TI TRF1020

TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
D
D
D
D
D
Operates from 2.75 V to 3.5 V Supply
Low Current Consumption
Low Profile Package: 48-pin Plastic Quad
Flat Package (PQFP)
Global System for Mobile Communications
(GSM), Class 3, 4, or 5 Mobile Station (MS)
Portable Cellular Telephone Applications
Conversion from Radio Frequency (RF) to
I and Q Baseband on a Single Chip
D
D
D
D
D
Independent Powerdown of Low Noise
Amplifiers (LNA), Mixers, Intermediate
Frequency (IF) Amplifiers, and
Voltage-Controlled Oscillator (VCO)
Digital Gain Control for LNA and IF
Amplifiers
Two IF Amplifiers for Dual Conversion if
Required
Cascaded Operation of IF Amplifiers for
Single-Conversion Configurations
DC Compensation of I and Q Outputs
description
The TRF1020 is a single-chip radio frequency (RF) downconverter suitable for 900-MHz GSM applications. It
combines in one small package an LNA, an RF mixer, an IF mixer, two IF amplifiers, an I and Q mixer, and one
buffered VCO. The TRF1020 requires few external components.
The LNA has a nominal gain of 12.4 dB and noise figure of 2.1 dB. The first RF mixer has a conversion gain
of 13.4 dB and a single-sideband (SSB) noise figure of 8.3 dB. The IF amplifiers have combined variable gain
from 0 to 84 dB in approximately 3-dB steps. The IF amplifier frequency range is 40 to 180 MHz for the first IF
amplifier and 10 to 180 MHz for the second IF amplifier. The local oscillator of the I and Q mixer operates at four
times the last frequency of the IF mixer.
Power consumption is kept to a minimum and can be further reduced by dynamically placing selected functions
in standby power-down mode when not required. Power-down control is provided through the three-line digital
serial interface.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the gates.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1998, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
OS2_DIV4
IQMIX_VCC
IF2_V CC
IF2_GND
IF2_IN–
IF2_IN+
OS2_VCC
OS2_BASE
OS2_GND
OS2_EMIT
OS2_SYN
GND
PFB PACKAGE
(TOP VIEW)
48 47 46 45 44 43 42 41 40 39 38 37
IQMIX_I+
IQMIX_I–
VMID
IQMIX_Q+
IQMIX_Q–
IQMIX_GND
DIG_VCC
DIG_CMP
CLK
STROBE
DAT
DIG_GND
1
36
2
35
3
34
4
33
5
32
6
31
7
30
8
29
9
28
10
27
11
26
25
12
LNA_GND
LNA_IN
LNA_GND
LNA_OUT
LNA_VCC
LNA_GND
MIX1_RF
IF1_IN+
IF1_IN–
MIX1_GND
OS1_BASE
OS1_EMIT
13 14 15 16 17 18 19 20 21 22 23 24
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIX2_LO
MIX2_IF+
MIX2_IF–
IF1_GND
IF1_VCC
MIX1_IF–
MIX1_IF+
OS1_SYN
OS1_MOD
LO_BUF_GND
OS1_GND
OS1_VCC
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
functional block diagram
I /Q Mixer
Buffer
1
2
External
LPF
48
2nd IF
Amplifier
Buffer
IF2_IN+
43
44
MIX2_IF–
OS2_BASE 41
0°
IF2_IN–
2nd LO
From Modulator
(MIX2_LO)
Buffer
2nd
VCO
÷4
39
Buffer
38
90°
36
34
Buffer
IF Mixer
35
OS2_EMIT
4
MIX2_IF+
External
IF BPF
20
21
5
1st IF
Amplifier
IQMIX_I +
IQMIX_I –
Divide-by-Four
To SYNTH
(OS2_DIV4)
External
Tank
SYNTH
Loop Filter
To SYNTH
(OS2_SYN)
IQMIX_Q +
IQMIX_Q –
IF1_IN+
IF1_IN–
MIX1_IF– Buffer RF Mixer
31
Buffer
24
30
MIX1_IF+
External
RF BPF
Buffer 29
To SYNTH
(OS1_SYN)
Buffer 28
To Transmit
Modulator
(OS1_MOD)
19
MIX1_RF
LNA
Serial Interface
POST OFFICE BOX 655303
11
• DALLAS, TEXAS 75265
12
DIG_GND
10
DAT
9
STROBE
8
DIG_VCC
7
CLK
14
LNA_IN
DIG_CMP
16
LNA_OUT
1st LO in
(OS1_EMIT)
3
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
serial port operation
The TRF1020 device register is manipulated through a synchronous serial data port. The timing relationships
are defined in Figure 1. One 24-bit word is clocked into a temporary holding register in little endian fashion (LSB
clocked in first). New data, residing in the temporary registers, is loaded into the operation registers on the rising
edge of the STROBE line. The control data-bit functions are detailed in Tables 1, 2, 3, 4, 5, 6, and 7 in the
following sections.
Table 1. Control Data BIT/Signal Name Map
CONTROL DATA BIT†
SIGNAL NAME
D0
LNAP
D1
LNAG
D2
MX1STBY
D3
MX1P
D4
MX2P
D5
MX2BYP
D6
IF1AGC1
D7
IF1AGC2
D8
IF1AGC3
D9
IF1AGC4
D10
IF1AGC5
D11
IF1AGC6
D12
DMODP
D13
DMODSTBY
D14
IF2AGC1
D15
IF2AGC2
D16
IF2AGC3
D17
IF2AGC4
D18
IF2AGC5
D19
IF2AGC6
D20
DMDISABLE
D21
<Not Used>
D22
<Not Used>
D23
<Not Used>
† D0 is the first bit sent in the 24-bit serial data
word, D23 is the last bit sent.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
low noise amplifier (LNA)
The LNA gain is controlled as described in Table 2.
Table 2. LNA Gain Control
(see Note 1)
NOMINAL
GAIN (dB)
LNAP
LNAG
0
0
1
0
0
1
–6
1
1
Not Allowed
– 30†
12.4‡
† Low gain state
‡ High gain state
NOTE 1: See Table 1, Control Data
BIT/Signal Name Map.
RF mixer
The RF mixer section is controlled as described in Table 3.
Table 3. RF Mixer Control (see Note 1)
SIGNAL
DESCRIPTION
MX1STBY
RF mixer standby
MX1P
RF mixer power
OPERATION
1: Entire section on
0: Don’t care
1: Section powered up
0: Power shut down
NOTE 1: See Table 1, Control Data BIT/Signal Name Map.
first IF amplifier and IF mixer
The second downconverter group consists of the first IF amplifier whose output feeds the IF mixer function.
Because the first IF amplifier output is not brought out to device terminals, the two functions are specified
together. In order to provide for cascaded operation of the first and second IF amplifiers, it is possible to bypass
the IF mixer function. The first IF amplifier gain is controlled according to Table 4. The first IF amplifier and IF
mixer power-down control are described in Table 5.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
first IF amplifier and IF mixer (continued)
Table 4. First IF Amplifier Gain Control (see Note 1)
IF1AGC6
IF1AGC5
IF1AGC4
IF1AGC3
IF1AGC2
IF1AGC1
GAIN (dB)
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
0
1
1
6
0
0
0
1
1
1
9
0
0
1
0
0
0
12
0
0
1
0
0
1
14.5
0
0
1
0
1
1
17.5
0
0
1
1
1
1
20.5
0
1
1
0
0
0
23
0
1
1
0
0
1
26
0
1
1
0
1
1
29
0
1
1
1
1
1
32
1
1
1
0
0
0
34.5
1
1
1
0
0
1
37
1
1
1
0
1
1
39.5
1
1
1
1
1
1
42
NOTE 1: See Table 1, Control Data BIT/Signal Name Map.
Table 5. IF Mixer Bias Control (see Note 1)
SIGNAL
DESCRIPTION
OPERATION
1: Mixer bypassed
MX2BYP
(see Note 2)
IF mixer bypass
MX2P
IF mixer power control
0: Normal operation
1: Operational
0: Nonoperational
NOTES: 1. See Table 1, Control Data BIT/Signal Name Map.
2. Using the mixer-bypass function disables the LO input to the
mixer (at the buffer) and unbalances the mixer to allow the
signal to pass through the mixer.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
second IF amplifier and I/Q mixer
The second IF amplifier gain is controlled as described in Table 6, while the second IF amplifier, I/Q mixer and
second VCO power-down controls are described in Table 7.
Table 6. Second IF Amplifier Gain Control (see Note 1)
IF2AGC6
IF2AGC5
IF2AGC4
IF2AGC3
IF2AGC2
IF2AGC1
GAIN (dB)
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
0
1
1
6
0
0
0
1
1
1
8.5
0
0
1
0
0
0
12
0
0
1
0
0
1
15
0
0
1
0
1
1
18
0
0
1
1
1
1
21
0
1
1
0
0
0
24
0
1
1
0
0
1
27
0
1
1
0
1
1
30
0
1
1
1
1
1
33
1
1
1
0
0
0
36
1
1
1
0
0
1
39
1
1
1
0
1
1
40
1
1
1
1
1
1
42.5
NOTE 1: See Table 1, Control Data BIT/Signal Name Map.
Table 7. I/Q Mixer and Second VCO Control (see Note 1)
SIGNAL
DESCRIPTION
DMODSTBY
DEMOD standby
DMODP
Power control
DMDISABLE
DC correction
OPERATION
1: Entire section on
0: Only second VCO/synth buffer on
1: Normal operation
0: Power shut down
1: Internal dc correction off
0: Internal dc correction on
NOTE 1: See Table 1, Control Data BIT/Signal Name Map.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
CLK
9
I
Serial data timing control signal.
DAT
11
I
Serial data input.
DIG_CMP
8
I
Control signal for I and Q DC compensation circuitry.
DIG_GND
12
Ground connection for digital control circuitry.
DIG_VCC
GND
7
Voltage supply connection for digital control circuitry.
37
Ground
IF1_GND
33
Ground connection for first IF amplifier and IF mixer circuitry.
IF2_GND
45
IF1_IN+
20
I
Noninverting RF mixer output.
IF2_IN+
43
I
Noninverting second IF amplifier input signal.
IF1_IN–
21
I
Inverting RF mixer output.
IF2_IN–
44
I
Inverting second IF amplifier input signal.
IF1_VCC
IF2_VCC
32
Voltage supply connection for first IF amplifier.
46
Voltage supply connection for second IF amplifier.
IQMIX_GND
6
IQMIX_I+
1
O
Noninverting in-phase output.
IQMIX_I –
2
O
Inverting in-phase output.
IQMIX_Q+
4
O
Noninverting quadrature-phase output.
IQMIX_Q–
5
O
Inverting quadrature-phase output.
IQMIX_VCC
LNA_GND
Ground connection for second IF amplifier.
Ground connection for the I and Q mixer.
47
Voltage supply connection for the I and Q mixer circuitry.
13, 15, 18
Ground connection for the LNA circuitry.
LNA_IN
14
I
Low-noise amplifier input.
LNA_OUT
16
O
Low-noise amplifier output.
LNA_VCC
LO_BUF_GND
17
Bias supply for the LNA circuitry.
27
Ground connection for OS1 LO buffer.
MIX1_GND
22
MIX1_IF+
30
O
Noninverting first IF amplifier input signal.
MIX1_IF–
31
O
Inverting first IF amplifier input signal.
MIX1_RF
19
I
RF mixer input.
MIX2_IF+
35
O
Noninverting first IF amplifier and IF mixer input.
MIX2_IF–
34
O
Inverting first IF amplifier and IF mixer input.
MIX2_LO
36
I
IF mixer LO input.
OS1_BASE
23
I
Base of OS1 transistor.
OS2_BASE
41
I
Base of the OS2 transistor.
OS2_DIV4
48
O
Oscillator frequency divided by 4.
OS1_EMIT
24
External RF mixer LO input.
OS2_EMIT
39
Emitter of OS2 transistor.
OS1_GND
26
Ground connection for the OS1 circuitry.
OS2_GND
40
Ground connection for OS2 circuitry.
OS1_MOD
28
O
OS1 buffered output.
OS1_SYN
29
O
OS1 buffered output.
OS2_SYN
38
O
OS2 buffered output.
8
Ground connection for RF mixer circuitry.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
Terminal Functions (Continued)
TERMINAL
NAME
I/O
NO.
DESCRIPTION
OS1_VCC
OS2_VCC
25
Bias supply for OS1 circuitry.
STROBE
10
I
Data strobe.
VMID
3
I
Bias supply reference voltage for A/D converters (VDD/2).
42
Bias supply for the OS2 circuitry.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to +5.5 V
Input voltage to any other pin, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to (VCC +0.3) V
Power dissipation, PD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mW
Maximum operating junction temperature, TJmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Operating ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40 °C to +85°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to +150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions
MIN
MAX
UNIT
V
– 0.3
VCC
0.8
2.75
3.5
V
– 40
85
°C
– 30
105
°C
Logic 1 level, VIH
2
Logic 0 level, VIL
Supply voltage, VCC
Operating free-air temperature, TA
Operating junction temperature, TJ
NOM
V
typical power consumption, VCC = 3 V
OPERATING
CURRENT (mA)
STANDBY
CURRENT (µA)
OPERATING
POWER (mW)
STANDBY
POWER (µW)
LNA
11
5
33
15
RF mixer
18
5
54
15
MODULE
Main VCO and buffers
6
5
18
15
First IF amplifier and IF mixer
22
15
66
45
Second IF amplifier and I/Q mixer
30
20
90
60
6
5
18
15
93
55
279
165
Second VCO and buffers
Total
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
low noise amplifier (LNA), VCC = 3 V (typical values)
PARAMETERS
TEST CONDITIONS
RF frequency range
MIN
TYP
915
Power gain
Noise figure
MAX
UNIT
970
MHz
High gain
12.4
dB
Low gain
– 5.8
dB
High gain
2.1
Low gain
N/A
N/A
dB
Gain/temperature sensitivity
0.003
dB/°C
Gain/frequency sensitivity
0.012
dB/MHz
Reverse isolation
20
1 dB compression
Input 1-dB
Input third-order
third order intercept (IP3)
High gain
–12
Low gain
>5
High gain
3.9
Low gain
7.3
dB
dBm
dBm
RF mixer (MIX1), VCC = 3 V (typical values)
PARAMETERS
TEST CONDITIONS
MIN
RF frequency range
915
LO frequency range
975
IF frequency range
40
Power conversion gain (see Note 3)
SSB noise figure
TYP
149
MAX
UNIT
970
MHz
1220
MHz
180
MHz
13.4
dB
8.3
dB
Ω
RF input resistance
Single ended
50
LO input impedance
Single ended
50
Ω
LO Power level
Into OS1-base, pin 23 (for external VCO applications)
–5
dBm
IF output load impedance
Open-collector output,
149 MHz differential
RF input 1-dB compression (see Note 3)
RF input third-order intercept (see Note 3)
Input second-order intercept
|f2 -f1| = 200 kHz,
2 fLO – 2 fRF,
fdesired = 925.2 MHz,
fdesired = 2f1 – f2
fLO = 1074.2 MHz,
fRF = 999.7 MHz
500
Ω
–9.1
dBm
4.7
dBm
15
dBm
RF feedthrough to IF (see Note 3)
915 MHz to 970 MHz
–15.6
dBc
LO feedthrough to IF (see Note 3)
970 MHz to 1220 MHz
– 35
dBm
LO feedthrough to RF (see Note 4)
975 MHz to 1220 MHz
– 35
dBm
NOTES: 3. Into 500-Ω differential load
4. Into 50-Ω load
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
(continued)
first IF amplifier (IF1) and IF mixer (MIX2), VCC = 3 V, TA = 25°C, fI(IF) = 149 MHz, f(LO) = 97 MHz, fO(IF) = 52 MHz
PARAMETERS
TEST CONDITIONS
MIN
TYP
MAX
UNIT
IF frequency range
40
180
MHz
LO port frequency range
60
180
MHz
Second mixer output frequency range
Mixer on
10
80
Mixer bypassed
40
180
Power conversion gain at max IF gain setting (see Note 5)
39
Dynamic range
Gain error (see Note 6)
See Table 4
DSB noise figure at max IF gain
Differential
LO input impedance
Single-ended
LO input level
Input 1-dB
1 dB compression (see Note 5)
third order intercept (see Note 5)
Input third-order
46
dB
39.5
dB
±1
dB
9.4
IF input impedance
Output impedance
42.5
MHz
15
dB
2
kΩ
50
Ω
– 10
dBm
52 MHz, differential, open collector
2500
Ω
Maximum IF gain
–61.6
Minimum IF gain
–19.7
|f2 -f1| = 200 kHz,
fdesired = 2f1 – f2
Maximum IF gain
–52.5
Minimum IF gain
–9.6
dBm
dBm
NOTES: 5. For 500 Ω differential load.
6. Error at any gain step relative to gain state per Table 4 at a single frequency.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
(continued)
second IF amplifier (IF2) and I/Q mixer ((IQMIX) and second VCO (OS2)), VCC = 3 V, Vmid = VCC /2, TA = 25°C,
fI(IF) = 52 MHz
PARAMETERS
TEST CONDITIONS
MIN
IF frequency range
10
Power gain at max IF gain setting (see Note 7)
37
TYP
42
Dynamic range
MAX
UNIT
180
MHz
47
dB
40
dB
dB
Gain error (see Notes 7 and 8)
See Table 6
±1
SSB noise figure
Maximum IF gain
12
dB
IF input impedance
Differential
2
kΩ
Input 1
1-dB
dB compression (see Note 7)
Maximum IF gain
–55
Minimum IF gain
–19
Input third-order
third order intercept (see Note 7)
|f| 2 -f1| = 200 kHz,,
fdesired = 2f1 – f2
I and Q output impedance
Differential open collector
I and Q output voltage swing (see Note 7)
Each differential line
I and Q output dc level (see Note 7)
Maximum IF gain
–45
Minimum IF gain
–9
dBm
Ω
1100
1.7
Vpp
Vmid ± 10 mV
(see Note 9)
Each differential line
I and Q baseband bandwidth (see Note 7)
I to Q output gain balance (see Note 7)
dBm
Between I or Q outputs
I or Q amplitude balance (see Note 7)
V
200
kHz
± 0.5
dB
± 0.69
dB
±1
deg
I or Q phase accuracy (see Note 7)
NOTES: 7. For 10-kΩ differential load at I and Q outputs
8. Error at any gain step is relative to gain setting per Table 6 at a single frequency.
9. DC compensation operating
second VCO (OS2), VCC = 3 V (typical values)
PARAMETERS
TEST CONDITIONS
Frequency range
MIN
TYP
180
MAX
UNIT
720
MHz
Auxiliary LO output power
Into 100 Ω
–14.5
dBm
Phase noise
Offset = 200 kHz
–120
120
dBc /Hz
second VCO (OS2) divide-by-four output (OS2_DIV4), VCC = 3 V
PARAMETERS
TEST CONDITIONS
Frequency range
TYP
45
Output voltage level
12
MIN
180
250
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MAX
UNIT
MHz
mVp-p
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
electrical characteristics over recommended free-air temperature range (unless otherwise noted)
(continued)
serial interface timing requirements with VDDP = VDDA ≥ 2.75 V and ≤ 3.5 V, TA = 25°C (see Figure 1)
PARAMETER
MIN
TYP
MAX
CLOCK, DATA and STROBE input capacitance
Ri
CLOCK, DATA and STROBE input resistance
fclock
t(r), t(f)
CLOCK frequency
tw(High)
tw(Low)
Pulse duration, CLOCK high
20
ns
Pulse duration, CLOCK low
20
ns
Data setup time before CLOCK high
20
ns
Strobe setup time before CLOCK high
20
ns
Data hold timeafter CLOCK high
20
ns
Strobe hold time after CLOCK high
20
ns
2
REF_IN
ns
tsu
th
tw(pulse)
10
UNIT
Ci
10
kΩ
0
CLOCK input rise and fall time
Strobe pulse width duration
pF
20
MHz
8
ns
cascaded performance VCC = 3 V, LNA through Mixer1, TA = 25°C
PARAMETER
RF = 940 MHz, LO = 1089 MHz, IF = 149 MHz (measurements include filter loss)
Max LNA gain setting
Cascaded gain
Min LNA gain setting
Cascaded SSB NF
MIN
25
TYP
MAX
27
29
6.8
UNIT
dB
dB
Max LNA gain setting
3.8
Max LNA gain setting
–8.9
dBm
Min LNA gain setting
9.1
dBm
RF input return loss
8.4
dB
LO input return loss
13.5
dB
IF input return loss
10.6
dB
Input third order intercept
Input,
|f2 – f1 |= 200 kHz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
4.5
dB
13
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
PARAMETER MEASUREMENT INFORMATION
Data
Valid
DATA
Data
Change
D0
D1
tsu
D22
th
– VIH
D23
– VIL
tw(High)
– VIH
CLOCK
– VIL
tsu
tw(Low)
th
tw(pulse)
STROBE
– VIH
– VIL
Clock Enabled
Shift in Data
Clock Disabled
Store Data
Figure 1. TRF1020 Timing Relationships
APPLICATION INFORMATION
Table 8. TRF1020 Evaluation Board Parts List
SIZE
(mm)
MANUFACTURER
100 pF
0402
Murata
GRM36COG101J50
9 pF
0402
Murata
GRM36COG090D50
Capacitor
100 pF
0402
Murata
GRM36COG101J50
Capacitor
10000 pF
0402
Murata
GRM36COG103K50
DESIGNATORS
DESCRIPTION
C1, 2, 3, 4
Capacitor
C5,
Capacitor
C6
C7
14
VALUE
MANUFACTURER
P/N
C10, 11
Capacitor
56 pF
0402
Murata
GRM36COG560J50
C14, 16
Capacitor
1 µF
3258B
Venkel
TA025TCM105KAR
C15
Capacitor
39 pF
0402
Murata
GRM36COG390J50
C19
Capacitor
56 pF
0402
Murata
GRM36COG560J50
C20
Capacitor
5 pF
0402
Murata
GRM36COG050D50
C21
Capacitor
5 pF
0402
Murata
GRM36COG050C50
C22
Capacitor
330 pF
1206
Murata
GRM42–6COG331J50
C23
Capacitor
1000 pF
0402
Murata
GRM36COG102Z50
C24
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C25
Capacitor
4 pF
0402
Murata
GRM36COG040C50
C26
Capacitor
56 pF
0402
Murata
GRM36COG560K50
C27
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C28
Capacitor
2.7 pF
0402
Murata
GRM36COG2R7J50
C29
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C31
Capacitor
330 pF
1206
Murata
GRM42–6COG331J50
C32
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C34
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C35
Capacitor
220 pF
1206
Murata
GRM42-6COG221J50
C37
Capacitor
2 pF
0402
Murata
GRM36COG020C50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
APPLICATION INFORMATION
Table 8. TRF1020 Evaluation Board Parts List (Continued)
DESIGNATORS
DESCRIPTION
VALUE
SIZE
(mm)
MANUFACTURER
MANUFACTURER
P/N
C38
Capacitor
33 pF
0402
Murata
GRM36COG330J50
C41, 42, 43, 44
Capacitor
10 pF
0402
Murata
GRM36COG100D50
C45, 46, 47
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C48
Capacitor
220 pF
1206
Murata
GRM42-6COG221J50
C49
Capacitor
10000 pF
0402
Murata
GRM36COG103K50
C50, 51
Capacitor
100000 pF
0402
Murata
GRM36COG1042016
C52
Capacitor
10000 pF
0402
Murata
GRM36COG103K50
C53
Capacitor
56 pF
0402
Murata
GRM36COG056J50
C54
Capacitor
1 pF
0402
Murata
GRM36COG010C50
C55
Capacitor
1000 pF
0402
Murata
GRM36X7R102K50
C56
Capacitor
39pF
1206
Murata
GRM42–6COG390J50
C57
Capacitor
1 pF
0402
Murata
GRM36COG010C50
C58
Capacitor
3.3 pF
0402
Murata
GRM36COG3R3050
C59
Capacitor
18 pF
1206
Murata
GRM42–6COG180J50
C60
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C61
Capacitor
10000 pF
0402
Murata
GRM36X7R103K16
C62
Capacitor
1000000 pF
3258B
Venkel
TA025TCM105KAR
C63
Capacitor
1000000 pF
1206
Murata
GRM42-6Y5V105
C64
Capacitor
100 pF
0402
Murata
GRM36COG101J50
C65
Capacitor
2 pF
0402
Murata
GRM36COG020C50
C66
Capacitor
6 pF
0402
Murata
GRM36COG060J50
C72
Capacitor
1000 pF
0402
Murata
GRM36Y5V102Z50
C73
Capacitor
33 pF
0402
Murata
GRM36COG330O50
C74, 75, 76
Capacitor
1000 pF
0402
Murata
GRM36Y5V102Z50
C77
Capacitor
82 pF
0402
Murata
GRM36COG820J50
C80
Capacitor
12 pF
0402
Murata
GRM36COG120O50
C81
Capacitor
5 pF
0402
Murata
GRM36COG050C50
C82
Capacitor
12 pF
0402
Murata
GRM36X7R120K16
C83
Capacitor
5 pF
0402
Murata
GRM36COG050C50
C84
Capacitor
9 pF
0402
Murata
GRM36COG090J50
C85
Capacitor
10000 pF
0402
Murata
GRM36COG103K50
C86
Capacitor
22 pF
0402
Murata
GRM36COG220J50
C87
Capacitor
5.6 pF
0603
Murata
GRM39COG5R6C50
L1
Inductor
150 nH
1008
Coilcraft
1008CS-151XKBC
L2
Inductor
470 nH
0603
Toko
L3
Inductor
180 nH
0805
Coilcraft
0805HS–181TKBC
L4
Inductor
6.8 nH
0603
Coilcraft
0603HS–6N8TKBC
L5
Inductor
15 nH
0603
Coilcraft
0603HS–15NTJBC
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
LL2012-FR47K
15
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
APPLICATION INFORMATION
Table 8. TRF1020 Evaluation Board Parts List (Continued)
SIZE
(mm)
MANUFACTURER
15 nH
0603
Coilcraft
0603HS-15NTJBC
6.8 nH
0603
Coilcraft
0603HS–6N8TJBC
120 nH
0603
Coilcraft
0603HS-R12TJBC
Inductor
180 nH
0805
Coilcraft
0805HS–180TKBC
Inductor
150 nH
1008
Coilcraft
1008CS-151XKBC
DESIGNATORS
DESCRIPTION
L6
Inductor
L7
Inductor
L8, 9
Inductor
L10
L11
16
VALUE
MANUFACTURER
P/N
L12
Inductor
56 nH
0603
Coilcraft
0603HS-56NTJBC
L13, 14
Inductor
3.9 nH
0603
Coilcraft
0603HS-3N9TKBC
L15, 16
Inductor
390 nH
1008
Coilcraft
1008CS–391XKBC
L17
Inductor
39 nH
0603
Coilcraft
0603HS–39NTJBC
L18
Inductor
390 nH
1008
Coilcraft
1008CS–391XKBC
L19
Inductor
120 nH
1008
Coilcraft
1008CS–121XKBC
L21
Inductor
39 nH
0805
Coilcraft
0805HS-390TMBC
L22
Inductor
6.8 nH
0402
Toko
LL1005–F6N8K
L23
Inductor
180 nH
0805
Coilcraft
0805HS–181TKBC
L25, 26
Inductor
47 nH
0603
Coilcraft
0603HS–47NTJBC
L27
Inductor
39 nH
0805
Coilcraft
0805HS-390TMBC
L28
Inductor
150 nH
0805
Coilcraft
0805HS–151TKBC
L29
Inductor
120 nH
0603
Coilcraft
0603HS–R12TJBC
R1, 2
Resistor
0Ω
0402
Panasonic
ERJ–2GEJ0R00
R3
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R4
Resistor
1.5 kΩ
0402
Panasonic
ERJ-2GEJ152
R5, 6
Resistor
1 kΩ
0402
Panasonic
ERJ-2GEJ102
R7
Resistor
1.5kΩ
0402
Panasonic
ERJ-2GEJ152
R8
Resistor
1 kΩ
0402
Panasonic
ERJ-2GEJ102
R9
Resistor
1.5 kΩ
0402
Panasonic
ERJ-2GEJ152
R10
Resistor
1 kΩ
0402
Panasonic
ERJ-2GEJ102
ERJ-2GEJ152
R11
Resistor
1.5 kΩ
0402
Panasonic
R12
Resistor
10 kΩ
Trimpot
Bourns
R13
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R14
Resistor
9.1 kΩ
0402
Panasonic
ERJ-2GEJ912
R15
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R16
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R17
Resistor
2 kΩ
Trimpot
Bourns
R18, 21
Resistor
22 kΩ
0402
Panasonic
3214W–1–103ECT
3214W–1–202ECT
ERJ-2GEJ223
R19
Resistor
10 kΩ
Trimpot
Bourns
R20, 22, 23
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R24
Resistor
9.1 kΩ
0402
Panasonic
ERJ-2GEJ912
R25
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R26
Resistor
2 kΩ
Trimpot
Bourns
R29
Resistor
10 kΩ
0402
Panasonic
ERJ-2GEJ103
R30
Resistor
5.1kΩ
0402
Panasonic
ERJ–2GEJ512
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3214W–1–103ECT
3214W–1–202ECT
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
APPLICATION INFORMATION
Table 8. TRF1020 Evaluation Board Parts List (Continued)
VALUE
SIZE
(mm)
MANUFACTURER
MANUFACTURER
P/N
0402
Panasonic
ERJ-2GEJ0R00
Trimpot
Bourns
3214W-103ECT
DESIGNATORS
DESCRIPTION
R31, 32, 33
Resistor
0Ω
R36
Resistor
10 kΩ
R39
Resistor
200 Ω
0402
Panasonic
ERJ-2GEJ201
R40, 41
Resistor
50 Ω
0402
Panasonic
ERK-2GEJ201
R42
Resistor
47 kΩ
0402
Panasonic
ERJ-2GEJ473
0Ω
0402
Panasonic
ERJ-2GEJ0R00
Bourns
3296–Y–1–103
Panasonic
ERJ-2GEJ0R00
R43
Resistor
R44
Adj. Resistor
R50, 51
Resistor
P1
Connector,
9-pin serial
Amp
J1, 2, 4, 5, 6, 8,
10, 11, 12, 13,
14, 15
SMA board
connector
EF Johnson
J20, 21
DC voltage
connector
Amp
4-103239-0
U1
Voltage regulator
(3 V)
Toko
TK11230CT-ND
U10
GSM receiver
TI
U11, 12
Operational
amplifiers
Motorola
MC34071D
CR1
Varactor diode
Motorola
MMBV2109
F1
Differential SAW
filter
RF Monolithics
10 kΩ
0Ω
0402
745990-4
142-0701-801
TRF1020
RFM_SF 1076A
F2
Bandpass filter
Murata
T1, 2
Balun transformer
Toko
617PT1026
T3, 4
Balun transformer
MA/COM
ETC1–1–13
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SAFC942.5MA7ON
17
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
R16
10 k
6
C83
5 pF
J21
1
+ C14 2
1 µF
C51
I_OUT .1 µ F
J12
2
1
–12 V
DEM_LO
J11
2
1
C3
100 pF
47 k
R44
10 k
R42
1
C16
1 µF
–12 V
4
U3
+12 V
C26
56 pF
10 k
VCC
C75
5
+ 2
R15
10 k
R18
22 k
CW
22 k
10 k
R36
R30 CCW
2k
VCC
C15
L3
180 nH 39 pF
C80
12 pF
5 pF
C81
L2
C87
100 pF
37
38
39
40
41
42
43
44
45
46
47
48
C58
U10
TRF1020
–12 V
R21
2k
4
C45
100 pF
2
5
U3
4
C19
56 pF
10 k
R20
–12 V
+
P1:I
P1:F
P1:E
P1:D
P1:A
R25
10 k
C50 Q_OUT
J13
0.1 µ F
9
6
5
1
R11
1.5 k
R9
1.5 k
R7
1.5 k
R4
1.5 k
100 pF
L7
6.8 nH
5 pF
1k
C44
10 pF
R10 8
1k
C43
10 pF
R8 3
1k
C42
10 pF
R6 7
1k
C41
10 pF
R5 2
J8
RF_IN
2.7 pF
C28
P1:H
L27
GND
VIN
VOUT
U1
L29
120 nH
+
VCC
GND
13 46
5
C63
1µ F
IN OUT
C62
1µ F
4
5
6
2
J20
C64
100 pF
VIN
2
1
J5
IF1_IN
C27
100 pF
SF2
SAFC942.5MA7ON
TK11230CT–ND
BYP
GND
CONT
0
L4
6.8 nH
6 pF
C66
L28
0
R32
150 nH
1
4
ETC1-1-13
3 T4 5
220 pF C59
18 pF
C35
C48
220 pF
C56
39 pF
C61
.01 µ F
3
2
1
R31
C34
100 pF
C25
4 pF
39 nH
L21
39 nH
VCC
C60
100 pF
P1:C
P1:G
P1:B
L6
15 nH
MIXI_LO
J6
L5
15nH
OSI_MOD
6.8 nH
L22
100 pF
C24
C55 1 pF
1000 pF
C32
C37
2 pF
1 pF
50
C57
50
C54
L14
3.9 nH
R41
VCC
J4
MIX1_OUT
SF1
SF1076A
L26
6
47 nH 11 IN
OUT
5
L25 12 IN
OUT
GND
47 nH
1234 78910
0
R33
3.9 nH
R40
L13
330 pF
C38
C22 33 pF
C20
VCC
6
180 nH
OSI_SYN
24
23
22
21
20
19
18
17
16
15
14
13
C31
3 T3 5
1
4
ETC1-1-13
Figure 2. Evaluation Board Schematic
10 k
9.1 k
R22
R23 10 k
L10
180 nH
330 pF
L23
C23
1000 pF
VCC
C29
100 pF
120 nH 120 nH
L9 VCC L8
5 pF
C21
C4
100 pF
VCC
+12 V
OFFSET ADJUST
W R19
AMPLITUDE BALANCE
CCW
CW
R26 W
10 k
R24
3 _7
CW
CCW
R29
10 k
C47
J15 100 pF
5.6 pF
C46
100 pF
470 nH
C49
C2
1000 pF .01 µ F 100 pF
1000 pF
C74
C1
100 pF
1 1000 pF
C76
VCC
617PT1026
R13
10 k
J2
3.3 pF
L12
56 nH
L11
150 nH
L1
150 nH
VCC
9pF
R39
200
C6
C7
.01 µ F
MIX2_LO
C10
56 pF
C11
56 pF
L18
390 nH
–12 V OFFSET ADJUST
5.1k
R12 W
AMPLITUDE BALANCE
CW
CCW
W R17
R14
7 _ 3 10 k
9.1 k CCW
CW
+
5
2
0
R2
C52
0.01 µ F
VCC
0
R1
C5
R50
0
4 T2 3
R51
0
12 pF
L17
39 nH
C82
VCO2_BUF
J1
C53 82 pF
L16
56 pF 390 nH
J15
C77
L19
120 nH
2
5
C72
1000 pF
1
3
4
T1
617PT1026
CR1
MMBV2109
9 pF
C84
C86
22 pF
3
C85
0.01 µ F 2
3
IF2_IN
12 V
R3
R43
0
2
VCC
33 pF
L15
390 nH
MIX2_OUT C73
36
35
34
33
32
31
30
29
28
27
26
25
1
2
3
4
5
6
7
8
9
10
11
12
18
J14
TRF1020
GSM RECEIVER
SLWS028B –MAY 1998 – REVISED SEPTEMBER 1998
APPLICATION INFORMATION
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
S11 & S22
Freq 0 9–1 Ghz
S21 & S12
Freq 9–1 Ghz
Figure 3. LNA S-Parameters
Figure 4. LNA Gain
Table 9. Listing of LNA S-Parameters (see Note 10)
FREQ (MHz)
S11 (MAG)
S11 (ANG)
S21 (MAG)
S21 (ANG)
S12 (MAG)
S12 (ANG)
S22 (MAG)
S22 (ANG)
920
0.528
–106.9
3.941
81.85
0.016
89.3
0.596
7.7
930
0.523
–108.0
3.906
80.50
0.016
88.4
0.590
6.5
940
0.520
–109.1
3.873
79.44
0.016
87.3
0.586
5.4
950
0.515
–110.2
3.854
78.36
0.017
86.3
0.582
4.2
960
0.512
–111.3
3.827
77.19
0.017
86.6
0.577
3.2
970
0.509
–112.7
3.813
76.05
0.017
85.7
0.571
2.2
NOTE 10: The numbers in Table 9 were taken using a 50-Ω setup with no I/O gain or noise-figure matching.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
LNA HIGH-GAIN NOISE FIGURE
vs
FREQUENCY
LNA HIGH GAIN
vs
FREQUENCY
12.8
2.9
12.7
LNA High–Gain Noise Figure – dB
–40°C
LNA High Gain – dB
12.6
12.5
25°C
12.4
12.3
12.2
85°C
12.1
2.5
85°C
2.3
25°C
2.1
–40°C
1.9
1.7
12
11.9
920
2.7
930
950
940
1.5
920
960
930
LNA HIGH-GAIN IP3
vs
FREQUENCY
LNA HIGH-GAIN 1-dB COMPRESSION POINT
vs
FREQUENCY
LNA High–Gain 1–dB Compression Point –dBm
5
LNA High Gain IP3 – dBm
4.5
4
3.5
25°C
85°C
3
2.5
2
920
930
940
950
960
–11.5
–11.6
–11.7
–11.8
–11.9
–40°C, 25°C
–12
–12.1
85°C
–12.2
–12.3
–12.4
–12.5
920
930
940
f – Frequency – MHz
f – Frequency – MHz
Figure 8
Figure 7
20
960
Figure 6
Figure 5
–40°C
950
940
f – Frequency – MHz
f – Frequency – MHz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
950
960
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
LNA HIGH GAIN AT 25°C
vs
VOLTAGE
2.5
12.9
2.4
LNA High–Gain Noise Figure – dB
13
12.8
LNA High Gain – dB
LNA HIGH-GAIN NOISE FIGURE AT 25°C
vs
VOLTAGE
920 MHz
12.7
940 MHz
12.6
12.5
960 MHz
12.4
12.3
12.2
12.1
12
2.5
2.3
960 MHz
2.2
940 MHz
2.1
920 MHz
2
1.9
1.8
1.7
1.6
3
1.5
2.5
3.5
3
Voltage – V
3.5
Voltage – V
Figure 10
Figure 9
LNA HIGH-GAIN IP3 AT 25°C
vs
VOLTAGE
LNA HIGH-GAIN CURRENT AT 25°C
vs
VOLTAGE
6
0.012
960 MHz
0.0118
940 MHz
LNA High–Gain Current – A
LNA High–Gain IP3 – dBm
5
4
920 MHz
3
2
0.0116
0.0114
0.0112
0.011
0.0108
1
0.0106
0
2.5
3
3.5
0.0104
2.5
Voltage – V
3
3.5
Voltage – V
Figure 12
Figure 11
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
MIX1 SSB NOISE FIGURE
vs
FREQUENCY
MIX1 GAIN
vs
FREQUENCY
11
14
MIX1 Gain – dB
13.5
MIX1 SSB Noise Figure – dB
–40°C
25°C
85°C
13
12.5
10
9
85°C
25°C
8
–40°C
7
12
920
930
950
940
6
920
960
930
MIX1 IP3
vs
FREQUENCY
MIX1 1-dB COMPRESSION POINT
vs
FREQUENCY
7
MIX1 1–dB Compression Point – dBm
–8.5
6
MIX1 IP3 – dBm
960
Figure 14
Figure 13
85°C
5
25°C
4
–40°C
930
940
950
960
–40°C
–9
25°C
85°C
–9.5
–10
920
f – Frequency – MHz
930
940
f – Frequency – MHz
Figure 16
Figure 15
22
950
f – Frequency – MHz
f – Frequency – MHz
3
920
940
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
950
960
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
MIX1 NOISE FIGURE AT 25°C
vs
VOLTAGE
MIX1 GAIN AT 25°C
vs
VOLTAGE
14.5
9.5
13.5
940 MHz
955 MHz
13
960 MHz
12.5
12
2.5
960 MHz
9
920 MHz
MIX1 Noise Figure – dB
MIX1 Gain – dB
14
955 MHz
8.5
940 MHz
8
920 MHz
7.5
2.7
2.9
3.1
3.3
3.5
7
2.5
3.7
2.7
2.9
Voltage – V
3.1
3.3
3.5
3.7
3.5
3.7
Voltage – V
Figure 18
Figure 17
MIX1 IP3 AT 25°C
vs
VOLTAGE
MIX1 CURRENT AT 25°C
vs
VOLTAGE
6
0.021
5.5
940 MHz
0.02
920 MHz
4.5
MIX1 Current – A
MIX1 IP3 – dBm
5
955 MHz
4
960 MHz
3.5
0.019
0.018
3
0.017
2.5
2
2.5
2.7
2.9
3.1
3.3
3.5
3.7
0.016
2.5
2.7
Voltage – V
2.9
3.1
3.3
Voltage – V
Figure 20
Figure 19
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
TYPICAL CHARACTERISTICS
LNA/MIX1 CASCADED GAIN AT 25°C
vs
FREQUENCY
LNA/MIX1 CASCADED NOISE FIGURE AT 25°C
vs
FREQUENCY
6
LNA/Mix1 Cascaded Noise Figure – dB
LNA/Mix1 Cascaded Gain – dB
30
28
–40°C
26
25°C
24
85°C
22
20
925
930
935
940
945
950
955
85°C
5
4
3
–40°C
2
1
0
925
960
25°C
930
935
940
950
f – Frequency – MHz
Figure 21
Figure 22
LNA/MIX1 CASCADED 1-dB COMPRESSION AT 25°C
POWER OUT
vs
POWER IN
6
Power Out – dBm
5
4
3
2
1
0
–50 –45 –40 –35 –34 –33 –32 –31 –30 –29 –28
Power In – dBm
Figure 23
24
945
f – Frequency – MHz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
955
960
TRF1020
GSM RECEIVER
SLWS028B – MAY 1998 – REVISED SEPTEMBER 1998
MECHANICAL DATA
PFB (S-PQFP-G48)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
36
0,08 M
25
37
24
48
13
0,13 NOM
1
12
5,50 TYP
7,20
SQ
6,80
9,20
SQ
8,80
Gage Plane
0,25
0,05 MIN
0°– 7°
1,05
0,95
Seating Plane
0,75
0,45
0,08
1,20 MAX
4073176 / B 10/96
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated