_IN is 128Fs. In master mode,
the PWM is placed in quad-speed mode by setting the quad-speed bit in the system control register through
the serial control interface.
Table 2–1. Normal-Speed, Double-Speed, and Quad-Speed Operation
QUAD-SPEED CONTROL
REGISTER BIT
DBSPD TERMINAL OR
CONTROL REGISTER BIT
MODE
SPEED SELECTION
0
0
Master or slave
Normal speed
0
1
Master or slave
Double speed
1
0
Master or slave
Quad speed
0
0
Slave
Quad speed if MCLK_IN = 128Fs
1
1
Master or slave
Error
2.1.2 Clock Master/Slave Mode (M_S)
Clock master and slave mode can be invoked using the M_S (master slave) terminal.
This terminal specifies the default mode that is set immediately following a device RESET. The serial data
interface setting permits the clock generation mode to be changed during normal operation.
The transition to master mode occurs:
•
Following a RESET when M_S terminal has a logic high applied
The transition to slave mode occurs:
•
Following a RESET when M_S terminal has a logic low applied
2.1.3 Clock Master Mode
When M_S = 1 following a RESET, the TAS5026 provides the master clock, SCLK, and LRCLK to the rest of
the system. In the master mode, the TAS5026 outputs the audio system clocks MCLK_OUT, SCLK, and
LRCLK.
The TAS5026 device generates these clocks plus its internal clocks from the internal phase-locked loop (PLL).
The reference clock for the PLL can be provided by either an external clock source (attached to XTAL_IN) or
a crystal (connected across terminals XTAL_IN and XTAL_OUT). The external source attached to MCLK_IN
is 256 times (128 in quad mode) the data sample rate (Fs). The SCLK frequency is 64 times the data sample
rate and the SCLK frequency of 48 times the data sample rate is not supported in the master mode. The LRCLK
frequency is the data sample rate.
2.1.3.1
Crystal Type and Circuit
In clock master mode the TAS5026 can derive the MCLKOUT, SCLK, and LRCLK from a crystal. In this case,
the TAS5026 uses a parallel-mode fundamental-mode crystal. This crystal is connected to the TAS5026 as
shown in Figure 2–1.
SLES041B—November 2002
TAS5026
7
Architecture Overview
TAS5026
C1
rd
OSC
MACRO
XO
C2
XI
AVSS
rd = Drive level control resistor – crystal vendor specified
CL = Crystal load capacitance (capacitance of circuitry between the two terminals of the crystal)
CL = (C1 x C2 )/(C1 + C2 ) + CS (where CS = board stray capacitance ~ 3 pF)
Example: Vendor recommended CL = 18 pF, CS = 3 pF ≥ C1 = C2 = 2 x (18–3) = 30 pF
Figure 2–1. Crystal Circuit
2.1.4 Clock Slave Mode
In the slave mode (M_S = 0), the master clock, LRCLK, and SCLK are inputs to the TAS5026. The master clock
is supplied through the MCLK_IN terminal.
As in the master mode, the TAS5026 device developed its internal timing from internal phase-locked loop
(PLL). The reference clock for the PLL is provided by the input to the MCLK_IN terminal. This input is at a
frequency of 256 times (128 in quad mode) the input data rate. The SCLK frequency is 48 or 64 times the data
sample rate. The LRCLK frequency is the data sample rate. The TAS5026 does not require any specific phase
relationship between SRCLK and MCLK_IN, but there must be synchronization.
The TAS5026 monitors the relationship between MCLK, SCLK and LRCLK. The TAS5026 detects if any of
the three clocks are absent, if LRCLK rate changes more the ±10 MCLK cycles since the last device reset or
clock error recovery, or if MCLK frequency is changing substantially with respect to the PLL frequency. When
a clock error is detected the TAS5026 performs a clock error recovery sequence. If one or more of the clock
signals are absent, the TAS5026 is held with the outputs in hard mute until the clock is resumed. Once the
clock is resumed, the clock error recover sequence is completed.
NOTE:
The detection of a clock error causes the TAS5026 to perform an immediate hard mute and
suspension of all processes. This abrupt transition can produce a faint click as the outputs are
muted.
Since the clocks are removed when changing media or during input selection, it is possible to use this
knowledge to completely eliminate clicks in these conditions. In this case, the click is prevented by muting the
outputs by using the MUTE terminal or the I2C /MUTE command 43 ms in advance of the clocks being
removed.
In the slave mode, MCLK_OUT is driven low.
Table 2–2 shows all the possible master and slave modes. When operating in quad mode (Fs = 176.4 kHz
or 192 kHz), the device works in slave mode only with MCLK_IN = 128 Fs.
Table 2–3 shows the clocks speed for normal, double and quad modes.
8
TAS5026
SLES041B—November 2002
Architecture Overview
Table 2–2. Master and Slave Clock Modes
M_S
DBSPD
XTL_IN
(MHz)†
MCLK_IN
(MHz)‡
Internal PLL, master, normal speed
1
0
8.192
-
Internal PLL, master, normal speed
1
0
11.2896
Internal PLL, master, normal speed
1
0
12.288
DESCRIPTION
SCLK
(MHz)¶
LRCLK
(kHz)¶
MCLK_OUT
(MHz)#
2.048
32
8.192
-
2.8224
44.1
11.2896
-
3.072
48
12.288
5.6448
88.2
22.5792
6.144
96
24.576
22.5792
Internal PLL, master, double speed
1
1
-
Internal PLL, master, double speed
1
1
-
22.5792§
24.576§
Internal PLL, master, quad speed
1
0
-
22.5792
11.2896
176.4
Internal PLL, master, quad speed
1
0
-
24.576
12.288
192
24.576
Internal PLL, slave, normal speed
0
0
-
2.0484
32
Digital GND
Internal PLL, slave, normal speed
0
0
-
8.192§
11.2896§
2.8224
44.1
Digital GND
Internal PLL, slave, normal speed
0
0
-
12.288§
3.072
48
Digital GND
Internal PLL, slave, double speed
0
1
-
22.5792
5.6448
88.2
Digital GND
Internal PLL, slave, double speed
Internal PLL, slave, quad speed ||
0
1
-
96
Digital GND
0
-
24.576§
22.5792§
6.144
0
11.2896
176
Digital GND
Internal PLL, slave, quad speed ||
0
0
-
24.576§
12.288
192
Digital GND
External PLL, master, normal speed
1
0
-
-
2.048
32
8.192
External PLL, master, normal speed
1
0
-
-
2.8224
44.1
11.2896
External PLL, master, normal speed
1
0
-
-
3.072
48
12.288
External PLL, master, double speed
1
1
-
-
5.6448
88.2
22.5792
External PLL, master, double speed
1
1
-
-
6.144
96
24.576
External PLL, master, quad speed
1
0
-
-
11.2896
176.4
22.5792
External PLL, master, quad speed
1
0
-
-
12.288
192
24.576
External PLL, slave, normal speed
0
0
-
32
Digital GND
0
0
-
8.192§
11.2896§
2.0484
External PLL, slave, normal speed
2.8224
44.1
Digital GND
External PLL, slave, normal speed
0
0
-
12.288§
3.072
48
Digital GND
External PLL, slave, double speed
0
1
-
22.5792
5.6448
88.2
Digital GND
External PLL, slave, double speed
External PLL, slave, quad speed ||
0
1
-
6.144
96
Digital GND
0
0
-
24.576§
22.5792§
11.2896
176
Digital GND
0
0
24.576§
12.288
† A crystal oscillator is connected to XTL_IN.
‡ MCLK_IN tied low when input to XTL_IN is provided; XTL_IN tied low when MCLK_IN_IN is provided.
§ External MCLK_IN connected to MCLK_IN_IN input
¶ SCLK and LRCLK are outputs when M_S=1, and inputs when M_S=0.
# MCLK_OUT is driven low when M_S=0.
|| Quad-speed mode is detected automatically.
k SCLK can be 48 or 64 times Fs
192
Digital GND
External PLL, slave, quad speed ||
Table 2–3. LRCLK, MCLK_IN, and External PLL Rates
NORMAL SPEED (kHz)
LRCLK
1FS
32
DOUBLE SPEED (kHz)
44.1
48
QUAD SPEED (kHz)
1FS
64
88.2
96
1FS
176.4
192
MCLK_IN
256FS
8,192
11,289.6
12,288
256FS
16,384
22,579.2
24,576
128FS
22,579.2
24,576
EXT. PLL
2048FS
65,536
90,316.8
98,304
1024FS
65,536
90,316.8
98,304
512FS
90,316.8
98,304
SLES041B—November 2002
TAS5026
9
Architecture Overview
2.1.5 PLL Filter
A low jitter PLL produces the internal timing of the TAS5026 (when in master mode), the master clock, SCLK,
and LRCLK. Connections for the PLL external loop filter are provided through PLL_FLT_OUT and
PLL_FLT_RET as shown in Figure 2–2.
PLL_FLT_OUT
220 Ω
TAS5026
4.7 nF
47 nF
PLL_FLT_RET
Figure 2–2. External PLL Loop Filter
2.1.6 DCLK
DCLK is the internal high frequency clock that is produced by the PLL circuitry from MCLK. The TAS5026 uses
the DCLK to control all internal operations. DCLK is 8 times the speed of MCLK in normal speed mode, 4 times
MCLK in double speed, and 2 times MCLK in quad speed. With respect to the I2C addressable registers, DCLK
clock cycles are used to specify Interchannel delay and to detect when the MCLK is frequency is drifting.
Table 2–4 DCLK shows the relationship between Sample Rate, MCLK and DCLK.
Table 2–4. DCLK
FS
(kHz)
MCLK
(MHz)
DCLK
(MHz)
DCK Period
(ns)
15.3
32
8.1920
65.5360
44.1
11.2896
90.3168
11.1
48
12.2880
98.3040
10.2
88
22.5280
90.1120
11.1
96
24.5760
98.3040
10.2
192
49.1520
98.3040
10.2
2.1.7 Serial Data Interface
The TAS5026 operates as a slave only/receive only serial data interface in all modes. The TAS5026 has three
PCM serial data interfaces to accept six channels of digital data though the SDIN1, SDIN2, SDIN3 inputs. The
serial audio data is in MSB first; 2’s complement format.
The serial data interfaces of the TAS5026 can be configured in right justified, I2S, left-justified, or DSP modes.
This interface supports 32-kHz, 44.1-kHz, 48-kHz, 88-kHz, 96-kHz, 176.4-kHz, and 192-kHz data sample
rates. The serial data interface format is specified using the data interface control register. The supported word
lengths are shown in Table 2–5.
During normal operating conditions if the serial data interface settings change state, an error recovery
sequence is initiated.
10
TAS5026
SLES041B—November 2002
Architecture Overview
Table 2–5. Supported Word Lengths
2.1.7.1
DATA MODES
WORD
LENGTHS
MOD2
MOD1
MOD0
Right justified, MSB first
16
0
0
0
Right justified, MSB first
20
0
0
1
Right justified, MSB first
I2S
24
0
1
0
16
0
1
1
I2S
I2S
20
1
0
0
24
1
0
1
Left justified, MSB first
24
1
1
0
DSP frame
16
1
1
1
I2S Timing
I2S timing uses an LRCLK to define when the data being transmitted is for the left channel and when it is for
the right channel. The LRCLK is low for the left channel and high for the right channel. A bit clock running at
48 or 64 times Fs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal
changes state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising
edge of the bit clock. The TAS5026 masks unused trailing data bit positions. Master mode only supports a 64
times Fs bit clock.
2-Channel I2S (Philips Format) Stereo Input
32 Clks
LRCLK (Note Reversed Phase)
32 Clks
Left Channel
Right Channel
SCLK
SCLK
MSB
24-Bit Mode
23 22
LSB
9
8
5
4
5
4
1
0
1
0
1
0
MSB
LSB
23 22
9
8
5
4
19 18
5
4
1
0
15 14
1
0
1
0
20-Bit Mode
19 18
16-Bit Mode
15 14
Figure 2–3. I2S 64-Fs Format
SLES041B—November 2002
TAS5026
11
Architecture Overview
2-Channel I2S Stereo Input/Output (24-Bit Transfer Word Size)
24 Clks
24 Clks
LRCLK
Right Channel
Left Channel
SCLK
SCLK
MSB
24-Bit Mode
LSB
23 22 21 20 19
8
7
5
4
5
4
1
0
1
0
3
2
1
MSB
0
LSB
23 22 21 20 19
8
7
5
4
19 18 17 16 15
5
4
1
0
11
1
0
3
2
1
20-Bit Mode
19 18 17 16 15
16-Bit Mode
15 14 13 12
11
15 14 13 12
Figure 2–4. I2S 48-Fs Format
2.1.7.2
Left-Justified Timing
Left-justified (LJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and
when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock
running at 48 or 64 times Fs is used to clock in the data. The first bit of data appears on the data lines at the
same time the LRCLK toggles. The data is written MSB first and is valid on the rising edge of the bit clock.
The TAS5026 masks unused trailing data bit positions. Master mode only supports a 64 times Fs bit clock.
2-Channel Left-Justified Stereo Input
32 Clks
32 Clks
LRCLK
LRCLK
Right Channel
Left Channel
SCLK
MSB
24-Bit Mode
23 22
LSB
9
8
5
4
1
0
MSB
23 22
LSB
9
8
5
4
1
0
NOTE: All data presented in 2s complement form with MSB first.
Figure 2–5. Left-Justified 64-Fs Format
12
TAS5026
SLES041B—November 2002
Architecture Overview
2-Channel Left-Justified Stereo Input/Output (24-Bit Transfer Word Size)
24 Clks
24 Clks
LRCLK
Right Channel
Left Channel
SCLK
MSB
24-Bit Mode
LSB
23 22 21 20 19
9
8
5
4
3
2
1
0
MSB
LSB
23 22 21 20 19
9
8
5
4
3
2
1
0
Figure 2–6. Left-Justified 48-Fs Format
2.1.7.3
Right-Justified Timing
Right-justified (RJ) timing uses an LRCLK to define when the data being transmitted is for the left channel and
when it is for the right channel. The LRCLK is high for the left channel and low for the right channel. A bit clock
running at 48 or 64 times Fs is used to clock in the data. The first bit of data appears on the data 8-bit clock
periods (for 24-bit data) after LRCLK toggles. In RJ mode, the last bit clock before LRCLK transitions always
clocks the LSB of data. The data is written MSB first and is valid on the rising edge of bit clock. The TAS5026
masks unused leading data bit positions. Master mode only supports a 64 times Fs bit clock.
2-Channel Right-Justified (Sony Format) Stereo Input
32 Clks
32 Clks
LRCLK
Right Channel
Left Channel
SCLK
MSB
24-Bit Mode
LSB
23 22
19 18
15 14
1
0
19 18
15 14
1
0
15 14
1
0
MSB
LSB
23 22
19 18
15 14
1
0
19 18
15 14
1
0
15 14
1
0
20-Bit Mode
16-Bit Mode
NOTE: All data presented in 2s complement form with MSB first.
Figure 2–7. Right-Justified 64-Fs Format
SLES041B—November 2002
TAS5026
13
Architecture Overview
2-Channel Right-Justified Stereo Input/Output (24-Bit Transfer Word Size)
24 Clks
24 Clks
LRCLK
Right Channel
Left Channel
SCLK
MSB
24-Bit Mode
LSB
23 22 21 20 19 18
MSB
LSB
15 14
9
8
1
0
23 22 21 20 19 18
15 14
9
8
1
0
15 14
9
8
1
0
19 18
15 14
9
8
1
0
15 14
9
8
1
0
15 14
9
8
1
0
20-Bit Mode
19 18
16-Bit Mode
NOTE: All data presented in 2s complement form with MSB first.
Figure 2–8. Right-Justified 48-Fs Format
2.1.7.4
DSP Mode Timing
DSP mode timing uses an LRCLK to define when data is to be transmitted for both channels. A bit clock running
at 64 × Fs is used to clock in the data. The first bit of the left channel data appears on the data lines following
the LRCLK transition. The data is written MSB first and is valid on the rising edge of the bit clock. The TAS5026
masks unused trailing data bit positions.
SCLK
64 SCLKS
LRCLK
MSB
LSB
MSB
LSB
SDIN
16 Bits
Left
Channel
16 Bits
Right
Channel
32 Bits Unused
Figure 2–9. DSP Format
14
TAS5026
SLES041B—November 2002
Architecture Overview
2.2
Reset, Power Down, and Status
The reset, power down, and status circuitry provides the necessary controls to bring the TAS5026 to the initial
inactive condition, achieve low power standby, and report system status.
2.2.1 Reset—RESET
The TAS5026 is placed in the reset mode by setting the RESET terminal low.
RESET is an asynchronous control signal that restores the TAS5026 to its default conditions, sets the valid
1–6 outputs low, and places the PWM in the hard mute state. Volume is immediately set to full attenuation
(there is no ramp down).
As long as the RESET terminal is held low, the device is in the reset state. During reset, all I2C and serial data
bus operations are ignored. Table 2–6 shows the device output signals while RESET is active.
Upon the release of RESET, if POWER_DWN is high, the system performs a 4-ms to 5-ms device initialization
and then ramps the volume up to 0 db using a soft volume update sequence. If MCLK_IN is not active when
RESET is released high, then a 4-ms to 5-ms initialization sequence is produced once MCLK_IN becomes
active.
During device initialization all controls are reset to their initial states. Table 2–7 shows the control settings that
are changed during initialization.
RESET should be applied during power-up initialization or while changing the master slave clock states.
Table 2–6. Device Outputs During Reset
SIGNAL
MODE
SIGNAL STATE
Valid 1–Valid 6
All
Low
PWM P-outputs
All
Low
PWM M-outputs
All
Low
All
Low
MCLKOUT
SCLK
Master
Low
SCLK
Slave
Signal input
LRCLK
Master
Low
LRCLK
Slave
Signal input
SDA
All
Signal input
CLIP
All
High
Because the RESET is an asynchronous control signal, small clicks and pops can be produced during the
application (the leading edge) of this control. However, when RESET is released, the transition from the hard
mute state back to normal operation is performed synchronously using a quiet sequence.
If a completely quiet reset sequence is desired, MUTE should be applied before applying RESET.
Table 2–7. Values Set During Reset
CONTROL
SETTING
Volume
0 dB
MCLK_IN frequency
256
Master/slave mode
M_S terminal state
Auto mute
Enabled
De-emphasis
None
DC offset
0
Interchannel delay
Each channel set at 16 clocks higher then preceding channel
SLES041B—November 2002
TAS5026
15
Architecture Overview
2.2.2 Power Down—PDN
The TAS5026 can be placed into the power-down mode by holding the PDN terminal low. When power-down
mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to full attenuation
(there is no ramp down). The valid 1–6 outputs are immediately asserted low and the PWM outputs are placed
in the hard mute state. PDN initiates device power down without clock inputs. As long as the PDN terminal
is held low—the device is in the power-down (hard mute) state.
During power down, all I2C and serial data bus operations are ignored. Table 2–8 shows the device output
signals while PDN is active.
Table 2–8. Device Outputs During Power Down
SIGNAL
MODE
SIGNAL STATE
Valid 1–Valid 6
All
Low
PWM P-outputs
All
Low
PWM M-outputs
All
Low
MCLKOUT
All
Low
Master
Low
SCLK
Slave
Signal input
LRCLK
Master
Low
LRCLK
Slave
Signal input
SDA
All
Signal input
CLIP
All
High
SCLK
To place the device in total power-down mode, both RESET and power-down modes must be enabled. Prior
to bringing PDN high, RESET must be brought low for a minimum of 50 ns.
Because PDN is an asynchronous control signal, small clicks and pops can be produced during the application
(the leading edge) of this control. However, when PDN is released, the transition from the hard mute state back
to normal operation is performed synchronously using a quiet sequence.
If a completely quiet reset sequence is desired, MUTE should be applied before applying PDN.
2.2.2.1
Recovery Time Options
To support the requirements of various system configurations, the TAS5026 can come up to the normal state
after either a long (100 ms) or a short (5 ms) delay.
1. In the first case, a slow system (95 ms to 100 ms) start-up occurs at the end of the power-down sequence
when:
RESET is high for at least 16 MCLK_IN periods before PDN goes high.
2. Otherwise a fast (4 ms to 5 ms) start up occurs.
NOTE: If MCLK_IN is not active when both of these signals are released high, then a a fast
(4 ms to 5 ms) start up occurs once MCLK_IN becomes active.
2.2.3 Status Registers
The TAS5026 provides device identification and operational status information that is accessible through the
serial control interface status registers that provide general device information.
Device ID—The TAS5026 provides a device identification code that is accessible through the serial control
interface
Volume Update is in Progress—Whenever a volume change is in progress, this status bit is high.
No Internal Errors (All Valid Signals are High)—When there are no internal errors in the TAS5026 and all
outputs are valid, this status bit is high.
LRCLK Error—When there are the MCLK_IN rate changes more than ±10 MCLK_IN cycles from the correct
number of cycles (128 or 256) per LRCLK cycle
MCLK_IN Error—When the MCLK_IN frequency changes such that it is out of synchronization with internal
PLL generated clock
16
TAS5026
SLES041B—November 2002
Architecture Overview
2.3
Signal Processing
This section contains the signal processing functions that are contained in the TAS5026. The signal
processing is performed using a high-speed 24-bit signal processing architecture. The TAS5026 performs the
following signal processing features:
• Individual channel soft volume with a range of 24 dB to –114 dB plus mute
• Soft mute
• Auto mute
• 50-µs/15-µs de-emphasis filter supported in the sampling rates 32 kHz, 44.1 kHz, and 48 kHz
2.3.1 Volume Control
The gain of each output can be adjusted by a soft digital volume control for each channel. Volume adjustments
are performed using a soft gain update s-curve, which is approximated using a second order filter fit. The curve
fit is performed over a transition interval between 41 ms and 65 ms.
The volume of each channel can be adjusted from mute to 24 dB to –114 dB in 0.5 dB steps. Because of the
numerical representation that is used to control the volume, at very low volume levels the step size increases
for gains of that are less than –96 dB. The default volume setting following power up or reset is 0 dB for all
channels. The step size increases linearly up to approximately –90 dB, see Figure 2–10.
STEP SIZE
vs
ATTENUATION (GAIN)
6.0
5.5
5.0
4.5
Step Size – dB
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
10
20
Attenuation (Gain) – dB
Figure 2–10. Attenuation Curve
The volume control format for each channel is expressed in 8 bits. The volume for each channel is set by writing
8 bits via the serial control interface. The MSB bit is written first as in the bit position 0 (LSB position).
The volume for each channel can be set using a single or multiple address write operation to the volume control
register via the serial control interface. To change the volume of all six channels requires that 6 registers be
updated.
To coordinate the volume adjustment of multiple channels simultaneously, the TAS5026 performs a delayed
volume update upon receiving a volume change command. Following the completion of the register volume
write operations, the TAS5026 waits for 5 ms for another volume command to be given. If no volume command
is issued in that period of time, the TAS5026 starts adjusting the volume of the channels that received volume
settings.
SLES041B—November 2002
TAS5026
17
Architecture Overview
While a volume update is being performed, the system status register indicates that the update is in progress.
During the update, all subsequent volume control setting requests that are sent to the TAS5026 are received
and stored as a single next value for a subsequent update. If more than one volume setting request is sent,
only the last is retained.
Table 2–9. Volume Register
VOLUME REGISTER
D7
D6
D5
D4
D3
D2
D1
D0
Vol
Vol
Vol
Vol
Vol
Vol
Vol
Vol
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
2.3.2 Mute
The application of mute ramps the volume from any setting to noiseless hard mute state. There are two
methods in which the TAS5026 can be placed into mute. The TAS5026 is placed in the noiseless mute when
the MUTE terminal is asserted low for a minimum of 3 MCLK_IN cycles. Alternatively, the mute mode can be
initiated by setting the mute bit in the system control register through the serial control interface. The TAS5026
is held in mute state as long as the terminal is low or I2C mute setting is active. This command uses quiet entry
and exit sequences to and from the hard mute state.
If an error recovery (described in the PWM section) occurs after a mute request has been received, the device
returns from error recovery with the channel volume set as specified by the mute command.
2.3.3 Auto Mute
Auto mute is an automatic sequence that can be enabled or disabled via the serial control interface. The
default for this control is enabled. When enabled, the PWM auto mutes an individual channel when a channel
receives from 5 ms to 50 ms of consecutive zeros. This time interval can be selectable using the auto mute
delay register. The default interval is 5 ms at 48 kHz. This duration is independent of the sample rate. The auto
mute state is exited when two consecutive samples of nonzero data are received.
This mode uses the valid low to provide a low-noise floor while maintaining a short startup time. Noise free
entry and exit is achieved by using the PWM quiet start and stop sequences.
2.3.4 Individual Channel Mute
Individual channel mute is invoked through the serial interface. Individual channel mute permits each channel
of the TAS5026 to be individually muted and unmuted. The operation that is performed is identical to the mute
operation; however, it is performed on a per channel basis. A TAS5026 channel is held in the mute state as
long as the serial interface mute setting for that channel is set.
2.3.5 De-Emphasis Filter
For audio sources that have been pre-emphasized, a precision 50-µs/15-µs de-emphasis filter is provided to
support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. See Figure 2–11 for a graph showing the
de-emphasis filtering characteristics. De-emphasis is set using two bits in the system control register.
Table 2–10. De-Emphasis Filter Characteristics
DEM_SEL2 (MSB)
DEM_SEL1
0
0
De-emphasis disabled
DESCRIPTION
0
1
De-emphasis enabled for Fs = 48 kHz
1
0
De-emphasis enabled for Fs = 44 kHz
1
1
De-emphasis enabled for Fs = 32 kHz
Following the change of state of the de-emphasis bits, the PWM outputs go into the soft mute state. After 128
LRCLK periods for initialization, the PWM outputs are driven to the normal (unmuted) mode.
18
TAS5026
SLES041B—November 2002
Response – dB
Architecture Overview
0
De-Emphasis
–10
3.18 (50 µs)
10.6 (15 µs)
f – Frequency – kHz
Figure 2–11. De-Emphasis Filter Characteristics
2.4
Pulse Width Modulator (PWM)
The TAS5026 contains six channels of high performance digital Equibit PWM modulators that are designed
to drive switching output stages (back ends) in both single-ended (SE) and H-bridge (bridge tied load)
configuration. The TAS5026 device uses noise shaping and sophisticated error correction algorithms to
achieve high power efficiency and high-performance digital audio reproduction.
The PWM provides six pseudo-differential outputs to drive six monolithic power stages (such as TAS5110)
or six discrete differential power stages using of gate drivers (such as the TAS5182) and MOSFETs in
single-ended or bridged configurations. The TAS5026 also provides a high performance differential output that
can be used to drive an external analog headphone amplifier.
2.4.1 Clipping Indicator
The clipping output is designed to indicate clipping. When any of the six PWM outputs exceeds the maximum
allowable amplitude, the clipping indicator is asserted. The clipping indicator is cleared every 10 ms.
2.4.2 Error Recovery
Error recovery is used to provide error management and to permit the PWM output to be reset while preserving
all inter-volume, inter-channel delay, dc offsets, and the other internal settings. Error recovery is initiated by
bringing the ERR_RCVRY terminal low for a minimum 5 MCLK_IN cycles or by setting the error recovery bit
in control register 1. Error recovery is a level sensitive signal.
The device also performs an error recovery automatically:
•
When the speed configuration is changed to normal, double, or quad speed
•
Following a change in the serial data bus interface configuration
When ERR_RCVRY is brought low, all valid signals go low, and the PWM-P and PWM-M outputs go low. If
there are any pending speed configurations, these changes are then performed. When ERR_RCVRY is
brought high, a delay of 4 ms to 5 ms is performed before the system starts the output re-initialization
sequence. After the initialization time, the TAS5026 begins normal operation. During error recovery, all
controls and device settings that were not updated are maintained in their current configurations.
To permit error recovery to be used to provide TAS5100 error management and recovery, the delay between
the start of (falling edge) error recovery and the falling edge of valid 1 though valid 6 is selectable. This delay
can be selected to be either 6 µs or 47 µs.
During error recovery all serial data bus operations are ignored. At the conclusion of the sequence, the error
recovery register bit is returned to normal operation state. Table 2–11 shows the device output signal states
while during error recovery.
Table 2–11. Device Outputs During Error Recovery
SIGNAL
Valid 1–Valid 6
SLES041B—November 2002
MODE
SIGNAL STATE
All
Low
TAS5026
19
Architecture Overview
PWM P-outputs
All
Low
PWM M-outputs
All
Low
MCLKOUT
All
Low
SCLK
Master
Low
SCLK
Slave
Signal input
LRCLK
Master
Low
LRCLK
Slave
Signal input
SDA
All
Signal input
CLIP
All
High
The transitions are done using a quiet entrance and exit sequence to prevent pops and clicks.
2.4.3 Individual Channel Error Recovery
Individual channel error recovery is used to provide error management and to permit the PWM output to be
turned off. Error recovery is initiated by setting one or more of the six error recovery bits in the error recovery
register to low.
While the error recover bits are brought low, the valid signals goes to the low state. When the error recovery
bits are brought high, a delay of 4 ms to 5 ms occurs before the channels are returned to normal operation.
The delay between the falling edge of the error recover bit and the falling edge of valid 1 though valid 6 is
selectable. This delay can be selected to be either 6 µs or 47 µs.
The TAS5026 controls the relative timing of the pseudo-differential drive control signals plus the valid signal
to minimize the production of system noise during error recovery operations. The transitions to valid low and
valid high are done using an almost quiet entrance and exit sequence to prevent pops and clicks.
2.4.4 PWM DC-Offset Correction
An 8-bit value can be programmed to each of the six PWM offset correction registers to correct for any offset
present in the output stages. The offset correction is divided into 256 intervals with a total offset correction of
±1.56% of full scale. The default value is zero correction represented by 00 (hex). These values can be
changed at any time through the serial control interface.
2.4.5 Inter-Channel Delay
An 8-bit value can be programmed to each of the six PWM inter-channel delay registers to add a delay per
channel from 0 to 255 clock cycles. The delays correspond to cycles of the high-speed internal clock, DCLK
(or alternatively the external PLL clock frequency). Each subsequent channel has a default value that is N
DCLKs larger than the preceding channel. The default values are 0 for the first channel and 76 for each
successive channel.
These values can be updated upon power up through the serial control interface. This delay is generated in
the PWM block with the appropriate control signals generated in the CTL block.
These values can be changed at any time through the serial control interface.
2.4.6 PWM/H-Bridge and Discrete H-Bridge Driver Interface
The TAS5026 provides six PWM outputs, which are designed to drive switching output stages (back-ends)
in both single-ended (SE) and H-bridge (bridge tied load) configuration. The back-ends may be monolithic
power stages (such as the TAS5110) or six discrete differential power stages using gate drivers (such as the
the TAS55182) and MOSFETs in single-ended or bridged configurations.
The TAS5110 device is optimised for bridge tied load (BTL) configurations. These devices require a pure
differential PWM signal with a third signal (VALID) to control the MUTE state. In the MUTE state, the TAS5110
OUTA and OUTB are both low.
20
TAS5026
SLES041B—November 2002
Architecture Overview
One Channel
of TAS5026
TAS5110
PWM_AP
AP
PWM_AM
AM
VALID
OUTA
Speaker
RESET
BP
BM
OUTB
Figure 2–12. PWM Outputs and H-Bridge Driven in BTL Configuration
2.5
I2C Serial Control Interface
The TAS5026 has a bidirectional serial control interface that is compatible with the I2C (Inter IC) bus protocol
and supports both 100 KBPS and 400 KBPS data transfer rates for single and multiple byte write and read
operations. This is a slave only device that does not support a multi-master bus environment or wait state
insertion. The control interface is used to program the registers of the device and to read device status.
The TAS5026 supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus
operation (400 kHz maximum). The TAS5026 performs all I2C operations without I2C wait cycles.
The I2C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits
in a system. Data is transferred on the bus serially one bit at a time. The address and data are transferred in
byte (8 bit) format with the most significant bit (MSB) transferred first. In addition, each byte transferred on the
bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with
the master device driving a start condition on the bus and ends with the master device driving a stop condition
on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate a start and
stop conditions. A high-to-low transition on SDA indicates a start, and a low-to-high transition indicates a stop.
Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in
Figure 2–13. The master generates the 7-bit slave address and the read/write (R/W) bit to open
communication with another device and then waits for an acknowledge condition. The TAS5026 holds SDA
low during acknowledge clock period to indicate an acknowledgement. When this occurs, the master transmits
the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte).
All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. I2C An
external pullup resistor must be used for the SDA and SCL signals to set the High level for the bus.
7 Bit Slave Address
SDA
7 6
5
4
3
2
R/W
1 0
A
8 Bit Register Address (N)
7 6
5
4
3
2
1 0
A
8 Bit Register Data For
Address (N)
7 6
5
4
3
2
1 0
A
8 Bit Register Data For
Address (N)
7 6
5
4
3
2
A
1 0
SCL
Start
Stop
Figure 2–13. Typical I2C Sequence
There are no limits on the number of bytes that can be transmitted between start and stop conditions. When
the last word transfers, the master generates a stop condition to release the bus. A generic data transfer
sequence is also shown in Figure 2–13.
The 7-bit address for the TAS5026 is 001101X, where X is a programmable address bit. Using the CS0
terminal on the device, the LSB address bit is programmable to permit two devices to be used in a system.
These two addresses are licensed I2C addresses and do not conflict with other licensed I2C audio devices.
To communicate with the TAS5026, the I2C master uses 0011010 if CS0=0 and 0011011 if CS0=1. In addition
to the 7-bit device address, an 8-bit register address is used to direct communication to the proper register
location within the device interface.
SLES041B—November 2002
TAS5026
21
Architecture Overview
Read and write operations to the TAS5026 can be done using single byte or multiple byte data transfers.
2.5.1 Single Byte Write
As shown in Figure 2–14, a single byte data write transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction
of the data transfer. For a write data transfer, the read/write bit is 0. After receiving the correct I2C device
address and the read/write bit, the TAS5026 device responds with an acknowledge bit. Next, the master
transmits the address byte or bytes corresponding to the TAS5026 internal memory address being accessed.
After receiving the address byte, the TAS5026 again responds with an acknowledge bit. Next, the master
device transmits the data byte to be written to the memory address being accessed. After receiving the data
byte, the TAS5026 again responds with an acknowledge bit. Finally, the master device transmits a stop
condition to complete the single byte data write transfer.
Acknowledge
Start Condition
A6
A5
A4
A3
A2
A1
Acknowledge
A0 R/W ACK A7
A6
A5
I2C Device Address and
Read/Write Bit
A4
A3
A2
A1
Acknowledge
A0 ACK D7
D6
D5
Register Address
D4
D3
D2
D1
D0 ACK
Stop
Condition
Data Byte
Figure 2–14. Single Byte Write Transfer
2.5.2 Multiple Byte Write
A multiple byte data write transfer is identical to a single byte data write transfer except that multiple data bytes
are transmitted by the master device to TAS5026 as shown in Figure 2–15. After receiving each data byte,
the TAS5026 responds with an acknowledge bit.
Acknowledge
Start Condition
A6
A5
A1
A0 R/W ACK A7
Acknowledge
A6
I2C Device Address and
Read/Write Bit
A5
A4
A3
A1
A0 ACK D7
Register Address
Acknowledge
Acknowledge
D6
D1
D0 ACK
D7
Other
Data Bytes
First Data Byte
D6
D1
D0 ACK
Stop
Condition
Last Data Byte
Figure 2–15. Multiple Byte Write Transfer
2.5.3 Single Byte Read
As shown in Figure 2–16, a single byte data read transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. For the data read transfer, a write followed
by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory
address to be read. As a result, the read/write bit is 0. After receiving the TAS5026 address and the read/write
bit, the TAS5026 responds with an acknowledge bit. Also, after sending the internal memory address byte or
bytes, the master device transmits another start condition followed by the TAS5026 address and the read/write
bit again. This time the read/write bit is a 1 indicating a read transfer. After receiving the TAS5026 and the
read/write bit, the TAS5026 again responds with an acknowledge bit. Next, the TAS5026 transmits the data
byte from the memory address being read. After receiving the data byte, the master device transmits a not
acknowledge followed by a stop condition to complete the single byte data read transfer.
Repeat Start Condition
Start
Condition
Acknowledge
A6
A5
A1
A0 R/W ACK A7
I2C Device Address and
Read/Write Bit
Acknowledge
A6
A5
A4
Register Address
A0 ACK
Not
Acknowledge
Acknowledge
A6
A5
A1
A0 R/W ACK D7
I2C Device Address and
Read/Write Bit
D6
D1
Data Byte
D0 ACK
Stop
Condition
Figure 2–16. Single Byte Read
22
TAS5026
SLES041B—November 2002
Architecture Overview
2.5.4 Multiple Byte Read
A multiple byte data read transfer is identical to a single byte data read transfer except that multiple data bytes
are transmitted by the TAS5026 to the master device as shown in Figure 2–17. Except for the last data byte,
the master device responds with an acknowledge bit after receiving each data byte.
Repeat Start
Condition
Start
Condition
Acknowledge
A6
A0 R/W ACK A7
I2C Device Address and
Read/Write Bit
Acknowledge
A6
A5
A4
A0 ACK
Register Address
Acknowledge
A6
A0 R/W ACK D7
I2C Device Address and
Read/Write Bit
Not
Acknowledge
Acknowledge
D0 ACK
First Data Byte
D7
Other
Data Bytes
D6
D1
D0 ACK
Last Data Byte
Stop
Condition
Figure 2–17. Multiple Byte Read
SLES041B—November 2002
TAS5026
23
Serial Control Interface Register Definitions
3
Serial Control Interface Register Definitions
Table 3–1 shows the register map for the TAS5026. Default values in this section are in bold.
Table 3–1. I2C Register Map
ADDR HEX
DESCRIPTION
00
General status register
01
Error status register
02
System control register 0
03
System control register 1
04
Error recovery register
05
Automute delay
06
DC-offset control register channel 1
07
DC-offset control register channel 2
08
DC-offset control register channel 3
09
DC-offset control register channel 4
0A
DC-offset control register channel 5
0B
DC-offset control register channel 6
0C
Interchannel delay register channel 1
0D
Interchannel delay register channel 2
0E
Interchannel delay register channel 3
0F
Interchannel delay register channel 4
10
Interchannel delay register channel 5
11
Interchannel delay register channel 6
12
Reserved
13
Volume control register channel 1
14
Volume control register channel 2
15
Volume control register channel 3
16
Volume control register channel 4
17
Volume control register channel 5
18
Volume control register channel 6
19
Individual channel mute
The volume table is contained in Appendix A.
Default values are shown in bold in the following tables
NOTE:
The performance of a TDAA system is optimized by setting the PWM timing based upon the
type of back-end device that is used and, to a lesser extent, the layout. These values are set
during initialization using the I2C serial interface. The specific timing parameter values for each
PWM and back-end configuration is contained in the EVM User Manual, Reference Design
User Manual, and design application note for these devices. Please refer to the appropriate
EVM User Manual, Reference Design user manual, or design application note for these
values.
24
TAS5026
SLES041B—November 2002
Serial Control Interface Register Definitions
3.1
General Status Register (x00)
Table 3–2. General Status Register (Read Only)
D7
D6
D5
D4
D3
D2
D1
D0
0
-
-
-
-
-
-
-
No volume update is in progress.
FUNCTION
1
-
-
-
-
-
-
-
Volume update is in progress.
-
0
-
-
-
-
-
-
Always 0
-
-
1
0
0
1
1
-
Device identification code
-
-
-
-
-
-
-
0
Any valid signal is inactive (see status register (X03)) (see Note 1).
-
-
-
-
-
-
-
1
No internal errors (all valid signals are high)
NOTE 1: This bit is reset automatically when all of the valid signals are active.
3.2
Error Status Register (x01)
Table 3–3. Error Status Register
D7
D6
D5
D4
D3
D2
D1
D0
FUNCTION
1
-
-
-
-
-
-
-
FS error has occurred
-
1
-
-
-
-
-
-
Control pin change has occurred
-
-
-
1
-
-
-
-
LRCLK error
-
-
-
-
1
-
-
-
MCLK_IN count error
-
-
-
-
-
1
-
-
DCLK phase error with respect to MCLK_IN
-
-
-
-
-
-
1
-
MCLK_IN phase error with respect to DCLK
-
-
-
-
-
-
-
1
PWM timing error
0
0
0
0
0
0
0
0
No errors—no control pins changed
NOTE 2: Write 00 hex to clear error indications in Error Status Register.
3.3
System Control Register 0 (x02)
Table 3–4. System Control Register 0
D7
D6
D5
D4
D3
D2
D1
D0
FUNCTION
0
0
-
-
-
-
-
-
Normal mode (in slave mode—quad speed detected if MCLK_IN = 128 Fs)
0
1
-
-
-
-
-
-
Double speed
1
0
-
-
-
-
-
-
Quad speed
1
1
-
-
-
-
-
-
Illegal
-
-
0
-
-
-
-
-
Use de-emphasis pin controls
-
-
1
-
-
-
-
-
Use de-emphasis I2C controls
-
-
-
0
0
-
-
-
No de-emphasis
-
-
-
0
1
-
-
-
De-emphasis for Fs = 32 kHz
-
-
-
1
0
-
-
-
De-emphasis for Fs = 44.1 kHz
-
-
-
1
1
-
-
-
De-emphasis for Fs = 48 kHz
-
-
-
-
-
0
0
0
16 bit, MSB first; right justified
-
-
-
-
-
0
0
1
20 bit, MSB first; right justified
-
-
-
-
-
0
1
0
24 bit, MSB first; right justified
-
-
-
-
-
0
1
1
16-bit IIS
-
-
-
-
-
1
0
0
20-bit IIS
-
-
-
-
-
1
0
1
24-bit IIS
-
-
-
-
-
1
1
0
16-bit MSB first
-
-
-
-
-
1
1
1
16-bit DSP Frame
SLES041B—November 2002
TAS5026
25
Serial Control Interface Register Definitions
3.4
System Control Register 1 (x03)
Table 3–5. System Control Register 1
D7
D6
D5
D4
D3
D2
D1
D0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
-
Valid remains high during auto mute.
-
1
-
-
-
-
-
-
Valid goes low during auto mute.
-
-
0
-
-
-
-
-
Valid remains high during mute.
-
-
1
-
-
-
-
-
Valid goes low during mute.
-
-
-
0
-
-
-
-
Mute
-
-
-
1
-
-
-
-
Normal mode
-
-
-
-
0
-
-
-
Set error recovery delay at 6 µs
-
-
-
-
1
-
-
-
Set error recovery delay at 47 µs
-
-
-
-
-
0
-
-
Error recovery (forces error recovery initialization sequence)
-
-
-
-
-
1
-
-
Normal mode
-
-
-
-
-
-
0
-
Auto mute disabled
-
-
-
-
-
-
1
-
Auto mute enabled
-
-
-
-
-
-
-
0
-
-
-
-
-
-
-
1
Normal mode
Resets all I2C registers to their default conditions
3.5
FUNCTION
UNUSED
Error Recovery Register (x04)
Table 3–6. Error Recovery Register
D7
D6
D5
D4
D3
D2
D1
D0
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
-
-
-
-
-
Put channel 6 into error recovery mode
-
-
-
0
-
-
-
-
Put channel 5 into error recovery mode
-
-
-
-
0
-
-
-
Put channel 4 into error recovery mode
-
-
-
-
-
0
-
-
Put channel 3 into error recovery mode
-
-
-
-
-
-
0
-
Put channel 2 into error recovery mode
-
-
-
-
-
-
-
0
Put channel 1 into error recovery mode
-
-
1
1
1
1
1
1
Normal operation
3.6
FUNCTION
Unused
Automute Delay Register (x05)
Table 3–7. Automute Delay Register
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
Set automute delay at 5 ms
-
-
-
-
0
0
0
1
Set automute delay at 10 ms
-
-
-
-
0
0
1
0
Set automute delay at 15 ms
-
-
-
-
0
0
1
1
Set automute delay at 20 ms
-
-
-
-
0
1
0
0
Set automute delay at 25 ms
-
-
-
-
0
1
0
1
Set automute delay at 30 ms
-
-
-
-
0
1
1
0
Set automute delay at 35 ms
-
-
-
-
0
1
1
1
Set automute delay at 40 ms
-
-
-
-
1
-
-
0
Set automute delay at 45 ms
-
-
-
-
1
-
-
1
Set automute delay at 50 ms
26
TAS5026
FUNCTION
Unused
SLES041B—November 2002
Serial Control Interface Register Definitions
3.7
DC-Offset Control Registers (x06–x0B)
Channels 1, 2, 3, 4, 5, and 6 are mapped into (x06, x07, x08, x09, x0A, and x0B).
Table 3–8. DC-Offset Control Registers
D7
D6
D5
D4
D3
D2
D1
D0
1
0
0
0
0
0
0
0
Maximum correction for positive dc offset (–1.56% FS)
0
0
0
0
0
0
0
0
No dc-offset correction
0
1
1
1
1
1
1
1
Maximum correction for negative dc offset (1.56% FS)
3.8
FUNCTION
Interchannel Delay Registers (x0C–x11)
Channels 1, 2, 3, 4, 5, and 6 are mapped into (x0C, x0D, x0E, x0F, x10, and x11).
The first channel delay is set at 0. Each subsequent channel has a default value that is 76 DCLKs larger than
the preceding channel.
Table 3–9. Six Inter-Channel Delay Registers
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
Minimum absolute delay, 0 DCLK cycles, default for channel 1
0
0
0
1
0
0
0
0
Default for channel 2
0
0
1
0
0
0
0
0
Default for channel 3
0
0
1
1
0
0
0
0
Default for channel 4
0
1
0
0
0
0
0
0
Default for channel 5
0
1
0
1
0
0
0
0
Default for channel 6
1
1
1
1
1
1
1
1
Maximum absolute delay, 255 DCLK cycles
3.9
FUNCTION
Individual Channel Mute Register (x19)
Table 3–10. Individual Channel Mute Register
D7
D6
D5
D4
D3
D2
D1
D0
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
No channels are muted
-
-
-
-
-
-
-
0
Mute channel 1
-
-
-
-
-
-
0
-
Mute channel 2
-
-
-
-
-
0
-
-
Mute channel 3
-
-
-
-
0
-
-
-
Mute channel 4
-
-
-
0
-
-
-
-
Mute channel 5
-
-
0
-
-
-
-
-
Mute channel 6
SLES041B—November 2002
FUNCTION
Unused
TAS5026
27
System Initialization
4
System Initialization
Reset is used during system initialization to hold the TAS5026 inactive while power (VDD), the master clock
(MCLK_IN), the device control, and the data signals become stable. The recommended initialization
sequence is to hold RESET low for 24 MCLK_IN cycles after VDD has reached 3 V and the other control
signals (MUTE, PDN, M_S, ERR_RCVRY,,DBSPD, and CS0) are stable.
3V
VDD
RESET
24 MCLK_IN
Cycles
MCLK
Figure 4–1. RESET During System Initialization
The serial data interface format is then set through the serial data interface control register using the serial
control interface.
At this point the TAS5026 is fully operational. However, the operation of the TAS5026 can be tailored as
desired to meet specific operating requirements by adjusting the following:
28
•
Automute delay register
•
DC-Offset control registers
•
Interchannel delay registers
TAS5026
SLES041B—November 2002
Specifications
5
Specifications
5.1
Absolute Maximum Ratings Over Operating Temperature Ranges (Unless
Otherwise Noted)†
Digital supply voltage range: DVDD_CORE, DVDD_PWM, DVDD_RCL . . . . . . . . . . . . . . . . . . –0.3 V to 4.2 V
Analog supply voltage range: AVDD_PLL, ADD_OSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.2 V
Digital input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to DVDDX + 0.3 V
Operating free-air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 85°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 V
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
5.2
Recommended Operating Conditions (Fs = 48 kHz)
Supply voltage
Digital
Supply current
Digital
MIN
TYP
MAX
3
3.3
3.6
DVDDX, See Note 1
Operating
60
Power down, See Note 2
Power dissipation
Digital
Supply voltage
Analog
Supply current
Analog
200
Power down
3
Analog
3.6
10
Power down, See Note 2
35
Power down, See Note 2
µW
V
mA
25
Operating
Power dissipation
3.3
µA
mW
100
AVDDX, See Note 3
Operating
V
mA
25
Operating
UNIT
µA
mW
100
µW
NOTES: 3. DVDD_CORE, DVDD_PWM, DVDD_RCL
4. If the clocks are turned off.
5. AVDD_PLL, AVDD_OSC
5.3
Electrical Characteristics Over Recommended Operating Conditions (Unless
Otherwise Noted)
5.3.1
Static Digital Specifications Over Recommended Operating Conditions (Unless
Otherwise Noted)
MIN
MAX
VIH
VIL
High-level input voltage
PARAMETER
2
DVDD1
V
Low-level input voltage
0
0.8
V
VOH
VOL
High-level output voltage
Ilkg
Input leakage current
Low-level output voltage
5.3.2
TEST CONDITIONS
IO = –1 mA
IO = 4 mA
2.4
–10
UNIT
V
0.4
V
10
µA
Digital Interpolation Filter and PWM Modulator Over Recommended Operating
Conditions (Unless Otherwise Noted) Fs = 48 kHz
PARAMETER
TEST CONDITIONS
Pass band
MIN
0
Pass band ripple
Stop band
Stop band attenuation
TYP
24.1 kHz to 152.3 kHz
20
UNIT
kHz
±0.012
dB
24.1
kHz
50
dB
Group delay
700
PWM modulation index (gain)
0.93
SLES041B—November 2002
MAX
µs
TAS5026
29
Specifications
5.3.3
TAS5026/TAS5100 System Performance Measured at the Speaker Terminals
Over Recommended Operating Conditions (Unless Otherwise Noted)
Fs = 48 kHz; Input = 1 Vrms Sine Wave at 1 kHz
PARAMETER
TEST CONDITIONS
MIN
SNR (EIAJ)
A-weighted
Dynamic range
A-weighted, -60 dB, f = 1 kHz, 20 Hz–20 kHz
Signal to (noise + distortion) ratio
0 dB, 1 kHz, 20 Hz–20 kHz
Pad driver power supply rejection ratio
1 kHz
TYP
MAX
UNIT
93
dB
95
dB
0.08%
dB
Idle tone rejection
dB
Intermodulation distortion
dB
Frequency response
dB
Crosstalk
dB
Jitter tolerance
ps
PWM modulation index
5.4
0.93
Switching Characteristics
5.4.1
Command Sequence Timing
5.4.1.1
Reset Timing—RESET
CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)
PARAMETER
TEST CONDITIONS
tw(RESET)
Pulses duration, RESET active
tp(VALID_LOW)
tp(VALID_HIGH)
Propagation delay
td(VOLUME)
Delay time
MIN
TYP
MAX
50
Propagation delay
UNIT
ns
4
42
1
µs
5
ms
ms
RESET
tw(RESET)
VALID 1–6
VOLUME 1–6
tp(VALID_LOW)
td(VOLUME)
tp(VALID_HIGH)
Figure 5–1. RESET Timing
30
TAS5026
SLES041B—November 2002
Specifications
5.4.1.2
Power-Down Timing—PDN
5.4.1.2.1 Long Recovery
CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)
PARAMETER
tw(PDN)
Pulse duration, PDN active
td(R PDNR)
tp(VALID_LOW)
Reset high to PDN rising edge
TEST CONDITIONS
MIN
TYP
MAX
50
ns
16 MCLKS
tp(VALID_HIGH)
ns
85
td(VOLUME)
UNIT
1
µs
100
ms
42
ms
td(R PDNR)
RESET
PDN
tw(PDN)
VALID 1–6
VOLUME 1–6
Normal
Operation
Normal
Operation
tp(VALID_HIGH)
tp(VALID_LOW)
td(VOLUME)
Figure 5–2. Power-Down and Power-Up Timing—RESET Preceding PDN
SLES041B—November 2002
TAS5026
31
Specifications
5.4.1.2.2 Short Recovery
CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)
PARAMETER
tw(PDN)
Pulse duration, PDN active
td(R PDNR)
tp(VALID_LOW)
PDN high to reset rising edge
TEST CONDITIONS
MIN
TYP
MAX
50
ns
16 MCLKS
tp(VALID_HIGH)
UNIT
ns
4
td(VOLUME)
1
µs
5
ms
42
ms
td(R PDNR)
RESET
PDN
tw(PDN)
VALID 1–6
VOLUME 1–6
Normal
Operation
Normal
Operation
tp(VALID_HIGH)
tp(VALID_LOW)
td(VOLUME)
Figure 5–3. Power-Down and Power-Up Timing—RESET Following PDN
5.4.1.3
Error Recovery Timing—ERR_RCVRY
CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
tw(ER)
Pulse duration, ERR_RCVRY active
5 MCLKS
tp(VALID_LOW)
tp(VALID_HIGH)
Selectable for minimum or maximum
6
47
µs
4
5
ms
32
TAS5026
ns
SLES041B—November 2002
Specifications
tw(ER)
ERR_RCVRY
VALID 1–6
Normal
Operation
Normal
Operation
tp(VALID_HIGH)
tp(VALID_LOW)
Figure 5–4. Error Recovery Timing
5.4.1.4
MUTE Timing—MUTE
CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED)
PARAMETER
tw(MUTE)
td(VOL)
TEST CONDITIONS
Pulse duration, PDN active
MIN
TYP
MAX
3 MCLKS
UNIT
ns
42
ms
tw(MUTE)
MUTE
VOLUME
VALID 1–6
Normal
Operation
Normal
Operation
td(VOL)
td(VOL)
Figure 5–5. Mute Timing
SLES041B—November 2002
TAS5026
33
Specifications
5.4.2 Serial Audio Port
5.4.2.1
Serial Audio Ports Slave Mode Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER
MIN
f(SCLK)
tsu(SDIN)
Frequency, SCLK
SDIN setup time before SCLK rising edge
20
th(SDIN)
f(LRCLK)
SDIN hold time before SCLK rising edge
10
LRCLK frequency
32
tsu(LRCLK)
5.4.2.2
TYP
MAX
UNIT
12.288
MHz
ns
ns
48
MCLK_IN duty cycle
50%
SCLK duty cycle
50%
LRCLK duty cycle
50%
192
kHz
LRCLK setup time before SCLK rising edge
20
ns
MCLK High and Low time
20
ns
Serial Audio Ports Master Mode, Load Conditions 50 pF Over Recommended
Operating Conditions (Unless Otherwise Noted)
PARAMETER
t(MSD)
t(MLRD)
5.4.2.3
MIN
TYP
MAX
UNIT
MCLK_IN to SCLK
0
5
ns
MCLK_IN to LRCLK
0
5
ns
DSP Serial Interface Mode Over Recommended Operating Conditions (Unless
Otherwise Noted)
PARAMETER
MIN
TYP
MAX
UNIT
12.288
MHz
f(SCLK)
td(FS)
SCLK frequency
tw(FSHIGH)
tsu(SDIN)
Pulse duration, sync
SDIN and LRCLK setup time before SCLK falling edge
20
ns
th(SDIN)
SDIN and LRCLK hold time from SCLK falling edge
10
ns
Delay time, SCLK rising to Fs
ns
1/(64xfs)
SCLK duty cycle
ns
50%
SCLK
tsu(SDIN) th(SDIN)
SDIN
Figure 5–6. Right-Justified, IIS, Left-Justified Serial Protocol Timing
34
TAS5026
SLES041B—November 2002
Specifications
SCLK
tsu(LRCLK)
LRCLK
NOTE: Serial data is sampled with the rising edge of SCLK (setup time = 20 ns and hold time = 10 ns).
Figure 5–7. Right, Left, and IIS Serial Mode Timing Requirement
SCLK
LRCLK
t(MRLD)
t(MSD)
MCLK
Figure 5–8. Serial Audio Ports Master Mode Timing
SCLK
tsu(LRCLK)
LRCLK
th(LRCLK)
tw(FSHIGH)
tsu(SDIN)
th(SDIN)
SDIN
Figure 5–9. DSP Serial Port Timing
SLES041B—November 2002
TAS5026
35
Specifications
SCLK
64 SCLKS
LRCLK
tw(FSHIGH)
SDIN
16 Bits Left Channel
16 Bits Right Channel
32 Bits Unused
Figure 5–10. DSP Serial Port Expanded Timing
SCLK
tsu(SDIN) = 20 ns
th(SDIN) = 10 ns
SDIN
Figure 5–11. DSP Absolute Timing
36
TAS5026
SLES041B—November 2002
Specifications
5.4.3 Serial Control Port—I 2C Operation
5.4.3.1
Timing Characteristics for I2C Interface Signals Over Recommended Operating
Conditions (Unless Otherwise Noted)
PARAMETER
TEST CONDITIONS
STANDARD
MODE
MIN
MAX
100
FAST MODE
MIN
MAX
0
400
UNIT
fSCL
tw(H)
Frequency, SCL
0
Pulse duration, SCL high
4
0.6
µs
tw(L)
tr
Pulse duration, SCL low
4.7
1.3
µs
Rise time, SCL and SDA
1000
300
ns
tf
tsu1
Fall time, SCL and SDA
300
300
ns
th1
t(buf)
Hold time, SCL to SDA
Setup time, SDA to SCL
kHz
250
100
0
0
ns
Bus free time between stop and start condition
4.7
1.3
µs
tsu2
th2
Setup time, SCL to start condition
4.7
0.6
µs
Hold time, start condition to SCL
4
0.6
µs
tsu3
CL
Setup time, SCL to stop condition
4
Load capacitance for each bus line
tw(L)
µs
0.6
400
tw(H)
ns
tr
400
pF
tf
SCLK
tsu
th1
SDA
Figure 5–12. SCL and SDA Timing
SCLK
th2
t(buf)
tsu2
tsu3
SDA
Start
Condition
Stop
Condition
Figure 5–13. Start and Stop Conditions Timing
SLES041B—November 2002
TAS5026
37
PWM_AP_1
CSS
M_S
PWM_AM_1
Valid_1
PLL_FLT_1
DA610
DSP
ACLKX
AFSX
PLL_FLT_2
SCLK
LRCLK
Clock,
PLL
and
Serial
Data
I/F
PWM Ch.
PWM_AP_2
Signal
Processing
MCLKOUT
SDIN1
SDIN2
SDIN3
ALKX0
ALKX1
ALKX2
P1.5/IA1/TDI
P1.4/SMCLK/TCK
P1.0
MSP430 P1.1
P1.2
SDA
SCL
CSO
RESET
PDN
PWM_AM_2
PWM Ch.
Serial
Control
I/F
Reset,
Pwr Dwn
and
Status
Auto Mute
De-emphasis
Soft Volume
Error Recovery
Soft Mute
Clip Detect
PWM Ch.
SLES041B—November 2002
CLIP
MUTE
ERR_RCVY
PWM AP_3
PWM AM_3
Valid_3
PWM_AP_4
PWM_AM_4
Valid_4
PWM_AP_5
PWM_AM_5
PWM Ch.
Valid_5
PWM_AP_6
PWM Ch.
P1.3
P2.0
Valid_2
PWM Ch.
Output Control
Figure 6–1. Typical TAS5026 Application
XTAL_OUT
XTAL_IN
PWM_AM_6
Valid_6
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
TAS5110
PWAP
H-Bridge
PWAM
PWBM
PWBP SHUTDOWN
RESET
Application Information
DVSS_PWM
DVSS_RCL
DVDD_PWM
DVDD_RCL
VREGC_CAP
VREGB_CAP
AVSS_PLL
VREGA_CAP
AVDD_PLL
TAS5026
PWM
Section
MCLK_IN
CLKOUT
Application Information
6
38
Power Supply
Application Information
6.1
Serial Audio Interface Clock Master and Slave Interface Configuration
6.1.1 Slave Configuration
Other Digital
Audio Sources
DA610 DSP
(Master Mode)
PCM1800
ADC
Left
Analog
OSCI
ALKR0
DOUT
Right
Analog
BCK
SYSCLK
GND
TAS5026
(Slave mode)
XTALI
OSCO
XTALO
ALKX0
SDIN1
ALKR1
ALKX1
SDIN2
ALKR2
ALKX2
SDIN3
ACLKR
ACLKX
SCLK
AFSX
LRCK
AFSR
LRCK
12.288
MHz XTAL
CLKIN
MCLKO
CLKOUT
MCLKO
NC
Figure 6–2. TAS5026 Serial Audio Port—Slave Mode Connection Diagram
6.1.2 Master Configuration
Other Digital
Audio Sources
TAS5026
(Master Mode)
DA610 DSP
PCM1800
ADC
Left
Analog
12.288
MHz XTAL
DOUT
Right
Analog
BCK
LRCK
SYSCLK
ALKR0
XTALI
XTALO
ALKX0
SDIN1
ALKR1
ALKX1
SDIN2
ALKR2
ALKX2
SDIN3
ACLKR
ACLKX
SCLK
AFSX
LRCK
AFSR
CLKIN
CLKOUT
GND
MCLKO
MCLKO
Figure 6–3. TAS5026 Serial Audio Port—Master Mode Connection Diagram
SLES041B—November 2002
TAS5026
39
Mechanical Data
7
Mechanical Data
PAG (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
48
0,08 M
33
49
32
64
17
0,13 NOM
1
16
7,50 TYP
10,20
SQ
9,80
12,20
SQ
11,80
Gage Plane
0,25
0,05 MIN
1,05
0,95
0°–ā7°
0,75
0,45
Seating Plane
1,20 MAX
0,08
4040282 / C 11/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
40
TAS5026
SLES041B—November 2002
Appendix A—Volume Table
Appendix A—Volume Table
VOLUME
SETTING
REGISTER VOLUME
(BIN)
GAIN dB
VOLUME
SETTING
REGISTER VOLUME
(BIN)
249
11111001
24
205
11001101
248
2
11111000
23.5
204
11001100
1.5
D7 – D0
GAIN dB
D7 – D0
247
11110111
23
203
11001011
1
246
11110110
22.5
202
11001010
0.5
245
11110101
22
201
11001001
0
244
11110100
21.5
200
11001000
–0.5
243
11110011
21
199
11000111
–1
242
11110010
20.5
198
11000110
–1.5
241
11110001
20
197
11000101
–2
240
11110000
19.5
196
11000100
–2.5
239
11101111
19
195
11000011
–3
238
11101110
18.5
194
11000010
–3.5
237
11101101
18
193
11000001
–4
236
11101100
17.5
192
11000000
–4.5
235
11101011
170
191
10111111
–5
234
11101010
16.5
190
10111110
–5.5
233
11101001
16
189
10111101
–6
232
11101000
15.5
188
10111100
–6.5
231
11100111
15
187
10111011
–7
230
11100110
14.5
186
10111010
–7.5
229
11100101
14
185
10111001
–8
228
11100100
13.5
184
10111000
–8.5
227
11100011
13
183
10110111
–9
226
11100010
12.5
182
10110110
–9.5
225
11100001
12
181
10110101
–10
224
11100000
11.5
180
10110100
–10.5
223
11011111
11
179
10110011
–11
222
11011110
10.5
178
10110010
–11.5
221
11011101
10
177
10110001
–12
220
11011100
9.5
176
10110000
–12.5
219
11011011
9
175
10101111
–13
218
11011010
8.5
174
10101110
–13.5
217
11011001
8
173
10101101
–14
216
11011000
7.5
172
10101100
–14.5
215
11010111
7
171
10101011
–15
214
11010110
6.5
170
10101010
–15.5
213
11010101
6
169
10101001
–16
212
11010100
5.5
168
10101000
–16.5
211
11010011
5
167
10100111
–17
210
11010010
4.5
166
10100110
–17.5
209
11010001
4
165
10100101
–18
208
11010000
3.5
164
10100100
–18.5
207
11001111
3
163
10100011
–19
206
11001110
2.5
162
10100010
–19.5
SLES041B—November 2002
TAS5026
41
Appendix A—Volume Table
VOLUME
SETTING
REGISTER VOLUME
(BIN)
GAIN dB
VOLUME
SETTING
D7 – D0
42
REGISTER VOLUME
(BIN)
GAIN dB
D7 – D0
161
10100001
–20
116
01110100
–42.5
160
10100000
–20.5
115
01110011
–43
159
10011111
–21
114
01110010
–43.5
158
10011110
–21.5
113
01110001
–44
157
10011101
–22
112
01110000
–44.5
156
10011100
–22.5
111
01101111
–45
155
10011011
–23
110
01101110
–45.5
154
10011010
–23.5
109
01101101
–46
153
10011001
–24
108
01101100
–46.5
152
10011000
–24.5
107
01101011
–47
151
10010111
–25
106
01101010
–47.5
150
10010110
–25.5
105
01101001
–48
149
10010101
–26
104
01101000
–48.5
148
10010100
–26.5
103
01100111
–49
147
10010011
–27
102
01100110
–49.5
146
10010010
–27.5
101
01100101
–50
145
10010001
–28
100
01100100
–50.5
144
10010000
–28.5
99
01100011
–51
–51.5
143
10001111
–29
98
01100010
142
10001110
–29.5
97
01100001
–52
141
10001101
–30
96
01100000
–52.5
140
10001100
–30.5
95
01011111
–53
139
10001011
–31
94
01011110
–53.5
138
10001010
–31.5
93
01011101
–54
137
10001001
–32
92
01011100
–54.5
136
10001000
–32.5
91
01011011
–55
135
10000111
–33
90
01011010
–55.5
134
10000110
–33.5
89
01011001
–56
133
10000101
–34
88
01011000
–56.5
132
10000100
–34.5
87
01010111
–57
131
10000011
–35
86
01010110
–57.5
130
10000010
–35.5
85
01010101
–58
129
10000001
–36
84
01010100
–58.5
128
10000000
–36.5
83
01010011
–59
–59.5
127
01111111
–37
82
01010010
126
01111110
–37.5
81
01010001
–60
125
01111101
–38
80
01010000
–60.5
124
01111100
–38.5
79
01001111
–61
123
01111011
–39
78
01001110
–61.5
122
01111010
–39.5
77
01001101
–62
121
01111001
–40
76
01001100
–62.5
120
01111000
–40.5
75
01001011
–63
119
01110111
–41
74
01001010
–63.5
118
01110110
–41.5
73
01001001
–64
117
01110101
–42
72
01001000
–64.5
TAS5026
SLES041B—November 2002
Appendix A—Volume Table
VOLUME
SETTING
REGISTER VOLUME
(BIN)
VOLUME
SETTING
REGISTER VOLUME
71
01000111
–65
36
00100100
70
69
01000110
–65.5
35
00100011
–83
01000101
–66
34
00100010
–83.5
68
01000100
–66.5
33
00100001
–84
00100000
–84.6
00011111
–85.1
GAIN dB
D7 – D0
(BIN)
GAIN dB
D7 – D0
–82.6
67
01000011
–67
32
66
01000010
–67.5
31
65
01000001
–68
30
00011110
–85.8
29
00011101
–86.1
28
00011100
–86.8
27
00011011
–87.2
26
00011010
–87.5
25
00011001
–88.4
24
00011000
–88.8
64
01000000
–68.5
63
00111111
–69
62
00111110
–69.5
61
00111101
–70
60
00111100
–70.5
59
00111011
–71
23
00010111
–89.3
58
00111010
–71.5
22
00010110
–89.8
57
00111001
–72
21
00010101
–90.3
56
00111000
–72.5
20
00010100
–90.9
55
00110111
–73
19
00010011
–91.5
54
00110110
–73.5
18
00010010
–92.1
53
00110101
–74
17
00010001
–92.8
00010000
–93.6
52
00110100
–74.5
16
51
00110011
–75
15
00001111
–94.4
–75.5
14
00001110
–95.3
13
00001101
–96.3
12
00001100
–97.5
11
00001011
–98.8
10
00001010
–100.4
9
00001001
–102.4
8
00001000
–104.9
7
00000111
–108.4
6
00000110
–114.4
50
00110010
49
00110001
–76
48
00110000
–76.6
47
00101111
–77
46
00101110
–77.5
45
00101101
–78
44
00101100
–78.5
43
00101011
–79
42
00101010
–79.6
5
00000101
MUTE
41
00101001
–80.1
4
00000100
MUTE
40
00101000
–80.6
3
00000011
MUTE
39
00100111
–81.1
2
00000010
MUTE
38
00100110
–81.5
1
00000001
MUTE
37
00100101
–82.1
0
00000000
MUTE
SLES041B—November 2002
TAS5026
43