TI TRF1015DB

TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
D
D
D
D
D
D
D
Low-Noise Amplifier (LNA), Radio
Frequency (RF) Mixer, and
Voltage-Controlled Oscillator (VCO)
Improved Compression Mode
Conversion From RF to Intermediate
Frequency (IF) on a Single Chip
Suitable for Portable 900-MHz Cellular and
Cordless Telephones
Low-Current Consumption Mode
20-Pin Plastic Shrink Small Outline (SSOP)
Package
Application-Selectable Internal or External
Oscillator
DB PACKAGE
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
PD1
PD2
AUX_LO–
AUX_LO+
OSC2
VCO_GND
OSC1
VCO_VCC
VCO_BYP
LNA_GND
20
19
18
17
16
15
14
13
12
11
MIX_OUT–
MIX_OUT+
MIX_IN
MIX_GND
LNA_GND
LNA_IN
LNA_VCC
LNA_OUT
LNA_GND
LNA_GND
description
The Texas Instruments (TI) TRF1015 is a single-chip RF downconverter suitable for 900-MHz receiver
applications. It combines a low-noise amplifier (LNA), a buffered voltage-controlled oscillator (VCO), and an RF
mixer into a 20-pin SSOP package requiring very few external components.
Minimal power consumption can be further reduced by placing the required modules into operate mode and the
remaining modules into standby mode.
Three modes of operation are provided for both the LNA and the mixer: standby, low current, and improved
compression. The improved compression mode is suitable for applications that require full duplex capability.
The improved compression mode is suitable for maintaining receiver sensitivity in the presence of large
interfering signals and provides a low bit-error rate (BER) in digital modulation systems. The three modes of
operation are selectable in accordance with the presence of a high or low signal on PD1 and PD2, as shown
in Table 1.
Table 1. Mode Control
PD1
PD2
Standby
MODE
L
L
Low current
H
H
Improved compression
L
H
The LNA has a gain of 13 dB and a noise figure of 2.2 dB. LNA input and output characteristic impedances are
50 Ω. The single balanced RF mixer has a gain of 9 dB with a single-sideband (SSB) noise figure of 10 dB. The
VCO has a typical tuning range of 25 MHz using an external varactor and resonator. The VCO gain and tuning
range can be adjusted to meet the phase-locked loop (PLL) design requirement, with an external shunt and
feedback capacitors in series with the resonator. A buffered output of the VCO provides phase locking capability
and can be configured for single-ended or differential operation.
The TRF1015 is offered in the 20-pin SSOP (DB) package and is characterized for operation from – 40°C
to 85°C free-air temperature.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TI is a trademark of Texas Instruments Incorporated.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
functional block diagram
PD1
PD2
1
2
Power-Down Signal
To On-Board Circuits
Power Down
Logic
20
Buffer
Amp
VCO_GND
OSC2
OSC1
19
6
18
5
17
Buffer
Amp
3
7
4
8
VCO_BYP
LNA_IN
10, 11, 12, 16
9
15
13
14
LNA_VCC
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIX_OUT–
MIX_OUT+
MIX_IN
MIX_GND
AUX_LO–
AUX_LO+
VCO_VCC
LNA_GND
LNA_OUT
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
Terminal Functions
TERMINAL
I/O
DESCRIPTION
3
O
PLL auxiliary local oscillator (LO) output (inverting). AUX_LO – is the inverted output from the auxiliary local
oscillator.
AUX_LO+
4
O
PLL auxiliary LO output (noninverting). AUX_LO + is the noninverted output from the auxiliary local oscillator.
LNA_GND
10
LNA ground
LNA_GND
11
LNA ground
LNA_GND
12
LNA ground
LNA_GND
16
LNA ground
LNA_IN
15
I
LNA RF input. LNA_IN is the RF input signal to the LNA.
LNA_OUT
13
O
LNA RF output. LNA_OUT is the RF output from the LNA.
LNA_VCC
14
LNA voltage supply. The power supply voltage required to operate the LNA is connected to LNA_VCC. See
Application Information section.
MIX_GND
17
Mixer ground
MIX_IN
18
I
Mixer RF input. MIX_IN is the RF input to the mixer.
MIX_OUT–
20
O
Mixer IF output (inverting). MIX_OUT– is the inverted intermediate frequency (IF) output from the mixer.
MIX_OUT+
19
O
Mixer IF output (noninverting). MIX_OUT+ is the noninverted intermediate frequency (IF) output from the mixer.
OSC1
7
OSC2
5
PD1
1
I
Power down 1 LSB. PD1, along with PD2, determines which sections of the TRF1015 are placed in standby or
operate mode.
PD2
2
I
Power down 2 MSB. PD2, along with PD1, determines which sections of the TRF1015 are placed in standby or
operate mode.
VCO_BYP
9
VCO bypass port. An external capacitor can be connected to VCO_BYP when the TRF1015 is configured for local
oscillator operation.
VCO_GND
6
VCO ground
VCO_VCC
8
VCO voltage supply. The power supply voltage required to operate the VCO is connected to VCO_VCC (see
Application Information section).
NAME
NO.
AUX_LO –
VCO tank port. A coaxial resonator and other tuning components are connected to OSC1 to form the local oscillator
(see Application Information section).
External oscillator input. An external oscillator can be connected to OSC2. See Application Information section.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 6 V
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC + 0.3 V
Power dissipation at or below TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW
Operating virtual-junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 125°C
recommended operating conditions
Supply voltage, VCC
High-level input voltage, VIH
MIN
NOM
MAX
3.5
3.75
5.5
V
VCC
0.5
V
VCC–0.5
– 0.3
Low-level input voltage, VIL
UNIT
V
Operating free-air temperature, TA
– 40
85
°C
Operating virtual-junction temperature, TJ
– 30
105
°C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
electrical characteristics at 881 MHz, TA = 25°C, LO = 926 MHz, VCC = 3.75 V; measured in
recommended application circuit board (see Application Information)
cascade (LNA/SAW†/mixer) (IF = 45 MHz)
PARAMETER
TEST CONDITIONS
MIN
18
TYP
MAX
UNIT
Power conversion gain
PD1 = L,
PD2 = H
19
21
SSB noise figure
PD1 = L,
PD2 = H
4.2
5
Input 1-dB compression point
PD1 = L,
PD2 = H
– 26
dBm
Input 3rd-order intercept point, 2f2 – f1
PD1 = L,
PD2 = H
– 14
dBm
– 45
dBm
– 19
LO feedthrough to RF
† Surface acoustic wave (SAW)
dB
dB
LNA
PARAMETER
TEST CONDITIONS
RF frequency range
MIN
TYP
869
MAX
UNIT
894
MHz
PD1 = H,
PD2 = H
12
PD1 = L,
PD2 = H
13
PD1 = H,
PD2 = H
2
PD1 = L,
PD2 = H
2.2
Reverse isolation
PD1 = L,
PD2 = H
– 25
dB
Input return loss
ZI = 50 Ω,
ZO = 50 Ω,
PD1 = L,
PD2 = H
– 10
dB
PD1 = L,
PD2 = H
– 12
dB
PD1 = H,
PD2 = H
– 19
PD1 = L,
PD2 = H
– 14
PD1 = H,
PD2 = H
– 12
PD1 = L,
PD2 = H
–4
Power gain
Noise figure
Output return loss
Input 1-dB
1 dB compression
Input 3rd
3rd-order
order intercept point,
point 2f2 – f1
dB
dB
dBm
dBm
RF mixer
PARAMETER
TEST CONDITIONS
MIN
RF frequency range
869
LO frequency range
914
IF frequency
TYP
MAX
UNIT
894
MHz
939
MHz
45
MHz
Power conversion gain
PD1 = L,
PD2 = H
9
dB
SSB noise figure
PD1 = L,
PD2 = H
10
dB
50
Ω
RF input impedance
LO input impedance
External VCO
50
Ω
RF input return loss
OSC1 = ZI = 50 Ω
– 10
dB
LO input return loss
OSC1 = ZI = 50 Ω
–6
dB
IF output return loss
OSC1 = ZO = 50 Ω
PD1 = L,
– 15
dB
Input 1-dB compression point
PD1 = L,
PD2 = H
– 10
dBm
Input 3rd-order intercept point, 2f2 – f1
PD1 = L,
PD2 = H
1
dBm
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PD2 = H
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
electrical characteristics at 881 MHz, TA = 25°C, LO = 926 MHz, VCC = 3.75 V; measured in
recommended application circuit board (see Application Information) (continued)
VCO
PARAMETER
TEST CONDITIONS
Auxiliary LO output power
RL = 50 Ω
Phase noise
Offset = 60 kHz
MIN
Harmonics
TYP
MAX
UNIT
– 11
dBm
– 114
dBc/Hz
– 20
dBc
standby mode requirements over recommended operating free-air temperature range and
VCC = 3.75 V; (PD1 = L, PD2 = L)
MIN
TYP
MAX
UNIT
28
100
µA
RF mixer and buffer amplifier
100
µA
VCO
100
µA
LNA
low current mode requirements over recommended operating free-air temperature range and
VCC = 3.75 V; (PD1 = H, PD2 = H)
MIN
LNA
RF mixer and buffer amplifier
VCO
TYP
MAX
2
3
UNIT
mA
14
17
mA
4
5
mA
improved compression mode requirements over recommended operating free-air temperature
range and VCC = 3.75 V; (PD1 = L, PD2 = H)
MIN
LNA
RF mixer and buffer amplifier
VCO
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TYP
MAX
5
7
UNIT
mA
15
19
mA
3.75
4.5
mA
5
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
APPLICATION INFORMATION
Figure 1 shows the TRF1015 configured using an external oscillator. Figure 2 shows the TRF1015 configured for an
internal oscillator. Table 2 contains a list of the component part numbers and electrical values for the components
shown in Figure 1 and Figure 2. Figure 3 through Figure 6 illustrate the typical performance for mode control when
PD1 = L and PD2 = H.
VCC
3
1
1
PD1
MIX_OUT–
2
20
VCC
3
R1
2
1
2
3
PD2
C1
L1
5
J5
OSC2
L2
6
7
8
C13
VCO_GND
MIX_GND
LNA_GND
LNA_IN
10
18
L5
C17 C16
17
R2
16
C14
U2
C20
15
J15
L3
C23
Optional
C24
OSC1
LNA_VCC
14
VCC
C15
VCO_VCC
LNA_GND
LNA_GND
LNA_GND
Optional
J13
13
12
VCO_BYP
C22
L6
L7
C18
11
Figure 1. Recommended Application Circuit With External Oscillator
6
C21
C19
LNA_OUT
9
J19
AUX_LO–
AUX_LO+
C10
L8
MIX_OUT+ 19
MIX_IN
4
C12
L4
C2
J4
C11
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
APPLICATION INFORMATION
VCC
3
1
1
PD1
2
MIX_OUT–
20
VCC
3
R1
2
1
2
3
PD2
L1
C1
5
AUX_LO+
L2
MIX_GND
LNA_GND
C6
C5
V1
C4
C9
6
7
VCO_GND
8
C7
9
LNA_IN
OSC1
LNA_VCC
18
L5
C17 C16
17
R2
16
C14
U2
C20
15
J15
L3
C23
Optional
C24
14
VCC
C15
VCO_VCC
LNA_OUT
LNA_GND
LNA_GND
LNA_GND
C22
Optional
J13
13
12
VCO_BYP
C8
10
C21
C19
P1
Vdc
J19
C13
OSC2
C3
C10
L8
MIX_OUT+ 19
MIX_IN
4
J4
C12
L4
AUX_LO–
C2
vco
Tune
C11
L6
L7
C18
11
Figure 2. Recommended Application Circuit With Internal Oscillator
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
APPLICATION INFORMATION
Table 2. TRF1015 External Components List
DESIGNATORS
DESCRIPTION
C1
Capacitor
VALUE
22 pF
Murata
GRM36VOG220C50
C2
Capacitor
10 pF
Murata
GRM36VOG100C50
C3
Capacitor
1 pF
Murata
GRM36VOG010C50
C4
Capacitor
1 pF
Murata
GRM36VOG010C50
C5
Capacitor
0.5 pF
Murata
GRM36VOG05RC50
C6
Capacitor
1.5 pF
Venkel Corp
CO42COG001ZINB
C7
Capacitor
100 pF
Murata
GRM36VOG101C50
C8
Capacitor
100 pF
Murata
GRM36VOG101C50
C9
Capacitor
68 pF
Murata
GRM36VOG680C50
C10
Capacitor
1000 pF
Murata
GRM36VOG102C50
MANUFACTURER P/N
C11
Capacitor
100 pF
Murata
GRM36VOG101C50
C12
Capacitor
56 pF
Murata
GRM36VOG560C50
C13
Capacitor
18 pF
Murata
GRM36VOG180C50
C14
Capacitor
12 pF
Murata
GRM36VOG120C50
C15
Capacitor
100 pF
Murata
GRM36VOG101C50
C16
Capacitor
22 pF
Murata
GRM36VOG220C50
C17
Capacitor
3 pF
Murata
GRM36VOG030C50
C18
Capacitor
22 pF
Murata
GRM36VOG220C50
C19
Capacitor
100 pF
Murata
GRM36VOG101C50
C20
Capacitor
22 pF
Murata
GRM36VOG220C50
C21
C22†
C23‡
Capacitor
68 pF
Murata
GRM36VOG680C50
Capacitor
100 pF
Murata
GRM36VOG101C50
Capacitor
100 pF
Murata
GRM36VOG101C50
C24
Capacitor
1 pF
Murata
GRM36VOG010C50
L1
Coil
10 nH
Toko
LL1608-F10NJ
L2
Coil
10 nH
Toko
LL1608-F10NJ
L3
Coil
12 nH
Toko
LL1608-F12NJ
L4
Coil
220 nH
Coilcraft
L5
Coil
12 nH
Toko
LL1608-F12NJ
L6
Coil
12 nH
Toko
LL1608-F12NJ
N/A
N/A
0805HS-221
L7
N/A
N/A
L8
Coil
680 nH
Murata
R1
Resistor
1.5 kΩ
Panasonic
ERJ-2GEJ152
R2
Resistor
22 Ω
Pansonic
ERJ-2GEJ220
P1
Coaxial resonator
Trans-Tech
SR8800LPQ1050BY
U2
Surface acoustic wave
(SAW) bandpass filter
Murata
SAEC881-5MA70N
V1
Varactor diode
† Remove C19 and populate C22 to test the LNA.
‡ Remove C19 and populate C23 to test the mixer.
8
MANUFACTURER
POST OFFICE BOX 655303
Siemens
• DALLAS, TEXAS 75265
LQH3NR68M04M00
BBY5L-03W
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
CASCADE POWER CONVERSION GAIN
vs
TEMPERATURE
CASCADE SSB NOISE FIGURE
vs
TEMPERATURE
7
VCC = 3.75 V
RFIN = –40 dBm @ 881.5 MHz
IF = 45 MHz
PD1 = L
PD2 = H
22
20
Cascade SSB Noise Figure – dB
G – Cascade Power Conversion Gain – dB
24
18
16
14
12
–40
25
T – Temperature – °C
6
VCC = 3.75 V
FREQUENCY = 881.5 MHz
IF = 45 MHz
PD1 = L
PD2 = H
5
4
3
2
–40
85
25
T – Temperature – °C
Figure 3
Figure 4
INPUT THIRD ORDER INTERCEPT POINT
vs
TEMPERATURE
VCO TUNING VOLTAGE
vs
TEMPERATURE
5
VCC = 3.75 V
PD1 = L
PD2 = H
VCC = 3.75 V
FREQUENCY = 881.5 MHz
PD1 = L
PD2 = H
4
VCO Tuning Voltage – V
IP3 – Input Third Order Intercept Point – dBm
–10
–12
85
–14
–16
–18
939 MHz
3
926.5 MHz
2
1
914 MHz
–20
–40
25
T – Temperature – °C
85
0
–40
Figure 5
25
T – Temperature – °C
85
Figure 6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
LNA MAXIMUM AVAILABLE GAIN
vs
FREQUENCY
35
Maximum Available Gain – dB
30
PD1 = L
PD2 = H
25
20
15
10
5
0
0.1
1
10
100
1e+03
1e+04
f – Frequency – MHz
Figure 7
Table 3. LNA Maximum Available Gain
(PD1 = L, PD2 = H)
10
FREQUENCY
MHz
GMAX
dB
200.000
27.86
250.000
26.25
300.000
25.56
350.000
24.92
400.000
23.17
450.000
21.57
500.000
20.39
550.000
19.29
600.000
18.36
650.000
17.55
700.000
16.84
750.000
16.22
800.000
15.71
850.000
15.28
900.000
14.88
950.000
14.54
1000.000
14.28
1050.000
13.97
1100.000
13.68
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
LNA MAXIMUM AVAILABLE GAIN
vs
FREQUENCY
35
Maximum Available Gain – dB
30
PD1 = H
PD2 = H
25
20
15
10
5
0
0.1
1
10
100
1e+03
1e+04
f – Frequency – MHz
Figure 8
Table 4. LNA Maximum Available Gain
(PD1 = H, PD2 = H)
FREQUENCY
MHz
GMAX
dB
200.000
24.98
250.000
23.97
300.000
23.04
350.000
22.38
400.000
21.64
450.000
21.25
500.000
20.79
550.000
20.30
600.000
19.99
650.000
18.72
700.000
17.52
750.000
16.73
800.000
15.99
850.000
15.33
900.000
14.89
950.000
14.47
1000.000
14.20
1050.000
13.72
1100.000
13.49
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
LNA S–Parameters (S11, S22); PD1 = H, PD2 = H
LNA S–Parameter (S21); PD1 = H, PD2 = H
1
0.5
2
M2
0.2
0
5
0
0.2
0.5
1
S22
2
∞
5
6
4.6
3.6
2.4
1.2
M3
M4
– 0.2
M1
M1
S11
–5
M2
– 0.5
–2
–1
Frequency 200 to 1100 MHz
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
M3 Frequency = 200 MHz
M4 Frequency = 1100 MHz
Figure 9
Figure 10
LNA S–Parameter (S12); PD1 = H, PD2 = H
M2
M1
0.06 0.048 0.036 0.024 0.012
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 11
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
Table 5. LNA S-Parameters (PD1 = H, PD2 = H)
FREQUENCY
MHz
S11
Mag
S11
Ang/Deg
S21
Mag
S21
Ang/Deg
S12
Mag
S12
Ang/Deg
S22
Mag
S22
Ang/Deg
200.000
0.9161
–25.3740
5.7502
155.0000
0.0183
75.7670
0.7078
–13.7230
250.000
0.8978
–31.1611
5.5760
149.3856
0.0024
70.3898
0.6956
–16.5954
300.000
0.8746
–36.9489
5.3813
144.1056
0.0267
68.0219
0.6818
–19.2064
350.000
0.8505
–42.4277
5.1920
138.8600
0.0300
65.1007
0.6673
–21.9170
400.000
0.8268
–47.6840
5.0138
134.1978
0.0344
62.9150
0.6534
–24.6232
450.000
0.7971
–52.5767
4.8099
129.3022
0.0360
60.6094
0.6366
–27.0642
500.000
0.7710
–57.3827
4.6077
125.0000
0.0384
57.6460
0.6228
–29.5297
550.000
0.7445
–61.7972
4.4172
120.7844
0.0413
56.4048
0.6072
–31.7974
600.000
0.7237
–65.9348
4.2476
117.0256
0.0425
55.9867
0.5934
–33.5836
650.000
0.6990
–70.0200
4.0650
113.2600
0.0435
54.2110
0.5782
–35.9930
700.000
0.6796
–73.8781
3.8898
109.8389
0.0464
52.3697
0.5665
–37.4491
750.000
0.6654
–77.2861
3.7258
106.6278
0.0480
53.5603
0.5548
–39.1324
800.000
0.6505
–80.9020
3.5840
103.7567
0.0490
52.3890
0.5461
–40.7757
850.000
0.6363
–84.4913
3.4536
100.8822
0.0503
51.1741
0.5369
–42.1322
900.000
0.6232
–88.1152
3.3373
98.0539
0.0528
52.6742
0.5284
–43.6353
950.000
0.6115
–91.9600
3.2330
95.5650
0.0539
52.7493
0.5247
–45.0560
1000.000
0.6036
–95.2078
3.1581
93.2986
0.0561
52.4254
0.5793
–46.7002
1050.000
0.5896
–99.2981
3.0540
90.2556
0.0584
51.8791
0.5136
–47.7220
1100.000
0.5808
–102.8000
2.9963
87.9460
0.0601
52.6700
0.5098
–48.9450
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
LNA S–Parameters (S11, S22); PD1 = L, PD2 = H
LNA S–Parameter (S21); PD1 = L, PD2 = H
1
0.5
2
M1
0.2
0
5
0
0.2
0.5
1
S22
2
5
M3
M2
11
∞
8.8
6.6
4.4
2.2
M4
S11
M2
– 0.2
M1
– 0.5
–5
–2
–1
Frequency 200 to 1100 MHz
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
M3 Frequency = 200 MHz
M4 Frequency = 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 12
Figure 13
LNA S–Parameter (S12); PD1 = L, PD2 = H
M2
M1
0.06 0.05 0.04
0.03
0.02
0.01
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 14
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
Table 6. LNA S-Parameters (PD1 = L, PD2 = H)
FREQUENCY
MHz
S11
Mag
S11
Ang/Deg
S21
Mag
S21
Ang/Deg
S12
Mag
S12
Ang/Deg
S22
Mag
S22
Ang/Deg
200.000
0.8184
–37.1670
10.1790
143.9800
0.0167
72.9150
0.6334
–18.5750
250.000
0.7767
–45.0520
9.5611
136.6800
0.0227
66.1208
0.6068
–21.9252
300.000
0.7297
–52.2266
8.9451
129.9789
0.0248
62.2804
0.5838
–24.5579
350.000
0.6862
–58.5890
8.3266
123.9900
0.0268
61.3593
0.5600
–27.0387
400.000
0.6468
–64.2456
7.7678
118.8544
0.0286
58.3873
0.5396
–29.2259
450.000
0.6077
–69.4464
7.2199
113.9089
0.0319
57.1011
0.5189
–31.3796
500.000
0.5784
–74.0750
6.7222
109.5833
0.0335
58.0690
0.5029
–33.4613
550.000
0.5488
–78.5661
6.2707
105.6556
0.0352
57.6446
0.4863
–34.9911
600.000
0.5255
–82.2168
5.8843
102.1911
0.0365
55.5490
0.4744
–36.0988
650.000
0.5066
–85.7060
5.5023
98.9850
0.0372
57.7150
0.4606
–37.9700
700.000
0.4908
–89.3091
5.1689
96.1968
0.0407
56.8278
0.4478
–38.9564
750.000
0.4810
–92.3593
4.8897
93.5827
0.0406
57.3591
0.4404
–40.0151
800.000
0.4733
–95.6787
4.6458
91.2930
0.0429
58.0943
0.4324
–41.3110
850.000
0.4681
–99.0036
4.4381
89.0728
0.0435
59.6353
0.4287
–42.3419
900.000
0.4637
–102.5756
4.2488
86.7164
0.0461
60.9984
0.4228
–43.5259
950.000
0.4580
–106.6767
4.0818
84.7387
0.0499
60.9513
0.4211
–44.7310
1000.000
0.4565
–110.5256
3.9597
82.7031
0.0509
60.4970
0.4198
–45.9854
1050.000
0.4505
–114.3411
3.8157
80.3111
0.0562
60.9322
0.4152
–46.8147
1100.000
0.4462
–118.1800
3.6975
78.4010
0.0571
61.4270
0.4150
–48.2590
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
Table 7. Mixer RF Input (MIX_IN) S-Parameter (S11)
Mixer RF Input (MIX_IN) S–Parameter (S11)
1
0.5
S11
Mag
S11
Ang/Deg
200.000
0.8735
–17.8209
250.000
0.8848
–22.7093
300.000
0.8802
–27.3606
350.000
0.8800
–33.2514
400.000
0.8696
–38.4946
450.000
0.8511
–44.2309
500.000
0.8288
–50.4016
550.000
0.7883
–56.4141
600.000
0.7484
–62.1003
650.000
0.6921
–66.5583
700.000
0.6333
–69.8291
750.000
0.5913
–71.9388
800.000
0.5444
–72.4816
850.000
0.5133
–72.4310
900.000
0.4948
–71.8818
950.000
0.4915
–70.6215
1000.000
0.4914
–69.6679
1050.000
0.5013
–69.7537
1100.000
0.5133
–69.6625
2
0.2
5
0
0
FREQUENCY
MHz
0.2
0.5
1
2
∞
5
M1
– 0.2
–5
M2
– 0.5
–2
–1
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 15
Table 8. Mixer LO Input (OSC2) S-Parameter (S11)
Mixer LO Input (OSC2) S–Parameter (S11)
1
0.5
S11
Mag
S11
Ang/Deg
200.000
0.8607
–13.8790
250.000
0.8494
–16.7136
300.000
0.8343
–19.4041
350.000
0.8242
–22.1589
400.000
0.8123
–24.8431
450.000
0.8015
–27.4343
500.000
0.7917
–30.0491
550.000
0.7805
–32.5775
600.000
0.7701
–35.0397
650.000
0.7591
–37.6443
700.000
0.7504
–40.1119
750.000
0.7402
–42.4656
800.000
0.7297
–45.1661
850.000
0.7191
–47.5184
900.000
0.7074
–49.9772
950.000
0.6965
–52.2767
1000.000
0.6832
–54.8612
1050.000
0.6741
–56.9238
1100.000
0.6606
–59.3890
2
0.2
0
FREQUENCY
MHz
5
0
0.2
0.5
1
2
5
∞
M1
– 0.2
–5
M2
– 0.5
–2
–1
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 16
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
Mixer IF Output (MIX_OUT–, MIX_OUT+) Differential
1-Port S-Parameter (S11)
1
0.5
2
0.2
0
5
0
0.2
0.5
1
– 0.2
2
5
M1
M2
∞
–5
– 0.5
–2
–1
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 17
POST OFFICE BOX 655303
Table 9. Mixer IF Output (MIX_OUT–, MIX_OUT+)
Differential 1-Port S-Parameter (S11)
FREQUENCY
MHz
S11
Mag
S11
Ang/Deg
200.000
0.9779
–3.6814
250.000
0.9608
–8.7853
300.000
0.9610
–12.4887
350.000
0.9606
–15.1696
400.000
0.9396
–17.8656
450.000
0.9225
–19.9763
500.000
0.9195
–22.4088
550.000
0.9101
–24.5839
600.000
0.9037
–26.2246
650.000
0.8929
–28.0952
700.000
0.8808
–29.8886
750.000
0.8825
–30.3742
800.000
0.8498
–32.8607
850.000
0.8296
–33.9195
900.000
0.8034
–34.7265
950.000
0.7947
–34.7224
1000.000
0.7837
–35.2351
1050.000
0.7732
–35.4152
1100.000
0.7645
–35.6687
• DALLAS, TEXAS 75265
17
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
OSC1 and OSC2 S–Parameters (S11)
1
0.5
2
0.2
0
5
0
0.2
0.5
1
2
OSC2
∞
5
M1
M3
– 0.2
–5
M4
OSC1
M2
–2
– 0.5
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
M3 Frequency = 200 MHz
M4 Frequency = 1100 MHz
–1
Frequency 200 to 1100 MHz
Figure 18
Table 10. OSC1 and OSC2 S-Parameters (S11)
FREQUENCY
MHz
18
OSC1
S11
Mag
OSC2
S11
Ang/Deg
S11
Mag
S11
Ang/Deg
200.000
1.0001
–11.1803
0.7619
–18.2426
250.000
1.0091
–14.1781
0.7490
–22.3585
300.000
1.0186
–17.1156
0.7335
–26.1657
350.000
1.0318
–20.3634
0.7222
–30.0057
400.000
1.0466
–23.8789
0.7086
–33.7792
450.000
1.0645
–27.5708
0.6952
–37.5559
500.000
1.0880
–31.8085
0.6852
–41.2834
550.000
1.1065
–36.5770
0.6663
–45.3924
600.000
1.1245
–42.2143
0.6533
–47.4515
650.000
1.1390
–48.8065
0.6464
–51.3596
700.000
1.1247
–56.1964
0.6357
–54.8598
750.000
1.0790
–64.0879
0.6250
–58.3133
800.000
0.9931
–71.3472
0.6122
–61.6874
850.000
0.8886
–76.6167
0.6022
–65.1014
900.000
0.7913
–78.8757
0.5919
–68.1511
950.000
0.7180
–79.4862
0.5820
–71.2731
1000.000
0.6717
–78.4849
0.5735
–74.3303
1050.000
0.6468
–77.7310
0.5634
–77.2926
1100.000
0.6362
–76.7557
0.5556
–80.1574
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
TYPICAL CHARACTERISTICS
Buffer Amplifier (AUX_LO, AUX_LO+) Differential
1–Port S–Parameter (S11)
1
0.5
2
0.2
0
5
0
0.2
0.5
1
2
M2
– 0.2
– 0.5
∞
5
M1
–5
–2
–1
Frequency 200 to 1100 MHz
M1 Frequency = 200 MHz
M2 Frequency = 1100 MHz
Figure 19
POST OFFICE BOX 655303
Table 11. Buffer Amplifier (AUX_LO–, AUX_LO+)
Differential 1-Port S-Parameter (S11)
FREQUENCY
MHz
S11
Mag
S11
Ang/Deg
200.000
0.9113
–4.6025
250.000
0.9116
–5.6696
300.000
0.9096
–6.9046
350.000
0.9074
–8.0997
400.000
0.9068
–9.2593
450.000
0.9042
–10.3757
500.000
0.9037
–11.6629
550.000
0.9010
–12.9567
600.000
0.8994
–14.1240
650.000
0.8969
–15.4441
700.000
0.8951
–16.6305
750.000
0.8935
–18.0071
800.000
0.8890
–19.1919
850.000
0.8868
–20.4675
900.000
0.8834
–21.7876
950.000
0.8809
–22.9685
1000.000
0.8769
–24.2356
1050.000
0.8740
–25.4904
1100.000
0.8706
–26.6875
• DALLAS, TEXAS 75265
19
TRF1015
RF DOWNCONVERTER
SLWS021D– JUNE 1996 – REVISED JULY 1998
MECHANICAL DATA
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
28 PIN SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,15 NOM
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°– 8°
1,03
0,63
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 / D 02/98
NOTES: A.
B.
C.
D.
20
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated