TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 D D D D D D D Low-Noise Amplifier (LNA), Radio Frequency (RF) Mixer, and Voltage-Controlled Oscillator (VCO) Improved Compression Mode Conversion From RF to Intermediate Frequency (IF) on a Single Chip Suitable for Portable 900-MHz Cellular and Cordless Telephones Low-Current Consumption Mode 20-Pin Plastic Shrink Small Outline (SSOP) Package Application-Selectable Internal or External Oscillator DB PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 PD1 PD2 AUX_LO– AUX_LO+ OSC2 VCO_GND OSC1 VCO_VCC VCO_BYP LNA_GND 20 19 18 17 16 15 14 13 12 11 MIX_OUT– MIX_OUT+ MIX_IN MIX_GND LNA_GND LNA_IN LNA_VCC LNA_OUT LNA_GND LNA_GND description The Texas Instruments (TI) TRF1015 is a single-chip RF downconverter suitable for 900-MHz receiver applications. It combines a low-noise amplifier (LNA), a buffered voltage-controlled oscillator (VCO), and an RF mixer into a 20-pin SSOP package requiring very few external components. Minimal power consumption can be further reduced by placing the required modules into operate mode and the remaining modules into standby mode. Three modes of operation are provided for both the LNA and the mixer: standby, low current, and improved compression. The improved compression mode is suitable for applications that require full duplex capability. The improved compression mode is suitable for maintaining receiver sensitivity in the presence of large interfering signals and provides a low bit-error rate (BER) in digital modulation systems. The three modes of operation are selectable in accordance with the presence of a high or low signal on PD1 and PD2, as shown in Table 1. Table 1. Mode Control PD1 PD2 Standby MODE L L Low current H H Improved compression L H The LNA has a gain of 13 dB and a noise figure of 2.2 dB. LNA input and output characteristic impedances are 50 Ω. The single balanced RF mixer has a gain of 9 dB with a single-sideband (SSB) noise figure of 10 dB. The VCO has a typical tuning range of 25 MHz using an external varactor and resonator. The VCO gain and tuning range can be adjusted to meet the phase-locked loop (PLL) design requirement, with an external shunt and feedback capacitors in series with the resonator. A buffered output of the VCO provides phase locking capability and can be configured for single-ended or differential operation. The TRF1015 is offered in the 20-pin SSOP (DB) package and is characterized for operation from – 40°C to 85°C free-air temperature. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. TI is a trademark of Texas Instruments Incorporated. Copyright 1998, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 functional block diagram PD1 PD2 1 2 Power-Down Signal To On-Board Circuits Power Down Logic 20 Buffer Amp VCO_GND OSC2 OSC1 19 6 18 5 17 Buffer Amp 3 7 4 8 VCO_BYP LNA_IN 10, 11, 12, 16 9 15 13 14 LNA_VCC 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIX_OUT– MIX_OUT+ MIX_IN MIX_GND AUX_LO– AUX_LO+ VCO_VCC LNA_GND LNA_OUT TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 Terminal Functions TERMINAL I/O DESCRIPTION 3 O PLL auxiliary local oscillator (LO) output (inverting). AUX_LO – is the inverted output from the auxiliary local oscillator. AUX_LO+ 4 O PLL auxiliary LO output (noninverting). AUX_LO + is the noninverted output from the auxiliary local oscillator. LNA_GND 10 LNA ground LNA_GND 11 LNA ground LNA_GND 12 LNA ground LNA_GND 16 LNA ground LNA_IN 15 I LNA RF input. LNA_IN is the RF input signal to the LNA. LNA_OUT 13 O LNA RF output. LNA_OUT is the RF output from the LNA. LNA_VCC 14 LNA voltage supply. The power supply voltage required to operate the LNA is connected to LNA_VCC. See Application Information section. MIX_GND 17 Mixer ground MIX_IN 18 I Mixer RF input. MIX_IN is the RF input to the mixer. MIX_OUT– 20 O Mixer IF output (inverting). MIX_OUT– is the inverted intermediate frequency (IF) output from the mixer. MIX_OUT+ 19 O Mixer IF output (noninverting). MIX_OUT+ is the noninverted intermediate frequency (IF) output from the mixer. OSC1 7 OSC2 5 PD1 1 I Power down 1 LSB. PD1, along with PD2, determines which sections of the TRF1015 are placed in standby or operate mode. PD2 2 I Power down 2 MSB. PD2, along with PD1, determines which sections of the TRF1015 are placed in standby or operate mode. VCO_BYP 9 VCO bypass port. An external capacitor can be connected to VCO_BYP when the TRF1015 is configured for local oscillator operation. VCO_GND 6 VCO ground VCO_VCC 8 VCO voltage supply. The power supply voltage required to operate the VCO is connected to VCO_VCC (see Application Information section). NAME NO. AUX_LO – VCO tank port. A coaxial resonator and other tuning components are connected to OSC1 to form the local oscillator (see Application Information section). External oscillator input. An external oscillator can be connected to OSC2. See Application Information section. absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 6 V Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC + 0.3 V Power dissipation at or below TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW Operating virtual-junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 125°C recommended operating conditions Supply voltage, VCC High-level input voltage, VIH MIN NOM MAX 3.5 3.75 5.5 V VCC 0.5 V VCC–0.5 – 0.3 Low-level input voltage, VIL UNIT V Operating free-air temperature, TA – 40 85 °C Operating virtual-junction temperature, TJ – 30 105 °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 electrical characteristics at 881 MHz, TA = 25°C, LO = 926 MHz, VCC = 3.75 V; measured in recommended application circuit board (see Application Information) cascade (LNA/SAW†/mixer) (IF = 45 MHz) PARAMETER TEST CONDITIONS MIN 18 TYP MAX UNIT Power conversion gain PD1 = L, PD2 = H 19 21 SSB noise figure PD1 = L, PD2 = H 4.2 5 Input 1-dB compression point PD1 = L, PD2 = H – 26 dBm Input 3rd-order intercept point, 2f2 – f1 PD1 = L, PD2 = H – 14 dBm – 45 dBm – 19 LO feedthrough to RF † Surface acoustic wave (SAW) dB dB LNA PARAMETER TEST CONDITIONS RF frequency range MIN TYP 869 MAX UNIT 894 MHz PD1 = H, PD2 = H 12 PD1 = L, PD2 = H 13 PD1 = H, PD2 = H 2 PD1 = L, PD2 = H 2.2 Reverse isolation PD1 = L, PD2 = H – 25 dB Input return loss ZI = 50 Ω, ZO = 50 Ω, PD1 = L, PD2 = H – 10 dB PD1 = L, PD2 = H – 12 dB PD1 = H, PD2 = H – 19 PD1 = L, PD2 = H – 14 PD1 = H, PD2 = H – 12 PD1 = L, PD2 = H –4 Power gain Noise figure Output return loss Input 1-dB 1 dB compression Input 3rd 3rd-order order intercept point, point 2f2 – f1 dB dB dBm dBm RF mixer PARAMETER TEST CONDITIONS MIN RF frequency range 869 LO frequency range 914 IF frequency TYP MAX UNIT 894 MHz 939 MHz 45 MHz Power conversion gain PD1 = L, PD2 = H 9 dB SSB noise figure PD1 = L, PD2 = H 10 dB 50 Ω RF input impedance LO input impedance External VCO 50 Ω RF input return loss OSC1 = ZI = 50 Ω – 10 dB LO input return loss OSC1 = ZI = 50 Ω –6 dB IF output return loss OSC1 = ZO = 50 Ω PD1 = L, – 15 dB Input 1-dB compression point PD1 = L, PD2 = H – 10 dBm Input 3rd-order intercept point, 2f2 – f1 PD1 = L, PD2 = H 1 dBm 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PD2 = H TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 electrical characteristics at 881 MHz, TA = 25°C, LO = 926 MHz, VCC = 3.75 V; measured in recommended application circuit board (see Application Information) (continued) VCO PARAMETER TEST CONDITIONS Auxiliary LO output power RL = 50 Ω Phase noise Offset = 60 kHz MIN Harmonics TYP MAX UNIT – 11 dBm – 114 dBc/Hz – 20 dBc standby mode requirements over recommended operating free-air temperature range and VCC = 3.75 V; (PD1 = L, PD2 = L) MIN TYP MAX UNIT 28 100 µA RF mixer and buffer amplifier 100 µA VCO 100 µA LNA low current mode requirements over recommended operating free-air temperature range and VCC = 3.75 V; (PD1 = H, PD2 = H) MIN LNA RF mixer and buffer amplifier VCO TYP MAX 2 3 UNIT mA 14 17 mA 4 5 mA improved compression mode requirements over recommended operating free-air temperature range and VCC = 3.75 V; (PD1 = L, PD2 = H) MIN LNA RF mixer and buffer amplifier VCO POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP MAX 5 7 UNIT mA 15 19 mA 3.75 4.5 mA 5 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 APPLICATION INFORMATION Figure 1 shows the TRF1015 configured using an external oscillator. Figure 2 shows the TRF1015 configured for an internal oscillator. Table 2 contains a list of the component part numbers and electrical values for the components shown in Figure 1 and Figure 2. Figure 3 through Figure 6 illustrate the typical performance for mode control when PD1 = L and PD2 = H. VCC 3 1 1 PD1 MIX_OUT– 2 20 VCC 3 R1 2 1 2 3 PD2 C1 L1 5 J5 OSC2 L2 6 7 8 C13 VCO_GND MIX_GND LNA_GND LNA_IN 10 18 L5 C17 C16 17 R2 16 C14 U2 C20 15 J15 L3 C23 Optional C24 OSC1 LNA_VCC 14 VCC C15 VCO_VCC LNA_GND LNA_GND LNA_GND Optional J13 13 12 VCO_BYP C22 L6 L7 C18 11 Figure 1. Recommended Application Circuit With External Oscillator 6 C21 C19 LNA_OUT 9 J19 AUX_LO– AUX_LO+ C10 L8 MIX_OUT+ 19 MIX_IN 4 C12 L4 C2 J4 C11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 APPLICATION INFORMATION VCC 3 1 1 PD1 2 MIX_OUT– 20 VCC 3 R1 2 1 2 3 PD2 L1 C1 5 AUX_LO+ L2 MIX_GND LNA_GND C6 C5 V1 C4 C9 6 7 VCO_GND 8 C7 9 LNA_IN OSC1 LNA_VCC 18 L5 C17 C16 17 R2 16 C14 U2 C20 15 J15 L3 C23 Optional C24 14 VCC C15 VCO_VCC LNA_OUT LNA_GND LNA_GND LNA_GND C22 Optional J13 13 12 VCO_BYP C8 10 C21 C19 P1 Vdc J19 C13 OSC2 C3 C10 L8 MIX_OUT+ 19 MIX_IN 4 J4 C12 L4 AUX_LO– C2 vco Tune C11 L6 L7 C18 11 Figure 2. Recommended Application Circuit With Internal Oscillator POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 APPLICATION INFORMATION Table 2. TRF1015 External Components List DESIGNATORS DESCRIPTION C1 Capacitor VALUE 22 pF Murata GRM36VOG220C50 C2 Capacitor 10 pF Murata GRM36VOG100C50 C3 Capacitor 1 pF Murata GRM36VOG010C50 C4 Capacitor 1 pF Murata GRM36VOG010C50 C5 Capacitor 0.5 pF Murata GRM36VOG05RC50 C6 Capacitor 1.5 pF Venkel Corp CO42COG001ZINB C7 Capacitor 100 pF Murata GRM36VOG101C50 C8 Capacitor 100 pF Murata GRM36VOG101C50 C9 Capacitor 68 pF Murata GRM36VOG680C50 C10 Capacitor 1000 pF Murata GRM36VOG102C50 MANUFACTURER P/N C11 Capacitor 100 pF Murata GRM36VOG101C50 C12 Capacitor 56 pF Murata GRM36VOG560C50 C13 Capacitor 18 pF Murata GRM36VOG180C50 C14 Capacitor 12 pF Murata GRM36VOG120C50 C15 Capacitor 100 pF Murata GRM36VOG101C50 C16 Capacitor 22 pF Murata GRM36VOG220C50 C17 Capacitor 3 pF Murata GRM36VOG030C50 C18 Capacitor 22 pF Murata GRM36VOG220C50 C19 Capacitor 100 pF Murata GRM36VOG101C50 C20 Capacitor 22 pF Murata GRM36VOG220C50 C21 C22† C23‡ Capacitor 68 pF Murata GRM36VOG680C50 Capacitor 100 pF Murata GRM36VOG101C50 Capacitor 100 pF Murata GRM36VOG101C50 C24 Capacitor 1 pF Murata GRM36VOG010C50 L1 Coil 10 nH Toko LL1608-F10NJ L2 Coil 10 nH Toko LL1608-F10NJ L3 Coil 12 nH Toko LL1608-F12NJ L4 Coil 220 nH Coilcraft L5 Coil 12 nH Toko LL1608-F12NJ L6 Coil 12 nH Toko LL1608-F12NJ N/A N/A 0805HS-221 L7 N/A N/A L8 Coil 680 nH Murata R1 Resistor 1.5 kΩ Panasonic ERJ-2GEJ152 R2 Resistor 22 Ω Pansonic ERJ-2GEJ220 P1 Coaxial resonator Trans-Tech SR8800LPQ1050BY U2 Surface acoustic wave (SAW) bandpass filter Murata SAEC881-5MA70N V1 Varactor diode † Remove C19 and populate C22 to test the LNA. ‡ Remove C19 and populate C23 to test the mixer. 8 MANUFACTURER POST OFFICE BOX 655303 Siemens • DALLAS, TEXAS 75265 LQH3NR68M04M00 BBY5L-03W TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS CASCADE POWER CONVERSION GAIN vs TEMPERATURE CASCADE SSB NOISE FIGURE vs TEMPERATURE 7 VCC = 3.75 V RFIN = –40 dBm @ 881.5 MHz IF = 45 MHz PD1 = L PD2 = H 22 20 Cascade SSB Noise Figure – dB G – Cascade Power Conversion Gain – dB 24 18 16 14 12 –40 25 T – Temperature – °C 6 VCC = 3.75 V FREQUENCY = 881.5 MHz IF = 45 MHz PD1 = L PD2 = H 5 4 3 2 –40 85 25 T – Temperature – °C Figure 3 Figure 4 INPUT THIRD ORDER INTERCEPT POINT vs TEMPERATURE VCO TUNING VOLTAGE vs TEMPERATURE 5 VCC = 3.75 V PD1 = L PD2 = H VCC = 3.75 V FREQUENCY = 881.5 MHz PD1 = L PD2 = H 4 VCO Tuning Voltage – V IP3 – Input Third Order Intercept Point – dBm –10 –12 85 –14 –16 –18 939 MHz 3 926.5 MHz 2 1 914 MHz –20 –40 25 T – Temperature – °C 85 0 –40 Figure 5 25 T – Temperature – °C 85 Figure 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS LNA MAXIMUM AVAILABLE GAIN vs FREQUENCY 35 Maximum Available Gain – dB 30 PD1 = L PD2 = H 25 20 15 10 5 0 0.1 1 10 100 1e+03 1e+04 f – Frequency – MHz Figure 7 Table 3. LNA Maximum Available Gain (PD1 = L, PD2 = H) 10 FREQUENCY MHz GMAX dB 200.000 27.86 250.000 26.25 300.000 25.56 350.000 24.92 400.000 23.17 450.000 21.57 500.000 20.39 550.000 19.29 600.000 18.36 650.000 17.55 700.000 16.84 750.000 16.22 800.000 15.71 850.000 15.28 900.000 14.88 950.000 14.54 1000.000 14.28 1050.000 13.97 1100.000 13.68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS LNA MAXIMUM AVAILABLE GAIN vs FREQUENCY 35 Maximum Available Gain – dB 30 PD1 = H PD2 = H 25 20 15 10 5 0 0.1 1 10 100 1e+03 1e+04 f – Frequency – MHz Figure 8 Table 4. LNA Maximum Available Gain (PD1 = H, PD2 = H) FREQUENCY MHz GMAX dB 200.000 24.98 250.000 23.97 300.000 23.04 350.000 22.38 400.000 21.64 450.000 21.25 500.000 20.79 550.000 20.30 600.000 19.99 650.000 18.72 700.000 17.52 750.000 16.73 800.000 15.99 850.000 15.33 900.000 14.89 950.000 14.47 1000.000 14.20 1050.000 13.72 1100.000 13.49 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS LNA S–Parameters (S11, S22); PD1 = H, PD2 = H LNA S–Parameter (S21); PD1 = H, PD2 = H 1 0.5 2 M2 0.2 0 5 0 0.2 0.5 1 S22 2 ∞ 5 6 4.6 3.6 2.4 1.2 M3 M4 – 0.2 M1 M1 S11 –5 M2 – 0.5 –2 –1 Frequency 200 to 1100 MHz Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz M3 Frequency = 200 MHz M4 Frequency = 1100 MHz Figure 9 Figure 10 LNA S–Parameter (S12); PD1 = H, PD2 = H M2 M1 0.06 0.048 0.036 0.024 0.012 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 11 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS Table 5. LNA S-Parameters (PD1 = H, PD2 = H) FREQUENCY MHz S11 Mag S11 Ang/Deg S21 Mag S21 Ang/Deg S12 Mag S12 Ang/Deg S22 Mag S22 Ang/Deg 200.000 0.9161 –25.3740 5.7502 155.0000 0.0183 75.7670 0.7078 –13.7230 250.000 0.8978 –31.1611 5.5760 149.3856 0.0024 70.3898 0.6956 –16.5954 300.000 0.8746 –36.9489 5.3813 144.1056 0.0267 68.0219 0.6818 –19.2064 350.000 0.8505 –42.4277 5.1920 138.8600 0.0300 65.1007 0.6673 –21.9170 400.000 0.8268 –47.6840 5.0138 134.1978 0.0344 62.9150 0.6534 –24.6232 450.000 0.7971 –52.5767 4.8099 129.3022 0.0360 60.6094 0.6366 –27.0642 500.000 0.7710 –57.3827 4.6077 125.0000 0.0384 57.6460 0.6228 –29.5297 550.000 0.7445 –61.7972 4.4172 120.7844 0.0413 56.4048 0.6072 –31.7974 600.000 0.7237 –65.9348 4.2476 117.0256 0.0425 55.9867 0.5934 –33.5836 650.000 0.6990 –70.0200 4.0650 113.2600 0.0435 54.2110 0.5782 –35.9930 700.000 0.6796 –73.8781 3.8898 109.8389 0.0464 52.3697 0.5665 –37.4491 750.000 0.6654 –77.2861 3.7258 106.6278 0.0480 53.5603 0.5548 –39.1324 800.000 0.6505 –80.9020 3.5840 103.7567 0.0490 52.3890 0.5461 –40.7757 850.000 0.6363 –84.4913 3.4536 100.8822 0.0503 51.1741 0.5369 –42.1322 900.000 0.6232 –88.1152 3.3373 98.0539 0.0528 52.6742 0.5284 –43.6353 950.000 0.6115 –91.9600 3.2330 95.5650 0.0539 52.7493 0.5247 –45.0560 1000.000 0.6036 –95.2078 3.1581 93.2986 0.0561 52.4254 0.5793 –46.7002 1050.000 0.5896 –99.2981 3.0540 90.2556 0.0584 51.8791 0.5136 –47.7220 1100.000 0.5808 –102.8000 2.9963 87.9460 0.0601 52.6700 0.5098 –48.9450 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS LNA S–Parameters (S11, S22); PD1 = L, PD2 = H LNA S–Parameter (S21); PD1 = L, PD2 = H 1 0.5 2 M1 0.2 0 5 0 0.2 0.5 1 S22 2 5 M3 M2 11 ∞ 8.8 6.6 4.4 2.2 M4 S11 M2 – 0.2 M1 – 0.5 –5 –2 –1 Frequency 200 to 1100 MHz Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz M3 Frequency = 200 MHz M4 Frequency = 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 12 Figure 13 LNA S–Parameter (S12); PD1 = L, PD2 = H M2 M1 0.06 0.05 0.04 0.03 0.02 0.01 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 14 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS Table 6. LNA S-Parameters (PD1 = L, PD2 = H) FREQUENCY MHz S11 Mag S11 Ang/Deg S21 Mag S21 Ang/Deg S12 Mag S12 Ang/Deg S22 Mag S22 Ang/Deg 200.000 0.8184 –37.1670 10.1790 143.9800 0.0167 72.9150 0.6334 –18.5750 250.000 0.7767 –45.0520 9.5611 136.6800 0.0227 66.1208 0.6068 –21.9252 300.000 0.7297 –52.2266 8.9451 129.9789 0.0248 62.2804 0.5838 –24.5579 350.000 0.6862 –58.5890 8.3266 123.9900 0.0268 61.3593 0.5600 –27.0387 400.000 0.6468 –64.2456 7.7678 118.8544 0.0286 58.3873 0.5396 –29.2259 450.000 0.6077 –69.4464 7.2199 113.9089 0.0319 57.1011 0.5189 –31.3796 500.000 0.5784 –74.0750 6.7222 109.5833 0.0335 58.0690 0.5029 –33.4613 550.000 0.5488 –78.5661 6.2707 105.6556 0.0352 57.6446 0.4863 –34.9911 600.000 0.5255 –82.2168 5.8843 102.1911 0.0365 55.5490 0.4744 –36.0988 650.000 0.5066 –85.7060 5.5023 98.9850 0.0372 57.7150 0.4606 –37.9700 700.000 0.4908 –89.3091 5.1689 96.1968 0.0407 56.8278 0.4478 –38.9564 750.000 0.4810 –92.3593 4.8897 93.5827 0.0406 57.3591 0.4404 –40.0151 800.000 0.4733 –95.6787 4.6458 91.2930 0.0429 58.0943 0.4324 –41.3110 850.000 0.4681 –99.0036 4.4381 89.0728 0.0435 59.6353 0.4287 –42.3419 900.000 0.4637 –102.5756 4.2488 86.7164 0.0461 60.9984 0.4228 –43.5259 950.000 0.4580 –106.6767 4.0818 84.7387 0.0499 60.9513 0.4211 –44.7310 1000.000 0.4565 –110.5256 3.9597 82.7031 0.0509 60.4970 0.4198 –45.9854 1050.000 0.4505 –114.3411 3.8157 80.3111 0.0562 60.9322 0.4152 –46.8147 1100.000 0.4462 –118.1800 3.6975 78.4010 0.0571 61.4270 0.4150 –48.2590 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS Table 7. Mixer RF Input (MIX_IN) S-Parameter (S11) Mixer RF Input (MIX_IN) S–Parameter (S11) 1 0.5 S11 Mag S11 Ang/Deg 200.000 0.8735 –17.8209 250.000 0.8848 –22.7093 300.000 0.8802 –27.3606 350.000 0.8800 –33.2514 400.000 0.8696 –38.4946 450.000 0.8511 –44.2309 500.000 0.8288 –50.4016 550.000 0.7883 –56.4141 600.000 0.7484 –62.1003 650.000 0.6921 –66.5583 700.000 0.6333 –69.8291 750.000 0.5913 –71.9388 800.000 0.5444 –72.4816 850.000 0.5133 –72.4310 900.000 0.4948 –71.8818 950.000 0.4915 –70.6215 1000.000 0.4914 –69.6679 1050.000 0.5013 –69.7537 1100.000 0.5133 –69.6625 2 0.2 5 0 0 FREQUENCY MHz 0.2 0.5 1 2 ∞ 5 M1 – 0.2 –5 M2 – 0.5 –2 –1 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 15 Table 8. Mixer LO Input (OSC2) S-Parameter (S11) Mixer LO Input (OSC2) S–Parameter (S11) 1 0.5 S11 Mag S11 Ang/Deg 200.000 0.8607 –13.8790 250.000 0.8494 –16.7136 300.000 0.8343 –19.4041 350.000 0.8242 –22.1589 400.000 0.8123 –24.8431 450.000 0.8015 –27.4343 500.000 0.7917 –30.0491 550.000 0.7805 –32.5775 600.000 0.7701 –35.0397 650.000 0.7591 –37.6443 700.000 0.7504 –40.1119 750.000 0.7402 –42.4656 800.000 0.7297 –45.1661 850.000 0.7191 –47.5184 900.000 0.7074 –49.9772 950.000 0.6965 –52.2767 1000.000 0.6832 –54.8612 1050.000 0.6741 –56.9238 1100.000 0.6606 –59.3890 2 0.2 0 FREQUENCY MHz 5 0 0.2 0.5 1 2 5 ∞ M1 – 0.2 –5 M2 – 0.5 –2 –1 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 16 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS Mixer IF Output (MIX_OUT–, MIX_OUT+) Differential 1-Port S-Parameter (S11) 1 0.5 2 0.2 0 5 0 0.2 0.5 1 – 0.2 2 5 M1 M2 ∞ –5 – 0.5 –2 –1 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 17 POST OFFICE BOX 655303 Table 9. Mixer IF Output (MIX_OUT–, MIX_OUT+) Differential 1-Port S-Parameter (S11) FREQUENCY MHz S11 Mag S11 Ang/Deg 200.000 0.9779 –3.6814 250.000 0.9608 –8.7853 300.000 0.9610 –12.4887 350.000 0.9606 –15.1696 400.000 0.9396 –17.8656 450.000 0.9225 –19.9763 500.000 0.9195 –22.4088 550.000 0.9101 –24.5839 600.000 0.9037 –26.2246 650.000 0.8929 –28.0952 700.000 0.8808 –29.8886 750.000 0.8825 –30.3742 800.000 0.8498 –32.8607 850.000 0.8296 –33.9195 900.000 0.8034 –34.7265 950.000 0.7947 –34.7224 1000.000 0.7837 –35.2351 1050.000 0.7732 –35.4152 1100.000 0.7645 –35.6687 • DALLAS, TEXAS 75265 17 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS OSC1 and OSC2 S–Parameters (S11) 1 0.5 2 0.2 0 5 0 0.2 0.5 1 2 OSC2 ∞ 5 M1 M3 – 0.2 –5 M4 OSC1 M2 –2 – 0.5 M1 Frequency = 200 MHz M2 Frequency = 1100 MHz M3 Frequency = 200 MHz M4 Frequency = 1100 MHz –1 Frequency 200 to 1100 MHz Figure 18 Table 10. OSC1 and OSC2 S-Parameters (S11) FREQUENCY MHz 18 OSC1 S11 Mag OSC2 S11 Ang/Deg S11 Mag S11 Ang/Deg 200.000 1.0001 –11.1803 0.7619 –18.2426 250.000 1.0091 –14.1781 0.7490 –22.3585 300.000 1.0186 –17.1156 0.7335 –26.1657 350.000 1.0318 –20.3634 0.7222 –30.0057 400.000 1.0466 –23.8789 0.7086 –33.7792 450.000 1.0645 –27.5708 0.6952 –37.5559 500.000 1.0880 –31.8085 0.6852 –41.2834 550.000 1.1065 –36.5770 0.6663 –45.3924 600.000 1.1245 –42.2143 0.6533 –47.4515 650.000 1.1390 –48.8065 0.6464 –51.3596 700.000 1.1247 –56.1964 0.6357 –54.8598 750.000 1.0790 –64.0879 0.6250 –58.3133 800.000 0.9931 –71.3472 0.6122 –61.6874 850.000 0.8886 –76.6167 0.6022 –65.1014 900.000 0.7913 –78.8757 0.5919 –68.1511 950.000 0.7180 –79.4862 0.5820 –71.2731 1000.000 0.6717 –78.4849 0.5735 –74.3303 1050.000 0.6468 –77.7310 0.5634 –77.2926 1100.000 0.6362 –76.7557 0.5556 –80.1574 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 TYPICAL CHARACTERISTICS Buffer Amplifier (AUX_LO, AUX_LO+) Differential 1–Port S–Parameter (S11) 1 0.5 2 0.2 0 5 0 0.2 0.5 1 2 M2 – 0.2 – 0.5 ∞ 5 M1 –5 –2 –1 Frequency 200 to 1100 MHz M1 Frequency = 200 MHz M2 Frequency = 1100 MHz Figure 19 POST OFFICE BOX 655303 Table 11. Buffer Amplifier (AUX_LO–, AUX_LO+) Differential 1-Port S-Parameter (S11) FREQUENCY MHz S11 Mag S11 Ang/Deg 200.000 0.9113 –4.6025 250.000 0.9116 –5.6696 300.000 0.9096 –6.9046 350.000 0.9074 –8.0997 400.000 0.9068 –9.2593 450.000 0.9042 –10.3757 500.000 0.9037 –11.6629 550.000 0.9010 –12.9567 600.000 0.8994 –14.1240 650.000 0.8969 –15.4441 700.000 0.8951 –16.6305 750.000 0.8935 –18.0071 800.000 0.8890 –19.1919 850.000 0.8868 –20.4675 900.000 0.8834 –21.7876 950.000 0.8809 –22.9685 1000.000 0.8769 –24.2356 1050.000 0.8740 –25.4904 1100.000 0.8706 –26.6875 • DALLAS, TEXAS 75265 19 TRF1015 RF DOWNCONVERTER SLWS021D– JUNE 1996 – REVISED JULY 1998 MECHANICAL DATA DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 28 PIN SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,15 NOM 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°– 8° 1,03 0,63 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 / D 02/98 NOTES: A. B. C. D. 20 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated