TM Data Manual January 2004 DAV Digital Audio/Speaker SLES090A IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2004, Texas Instruments Incorporated Contents Contents Section 1 2 3 Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Clock and Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Normal-Speed, Double-Speed, and Quad-Speed Selection . . . . . . . . . . . . . . . . . . . 2.1.2 Clock Master/Slave Mode (M_S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Clock Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Clock Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.5 PLL External Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.6 DCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.7 Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Reset, Power Down, and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Reset—RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Power Down—PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.3 General Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.4 Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Automute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.4 Individual Channel Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.5 De-Emphasis Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Pulse Width Modulator (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Clipping Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Individual Channel Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.4 PWM DC-Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.5 Interchannel Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.6 ABD Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.7 PWM/H-Bridge and Discrete H-Bridge Driver Interface . . . . . . . . . . . . . . . . . . . . . . . 2.5 I2C Serial Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 Single-Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 Multiple-Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 Single-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Multiple-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Control Interface Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 General Status Register (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Error Status Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 System Control Register 0 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 System Control Register 1 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Error Recovery Register (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Automute Delay Register (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November 2003—Revised January 2004 SLES090A 1 1 2 3 4 4 7 7 7 8 8 9 10 11 11 15 15 16 17 17 18 18 19 19 19 19 20 20 20 21 21 21 22 22 23 24 24 24 25 27 27 28 28 29 29 30 iii Contents 3.7 Dc-Offset Control Registers (0x06−0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Interchannel Delay Registers (0x0C−0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 ABD Delay Register (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Individual Channel Mute Register (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Data Sample Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Changing Between Master and Slave Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Absolute Maximum Ratings Over Operating Temperature Ranges . . . . . . . . . . . . . . . . . . . . . . . 5.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Electrical Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . 5.3.1 Static Digital Specifications Over Recommended Operating Conditions . . . . . . . . . 5.3.2 Digital Interpolation Filter and PWM Modulator Over Recommended Operating Conditions (Fs = 48 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 TAS5076/TAS5182 System Performance Measured at the Speaker Terminals Over Recommended Operating Conditions (Fs = 48 kHz) . . . . . . . . . . . . . . . . . . . . 5.4 Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Command Sequence Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Serial Audio Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.3 Serial Control Port—I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Serial Audio Interface Clock Master and Slave Interface Configuration . . . . . . . . . . . . . . . . . . . 6.1.1 Slave Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Master Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix A—Volume Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv SLES090A 30 30 30 31 33 33 34 37 39 39 39 39 39 39 40 40 40 44 47 49 50 50 50 51 53 November 2003—Revised January 2004 List of Illustrations List of Illustrations Figure Title Page 2−1 Crystal Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2 External PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 2−3 I2S 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 I2S 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 2−5 Left-Justified 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−6 Left-Justified 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 2−7 Right-Justified 64-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−8 Right-Justified 48-Fs Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9 DSP Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 14 15 2−10 Attenuation Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11 De-Emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 20 2−12 PWM Outputs and H-Bridge Driven in BTL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−13 Typical I2C Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 23 2−14 Single-Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−15 Multiple-Byte Write Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 2−16 Single-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−17 Multiple-Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−1 RESET During System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 25 33 4−2 Extending the I2C Write Interval Following a Low-to-High Transition of the RESET Terminal . . . . . . . 4−3 Changing the Data Sample Rate Using the DBSPD Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 35 4−4 Changing the Data Sample Rate Using the I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4−5 Changing the Data Sample Rate With an Unstable MCLK_IN Using the DBSPD Terminal . . . . . . . . . 35 36 4−6 Changing the Data Sample Rate With an Unstable MCLK_IN Using the I2C . . . . . . . . . . . . . . . . . . . . . 4−7 Changing Between Master and Slave Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 38 5−1 RESET Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−2 Power-Down and Power-Up Timing—RESET Preceding PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−3 Power-Down and Power-Up Timing—RESET Following PDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 41 42 5−4 Error Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−5 Mute Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 43 5−6 Right-Justified, I2S, Left-Justified Serial Protocol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−7 Right, Left, and I2S Serial Mode Timing Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 45 5−8 Serial Audio Ports Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−9 DSP Serial Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−10 DSP Serial Port Expanded Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45 46 5−11 DSP Absolute Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5−12 SCL and SDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 47 5−13 Start and Stop Conditions Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−1 Typical TAS5076 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 49 6−2 TAS5076 Serial Audio Port—Slave Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6−3 TAS5076 Serial Audio Port—Master Mode Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 50 November 2003—Revised January 2004 SLES090A v List of Tables List of Tables Table Title Page 2−1 Normal-Speed, Double-Speed, and Quad-Speed Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2 Master and Slave Clock Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3 LRCLK and MCLK_IN Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 DCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5 Supported Word Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−6 Device Outputs During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−7 Values Set During Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−8 Device Outputs During Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−9 Volume Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−10 De-Emphasis Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−11 Device Outputs During Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 I2C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2 General Status Register (Read Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−3 Error Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−4 System Control Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5 System Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6 Error Recovery Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7 Automute Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8 Dc-Offset Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9 Six Interchannel Delay Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−10 ABD Delay Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11 Individual Channel Mute Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi SLES090A 8 10 10 11 11 16 16 16 19 20 21 27 27 28 28 29 29 30 30 30 30 31 November 2003—Revised January 2004 Introduction 1 Introduction The TAS5076 is an innovative, cost-effective, high-performance 24-bit six-channel digital pulse-width modulator (PWM) based on Equibit technology. Combined with a TI PurePath Digital audio amplifier power stage, these devices use noise-shaping and sophisticated error-correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The TAS5076 is designed to drive up to six digital power devices to provide six channels of digital audio amplification. The digital power devices can be six conventional monolithic power stages (such as the TAS5110) or six discrete differential power stages using gate drivers and MOSFETs. The TAS5076 has six independent volume controls and mute. The device operates in AD and BD modes. This all-digital audio system contains only two analog components in the signal chain—an LC low-pass filter at each speaker terminal. Dynamic range of 105 dB for the front channels and 102 dB for the other channels is achievable on the TAS5076-TAS5182 EVM using the specified ABD and interchannel delay settings. The TAS5076 has a wide variety of serial input options including right justified (16-, 20-, or 24-bit), I2S (16-, 20-, or 24-bit) left justified, and DSP (16-bit) data formats. The device is fully compatible with AES standard sampling rates of 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz, including de-emphasis for 44.1-kHz and 48-kHz sample rates. The TAS5076 plus the TAS51xx power stage device combination was designed for home theater applications such as DVD minicomponent systems, home theater in a box (HTIB), DVD receiver, A/V receiver, or TV sets. 1.1 Features • • • • • • • • • • • • TI PurePath Digital Audio Amplifier High-Quality Audio − Up to105-dB Dynamic Range† − <0.005% THD+N Six-Channel Volume Control − Patented Soft Volume − Patented Soft Mute 16-, 20-, or 24-Bit Input Data Sampling Rates: 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, and 192 kHz Supports Master and Slave Modes 3.3-V Power-Supply Operation Economical 80-Pin TQFP Package De-Emphasis: 32 kHz, 44.1 kHz, and 48 kHz Clock Oscillator Circuit for Master Modes Low-Jitter Internal PLL Soft Volume and Mute Update † Measured TAS5076-TAS5182 EVM Equibit and PurePath Digital are trademarks of Texas Instruments. Other trademarks are the property of their respective owners. SLES090A—November 2003—Revised January 2004 TAS5076 1 Introduction DVSS_PWM DVDD_PWM DVSS_RCL DVDD_RCL VREGC_CAP VREGB_CAP VREGA_CAP AVSS_PLL Functional Block Diagram AVDD_PLL 1.2 Power Supply PWM Section MCLK_IN XTAL_OUT XTAL_IN DBSPD M_S PLL_FLT_RET SCLK LRCLK MCLKOUT SDIN1 SDIN2 SDIN3 DM_SEL1 DM_SEL2 SDA SCL CSO Clock, PLL and Serial Data I/F Signal Processing PWM Ch. PWM Ch. Serial Control I/F Auto Mute De-Emphasis Soft Volume Error Recovery Soft Mute Clip Detect PWM Ch. PWM Ch. RESET PDN Reset, Pwr Dwn and Status PWM Ch. CLIP MUTE Output Control PLL_FLT_OUT PWM Ch. PWM_AP_1 PWM_AM_1 PWM_BP_1 PWM_BM_1 VALID_1 PWM_AP_2 PWM_AM_2 PWM_BP_2 PWM_BM_2 VALID_2 PWM_AP_3 PWM_AM_3 PWM_BP_3 PWM_BM_3 VALID_3 PWM_AP_4 PWM_AM_4 PWM_BP_4 PWM_BM_4 VALID_4 PWM_AP_5 PWM_AM_5 PWM_BP_5 PWM_BM_5 VALID_5 PWM_AP_6 PWM_AM_6 PWM_BP_6 PWM_BM_6 VALID_6 ERR_RCVY 2 TAS5076 SLES090A—November 2003—Revised January 2004 Introduction 1.3 Terminal Assignments AVDD_OSC XTL_IN XTL_OUT AVSS_OSC DVSS PWM_AP1 PWM_AM_1 VALID_1 PWM_BM_1 PWM_BP_1 PWM_AP_2 PWM_AM_2 VALID_2 PWM_BM_2 PWM_BP_2 PWM_AP_3 PWM_AM_3 VALID_3 PWM_BM_3 PWM_BP_3 PFC PACKAGE (TOP VIEW) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 9 52 10 51 11 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 VREGB_CAP DVDD_RCL DVSS_RCL DVDD_PWM DVSS_PWM PWM_AP_4 PWM_AM_4 VALID_4 PWM_BM_4 PWM_BP_4 PWM_AP_5 PWM_AM_5 VALID_5 PWM_BM_5 PWM_BP_5 PWM_AP_6 PWM_AM_6 VALID_6 PWM_BM_6 PWM_BP_6 NC NC NC DBSPD CLIP SDIN1 SDIN2 SDIN3 MCLK_OUT SCLK LRCLK DVDD DVSS VREGC_CAP DEM_SEL2 DEM_SEL1 M_S DVSS1 DVSS1 NC NC NC MCLK_IN AVDD_PLL PLL_FLT_OUT PLL_FLT_RET AVSS_PLL NC VREGA_CAP DVSS1 NC RESET ERR_RCVRY MUTE PDN SDA SCL CS0 NC NC NC − No internal connection SLES090A—November 2003—Revised January 2004 TAS5076 3 Introduction 1.4 Ordering Information T AS 5076 PFC Texas Instruments Audio Solutions Device Number Package Type AVAILABLE OPTIONS PACKAGE 1.5 TA PLASTIC 80-PIN TQFP (PFC) 0°C to 70°C TAS5076PFC Terminal Functions TERMINAL NAME NO. FUNCTION† DESCRIPTION AVDD_OSC 80 P Analog power supply for internal oscillator cells AVDD_PLL 4 P Analog power supply for PLL AVSS_OSC 77 O Analog ground for internal oscillator cells AVSS_PLL 7 P Analog ground for PLL CLIP 25 O CS0 18 I Digital clipping indicator, active low I2C serial control chip address select input, active high DBSPD 24 I Sample rate is double speed (88.2 kHz or 96 kHz), active high DEM_SEL1 36 I De-emphasis select bit 2, 10 = 48 kHz, 11= undefined (none) DEM_SEL2 35 I De-emphasis select bit 1 (0 = none, 01 = 32 kHz, 10 = 44.1 kHz DVDD 32 P Digital power supply DVDD_PWM 57 P Digital power supply for PWM DVDD_RCL 59 P Digital power supply for reclocker DVSS 33, 76 P Digital ground for digital core and most of I/O buffers DVSS1 Digital ground for digital core and most of I/O buffers 10, 38, 39 I/O DVSS_PWM 56 P Digital ground for PWM DVSS_RCL 58 P Digital ground for reclocker ERR_RCVRY 13 I Error recovery input, active low LRCLK 31 I/O M_S 37 I Master/slave mode input signal (master = 1, slave = 0) Serial audio data left / right clock (sampling rate clock) (input when M_S = 0; output when M_S = 1) MCLK_IN 3 I MCLK input, slave mode (or master / double-speed mode) MCLK_OUT 29 O MCLK output buffered system clock output if M_S = 1; otherwise set to 0 MUTE 14 I Mute input signal, active low (muted signal = 0, normal mode = 1) N/C 1, 2, 8, 11, 19−23, 40 — PDN 15 I Not connected Power down, active low PLL_FLT_OUT 5 O PLL external filter † I = input; O = output; I/O = input/output; P = power 4 TAS5076 SLES090A—November 2003—Revised January 2004 Introduction TERMINAL NAME NO. FUNCTION† DESCRIPTION PLL_FLT_RET 6 O PLL external filter (internally connected to AVSS_PLL) PWM_AM_1 74 O PWM 1 output (differential -); {positive H-bridge side} PWM_AM_2 69 O PWM 2 output (differential -); {positive H-bridge side} PWM_AM_3 64 O PWM 3 output (differential -); {positive H-bridge side} PWM_AM_4 54 O PWM 4 output (differential -); {positive H-bridge side} PWM_AM_5 49 O PWM 5 output (differential -); {positive H-bridge side} PWM_AM_6 44 O PWM 6 output (differential -); {positive H-bridge side} PWM_AP_1 75 O PWM 1 output (differential +); {positive H-bridge side} PWM_AP_2 70 O PWM 2 output (differential +); {positive H-bridge side} PWM_AP_3 65 O PWM 3 output (differential +); {positive H-bridge side} PWM_AP_4 55 O PWM 4 output (differential +); {positive H-bridge side} PWM_AP_5 50 O PWM 5 output (differential +); {positive H-bridge side} PWM_AP_6 45 O PWM 6 output (differential +); {positive H-bridge side} PWM_BM_1 72 O PWM 1 output (differential -); {negative H-bridge side} PWM_BM_2 67 O PWM 2 output (differential -); {negative H-bridge side} PWM_BM_3 62 O PWM 3 output (differential -); {negative H-bridge side} PWM_BM_4 52 O PWM 4 output (differential -); {negative H-bridge side} PWM_BM_5 47 O PWM 5 output (differential -); {negative H-bridge side} PWM_BM_6 42 O PWM 6 output (differential -); {negative H-bridge side} PWM_BP_1 71 O PWM 1 output (differential +); {negative H-bridge side} PWM_BP_2 66 O PWM 2 output (differential +); {negative H-bridge side} PWM_BP_3 61 O PWM 3 output (differential +); {negative H-bridge side} PWM_BP_4 51 O PWM 4 output (differential +); {negative H-bridge side} PWM_BP_5 46 O PWM 5 output (differential +); {negative H-bridge side} PWM_BP_6 41 O PWM 6 output (differential +); {negative H-bridge side} RESET 12 I System reset input, active low SCL 17 I I2C serial control clock input SCLK 30 I/O Serial audio data clock (shift clock) SDA 16 I/O I2C serial control data input/ output SDIN1 26 I Serial audio data 1 input SDIN2 27 I Serial audio data 2 input SDIN3 28 I Serial audio data 3 input VALID_1 73 O Output indicating validity of PWM outputs, channel 1, active high VALID_2 68 O Output indicating validity of PWM outputs, channel 2, active high VALID_3 63 O Output indicating validity of PWM outputs, channel 3, active high VALID_4 53 O Output indicating validity of PWM outputs, channel 4, active high VALID_5 48 O Output indicating validity of PWM outputs, channel 5, active high VALID_6 43 O Output indicating validity of PWM outputs, channel 6, active high VREGA_CAP 9 P Voltage regulator capacitor VREGB_CAP 60 P Voltage regulator capacitor VREGC_CAP 34 P Voltage regulator capacitor XTL_IN 79 I Crystal or TTL level clock input XTL_OUT 78 O Crystal output (not for external usage) † I = input; O = output; I/O = input/output; P = power SLES090A—November 2003—Revised January 2004 TAS5076 5 Introduction 6 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2 Architecture Overview The TAS5076 is composed of six functional elements: • • • • • • 2.1 Clock, PLL, and serial data interface (I2S) Reset/power-down circuitry Serial control interface (I2C) Signal processing unit Pulse-width modulator (PWM) Power supply Clock and Serial Data Interface The TAS5076 clock and serial data interface contain an input serial data slave and the clock master/slave interface. The serial data slave interface receives information from a digital source such as a DSP, S/PDIF receiver, analog-to-digital converter (ADC), digital audio processor (DAP), or other serial bus master. The serial data interface has three serial data inputs that can accept up to six channels of data at data sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz, or 192 kHz. The serial data interfaces support left justified and right justified for 16, 20, and 24 bits. In addition, the serial data interface supports the DSP protocol for 16 bits and the I2S protocol for 24 bits. The TAS5076 can function as a receiver or a generator for the MCLK_IN (master clock), SCLK (shift clock), and LRCLK (left/right clock) signals that control the flow of data on the three serial data interfaces. The TAS5076 is a clock master when it generates these clocks and is a clock slave when it receives these clocks. The TAS5076 is a synchronous design that relies upon the master clock to provide a reference clock for all of the device operations and communication via the I2C. When operating as a slave, this reference clock is MCLK_IN. When operating as a master, the reference clock is either a TTL clock input to XTAL_IN or a crystal attached across XTAL_IN and XTAL_OUT. The clock and serial data interface has two control parameters: data sample rate and clock master or slave. 2.1.1 Normal-Speed, Double-Speed, and Quad-Speed Selection The data sample rate is selected through a terminal (DBSPD) or the serial control register 0 (0x02). The data sample rate control sets the frequencies of the SCLK and LRCLK in clock slave mode and the output frequencies of SCLK and LRCLK in clock master mode. There are three data rates: normal speed, double speed, and quad speed. Normal-speed mode supports data rates of 32 kHz, 44.1 kHz, and 48 kHz. Normal speed is supported in the master and slave modes. Double-speed mode is used to support sampling rates of 88.2 kHz and 96 kHz. Double speed is supported in master and slave modes. Quad-speed mode is used to support sampling rates of 176.4 kHz and 192 kHz. The PWM is placed in normal speed by setting the DBSPD terminal low or by setting the normal mode bits in the system control register 0 (0x02) through the serial control interface. The PWM is placed in double speed mode by setting the DBSPD terminal high or by setting the double speed bits in the system control register. Quad-speed mode is supported; in slave mode it is auto-detected, and in master mode it is invoked using the I2C serial control interface. In slave mode, if the TAS5076 is not in double speed mode, quad-speed mode is automatically detected when MCLK_IN is 128 Fs. In master mode, the PWM is placed in quad-speed mode by setting the quad-speed bit in the system control register through the serial control interface. If the master clock is well behaved during the frequency transition (the high or low clock periods are not less than 20 ns), then a simple speed selection is performed by setting the DBSPD terminal or the serial control register. When the sample rate is changed, the TAS5076 temporarily suspends processing, places the PWM outputs in a hard mute (PWM P outputs low, PWM M outputs high, and all VALID signals low), resets all internal processes, and suspends all I2C operations. The TAS5076 then performs a partial re-initialization and noiselessly restarts the PWM output. The TAS5076 preserves all control register settings throughout this sequence. If desired, the sample rate change can be performed while mute is active to provide a completely silent transition. The timing of this control sequence is shown in Section 4. SLES090A—November 2003—Revised January 2004 TAS5076 7 Architecture Overview If the master clock input can encounter high clock or low clock period of less than 20 ns while the data rates are changing, then RESET must be applied during this time. There are two recommended control procedures for this case, depending upon whether the DBSPD terminal or the serial control interface is used. These control sequences are shown in Section 4. Table 2−1. Normal-Speed, Double-Speed, and Quad-Speed Operation QUAD-SPEED CONTROL REGISTER BIT DBSPD TERMINAL OR CONTROL REGISTER BIT MODE SPEED SELECTION 0 0 Master or slave Normal speed 0 1 Master or slave Double speed 1 0 Master or slave Quad speed 0 0 Slave Quad speed if MCLK_IN = 128Fs 1 1 Master or slave Error 2.1.2 Clock Master/Slave Mode (M_S) Clock master and slave mode can be invoked using the M_S (master slave) terminal. This terminal specifies the default mode that is set immediately following a device RESET. The serial data interface setting permits the clock generation mode to be changed during normal operation. The transition to master mode occurs following a RESET when M_S terminal has a logic high applied. The transition to slave mode occurs following a RESET when M_S terminal has a logic low applied. 2.1.3 Clock Master Mode When M_S = 1 following a RESET, the TAS5076 provides the master clock, SCLK, and LRCLK to the rest of the system. In the master mode, the TAS5076 outputs the audio system clocks MCLK_OUT, SCLK, and LRCLK. The TAS5076 device generates these clocks plus its internal clocks from the internal phase-locked loop (PLL). The reference clock for the PLL can be provided by either an external clock source (attached to XTAL_IN) or a crystal (connected across terminals XTAL_IN and XTAL_OUT). The external source attached to MCLK_IN is 256 times (128 in quad mode) the data sample rate (Fs). The SCLK frequency is 64 times the data sample rate and the SCLK frequency of 48 times the data sample rate is not supported in the master mode. The LRCLK frequency is the data sample rate. 8 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2.1.3.1 Crystal Type and Circuit In clock master mode the TAS5076 can derive the MCLKOUT, SCLK, and LRCLK from a crystal. In this case, the TAS5076 uses a parallel-mode fundamental crystal. This crystal is connected to the TAS5076 as shown in Figure 2−1. TAS5076 C1 rd OSC MACRO XO C2 XI AVSS rd = Drive Level Control Resistor − Crystal Vendor Specified CL = Crystal Load Capacitance (Capacitance of Circuitry Between the Two Terminals of the Crystal) CL = (C1 × C2 )/(C1 + C2 ) + CS (Where CS = Board Stray Capacitance ≈ 3 pF) Example: Vendor-Recommended CL = 18 pF, CS = 3 pF ≥ C1 = C2 = 2 × (18−3) = 30 pF Figure 2−1. Crystal Circuit 2.1.4 Clock Slave Mode In the slave mode (M_S = 0), the master clock, LRCLK, and SCLK are inputs to the TAS5076. The master clock is supplied through the MCLK_IN terminal. As in the master mode, the TAS5076 device develops its internal timing from the internal phase-locked loop (PLL). The reference clock for the PLL is provided by the input to the MCLK_IN terminal. This input is at a frequency of 256 times (128 in quad mode) the input data rate. The SCLK frequency is 48 or 64 times the data sample rate. The LRCLK frequency is the data sample rate. The TAS5076 does not require any specific phase relationship between SRCLK and MCLK_IN, but there must be synchronization. The TAS5076 monitors the relationship between MCLK, SCLK, and LRCLK. The TAS5076 detects if any of the three clocks is absent, if the LRCLK rate changes more than 10 MCLK cycles since the last device reset or clock error, or if the MCLK frequency is changing substantially with respect to the PLL frequency. When a clock error is detected, the TAS5076 performs a clock error management sequence. The clock error management sequence temporarily suspends processing, places the PWM outputs in a hard mute (PWM_P outputs are low, PWM_M outputs are high, and all VALID signals are low), resets all internal processes, sets the volumes to mute, and suspends all I2C operations. When the error condition is corrected, the TAS5076 exits the clock error sequence by performing a partial re-initialization, noiselessly restarting the PWM output, and ramping the volume up to the level specified in the volume control registers. This sequence is performed over a 60-ms interval. The TAS5076 preserves all control register settings that were set prior to the clock interruption. If a clock error occurs while the ERR_RCVRY terminal is asserted (low), the TAS5076 performs the error management sequence up to the unmute sequence. In this case, the volume remains at full attenuation with the PWM output at a 50% duty cycle. The volume can be restored from this latched mute state by triggering a mute/unmute sequence by asserting and releasing MUTE either by using the terminal, the system control register 0x01 D4, or the individual channel mute register D5−D0. SLES090A—November 2003—Revised January 2004 TAS5076 9 Architecture Overview Alternatively, the TAS5076 can be prevented from entering the latched mute state following a clock error when the ERR_RCVRY terminal or the error recovery I2C command (register 0x03 bit D2) is active by writing 0x7F to the individual error recovery register (0x04) and 0x84 to the feature enable register (0x1F). Table 2−2. Master and Slave Clock Modes M_S DBSPD XTL_IN (MHz)† MCLK_IN (MHz)‡ Internal PLL, master, normal speed 1 0 8.192 – Internal PLL, master, normal speed 1 0 11.2896 Internal PLL, master, normal speed 1 0 12.288 DESCRIPTION SCLK (MHz)k LRCLK (kHz)¶ MCLK_OUT (MHz)# 2.048 32 8.192 – 2.8224 44.1 11.2896 – 3.072 48 12.288 5.6448 88.2 22.5792 6.144 96 24.576 22.5792 Internal PLL, master, double speed 1 1 – Internal PLL, master, double speed 1 1 – 22.5792§ 24.576§ Internal PLL, master, quad speed 1 0 – 22.5792 11.2896 176.4 Internal PLL, master, quad speed 1 0 – 192 24.576 0 0 – 24.576 8.192§ 12.288 Internal PLL, slave, normal speed 2.0484 32 Digital GND Internal PLL, slave, normal speed 0 0 – 2.8224 44.1 Digital GND Internal PLL, slave, normal speed 0 0 – 11.2896§ 12.288§ 3.072 48 Digital GND Internal PLL, slave, double speed 0 1 – 5.6448 88.2 Digital GND Internal PLL, slave, double speed Internal PLL, slave, quad speed || 0 1 – 22.5792 24.576§ 6.144 96 Digital GND 0 0 – 22.5792§ 24.576§ 11.2896 176 Digital GND Internal PLL, slave, quad speed || 0 0 – 12.288 † A crystal oscillator is connected to XTL_IN. ‡ MCLK_IN tied low when input to XTL_IN is provided; XTL_IN tied low when MCLK_IN_IN is provided. § External MCLK_IN connected to MCLK_IN_IN input ¶ SCLK and LRCLK are outputs when M_S = 1, and inputs when M_S = 0. # MCLK_OUT is driven low when M_S = 0. || Quad-speed mode is detected automatically. k SCLK can be 48 or 64 times Fs 192 Digital GND Table 2−3. LRCLK and MCLK_IN Rates NORMAL SPEED (kHz) DOUBLE SPEED (kHz) QUAD SPEED (kHz) LRCLK 1 Fs 32 44.1 48 1 Fs 64 88.2 96 1 Fs 176.4 192 MCLK_IN 256 Fs 8,192 11,289.6 12,288 256 Fs 16,384 22,579.2 24,576 128 Fs 22,579.2 24,576 2.1.5 PLL External Filter In the TAS5076, a low-jitter PLL produces the internal timing (when in master mode), the master clock, SCLK, and LRCLK. Connections for the PLL external filter are provided through PLL_FLT_OUT and PLL_FLT_RET as shown in Figure 2−2. PLL_FLT_OUT 110 Ω 22 nF TAS5076 220 nF PLL_FLT_RET Figure 2−2. PLL External Filter 10 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2.1.6 DCLK DCLK is the internal high-frequency clock that is produced by the PLL circuitry from MCLK. The TAS5076 uses the DCLK to control all internal operations. DCLK is 8 times the speed of MCLK in normal speed mode, 4 times MCLK in double speed, and 2 times MCLK in quad speed. With respect to the I2C addressable registers, DCLK clock cycles are used to specify interchannel delay and to detect when the MCLK frequency is drifting. Table 2−4 DCLK shows the relationship between sample rate, MCLK, and DCLK. Table 2−4. DCLK Fs (kHz) MCLK (MHz) DCLK (MHz) DCLK Period (ns) 15.3 32 8.1920 65.5360 44.1 11.2896 90.3168 11.1 48 12.2880 98.3040 10.2 88 22.5280 90.1120 11.1 96 24.5760 98.3040 10.2 192 49.1520 98.3040 10.2 2.1.7 Serial Data Interface The TAS5076 operates as a slave only/receive only serial data interface in all modes. The TAS5076 has three PCM serial data interfaces to accept six channels of digital data though the SDIN1, SDIN2, SDIN3 inputs. The serial audio data is in MSB-first, twos-complement format. The serial data interfaces of the TAS5076 can be configured in right-justified, I2S, left-justified, or DSP modes. This interface supports 32-kHz, 44.1-kHz, 48-kHz, 88-kHz, 96-kHz, 176.4-kHz, and 192-kHz data sample rates. The serial data interface format is specified using the data interface control register. The supported word lengths are shown in Table 2−5. During normal operating conditions if the serial data interface settings change state, an error recovery sequence is initiated. Table 2−5. Supported Word Lengths 2.1.7.1 DATA MODES WORD LENGTHS MOD2 MOD1 MOD0 Right justified, MSB first 16 0 0 0 Right justified, MSB first 20 0 0 1 Right justified, MSB first I2S 24 0 1 0 16 0 1 1 I2S I2S 20 1 0 0 24 1 0 1 Left justified, MSB first 24 1 1 0 DSP frame 16 1 1 1 I2S Timing I2S timing uses LRCLK to define when the data being transmitted is for the left channel or the right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 48 or 64 times Fs is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of the bit clock. The TAS5076 masks unused trailing data bit positions. Master mode only supports a 64 times Fs bit clock. SLES090A—November 2003—Revised January 2004 TAS5076 11 Architecture Overview 2-Channel I2S (Philips Format) Stereo Input 32 Clks LRCLK (Note Reversed Phase) 32 Clks Left Channel Right Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 5 4 1 0 1 0 1 MSB 0 LSB 23 22 9 8 5 4 19 18 5 4 1 0 15 14 1 0 1 0 20-Bit Mode 19 18 16-Bit Mode 15 14 Figure 2−3. I2S 64-Fs Format 2-Channel I2S Stereo Input/Output (24-Bit Transfer Word Size) 24 Clks 24 Clks LRCLK Right Channel Left Channel SCLK SCLK MSB 24-Bit Mode LSB 23 22 21 20 19 8 7 5 4 5 4 1 0 1 0 3 2 1 MSB 0 LSB 23 22 21 20 19 8 7 5 4 19 18 17 16 15 5 4 1 0 11 1 0 3 2 1 20-Bit Mode 19 18 17 16 15 16-Bit Mode 15 14 13 12 11 15 14 13 12 Figure 2−4. I2S 48-Fs Format 2.1.7.2 Left-Justified Timing Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 48 or 64 times Fs is used to clock in the data. The first bit of data appears on the data lines at the same time that LRCLK toggles. The data is written MSB first and is valid on the rising edge of the bit clock. The TAS5076 masks unused trailing data bit positions. Master mode only supports a 64 times Fs bit clock. 12 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2-Channel Left-Justified Stereo Input 32 Clks 32 Clks LRCLK LRCLK Right Channel Left Channel SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 1 0 MSB 23 22 LSB 9 8 5 4 1 0 NOTE: All data presented in 2s complement form with MSB first. Figure 2−5. Left-Justified 64-Fs Format 2-Channel Left-Justified Stereo Input/Output (24-Bit Transfer Word Size) 24 Clks 24 Clks LRCLK Right Channel Left Channel SCLK MSB 24-Bit Mode LSB 23 22 21 20 19 9 8 5 4 3 2 1 0 MSB 23 22 21 20 19 LSB 9 8 5 4 3 2 1 0 Figure 2−6. Left-Justified 48-Fs Format 2.1.7.3 Right-Justified Timing Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 48 or 64 times Fs is used to clock in the data. The first bit of data appears following the eighth bit-clock period (for 24-bit data) after LRCLK toggles. In RJ mode, the last bit clock before LRCLK transitions always clocks the LSB of data. The data is written MSB first and is valid on the rising edge of the bit clock. The TAS5076 masks unused leading data bit positions. Master mode only supports a 64 times Fs bit clock. SLES090A—November 2003—Revised January 2004 TAS5076 13 Architecture Overview 2-Channel Right-Justified (Sony Format) Stereo Input 32 Clks 32 Clks LRCLK Right Channel Left Channel SCLK MSB 24-Bit Mode LSB 23 22 19 18 15 14 1 0 19 18 15 14 1 0 15 14 1 0 MSB LSB 23 22 19 18 15 14 1 0 19 18 15 14 1 0 15 14 1 0 20-Bit Mode 16-Bit Mode NOTE: All data presented in 2s complement form with MSB first. Figure 2−7. Right-Justified 64-Fs Format 2-Channel Right-Justified Stereo Input/Output (24-Bit Transfer Word Size) 24 Clks 24 Clks LRCLK Right Channel Left Channel SCLK MSB 24-Bit Mode LSB 23 22 21 20 19 18 MSB LSB 15 14 9 8 1 0 23 22 21 20 19 18 15 14 9 8 1 0 15 14 9 8 1 0 19 18 15 14 9 8 1 0 15 14 9 8 1 0 15 14 9 8 1 0 20-Bit Mode 19 18 16-Bit Mode NOTE: All data presented in 2s complement form with MSB first. Figure 2−8. Right-Justified 48-Fs Format 14 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2.1.7.4 DSP Mode Timing DSP mode timing uses LRCLK to define when data is to be transmitted for both channels. A bit clock running at 64 × Fs is used to clock in the data. The first bit of the left channel data appears on the data lines following the LRCLK transition. The data is written MSB first and is valid on the rising edge of the bit clock. The TAS5076 masks unused trailing data bit positions. SCLK 64 SCLKS LRCLK MSB LSB MSB LSB SDIN 16 Bits Left Channel 16 Bits Right Channel 32 Bits Unused Figure 2−9. DSP Format 2.2 Reset, Power Down, and Status The reset, power-down, and status circuitry provides the necessary controls to bring the TAS5076 to the initial inactive condition, achieve low-power standby, and report system status. 2.2.1 Reset—RESET The TAS5076 is placed in the reset mode by setting the RESET terminal low. RESET is an asynchronous control signal that restores the TAS5076 to its default conditions, sets the valid 1−6 outputs low, and places the PWM in the hard mute state. Volume is immediately set to full attenuation (there is no ramp down). As long as the RESET terminal is held low, the device is in the reset state. During reset, all I2C and serial data bus operations are ignored. Table 2−6 shows the device output signals while RESET is active. Upon the release of RESET, if POWER_DWN is high, the system performs a 4-ms to 5-ms device initialization and then ramps the volume up to 0 db using a soft volume update sequence. If MCLK_IN is not active when RESET is released high, then a 4-ms to 5-ms initialization sequence is produced once MCLK_IN becomes active. During device initialization all controls are reset to their initial states. Table 2−7 shows the control settings that are changed during initialization. RESET must be applied during power-up initialization or while changing the master slave clock states. SLES090A—November 2003—Revised January 2004 TAS5076 15 Architecture Overview Table 2−6. Device Outputs During Reset SIGNAL MODE SIGNAL STATE Valid 1−Valid 6 All Low PWM_P outputs All Low PWM_M outputs All Low MCLK_OUT All Low Master Low SCLK Slave Signal input LRCLK Master Low LRCLK SCLK Slave Signal input SDA All Signal input CLIP All High Because the RESET is an asynchronous control signal, small clicks and pops can be produced during the application (the leading edge) of this control. However, when RESET is released, the transition from the hard mute state back to normal operation is performed synchronously using a quiet sequence. If a completely quiet reset sequence is desired, MUTE must be applied before applying RESET. Table 2−7. Values Set During Reset CONTROL SETTING Volume 0 dB MCLK_IN frequency 256 Master/slave mode M_S terminal state Automute Enabled De-emphasis None Dc offset 0 Interchannel delay Each channel is set to default value 2.2.2 Power Down—PDN The TAS5076 can be placed into the power-down mode by holding the PDN terminal low. When the power-down mode is entered, both the PLL and the oscillator are shut down. Volume is immediately set to full attenuation (there is no ramp down). The valid 1−6 outputs are immediately asserted low and the PWM outputs are placed in the hard mute state. PDN initiates device power down without clock inputs. As long as the PDN terminal is held low, the device is in the power-down (hard mute) state. During power down, all I2C and serial data bus operations are ignored. Table 2−8 shows the device output signals while PDN is active. Table 2−8. Device Outputs During Power Down SIGNAL MODE SIGNAL STATE Valid 1−Valid 6 All Low PWM_P outputs All Low PWM_M outputs All Low MCLK_OUT All Low Master Low SCLK Slave Signal input LRCLK Master Low LRCLK Slave Signal input SDA All Signal input CLIP All High SCLK To place the device in total power-down mode, both RESET and power-down modes must be enabled. Prior to bringing PDN high, RESET must be brought low for a minimum of 50 ns. 16 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview Because PDN is an asynchronous control signal, small clicks and pops can be produced during the application (the leading edge) of this control. However, when PDN is released, the transition from the hard mute state back to normal operation is performed synchronously using a quiet sequence. If a completely quiet reset sequence is desired, MUTE must be applied before applying PDN. 2.2.3 General Status Register The general status register is a read-only register. This register provides an indication when a volume update is in progress or one of the channels is inactive. The device ID can be read using this register. Volume update is in progress—Whenever a volume change is in progress due to a volume update command or mute, this status bit is high. Device identification code—The device identification code 0 0000 is displayed. No internal errors (all valid signals are high)—When there are no internal errors in the TAS5076 and all outputs are valid, this status bit is high. One or more valid signals are inactive—If low, one or more channels of the TAS5076 are not outputting data. The valid signals for those channels are inactive. Inactive valid signals can be produced by one of these causes: • One or more of the clock signals are in error. • ERROR recover is active (low). • The automute has silenced one or more channels that are receiving 0 inputs. • MUTE has been set. • Volume control has been set to full attenuation. If this signal is high, the TAS5076 is outputting data on all channels. 2.2.4 Error Status Register The error status register indicates historical information on control signal changes and clock errors. This register latches these indications when they occur. The indications are cleared by writing 00h to the register. This register is intended as a diagnostic tool to be used only when the system is not operating correctly. This is because the error status bits are set when the data rate, serial data interface format, or master/slave mode is changed. As a result, this register indicates an error condition even though the system is operating normally. This register must be used only while diagnosing transient error conditions. Any clock error or control signal terminal change that occurs since the last time the error status register was cleared is displayed. In using this register, the first step is to initialize the device and verify that all of the clock signals are active. Then this register must be cleared by writing 00h. After this point, the register indicates any errors or control signal changes. This register indicates an error condition by a high for the following conditions: • • • • • • • Fs error A control terminal change has occurred (M_S, DBLSPD). LRCLK error MCLK_IN count error DCLK phase error with respect to MCLK_IN MCLK_IN phase error with respect to DCLK PWM timing error If all bits of the register are low, no errors have occurred and no control terminals changed. There is no one-to-one correspondence of clock error indication to a system error condition. A particular system error can be indicated by one or more error indications in this register. The system error conditions and the reported errors are as follows: There is no correct number of MCLKs per LRCLK: • • • Fs error has occurred. LRCLK error MCLK_IN count error SLES090A—November 2003—Revised January 2004 TAS5076 17 Architecture Overview LRCLK is absent: • LRCLK error MCLK is the wrong frequency, changing frequency, or absent: • • • DCLK phase error with respect to MCLK MCLK phase error with respect to DCLK PWM timing error SCLK is the wrong frequency or absent • 2.3 SCLK error Signal Processing This section contains the signal processing functions that are contained in the TAS5076. The signal processing is performed using a high-speed 24-bit signal processing architecture. The TAS5076 has the following signal processing features: • Individual channel soft volume with a range of 24 dB to −114 dB plus mute • Soft mute • Automute • 50-µs/15-µs de-emphasis filter supported in the sampling rates 32 kHz, 44.1 kHz, and 48 kHz 2.3.1 Volume Control The gain of each output can be adjusted by a soft digital volume control for each channel. Volume adjustments are performed using a soft gain update s-curve, which is approximated using a second-order filter fit. The curve fit is performed over a transition interval between 41 ms and 65 ms. The volume of each channel can be adjusted from mute to −114 dB to 24 dB in 0.5 dB steps. Because of the numerical representation that is used to control the volume, at very low volume levels the step size increases for gains of that are less than −96 dB. The default volume setting following power up or reset is 0 dB for all channels. The step size adjustment is linear down to approximately −90 dB, see Figure 2−10. STEP SIZE vs ATTENUATION (GAIN) 6.0 5.5 5.0 4.5 Step Size − dB 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0 10 20 Attenuation (Gain) − dB Figure 2−10. Attenuation Curve The volume control format for each channel is expressed in 8 bits. The volume for each channel is set by writing 8 bits via the serial control interface. The MSB bit is written first as in the bit position 0 (LSB position). 18 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview The volume for each channel can be set using a single- or multiple-address write operation to the volume control register via the serial control interface. Changing the volume of all six channels requires that 6 registers be updated. To coordinate the volume adjustment of multiple channels simultaneously, the TAS5076 performs a delayed volume update upon receiving a volume change command. Following the completion of the register volume write operations, the TAS5076 waits for 5 ms for another volume command to be given. If no volume command is issued in that period of time, the TAS5076 starts adjusting the volume of the channels that received volume settings. While a volume update is being performed, the system status register indicates that the update is in progress. During the update, all subsequent volume control setting requests that are sent to the TAS5076 are received and stored as a single next value for a subsequent update. If more than one volume setting request is sent, only the last is retained. Table 2−9. Volume Register VOLUME REGISTER D7 D6 D5 D4 D3 D2 D1 D0 Vol Bit 7 Vol Bit 6 Vol Bit 5 Vol Bit 4 Vol Bit 3 Vol Bit 2 Vol Bit 1 Vol Bit 0 2.3.2 Mute The application of mute ramps the volume from any setting to the noiseless hard-mute state. There are two methods in which the TAS5076 can be placed into mute. The TAS5076 is placed in the noiseless mute when the MUTE terminal is asserted low for a minimum of 3 MCLK_IN cycles. Alternatively, the mute mode can be initiated by setting the mute bit in the system control register through the serial control interface. The TAS5076 is held in mute state as long as the terminal is low or I2C mute setting is active. This command uses quiet entry and exit sequences to and from the hard-mute state. If an error recovery (described in the PWM section) occurs after a mute request has been received, the device returns from error recovery with the channel volume set as specified by the mute command. 2.3.3 Automute Automute is an automatic sequence that can be enabled or disabled via the serial control interface. The default for this control is enabled. When enabled, the PWM automutes an individual channel when a channel receives from 5 ms to 50 ms of consecutive zeros. This time interval can be selectable using the automute delay register. The default interval is 5 ms. This duration is independent of the sample rate. The automute state is exited when two consecutive samples of nonzero data are received. The TAS5076 exit from automute is performed quickly and preserves all music information. This mode uses the valid low to provide a low-noise floor while maintaining a short start-up time. Noise free entry and exit is achieved by using the PWM quiet start and stop sequences. 2.3.4 Individual Channel Mute Individual channel mute is invoked through the serial interface. Individual channel mute permits each channel of the TAS5076 to be individually muted and unmuted. The operation that is performed is identical to the mute operation; however, it is performed on a per-channel basis. A TAS5076 channel is held in the mute state as long as the serial interface mute setting for that channel is set. 2.3.5 De-Emphasis Filter For audio sources that have been pre-emphasized, a precision 50-µs/15-µs de-emphasis filter is provided to support the sampling rates of 32 kHz, 44.1 kHz, and 48 kHz. See Figure 2−11 for a graph showing the de-emphasis filtering characteristics. De-emphasis is set using two bits in the system control register. SLES090A—November 2003—Revised January 2004 TAS5076 19 Architecture Overview Table 2−10. De-Emphasis Filter Characteristics DEM_SEL2 (MSB) DEM_SEL1 DESCRIPTION 0 0 De-emphasis disabled 0 1 De-emphasis enabled for Fs = 48 kHz 1 0 De-emphasis enabled for Fs = 44.1 kHz 1 1 De-emphasis enabled for Fs = 32 kHz Response − dB Following the change of state of the de-emphasis bits, the PWM outputs go into the soft mute state. After 128 LRCLK periods for initialization, the PWM outputs are driven to the normal (unmuted) mode. 0 De-Emphasis −10 3.18 (50 µs) 10.6 (15 µs) f − Frequency − kHz Figure 2−11. De-Emphasis Filter Characteristics 2.4 Pulse-Width Modulator (PWM) The TAS5076 contains six channels of high performance digital Equibit PWM modulators that are designed to drive switching output stages (back ends) in both single-ended (SE) and H-bridge (bridge tied load) configuration. The TAS5076 device uses noise shaping and sophisticated error correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The PWM provides six pseudodifferential outputs to drive six monolithic power stages (such as TAS5110) or six discrete differential power stages using gate drivers (such as the TAS5182) and MOSFETs in single-ended or bridged configurations. The TAS5076 also provides a high-performance differential output that can be used to drive an external analog headphone amplifier. 2.4.1 Clipping Indicator The clipping output is designed to indicate clipping. When any of the six PWM outputs exceeds the maximum allowable amplitude, the clipping indicator is asserted. The clipping indicator is cleared every 10 ms. 2.4.2 Error Recovery Error recovery is used to provide error management and to permit the PWM output to be reset while preserving all intervolume, interchannel delay, dc offsets, and the other internal settings. Error recovery is initiated by bringing the ERR_RCVRY terminal low for a minimum 5 MCLK_IN cycles or by setting the error recovery bit in control register 1. Error recovery is a level-sensitive signal. The device also performs an error recovery automatically: • When the speed configuration is changed to normal, double, or quad speed • Following a change in the serial data bus interface configuration When ERR_RCVRY is brought low, all valid signals go low, and the PWM_P and PWM_M outputs go low. If there are any pending speed configurations, these changes are then performed. When ERR_RCVRY is brought high, a delay of 4 ms to 5 ms is performed before the system starts the output re-initialization sequence. After the initialization time, the TAS5076 begins normal operation. During error recovery, all controls and device settings that were not updated are maintained in their current configurations. To permit error recovery to be used to provide TAS5100 error management and recovery, the delay between the start of (falling edge) error recovery and the falling edge of valid 1 though valid 6 is selectable. This delay can be selected to be either 6 µs or 47 µs. 20 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview During error recovery all serial data bus operations are ignored. At the conclusion of the sequence, the error recovery register bit is returned to the normal operation state. Table 2−11 shows the device output signal states during error recovery. Table 2−11. Device Outputs During Error Recovery MODE SIGNAL STATE Valid 1−Valid 6 SIGNAL All Low PWM_P outputs All Low PWM_M outputs All Low All Low MCLK_OUT SCLK Master Low SCLK Slave Signal input LRCLK Master Low LRCLK Slave Signal input SDA All Signal input CLIP All High The transitions are done using a quiet entrance and exit sequence to prevent pops and clicks. 2.4.3 Individual Channel Error Recovery Individual channel error recovery is used to provide error management and to permit the PWM output to be turned off. Error recovery is initiated by setting one or more of the six error recovery bits in the error recovery register to low. While the error recover bits are brought low, the valid signals go to the low state. When the error recovery bits are brought high, a delay of 4 ms to 5 ms occurs before the channels are returned to normal operation. The delay between the falling edge of the error recover bit and the falling edge of valid 1 though valid 6 is selectable. This delay can be selected to be either 6 µs or 47 µs. The TAS5076 controls the relative timing of the pseudo-differential drive control signals plus the valid signal to minimize the production of system noise during error recovery operations. The transitions to valid low and valid high are done using an almost quiet entrance and exit sequence to prevent pops and clicks. 2.4.4 PWM DC-Offset Correction An 8-bit value can be programmed to each of the six PWM offset correction registers to correct for any offset present in the output stages. The offset correction is divided into 256 intervals with a total offset correction of ±1.56% of full scale. The default value is zero correction represented by 00h. These values can be changed at any time through the serial control interface. 2.4.5 Interchannel Delay An 8-bit value can be programmed to each of the six PWM interchannel delay registers to add a delay per channel from 0 to 255 clock cycles. The delays correspond to cycles of the high-speed internal clock, DCLK. Each subsequent channel has a default value that is N DCLKs larger than the preceding channel. The default interchannel delay for the first channel and the interchannel delay between subsequent channels are mask programmable. The present values are 0 for the first channel with increments of 53 for each successive channel. These values can be updated upon power up through the serial control interface. This delay is generated in the PWM block with the appropriate control signals generated in the CTL block. These values can be changed at any time through the serial control interface. The optimum value for interchannel delay depends on the final system. This value can be adjusted for better performance with regard to dynamic range and THD. It is recommended that the following TC delay values be set instead of the default value. These TC delay values in conjunction with the ABD delay value (see discussion in Section 2.4.6) deliver the best performance in the TAS5076-5182 EVM board. SLES090A—November 2003—Revised January 2004 TAS5076 21 Architecture Overview REGISTER SETTING FUNCTION 0Ch 01h TC delay channel 1 0Dh 49h TC delay channel 2 0Eh 91h TC delay channel 3 0Fh 39h TC delay channel 4 10h 21h TC delay channel 5 11h 69h TC delay channel 6 These values must be reprogrammed every time RESET is asserted. RESET causes default values to be loaded. 2.4.6 ABD Delay A 5-bit value is used to delay the A PWM signals with respect to B PWM signals. The value is the same for all channels. It can be programmed from 0 to 31 DCLK clock cycles. The default ABD value is 20 DCLK clock cycles (10100). This value is mask programmable. This value can be changed at any time through the serial control interface. The optimum value for ABD delay depends on the final system. This value can be adjusted for better performance with regard to dynamic range and THD. It is recommended that the following ABD delay value be set instead of the default value. The ABD delay value in conjunction with the TC delay values delivers the best performance in the TAS5076−5182 EVM board. REGISTER 12h SETTING FUNCTION 1Dh ABD delay This value must be reprogrammed every time RESET is asserted. RESET causes the default value to be loaded. NOTE: The performance of a PurePath Digital amplifier system is optimized by setting the PWM timing based upon the type of back-end device that is used and the layout. These values are set during initialization using the I2C serial interface. 2.4.7 PWM/H-Bridge and Discrete H-Bridge Driver Interface The TAS5076 provides six PWM outputs, which are designed to drive switching output stages (back-ends) in both single-ended (SE) and H-bridge (bridge-tied load) configuration. The back ends can be monolithic power stages (such as the TAS5110) or six discrete differential power stages using gate drivers (such as the the TAS55182) and MOSFETs in single-ended or bridged configurations. The TAS5110 device is optimized for bridge-tied load (BTL) configurations. These devices require a pure differential PWM signal with a third signal (VALID) to control the MUTE state. In the MUTE state, the TAS5110 OUTA and OUTB are both low. One Channel of TAS5076 TAS5110 PWM_AP AP PWM_AM AM VALID OUTA Speaker RESET PWM_BP BP PWM_BM BM OUTB Figure 2−12. PWM Outputs and H-Bridge Driven in BTL Configuration PurePath Digital is a trademark of Texas Instruments. 22 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2.5 I2C Serial Control Interface MCLK must be active for the TAS5076 to support I2C bus transactions. The TAS5076 has a bidirectional serial control interface that is compatible with the I2C (Inter IC) bus protocol and supports both 100-kbps and 400-kbps data transfer rates for single- and multiple-byte write and read operations. This is a slave-only device that does not support a multi-master bus environment or wait state insertion. The control interface is used to program the registers of the device and to read device status. The TAS5076 supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus operation (400 kHz maximum). The TAS5076 performs all I2C operations without I2C wait cycles. The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially one bit at a time. The address and data are transferred in byte (8 bit) format with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a low-to-high transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in Figure 2−13. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledge condition. The TAS5076 holds SDA low during acknowledge clock period to indicate an acknowledgement. When this occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An I2C external pullup resistor must be used for the SDA and SCL signals to set the high level for the bus. SDA R/ A 8 Bit Register Address (N) A W 7 Bit Slave Address 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8 Bit Register Data For Address (N) 7 6 5 4 3 2 1 8 Bit Register Data For Address (N) A 0 7 6 5 4 3 2 1 A 0 SCL Start Stop Figure 2−13. Typical I2C Sequence There are no limits on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is also shown in Figure 2−13. The 7-bit address for the TAS5076 is 001101X, where X is a programmable address bit. Using the CS0 terminal on the device, the LSB address bit is programmable to permit two devices to be used in a system. These two addresses are licensed I2C addresses and do not conflict with other licensed I2C audio devices. To communicate with the TAS5076, the I2C master uses 0011010 if CS0 = 0 and 0011011 if CS0 = 1. In addition to the 7-bit device address, an 8-bit register address is used to direct communication to the proper register location within the device interface. Read and write operations to the TAS5076 can be done using single-byte or multiple-byte data transfers. SLES090A—November 2003—Revised January 2004 TAS5076 23 Architecture Overview 2.5.1 Single-Byte Write As shown in Figure 2−14, a single-byte data write transfer begins with the master device transmitting a start condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit is 0. After receiving the correct I2C device address and the read/write bit, the TAS5076 device responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to the TAS5076 internal memory address being accessed. After receiving the address byte, the TAS5076 again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5076 again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data write transfer. Start Condition Acknowledge A6 A5 A4 A3 A2 A1 Acknowledge A0 R/W ACK A7 A6 A5 I2C Device Address and Read/Write Bit A4 A3 A2 A1 Acknowledge A0 ACK D7 D6 D5 Register Address D4 D3 D2 D1 D0 ACK Stop Condition Data Byte Figure 2−14. Single-Byte Write Transfer 2.5.2 Multiple-Byte Write A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes are transmitted by the master device to TAS5076 as shown in Figure 2−15. After receiving each data byte, the TAS5076 responds with an acknowledge bit. Start Condition Acknowledge A6 A5 A1 A0 R/W ACK A7 Acknowledge A6 I2C Device Address and Read/Write Bit A5 A4 A3 A1 Acknowledge A0 ACK D7 Register Address D6 D1 D0 ACK Acknowledge D7 Other Data Bytes First Data Byte D6 D1 D0 ACK Stop Condition Last Data Byte Figure 2−15. Multiple-Byte Write Transfer 2.5.3 Single-Byte Read As shown in Figure 2−16, a single-byte data read transfer begins with the master device transmitting a start condition followed by the I2C device address and the read/write bit. For the data read transfer, a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit is 0. After receiving the TAS5076 address and the read/write bit, the TAS5076 responds with an acknowledge bit. Also, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5076 address and the read/write bit again. This time the read/write bit is a 1 indicating a read transfer. After receiving the TAS5076 and the read/write bit, the TAS5076 again responds with an acknowledge bit. Next, the TAS5076 transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not acknowledge followed by a stop condition to complete the single-byte data read transfer. Repeat Start Condition Start Condition Acknowledge A6 A5 A1 A0 R/W ACK A7 I2C Device Address and Read/Write Bit Acknowledge A6 A5 A4 Register Address A0 ACK Not Acknowledge Acknowledge A6 A5 A1 A0 R/W ACK D7 I2C Device Address and Read/Write Bit D6 D1 Data Byte D0 ACK Stop Condition Figure 2−16. Single-Byte Read 24 TAS5076 SLES090A—November 2003—Revised January 2004 Architecture Overview 2.5.4 Multiple-Byte Read A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes are transmitted by the TAS5076 to the master device as shown in Figure 2−17. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte. Repeat Start Condition Start Condition Acknowledge A6 A0 R/W ACK A7 I2C Device Address and Read/Write Bit Acknowledge A6 A5 A4 A0 ACK Register Address Acknowledge A6 A0 R/W ACK D7 I2C Device Address and Read/Write Bit Not Acknowledge Acknowledge D0 First Data Byte ACK D7 Other Data Bytes D6 D1 D0 ACK Last Data Byte Stop Condition Figure 2−17. Multiple-Byte Read SLES090A—November 2003—Revised January 2004 TAS5076 25 Architecture Overview 26 TAS5076 SLES090A—November 2003—Revised January 2004 Serial Control Interface Register Definitions 3 Serial Control Interface Register Definitions Table 3−1 shows the register map for the TAS5076. Default values in this section are in bold. Table 3−1. I2C Register Map ADDR HEX DESCRIPTION 00 General status register 01 Error status register 02 System control register 0 03 System control register 1 04 Error recovery register 05 Automute delay 06 Dc-offset control register channel 1 07 Dc-offset control register channel 2 08 Dc-offset control register channel 3 09 Dc-offset control register channel 4 0A Dc-offset control register channel 5 0B Dc-offset control register channel 6 0C Interchannel delay register channel 1 0D Interchannel delay register channel 2 0E Interchannel delay register channel 3 0F Interchannel delay register channel 4 10 Interchannel delay register channel 5 11 Interchannel delay register channel 6 12 ABD delay register 13 Volume control register channel 1 14 Volume control register channel 2 15 Volume control register channel 3 16 Volume control register channel 4 17 Volume control register channel 5 18 Volume control register channel 6 19 Individual channel mute The volume table is contained in Appendix A. Default values are shown in bold in the following tables. 3.1 General Status Register (0x00) Table 3−2. General Status Register (Read Only) D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 0 − − − − − − − No volume update is in progress. 1 − − − − − − − Volume update is in progress. − 0 − − − − − − Always 0 − − 0 0 0 0 0 − Device identification code − − − − − − − 0 Any valid signal is inactive (see status register, 0x03) (see Note 1). − − − − − − − 1 No internal errors (all valid signals are high) NOTE 1: This bit is reset automatically when one or more channels are active. SLES090A—November 2003—Revised January 2004 TAS5076 27 Serial Control Interface Register Definitions 3.2 Error Status Register (0x01) Table 3−3. Error Status Register D7 D6 D5 D4 D3 D2 D1 D0 FUNCTION 1 − − − − − − − FS error has occurred − 1 − − − − − − Control pin change has occurred − − − 1 − − − − LRCLK error − − − − 1 − − − MCLK_IN count error − − − − − 1 − − DCLK phase error with respect to MCLK_IN − − − − − − 1 − MCLK_IN phase error with respect to DCLK − − − − − − − 1 PWM timing error 0 0 0 0 0 0 0 0 No errors—no control pins changed (see Note 1) NOTE 1: Write 00h to clear error indications in error status register. 3.3 System Control Register 0 (0x02) Table 3−4. System Control Register 0 D7 D6 D5 D4 D3 D2 D1 D0 0 0 − − − − − − Normal mode (in slave mode—quad speed detected if MCLK_IN = 128 Fs) 0 1 − − − − − − Double speed 1 0 − − − − − − Quad speed 1 1 − − − − − − Illegal − − 0 − − − − − − − 1 − − − − − Use de-emphasis pin controls Use de-emphasis I2C controls − − − 0 0 − − − No de-emphasis − − − 0 1 − − − De-emphasis for Fs = 32 kHz − − − 1 0 − − − De-emphasis for Fs = 44.1 kHz − − − 1 1 − − − De-emphasis for Fs = 48 kHz − − − − − 0 0 0 16 bit, MSB first; right justified − − − − − 0 0 1 20 bit, MSB first; right justified − − − − − 0 1 0 − − − − − 0 1 1 24 bit, MSB first; right justified 16-bit I2S − − − − − 1 0 0 − − − − − 1 0 1 20-bit I2S 24-bit I2S − − − − − 1 1 0 16-bit MSB first − − − − − 1 1 1 16-bit DSP frame 28 TAS5076 FUNCTION SLES090A—November 2003—Revised January 2004 Serial Control Interface Register Definitions 3.4 System Control Register 1 (0x03) Table 3−5. System Control Register 1 D7 D6 D5 D4 D3 D2 D1 D0 0 − − − − − − − Reserved − Set to 0 in all cases − 0 − − − − − − Valid remains high during automute. − 1 − − − − − − Valid goes low during automute. − − 0 − − − − − Valid remains high during mute. − − 1 − − − − − Valid goes low during mute. − − − 0 − − − − Mute − − − 1 − − − − Normal mode − − − − 0 − − − Set error recovery delay at 6 µs − − − − 1 − − − Set error recovery delay at 47 µs − − − − − 0 − − Error recovery (forces error recovery initialization sequence) − − − − − 1 − − Normal mode − − − − − − 0 − Automute disabled − − − − − − 1 − Automute enabled − − − − − − − 0 Reserved − Set to 0 in all cases 3.5 FUNCTION Error Recovery Register (0x04) Table 3−6. Error Recovery Register D7 D6 D5 D4 D3 D2 D1 D0 1 1 − − − − − − Set to 11 under default conditions and when 0x00 is written into 0x1F FUNCTION 0 − − − − − − − If 0x84 is written into register 0x1F – Enable volume ramp up after an error recovery sequence is initiated by the ERR_RCVRY terminal or the I2C error recovery command (register 0x03 bit D2) 1 − − − − − − − If 0x84 is written into register 0x1F – Disable volume ramp up after an error recovery sequence is initiated by the ERR_RCVRY terminal or the I2C error recovery command (register 0x03 bit D2) − 0 − − − − − − If 0x84 is written into register 0x1F – Enable volume ramp up after error recovery sequence is initiated by register bits D5 – D0 of this register − 1 − − − − − − If 0x84 is written into register 0x1F – Enable volume ramp up after error recovery sequence is initiated by register bits D5 – D0 of this register − − 0 − − − − − Put channel 6 into error recovery mode − − − 0 − − − − Put channel 5 into error recovery mode − − − − 0 − − − Put channel 4 into error recovery mode − − − − − 0 − − Put channel 3 into error recovery mode − − − − − − 0 − Put channel 2 into error recovery mode − − − − − − − 0 Put channel 1 into error recovery mode − − 1 1 1 1 1 1 Normal operation SLES090A—November 2003—Revised January 2004 TAS5076 29 Serial Control Interface Register Definitions 3.6 Automute Delay Register (0x05) Table 3−7. Automute Delay Register D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 − − − − Unused − − − − 0 0 0 0 Set automute delay at 5 ms − − − − 0 0 0 1 Set automute delay at 10 ms − − − − 0 0 1 0 Set automute delay at 15 ms − − − − 0 0 1 1 Set automute delay at 20 ms − − − − 0 1 0 0 Set automute delay at 25 ms − − − − 0 1 0 1 Set automute delay at 30 ms − − − − 0 1 1 0 Set automute delay at 35 ms − − − − 0 1 1 1 Set automute delay at 40 ms − − − − 1 − − 0 Set automute delay at 45 ms − − − − 1 − − 1 Set automute delay at 50 ms 3.7 FUNCTION Dc-Offset Control Registers (0x06−0x0B) Channels 1, 2, 3, 4, 5, and 6 are mapped into (0x06, 0x07, 0x08, 0x09, 0x0A, and 0x0B). Table 3−8. Dc-Offset Control Registers D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 0 Maximum correction for positive dc offset (–1.56% FS) 0 0 0 0 0 0 0 0 No dc-offset correction 0 1 1 1 1 1 1 1 Maximum correction for negative dc offset (1.56% FS) 3.8 FUNCTION Interchannel Delay Registers (0x0C−0x11) Channels 1, 2, 3, 4, 5, and 6 are mapped into (0x0C, 0x0D, 0x0E, 0x0F, 0x10, and 0x11). The first channel delay is set at 0. Each subsequent channel has a default value that is 53 DCLKs larger than the preceding channel. Table 3−9. Six Interchannel Delay Registers D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 Minimum absolute delay, 0 DCLK cycles, default for channel 1 = 0x00 0 0 1 1 0 1 0 1 Default for channel 2 = 0x35 0 1 1 0 1 0 1 0 Default for channel 3 = 0x6A 1 0 0 1 1 1 1 1 Default for channel 4 = 0x9F 1 1 0 1 0 1 0 0 Default for channel 5 = 0xD4 0 0 0 0 1 0 0 1 Default for channel 6 = 0x09 1 1 1 1 1 1 1 1 Maximum absolute delay, 255 DCLK cycles 3.9 FUNCTION ABD Delay Register (0x12) Table 3−10. ABD Delay Register D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 − − − − − Unused − − − 0 0 0 0 0 Minimum ABD delay, 0 DLCK cycles − − − 1 0 1 0 0 Default ABD delay, 20 DLCK cycles − − − 1 1 1 1 1 Maximum ABD delay, 31 DLCK cycles 30 TAS5076 FUNCTION SLES090A—November 2003—Revised January 2004 Serial Control Interface Register Definitions 3.10 Individual Channel Mute Register (0x19) Table 3−11. Individual Channel Mute Register D7 D6 D5 D4 D3 D2 D1 D0 1 1 − − − − − − Unused − − 1 1 1 1 1 1 No channels are muted − − − − − − − 0 Mute channel 1 − − − − − − 0 − Mute channel 2 − − − − − 0 − − Mute channel 3 − − − − 0 − − − Mute channel 4 − − − 0 − − − − Mute channel 5 − − 0 − − − − − Mute channel 6 SLES090A—November 2003—Revised January 2004 FUNCTION TAS5076 31 Serial Control Interface Register Definitions 32 TAS5076 SLES090A—November 2003—Revised January 2004 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes 4 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes 4.1 System Initialization Reset is used during system initialization to hold the TAS5076 inactive while power (VDD), the master clock (MCLK_IN), the device control, and the data signals become stable. The recommended initialization sequence is to hold RESET low for 24 MCLK_IN cycles after VDD has reached 3 V and the other control signals (MUTE, PDN, M_S, ERR_RCVRY, DBSPD, and CS0) are stable. Figure 4−1 shows the recommended sequence and timing for the RESET terminal relative to system VDD voltage and MCLK. 3V VDD RESET 24 MCLK_IN Cycles MCLK Figure 4−1. RESET During System Initialization Within the first 2 ms following the low-to-high transition of the RESET terminal, the serial data interface format must be set in the serial data interface control register using the I2C serial control interface. If the data rate setting is other than the setting specified by the DBSPD terminal, then the data rate must be set using the DBSPD terminal or I2C interface within 2 ms following the low-to-high transition of the RESET terminal. The time available to set the I2C registers following the low-to-high transition of the RESET terminal can be extended using the ERR_RCVRY terminal. While ERR_RCVRY is low, the TAS5076 outputs are held inactive. Once the I2C control registers are set, the ERR_RCVRY terminal can be released and the TAS5076 starts operation. Figure 4−2 shows how the ERR_RCVRY terminal can be used to extend the interval as long as necessary to set the I2C registers following the low-to-high transition of the RESET terminal. SLES090A—November 2003—Revised January 2004 TAS5076 33 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes MCLK RESET < 2 ms ERR_RCVRY ERR_RCVRY and MUTE can be set at any time prior to 2 ms following the low-to-high transition of RESET > 5 ms Volume ramp up 120 ms MUTE Wait a minimum of 100 µs after the low-to-high transition of RESET Set serial interface format, data rate, volume, ... via I2C Release ERR_RCVRY and then MUTE when I2C registers are programmed Figure 4−2. Extending the I2C Write Interval Following a Low-to-High Transition of the RESET Terminal The operation of the TAS5076 can be tailored as desired to meet specific operating requirements by adjusting the following: • • • • • • Volume Data sample rate Emphasis/deemphasis settings Individual channel mute Automute delay register Dc-offset control registers If desired, the TAS5076 can be set to perform an unmute sequence following the low-to-high transition of the ERR_RCVRY terminal or the error recovery I2C command (register 0x03 bit D2). This capability is set by writing 0x7F to the individual error recovery register (0x04) and 0x84 to the feature enable register (0x1F). 4.2 Data Sample Rate If the master clock is well-behaved during the frequency transition (no MCLK_IN high or low clock periods less than 20 ns), then a simple speed selection is performed by setting the DBSPD terminal or the serial control register. If it is known at least 60 ms in advance that the sample rate is going to change, mute can be used to provide a completely silent transition. The timing of this control sequence is shown in Figure 4−3 and Figure 4−4. 34 TAS5076 SLES090A—November 2003—Revised January 2004 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes Clock Transition Change from a 96-kHz data rate MCLK_IN = 24.576 MHz Change to a 48-kHz data rate MCLK_IN = 12.288 MHz MCLK > 5 ms MUTE Terminal Volume Ramp Down 42 − 65 ms Volume Ramp Up 42 − 65 ms DBSPD Terminal Set within 2 ms of transition < 2 ms < 2 ms Figure 4−3. Changing the Data Sample Rate Using the DBSPD Terminal Clock Transition Change from a 96-kHz data rate MCLK_IN = 24.576 MHz Change to a 48-kHz data rate MCLK_IN = 12.288 MHz MCLK > 5 ms MUTE Terminal Volume Ramp Down 42 − 65 ms Volume Ramp Up 42 − 65 ms < 2 ms < 2 ms Set data rate via I2C register 0x02, D7 and D6 ERR_RCVRY Terminal Hold ERR_RCVRY low to give additional timeset registers Figure 4−4. Changing the Data Sample Rate Using the I2C However, if the master clock input can encounter a high clock or low clock period of less than 20 ns, then RESET must be applied during this time. There are two recommended control procedures for this case, depending upon whether the DBSPD terminal or the serial control interface is used. These control sequences are shown in Figure 4−5 and Figure 4−6. Because this sequence employs the RESET terminal the internal register settings are set to the default values. SLES090A—November 2003—Revised January 2004 TAS5076 35 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes Figure 4−5 shows the procedure to change the data rate using the DBSPD terminal and then restore the register settings. In this example, the ERR_RCVRY terminal is used to hold off system re-initialization after RESET is released. This permits the system controller to have as much additional time as necessary to restore the register settings. Once the data rate is set, the ERR_RCVRY and MUTE terminal signals are set high and the system re-initializes. Clock unstable during transition. HIGH and LOW intervals < 20 ns Change from a 96-kHz data rate MCLK_IN = 24.576 MHz Change to a 48-kHz data rate MCLK_IN = 12.288 MHz MCLK > 5 ms MUTE Terminal Volume Ramp Down 60 ms Volume Ramp Up 120 ms RESET Terminal DBSPD Terminal Wait a minimum of 100 µs to set DBSPD < 2 ms ERR_RCVRY Terminal Release ERR_RCVRY and then MUTE when I2C registers are programmed ERR_RCVRY can be set at any time within this interval Wait a minimum of 100 µs after the LOW to HIGH transition of RESET Restore register settings via I2C Figure 4−5. Changing the Data Sample Rate With an Unstable MCLK_IN Using the DBSPD Terminal Because this sequence employs the RESET terminal, the internal register settings are set to the default values. Figure 4−6 shows the procedure to change the data rate using register 0x02 D7 and D6 and then restore the other register settings. In this example, the ERR_RCVRY terminal is used to hold off system re-initialization after RESET is released. This permits the system controller to have as much additional time as necessary to restore the register settings. Once the data rate is set, the ERR_RCVRY and MUTE terminal signals are set high and the system re-initializes. 36 TAS5076 SLES090A—November 2003—Revised January 2004 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes Clock unstable during transition. HIGH and LOW intervals < 20 ns Change from a 96-kHz data rate MCLK_IN = 24.576 MHz Change to a 48-kHz data rate MCLK_IN = 12.288 MHz MCLK > 5 ms MUTE Terminal Volume Ramp Down 60 ms Volume Ramp Up 120 ms RESET Terminal < 2 ms ERR_RCVRY Terminal Release ERR_RCVRY and then MUTE when I2C registers are programmed ERR_RCVRY can be set at any time within this interval Wait a minimum of 100 µs after the LOW to HIGH transition of RESET Set data rate and restore other register settings via I2C Figure 4−6. Changing the Data Sample Rate With an Unstable MCLK_IN Using the I2C 4.3 Changing Between Master and Slave Modes The M_S terminal is set while the RESET terminal is active. Because this sequence employs the RESET terminal the internal register settings are set to the default values. Figure 4−7 shows the procedure to switch between master and slave modes and then restore the register settings. In this example, the ERR_RCVRY terminal is used to hold off system re-initialization after RESET is released. This permits the system controller to have as much additional time as necessary to restore the register settings. Once the data rate is set, the ERR_RCVRY and MUTE terminal signals are set high and the system re-initializes. SLES090A—November 2003—Revised January 2004 TAS5076 37 System Procedures for Initialization, Changing Data Rates, and Switching Between Master and Slave Modes Clock unstable during transition. Change from Master Mode Change to Slave Mode MCLK > 5 ms MUTE Terminal Volume Ramp Down 60 ms Volume Ramp Up 120 ms RESET Terminal M_S Terminal Wait a minimum of 100 µs to set M_S < 2 ms ERR_RCVRY Terminal Release ERR_RCVRY and then MUTE when I2C registers are programmed ERR_RCVRY can be set at any time within this interval Wait a minimum of 100 µs after the LOW to HIGH transition of RESET Restore register settings via I2C Figure 4−7. Changing Between Master and Slave Clock Mode 38 TAS5076 SLES090A—November 2003—Revised January 2004 Specifications 5 Specifications 5.1 Absolute Maximum Ratings Over Operating Temperature Ranges (Unless Otherwise Noted)† Digital supply voltage range: DVDD, DVDD_PWM, DVDD_RCL . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.2 V Analog supply voltage range: AVDD_PLL, AVDD_OSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.2 V Digital input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DVDD_X + 0.3 V Operating free-air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C ESD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 V † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 5.2 Recommended Operating Conditions Supply voltage Digital MIN TYP MAX 3 3.3 3.6 DVDD_X, see Note 2 Operating Supply current Digital 83 Power down, see Note 3 Power dissipation Digital Supply voltage Analog 200 Power down 3 3.3 Operating Supply current Analog Power dissipation Analog 3.6 8 Power down, see Note 3 35 Power down, see Note 3 µW V mA 25 Operating µA mW 100 AVDD_X, see Note 4 V mA 25 Operating UNIT µA mW 100 µW NOTES: 2. DVDD_CORE, DVDD_PWM, DVDD_RCL 3. If the clocks are turned off. 4. AVDD_PLL, AVDD_OSC 5.3 Electrical Characteristics Over Recommended Operating Conditions 5.3.1 Static Digital Specifications Over Recommended Operating Conditions (Unless Otherwise Noted) PARAMETER TEST CONDITIONS MIN MAX UNIT VIH VIL High-level input voltage 2 DVDD V Low-level input voltage 0 0.8 V VOH VOL High-level output voltage Ilkg Input leakage current Low-level output voltage 5.3.2 IO = −1 mA IO = 4 mA 2.4 −10 V 0.4 V 10 µA Digital Interpolation Filter and PWM Modulator Over Recommended Operating Conditions (Unless Otherwise Noted) (Fs = 48 kHz) PARAMETER TEST CONDITIONS Pass band MIN Pass-band ripple Stop band Stop-band attenuation Group delay PWM modulation index (gain) SLES090A—November 2003—Revised January 2004 TYP 0 24.1 kHz to 152.3 kHz MAX 20 UNIT kHz ±0.012 dB 24.1 kHz 50 dB µs 700 0.93% TAS5076 39 Specifications 5.3.3 TAS5076/TAS5182 System Performance Measured at the Speaker Terminals Over Recommended Operating Conditions (Unless Otherwise Noted) (Fs = 48 kHz) PARAMETER TEST CONDITIONS SNR (EIAJ) MIN All other channels MAX UNIT 100 105† dB A-weighted, −60 dB, f = 1 kHz 102† dB PWM_1 and PWM_2 Dynamic range TYP A-weighted † Measured on TAS5076-TAS5182 EVM 5.4 Switching Characteristics 5.4.1 Command Sequence Timing 5.4.1.1 Reset Timing—RESET CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED) PARAMETER TEST CONDITIONS tw(RESET) Pulse duration, RESET active tp(VALID_LOW) tp(VALID_HIGH) Propagation delay td(VOLUME) Delay time MIN TYP MAX 50 Propagation delay UNIT ns 1 µs 4 5 ms 42 65 ms RESET tw(RESET) VALID 1−6 VOLUME 1−6 tp(VALID_LOW) td(VOLUME) tp(VALID_HIGH) Figure 5−1. RESET Timing 40 TAS5076 SLES090A—November 2003—Revised January 2004 Specifications 5.4.1.2 Power-Down Timing—PDN 5.4.1.2.1 Long Recovery CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED) PARAMETER tw(PDN) Pulse duration, PDN active td(R PDNR) tp(VALID_LOW) Reset high to PDN rising edge TEST CONDITIONS MIN TYP MAX 50 UNIT ns 16 MCLKs ns 1 µs tp(VALID_HIGH) 85 100 ms td(VOLUME) 42 65 ms td(R PDNR) RESET PDN tw(PDN) VALID 1−6 VOLUME 1−6 Normal Operation Normal Operation tp(VALID_HIGH) tp(VALID_LOW) td(VOLUME) Figure 5−2. Power-Down and Power-Up Timing—RESET Preceding PDN SLES090A—November 2003—Revised January 2004 TAS5076 41 Specifications 5.4.1.2.2 Short Recovery CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED) PARAMETER tw(PDN) Pulse duration, PDN active td(R PDNR) tp(VALID_LOW) PDN high to reset rising edge TEST CONDITIONS MIN TYP MAX 50 ns 16 MCLKs ns 1 µs 4 5 ms 42 65 ms tp(VALID_HIGH) td(VOLUME) UNIT td(R PDNR) RESET PDN tw(PDN) VALID 1−6 VOLUME 1−6 Normal Operation Normal Operation tp(VALID_HIGH) tp(VALID_LOW) td(VOLUME) Figure 5−3. Power-Down and Power-Up Timing—RESET Following PDN 42 TAS5076 SLES090A—November 2003—Revised January 2004 Specifications 5.4.1.3 Error Recovery Timing—ERR_RCVRY CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED) PARAMETER tw(ER) TEST CONDITIONS Pulse duration, ERR_RCVRY active tp(VALID_LOW) tp(VALID_HIGH) MIN TYP MAX UNIT 5 MCLKs Selectable for minimum or maximum ns 6 47 µs 4 5 ms tw(ER) ERR_RCVRY VALID 1−6 Normal Operation Normal Operation tp(VALID_HIGH) tp(VALID_LOW) Figure 5−4. Error Recovery Timing 5.4.1.4 MUTE Timing—MUTE CONTROL SIGNAL PARAMETERS OVER RECOMMENDED OPERATING CONDITIONS (UNLESS OTHERWISE NOTED) PARAMETER tw(MUTE) td(VOL) TEST CONDITIONS Pulse duration, PDN active MIN TYP MAX 3 MCLKs UNIT ns 42 ms tw(MUTE) MUTE VOLUME VALID 1−6 Normal Operation Normal Operation td(VOL) td(VOL) Figure 5−5. Mute Timing SLES090A—November 2003—Revised January 2004 TAS5076 43 Specifications 5.4.2 Serial Audio Port 5.4.2.1 Serial Audio Ports Slave Mode Over Recommended Operating Conditions (Unless Otherwise Noted) PARAMETER MIN f(SCLK) tsu(SDIN) Frequency, SCLK SDIN setup time before SCLK rising edge 20 th(SDIN) f(LRCLK) SDIN hold time before SCLK rising edge 10 LRCLK frequency 32 tsu(LRCLK) 5.4.2.2 TYP MAX UNIT 12.288 MHz ns ns 48 MCLK_IN duty cycle 50% SCLK duty cycle 50% LRCLK duty cycle 50% 192 kHz LRCLK setup time before SCLK rising edge 20 ns MCLK high and low time 20 ns Serial Audio Ports Master Mode, Load Conditions 50 pF Over Recommended Operating Conditions (Unless Otherwise Noted) PARAMETER t(MSD) t(MLRD) 5.4.2.3 MIN TYP MAX UNIT MCLK_IN to SCLK 0 5 ns MCLK_IN to LRCLK 0 5 ns DSP Serial Interface Mode Over Recommended Operating Conditions (Unless Otherwise Noted) PARAMETER MIN f(SCLK) td(FS) SCLK frequency tw(FSHIGH) tsu(SDIN) Pulse duration, sync SDIN and LRCLK setup time before SCLK falling edge 20 th(SDIN) SDIN and LRCLK hold time from SCLK falling edge 10 TYP Delay time, SCLK rising to Fs MAX UNIT 12.288 MHz ns 1/(64×Fs) SCLK duty cycle ns ns ns 50% SCLK th(SDIN) tsu(SDIN) SDIN Figure 5−6. Right-Justified, I2S, Left-Justified Serial Protocol Timing 44 TAS5076 SLES090A—November 2003—Revised January 2004 Specifications SCLK tsu(LRCLK) LRCLK NOTE: Serial data is sampled with the rising edge of SCLK (setup time = 20 ns and hold time = 10 ns). Figure 5−7. Right, Left, and I2S Serial Mode Timing Requirement SCLK LRCLK t(MRLD) t(MSD) MCLK Figure 5−8. Serial Audio Ports Master Mode Timing SCLK tsu(LRCLK) th(LRCLK) LRCLK tw(FSHIGH) tsu(SDIN) th(SDIN) SDIN Figure 5−9. DSP Serial Port Timing SLES090A—November 2003—Revised January 2004 TAS5076 45 Specifications SCLK 64 SCLKS LRCLK tw(FSHIGH) SDIN 16 Bits Left Channel 16 Bits Right Channel 32 Bits Unused Figure 5−10. DSP Serial Port Expanded Timing SCLK tsu(SDIN) = 20 ns th(SDIN) = 10 ns SDIN Figure 5−11. DSP Absolute Timing 46 TAS5076 SLES090A—November 2003—Revised January 2004 Specifications 5.4.3 Serial Control Port—I 2C Operation 5.4.3.1 Timing Characteristics for I2C Interface Signals Over Recommended Operating Conditions (Unless Otherwise Noted) PARAMETER fSCL tw(H) Frequency, SCL tw(L) tr Pulse duration, SCL low tf tsu1 Fall time, SCL and SDA th1 t(buf) Hold time, SCL to SDA tsu2 th2 tsu3 CL STANDARD MODE TEST CONDITIONS FAST MODE MIN MAX MIN MAX 0 100 0 400 Pulse duration, SCL high 4 0.6 4.7 1.3 Rise time, SCL and SDA 1000 300 Setup time, SDA to SCL UNIT kHz µs µs 300 ns 300 ns 250 100 ns 0 0 ns Bus free time between stop and start condition 4.7 1.3 µs Setup time, SCL to start condition 4.7 0.6 µs Hold time, start condition to SCL 4 0.6 µs Setup time, SCL to stop condition 4 0.6 Load capacitance for each bus line 400 tw(H) tw(L) tr µs 400 pF tf SCLK tsu th1 SDA Figure 5−12. SCL and SDA Timing SCLK th2 t(buf) tsu2 tsu3 Start Condition Stop Condition SDA Figure 5−13. Start and Stop Conditions Timing SLES090A—November 2003—Revised January 2004 TAS5076 47 Specifications 48 TAS5076 SLES090A—November 2003—Revised January 2004 SLES090A—November 2003—Revised January 2004 MSP430 MCLK_IN PDN CLIP MUTE ERR_RCVY P1.3 P2.0 RESET SDA SCL CSO DM_SEL1 DM_SEL2 DBSPD MCLKOUT SDIN1 SDIN2 SDIN3 SCLK LRCLK PLL_FLT_2 PLL_FLT_1 M_S XTAL_OUT XTAL_IN P1.0 P1.1 P1.2 P1.4/SMCLK/TCK P1.5/IA1/TDI ALKX1 ALKX2 ALKX0 ACLKX AFSX DA610 DSP CLKOUT AVDD_PLL Reset, Pwr Dwn and Status Serial Control I/F Clock, PLL and Serial Data I/F DVDD_PWM DVSS_RCL VREGC_CAP DVDD_RCL Auto Mute De-Emphasis Soft Volume Error Recovery Soft Mute Clip Detect Signal Processing PWM Ch. PWM Ch. PWM Ch. PWM Ch. PWM Ch. PWM Ch. PWM Section PWM_AP_1 PWM_AM_1 PWM_BP_1 PWM_BM_1 VALID_1 PWM_AP_2 PWM_AM_2 PWM_BP_2 PWM_BM_2 VALID_2 PWM_AP_3 PWM_AM_3 PWM_BP_3 PWM_BM_3 VALID_3 PWM_AP_4 PWM_AM_4 PWM_BP_4 PWM_BM_4 VALID_4 PWM_AP_5 PWM_AM_5 PWM_BP_5 PWM_BM_5 VALID_5 PWM_AP_6 PWM_AM_6 PWM_BP_6 PWM_BM_6 VALID_6 TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET TAS5182 PWAP H-Bridge PWAM PWBP PWBM SHUTDOWN RESET 6 VREGB_CAP VREGA_CAP Power Supply Application Information Application Information Figure 6−1. Typical TAS5076 Application TAS5076 49 Output Control DVSS_PWM AVSS_PLL Application Information 6.1 Serial Audio Interface Clock Master and Slave Interface Configuration 6.1.1 Slave Configuration Other Digital Audio Sources DA610 DSP (Master Mode) PCM1800 ADC Left Analog OSCI ALKR0 DOUT Right Analog BCK SYSCLK GND TAS5076 (Slave Mode) XTALI OSCO XTALO ALKX0 SDIN1 ALKR1 ALKX1 SDIN2 ALKR2 ALKX2 SDIN3 ACLKR ACLKX SCLK AFSX LRCK AFSR LRCK 12.288 MHz XTAL CLKIN MCLKO CLKOUT MCLKO NC Figure 6−2. TAS5076 Serial Audio Port—Slave Mode Connection Diagram 6.1.2 Master Configuration Other Digital Audio Sources TAS5076 (Master Mode) DA610 DSP PCM1800 ADC Left Analog 12.288 MHz XTAL DOUT Right Analog BCK LRCK SYSCLK ALKR0 XTALI XTALO ALKX0 SDIN1 ALKR1 ALKX1 SDIN2 ALKR2 ALKX2 SDIN3 ACLKR ACLKX SCLK AFSX LRCK AFSR CLKIN CLKOUT GND MCLKO MCLKO Figure 6−3. TAS5076 Serial Audio Port—Master Mode Connection Diagram 50 TAS5076 SLES090A—November 2003—Revised January 2004 Mechanical Data 7 Mechanical Data PFC (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 60 0,08 M 41 61 40 80 21 1 0,13 NOM 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°−7° 0,75 0,45 1,05 0,95 Seating Plane 1,20 MAX 0,08 4073177 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 SLES090A—November 2003—Revised January 2004 TAS5076 51 Mechanical Data 52 TAS5076 SLES090A—November 2003—Revised January 2004 Appendix A—Volume Table Appendix A—Volume Table VOLUME SETTING REGISTER VOLUME (BIN) GAIN dB VOLUME SETTING REGISTER VOLUME (BIN) 249 1111 1001 24 205 1100 1101 2 248 1111 1000 23.5 204 1100 1100 1.5 247 1111 0111 23 203 1100 1011 1 246 1111 0110 22.5 202 1100 1010 0.5 245 1111 0101 22 201 1100 1001 0 244 1111 0100 21.5 200 1100 1000 −0.5 D7 − D0 GAIN dB D7 − D0 243 1111 0011 21 199 1100 0111 −1 242 1111 0010 20.5 198 1100 0110 −1.5 241 1111 0001 20 197 1100 0101 −2 240 1111 0000 19.5 196 1100 0100 −2.5 239 1110 1111 19 195 1100 0011 −3 238 1110 1110 18.5 194 1100 0010 −3.5 237 1110 1101 18 193 1100 0001 −4 236 1110 1100 17.5 192 1100 0000 −4.5 235 1110 1011 170 191 1011 1111 −5 234 1110 1010 16.5 190 1011 1110 −5.5 233 1110 1001 16 189 1011 1101 −6 232 1110 1000 15.5 188 1011 1100 −6.5 231 1110 0111 15 187 1011 1011 −7 230 1110 0110 14.5 186 1011 1010 −7.5 229 1110 0101 14 185 1011 1001 −8 228 1110 0100 13.5 184 1011 1000 −8.5 227 1110 0011 13 183 1011 0111 −9 226 1110 0010 12.5 182 1011 0110 −9.5 225 1110 0001 12 181 1011 0101 −10 224 1110 0000 11.5 180 1011 0100 −10.5 223 1101 1111 11 179 1011 0011 −11 222 1101 1110 10.5 178 1011 0010 −11.5 221 1101 1101 10 177 1011 0001 −12 220 1101 1100 9.5 176 1011 0000 −12.5 219 1101 1011 9 175 1010 1111 −13 218 1101 1010 8.5 174 1010 1110 −13.5 217 1101 1001 8 173 1010 1101 −14 216 1101 1000 7.5 172 1010 1100 −14.5 215 1101 0111 7 171 1010 1011 −15 214 1101 0110 6.5 170 1010 1010 −15.5 213 1101 0101 6 169 1010 1001 −16 212 1101 0100 5.5 168 1010 1000 −16.5 211 1101 0011 5 167 1010 0111 −17 210 1101 0010 4.5 166 1010 0110 −17.5 209 1101 0001 4 165 1010 0101 −18 208 1101 0000 3.5 164 1010 0100 −18.5 207 1100 1111 3 163 1010 0011 −19 206 1100 1110 2.5 162 1010 0010 −19.5 SLES090A—November 2003—Revised January 2004 TAS5076 53 Appendix A—Volume Table VOLUME SETTING REGISTER VOLUME (BIN) GAIN dB VOLUME SETTING REGISTER VOLUME (BIN) 161 1010 0001 −20 116 0111 0100 160 −42.5 1010 0000 −20.5 115 0111 0011 −43 D7 − D0 54 GAIN dB D7 − D0 159 1001 1111 −21 114 0111 0010 −43.5 158 1001 1110 −21.5 113 0111 0001 −44 157 1001 1101 −22 112 0111 0000 −44.5 156 1001 1100 −22.5 111 0110 1111 −45 −45.5 155 1001 1011 −23 110 0110 1110 154 1001 1010 −23.5 109 0110 1101 −46 153 1001 1001 −24 108 0110 1100 −46.5 152 1001 1000 −24.5 107 0110 1011 −47 151 1001 0111 −25 106 0110 1010 −47.5 150 1001 0110 −25.5 105 0110 1001 −48 149 1001 0101 −26 104 0110 1000 −48.5 148 1001 0100 −26.5 103 0110 0111 −49 147 1001 0011 −27 102 0110 0110 −49.5 146 1001 0010 −27.5 101 0110 0101 −50 145 1001 0001 −28 100 0110 0100 −50.5 144 1001 0000 −28.5 99 0110 0011 −51 143 1000 1111 −29 98 0110 0010 −51.5 142 1000 1110 −29.5 97 0110 0001 −52 141 1000 1101 −30 96 0110 0000 −52.5 140 1000 1100 −30.5 95 0101 1111 −53 139 1000 1011 −31 94 0101 1110 −53.5 138 1000 1010 −31.5 93 0101 1101 −54 137 1000 1001 −32 92 0101 1100 −54.5 136 1000 1000 −32.5 91 0101 1011 −55 135 1000 0111 −33 90 0101 1010 −55.5 134 1000 0110 −33.5 89 0101 1001 −56 133 1000 0101 −34 88 0101 1000 −56.5 132 1000 0100 −34.5 87 0101 0111 −57 131 1000 0011 −35 86 0101 0110 −57.5 130 1000 0010 −35.5 85 0101 0101 −58 129 1000 0001 −36 84 0101 0100 −58.5 128 1000 0000 −36.5 83 0101 0011 −59 −59.5 127 0111 1111 −37 82 0101 0010 126 0111 1110 −37.5 81 0101 0001 −60 125 0111 1101 −38 80 0101 0000 −60.5 124 0111 1100 −38.5 79 0100 1111 −61 123 0111 1011 −39 78 0100 1110 −61.5 122 0111 1010 −39.5 77 0100 1101 −62 121 0111 1001 −40 76 0100 1100 −62.5 120 0111 1000 −40.5 75 0100 1011 −63 119 0111 0111 −41 74 0100 1010 −63.5 118 0111 0110 −41.5 73 0100 1001 −64 117 0111 0101 −42 72 0100 1000 −64.5 TAS5076 SLES090A—November 2003—Revised January 2004 Appendix A—Volume Table VOLUME SETTING REGISTER VOLUME (BIN) 71 0100 0111 −65 36 0010 0100 70 0100 0110 −65.5 35 0010 0011 −83 69 0100 0101 −66 34 0010 0010 −83.5 68 0100 0100 −66.5 33 0010 0001 −84 0010 0000 −84.6 GAIN dB VOLUME SETTING D7 − D0 REGISTER VOLUME (BIN) GAIN dB D7 − D0 −82.6 67 0100 0011 −67 32 66 0100 0010 −67.5 31 0001 1111 −85.1 −68 30 0001 1110 −85.8 29 0001 1101 −86.1 28 0001 1100 −86.8 27 0001 1011 −87.2 26 0001 1010 −87.5 25 0001 1001 −88.4 24 0001 1000 −88.8 65 0100 0001 64 0100 0000 −68.5 63 0011 1111 −69 62 0011 1110 −69.5 61 0011 1101 −70 60 0011 1100 −70.5 59 0011 1011 −71 23 0001 0111 −89.3 58 0011 1010 −71.5 22 0001 0110 −89.8 57 0011 1001 −72 21 0001 0101 −90.3 56 0011 1000 −72.5 20 0001 0100 −90.9 55 0011 0111 −73 19 0001 0011 −91.5 54 0011 0110 −73.5 18 0001 0010 −92.1 53 0011 0101 −74 17 0001 0001 −92.8 0001 0000 −93.6 52 0011 0100 −74.5 16 51 0011 0011 −75 15 0000 1111 −94.4 0000 1110 −95.3 50 0011 0010 −75.5 14 49 0011 0001 −76 13 0000 1101 −96.3 12 0000 1100 −97.5 11 0000 1011 −98.8 10 0000 1010 −100.4 9 0000 1001 −102.4 8 0000 1000 −104.9 7 0000 0111 −108.4 6 0000 0110 −114.4 48 0011 0000 −76.6 47 0010 1111 −77 46 0010 1110 −77.5 45 0010 1101 −78 44 0010 1100 −78.5 43 0010 1011 −79 42 0010 1010 −79.6 5 0000 0101 MUTE 41 0010 1001 −80.1 4 0000 0100 MUTE 40 0010 1000 −80.6 3 0000 0011 MUTE 39 0010 0111 −81.1 2 0000 0010 MUTE 38 0010 0110 −81.5 1 0000 0001 MUTE 37 0010 0101 −82.1 0 0000 0000 MUTE SLES090A—November 2003—Revised January 2004 TAS5076 55 Appendix A—Volume Table 56 TAS5076 SLES090A—November 2003—Revised January 2004