DATA SHEET MOS INTEGRATED CIRCUIT µ PD16664 144/160/184/208-OUTPUT LCD COLUMN (SEGMENT) DRIVER WITH RAM DESCRIPTION The µ PD16664 is a column (segment) driver with internal RAM and can drive a full-dot LCD. Equipped with 144/160/184/208-output pins and a display RAM of 208 x 160 x 2 bits, this driver can display any of four gray levels selected from a 25-level palette. By using this IC in combination with the µ PD16667, 144 x 128 pixels to 416 x 320 pixels can be displayed. FEATURES • Internal display RAM : 208 x 160 x 2 bits • Logic voltage : 2.4 to 3.6 V • Duty : 1/128, 1/160 selectable • Number of outputs : 144,160,184 and 208 pins selectable • Display : Four gray levels (selectable from 25-level palette) • Memory management : Packed pixel method • Supports 8/16-bit data bus ORDERING INFORMATION Remark Part number Package µ PD16664N-xxx TCP (TAB) µ PD16664N-001 2/4-side Standard TCP The TCP’s external shape is customized. To order the required shape, please contact an NEC salesperson. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. S13780EJ1V0DS00(1st edition) Date Published September 1999 NS CP(K) Printed in Japan The mark • shows major revised points. © 1998, 1999 µ PD16664 1. PIN NAME Classification CPU interface Pin NameNote I/O Function D0-D15 I/O A0-A16 I Address bus: 17 bits /CS I Chip select VCC2 /OE I Read signal /WE I Write signal /UBE I Upper byte enable RDY O Ready signal to CPU (“H”: ready) PL0 I Specifies LSI layout position (No. 0 to 3) PL1 I Specifies LSI layout position (No. 0 to 3) DIR I Specifies liquid crystal panel layout position DMODE I Duty selection (“H” = 1/128 duty, “L” =1/160 duty) CMODE0,1 I Number of column outputs selection MS I Master/slave selection (“H”: master mode) I Data bus bit selection (“H” = 8 bits, “L” = 16 bits) Control signals VCC2 BMODE /REFRH I/O Data bus: 16 bits Self-diagnosis reset pin (wired-OR connection) TEST I Test pin (“H” = test mode, with pull-down resistor) /RESET I Reset signal /DOFF I Display OFF input signal OSC1 – External resistor pin for oscillator OSC2 – External resistor pin for oscillator STB I/O Column drive signal (MS pin “H” = output, MS pin “L” = input) /FRM I/O Frame signal (MS pin “H” = output, MS pin “L” = input) VCC1 PULSE I/O 25-level pulse modulation clock L1 I/O Row driver drive level select signal (first line) L2 I/O Row driver drive level select signal (second line) /DOUT O Display OFF output signal Liquid crystal drive Y1-Y208 O Liquid crystal drive output Power GND – Ground (two pins for VCC1 system, three pins for VCC2 system) VCC1 – Power supply for liquid crystal drive and row driver interface VCC2 – Power supply for logic V0 – Liquid crystal drive analog power V1 – Liquid crystal drive analog power V2 – Liquid crystal drive analog power Note VCC2 system pins : D 0 to D15, A0 to A16, /CS, /OE, /WE, /UBE, RDY, BMODE, PL0, PL1, DIR, OSC1, OSC2, /RESET, /DOFF, TEST, MS, CMODE0, CMODE1, DMODE VCC1 system pins : STB, /FRM, L1, L2, /DOUT, PULSE Remark 2 /xxx indicates active low signals. Data Sheet S13780EJ1V0DS00 µ PD16664 2. BLOCK DIAGRAM CMODE0,1 DIR PL0, 1 TEST A0-A16 Address input control Address management circuit Control /CS, /OE /WE, /UBE RAM 208 × 160 × 2 bits Arbiter RDY BMODE D0-D15 Data bus control /REFRH Data latch (1) /RESET MS STOP OSC1 CR oscillator OSC2 /DOFF DMODE Gray level generation circuit Data latch (2) Internal timing generation Gray level control Liquid crystal timing generation VCC2 operation PULSE /FRM STB Self-diagnosis circuit VCC2 operation Level shifter VCC1 operation VCC1 operation DEC V0 V1 V2 Liquid crystal drive circuit 208 outputs PULSE /FRM STB /DOUT L1 L2 Data Sheet S13780EJ1V0DS00 Y 1 Y2 Y 3 Y208 3 µ PD16664 3. BLOCK FUNCTION (1) Address management circuit This circuit converts addresses from the system via A0 to A16 into addresses corresponding to the memory map of the internal RAM. By using this function and four µ PD16664 modules, addresses for up to 416 × 320 pixels can be managed, making it easy to construct a liquid crystal display system. Addresses 1FF00H to 1FF1EH are allocated to a gray level palette register, and any four gray levels can be selected from a 25-level palette. (2) Arbiter This circuit arbitrates conflicts between access by the system to the RAM and reading the RAM by the LCD driver. (3) RAM This is a static RAM of 208 x 160 x 2 bits (single port). (4) Data bus control This circuit controls the data transfer direction depending on whether the system reads or writes the RAM of the µ PD16664. The data bus width can be changed between 8 and 16 bits by the BMODE pin. (5) Gray level generation circuit This circuit offers 25 levels by means of frame interpolation and pulse width modulation. (6) Internal timing generation This circuit generates internal timing signals for each block from the /FRM and STB signals. (7) CR oscillator This oscillator generates a clock that serves as the reference of the frame frequency in the master mode. Because this CR oscillator has an on-chip capacitor, the necessary oscillation frequency can be adjusted by using an external resistor. Oscillation is stopped in the slave mode. (a) 1/160 duty The frame frequency is 1/1296 of the oscillation frequency of this oscillator. For example, when the frame frequency is 70 Hz, the oscillation frequency is 90.72 kHz. (b) 1/128 duty The frame frequency is 1/1040 of the oscillation frequency of this oscillator. For example, when the frame frequency is 70 Hz, the oscillation frequency is 72.80 kHz. (8) Liquid crystal timing generation This circuit generates the /FRM (frame signal), STB(column drive signal strobe), and PULSE (25-level pulse modulation clock) signals in the master mode. 4 Data Sheet S13780EJ1V0DS00 µ PD16664 (9) Gray level control This circuit implements the 4-gray level display. (10) Data latch (1) This circuit reads data for 208 pixels from RAM and latches it. (11) Data latch (2) This circuit latches data for 208 pixels in synchronization with the STB signal. (12) Level shifter The level shifter converts the operating voltage of the internal circuit(VCC2) into the voltage for the liquid crystal driver circuit and row driver interface (VCC1). (13) DEC This is a decoder that decodes gray level display data to liquid crystal drive voltages V0, V1, or V2. (14) Liquid crystal drive circuit This circuit selects liquid crystal drive voltage V0, V1, or V2 corresponding to gray level display data and the display OFF signal (/DOFF), to generate a liquid crystal application voltage. (15) Self-diagnosis circuit If the operation timing of the master chip and that of the slave chip differ due to external noise, this circuit automatically detects the difference and generates a refresh signal to all column drivers. Data Sheet S13780EJ1V0DS00 5 µ PD16664 Address Map Image (CMODE0 = L, CMODE1 = L, DMODE = L) A7 through A0 specify column direction. Y1 Y1 Y208 Y208 L1 Address incrementing direction A16 through A8 specify line direction. No. 0 L160 No. 2 L1 Address incrementing direction No. 1 L160 No. 3 Y1 Y208 6 Y1 Y208 Data Sheet S13780EJ1V0DS00 µ PD16664 4. DATA BUS The byte data ordering on the data bus is little endian, in common with most NEC and Intel buses. 4.1 16-bit Data Bus (BMODE = L) Byte access D0 to D7 D8 to D15 00000H 00001H Address incrementing 00002H 00003H direction 00004H 00005H : : : : D0 to D7 D8 to D15 Word access 00000H Address incrementing 00002H direction 00004H : : If the system accesses the µ PD16664 in word(16-bit) or byte(8-bit) units, /UBE (upper byte enable) and A0 specify whether bytes D0 to D7 or bytes D8 to D15 have valid data. /CS /OE /WE /UBE A0 MODE I/O D0 to D7 D8 to D15 H X X X X Not selected Hi-Z Hi-Z L L H L L Read Dout Dout L H L L H Hi-Z Dout H L Dout Hi-Z L L Din Din L H X Din H L Din X Write L H H X X Output Hi-Z Hi-Z L X X H H Disable Hi-Z Hi-Z Remark X : Don’t care Hi-Z : High impedance Data Sheet S13780EJ1V0DS00 7 µ PD16664 4.2 8-bit Data Bus (BMODE = H) D0 to D7 00000H Address incrementing 00001H direction 00002H : : /CS /OE /WE MODE I/O D0 to D7 D8 to D15 H X X Not selected Hi-Z Note L L H Read Dout Note L H L Write Din Note L H H Output disable Hi-Z Note Note Leave D8 to D15 open because they are internally pulled down. Remark X: Don’t care Hi-Z: High impedance 8 Data Sheet S13780EJ1V0DS00 µ PD16664 5. RELATION BETWEEN DATA BITS AND PIXELS Because the µ PD16664 displays four gray levels, 1 pixel consists of 2 bits. The RAM consists of 4 pixels (8 pixels per word) using the packed pixel method. (1) BMODE = L Byte (8-bit) access D0 D1 Pixel 1 D2 D3 Pixel 2 D4 D5 Pixel 3 D6 D7 D8 Pixel 4 D9 Pixel 5 D10 D11 Pixel 6 00000H Liquid crystal panel D12 D13 Pixel 7 D14 D15 Pixel 8 00001H Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 00000H 00001H 00002H 00003H Word (16-bit) access D0 D1 Pixel 1 D2 D3 Pixel 2 D4 D5 Pixel 3 D6 D7 D8 Pixel 4 D9 Pixel 5 D10 D11 D12 D13 D14 D15 Pixel 6 Pixel 7 Pixel 8 00000H Liquid crystal panel Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 00000H 00002H (2) BMODE = H D0 D1 Pixel 1 D2 D3 Pixel 2 D4 D5 Pixel 3 D6 D7 Pixel 4 D0 D1 Pixel 5 D2 D4 Pixel 6 00000H Liquid crystal panel D3 D5 Pixel 7 D6 D7 Pixel 8 00002H Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8 00000H 00001H Data Sheet S13780EJ1V0DS00 00002H 00003H 9 µ PD16664 6. GRAY LEVEL CONTROL The gray level control of the µ PD16664 offers a 25-level palette by means of frame interpolation and pulse width modulation. From this palette, four gray levels are selected and registered in a gray level palette register. 7. GRAY LEVEL PALETTE REGISTER The gray level palette register selects four gray levels from 25 levels in advance. This register is allocated to 1FF00H to 1FF1EH, and its relation with gray level data is as shown below. The gray level palette register can be set for each layout position of the column driver (No. 0 to 3) that is determined by PL0 and PL1. Address Layout Position No. Gray Level Data (Display Data) Dn+1Note DnNote 0 0 0 1 1FF04H 1 0 1FF06H 1 1 1FF08H 0 0 0 1 1FF0CH 1 0 1FF0EH 1 1 1FF10H 0 0 0 1 1FF14H 1 0 1FF16H 1 1 1FF18H 0 0 0 1 1FF1CH 1 0 1FF1EH 1 1 1FF00H 1FF02H 1FF0AH 1FF12H 1FF1AH No.0 No.1 No.2 No.3 Note n = 0, 2, 4, 6, 8, 10, 12, or 14 10 Data Sheet S13780EJ1V0DS00 µ PD16664 8. RELATION BETWEEN GRAY LEVELS AND GRAY LEVEL PALETTE DATA The relation between the gray levels and the gray level palette data set by the gray level palette register is as follows: PMODE Gray Level Palette Data Remark D4 D3 D2 D1 D0 Gray level 0 0 0 0 0 0 Gray level 1 0 0 0 0 1 Gray level 2 0 0 0 1 0 Gray level 3 0 0 0 1 1 Gray level 4 0 0 1 0 0 Gray level 5 0 0 1 0 1 Gray level 6 0 0 1 1 0 Gray level 7 0 0 1 1 1 Gray level 8 0 1 0 0 0 Gray level 9 0 1 0 0 1 Gray level 10 0 1 0 1 0 Gray level 11 0 1 0 1 1 Gray level 12 0 1 1 0 0 Gray level 13 0 1 1 0 1 Gray level 14 0 1 1 1 0 Gray level 15 0 1 1 1 1 Gray level 16 1 0 0 0 0 Gray level 17 1 0 0 0 1 Gray level 18 1 0 0 1 0 Gray level 19 1 0 0 1 1 Gray level 20 1 0 1 0 0 Gray level 21 1 0 1 0 1 Gray level 22 1 0 1 1 0 Gray level 23 1 0 1 1 1 Gray level 24 1 1 0 0 0 Data Sheet S13780EJ1V0DS00 OFF 1/3 2/3 ON 11 µ PD16664 9. LSI LAYOUT AND ADDRESS MANAGEMENT Addresses are managed so that up to four µ PD16664s can be used to organize a liquid crystal display of 416 x 320 pixels. Four modules can be connected on the same bus with the /CS, /WE, and /OE pins shared. The system can treats one screenful of the liquid crystal display as one memory area, and does not have to decode more than one LSI. Specify an LSI No. by using the PL0 and PL1 pin to determine the layout of the LSIs, and determine the direction (vertical or horizontal) of the liquid crystal display by using the DIR pin. PL1 PL0 LSI No. 0 0 No. 0 0 1 No. 1 1 0 No. 2 1 1 No. 3 10. NUMBER OF COLUMN OUTPUTS SELECTION CMODE1 CMODE0 Number of Column Outputs Valid Pins 0 0 208 Y1 to Y208 0 1 184 Y1 to Y184 1 0 160 Y1 to Y160 1 1 144 Y1 to Y144 Remark Invalid column outputs are fastened to V1 level. 11. DUTY SELECTION DMODE Duty 0 1/160 1 1/128 Note Note Valid row outputs of µ PD16667 are X1 to X128. Invalid row outputs are undefined. 12 Data Sheet S13780EJ1V0DS00 µ PD16664 Horizontally Long Address DIR = L, DMODE = L • 144-output Mode Specified by A7 to A0 µ PD16664 µ PD16664 Y144 Y1 Specified by A16 to A8 X1 00000 00020 00002 µ PD16667 00100 Y1 00022 00024 00122 00124 Y144 00026 09E22 09F00 09F02 X1 0A000 0A002 µ PD16667 09E24 09E46 09F20 09F22 09F24 09F26 09F44 09F46 0A020 0A022 0A024 0A026 0A044 0A046 0A122 0A124 0A100 0A146 No. 1 No. 3 13E00 X160 13F00 13F02 00046 No. 2 09E00 X160 00044 00146 No. 0 13F20 Y144 13E22 13E24 13F22 13F24 Y1 13E46 13F44 13F26 Y144 13F46 Y1 µ PD16664 µ PD16664 • 160-output Mode Specified by A7 to A0 µPD16664 X1 00000 00024 00002 00100 µ PD16667 µ PD16664 Y160 Y1 Specified by A16 to A8 Y1 00026 00028 00126 00128 Y160 0002A X1 09E26 09E28 09E4E 09F00 09F02 09F24 09F26 09F28 09F2A 09F4C 09F4E 0A000 0A002 0A024 0A026 0A028 0A02A 0A04C 0A04E 0A126 0A128 0A100 0A14E No. 1 No. 3 13E00 X160 0004E No. 2 09E00 X160 0004C 0014E No. 0 µ PD16667 • 13F00 13F02 13F24 Y160 13E26 13E28 13F26 13F28 Y1 13E4E 13F2A 13F4C Y160 µ PD16664 Data Sheet S13780EJ1V0DS00 13F4E Y1 µ PD16664 13 µ PD16664 • 184-output Mode Specified by A7 to A0 µPD16664 µ PD16664 Y184 Y1 Specified by A16 to A8 X1 00000 0002A 00002 µPD16667 00100 Y1 0002C 0002E 0012C 0012E Y184 00030 00058 0015A No. 0 No. 2 09E00 X160 X1 09E2C 09E2E 09E5A 09F00 09F02 09F2A 09F2C 09F2E 09F30 09F58 09F5A 0A000 0A002 0A02A 0A02C 0A02E 0A030 0A058 0A05A 0A12C 0A12E µ PD16667 0A100 0A15A No. 1 No. 3 13E00 X160 0005A 13F00 13F02 13F2A Y184 13E2C 13E2E 13F2C 13F2E Y1 13E5A 13F58 13F30 Y184 13F5A Y1 µ PD16664 µPD16664 • 208-output Mode Specified by A7 to A0 µ PD16664 µ PD16664 Y208 Y1 Specified by A16 to A8 X1 00000 00030 00002 µ PD16667 00100 Y1 00032 00034 00132 00134 00036 09E32 09E34 09E66 09F00 09F02 09F30 09F32 09F34 09F36 09F64 09F66 0A000 0A002 0A030 0A032 0A034 0A036 0A064 0A066 0A132 0A134 µ PD16667 0A100 0A166 No. 1 No. 3 13E00 X160 00066 No. 2 09E00 X1 00064 00166 No. 0 X160 13F00 13F02 13F30 Y208 13E32 13E34 13F32 13F34 Y1 13E66 13F36 13F64 Y208 µ PD16664 14 Y208 Data Sheet S13780EJ1V0DS00 13F66 Y1 µ PD16664 00122 00022 00020 Data Sheet S13780EJ1V0DS00 Y144 13F46 13F44 13E46 µPD16664 13F26 Y1 13F24 Y144 13F22 13F20 13E24 13E22 0A124 0A122 µ PD16664 No. 1 No. 0 09E00 00100 00000 Y1 13F02 13F00 13E00 0A100 0A002 0A000 09F02 09F00 00002 Y144 X1 X160 X1 X160 µ PD16667 0A146 0A026 0A024 0A022 0A020 0A046 0A044 09E24 09E22 00124 00024 09F26 09F24 09F22 09F20 No. 3 No. 2 00026 Y1 09F46 09F44 09E46 00146 00044 Y144 Specified by A7 to A0 00046 Y1 µ PD16664 • µ PD16664 µ PD16664 Vertically Long Address DIR = H, DMODE = L • 144-output Mode Specified by A16 to A8 µ PD16667 15 16 Data Sheet S13780EJ1V0DS00 Y160 13F4E 13F4C 13E4E µ PD16664 13F2A Y1 13F28 Y160 13F26 13F24 13E28 13E26 0A128 0A126 µPD16664 No. 1 No. 0 09E00 00100 00000 Y1 13F02 13F00 13E00 0A100 0A002 0A000 09F02 09F00 00002 Y160 X1 X160 X1 X160 µ PD16667 0A14E 0A02A 0A028 0A026 0A024 0A04E 0A04C 09E28 09E26 00126 00026 00024 09F2A 09F28 09F26 09F24 No. 3 No. 2 00128 00028 Y1 09F4E 09F4C 09E4E 0014E 0002A Y160 µ PD16664 Specified by A7 to A0 0004E 0004C Y1 µPD16664 µ PD16664 • 160-output Mode Specified by A16 to A8 µ PD16667 Data Sheet S13780EJ1V0DS00 Y184 µ PD16664 Y1 Y184 13F2E 13F2C 13F2A 13F5A 13F58 13F30 13E2E 13E2C 13E5A 0A12E 0A12C µ PD16664 No. 1 No. 0 09E00 00100 00000 Y1 13F02 13F00 13E00 0A100 0A002 0A000 09F02 09F00 00002 Y184 X1 X160 X1 X160 µ PD16667 0A15A 0A030 0A02E 0A02C 0A02A 0A05A 0A058 09E2E 09E2C 09F30 09F2E 09F2C 09F2A No. 3 No. 2 0012E 0012C 0002E 0002C 0002A Y1 09F5A 09F58 09E5A 0015A 00030 Y184 µ PD16664 Specified by A7 to A0 0005A 00058 Y1 µ PD16664 µ PD16664 • 184-output Mode Specified by A16 to A8 µ PD16667 17 18 00132 00032 00030 Data Sheet S13780EJ1V0DS00 Y208 µ PD16664 13F36 Y1 13F34 Y208 13F32 13F30 13E34 13E32 µ PD16664 No. 1 Y1 13F02 13F00 13E00 0A100 0A002 0A000 09F02 09F00 09E00 00100 00000 X160 X1 X160 X1 µ PD16667 13F66 13F64 13E66 0A134 0A132 No. 0 00002 Y208 µ PD16667 0A166 0A036 0A034 0A032 0A030 0A066 0A064 09E34 09E32 00134 00034 09F36 09F34 09F32 09F30 No. 3 No. 2 00036 Y1 09F66 09F64 09E66 00166 00064 Y208 µ PD16664 Specified by A7 to A0 00066 Y1 µPD16664 µ PD16664 • 208-output Mode Specified by A16 to A8 µ PD16664 Horizontally Long Address DIR = L, DMODE = H • 144-output Mode Specified by A7 to A0 µ PD16664 µ PD16664 Y144 Y1 Specified by A16 to A8 X1 00000 00020 00002 µ PD16667 00100 Y1 00022 00024 00122 00124 Y144 00026 00044 00046 00146 No. 0 No. 2 07E00 07E22 07E24 07E46 X128 07F00 07F02 07F20 07F22 07F24 07F26 07F44 07F46 X1 08000 08002 08020 08022 08024 08026 08044 08046 08122 08124 µ PD16667 08100 08146 No. 1 No. 3 0FE00 X128 0FF00 0FF02 0FF20 Y144 0FE22 0FE24 0FF22 0FF24 Y1 0FE46 0FF44 0FF26 Y144 0FF46 Y1 µ PD16664 µ PD16664 • 160-output Mode Specified by A7 to A0 µPD16664 X1 00000 00024 00002 00100 µ PD16667 µ PD16664 Y160 Y1 Specified by A16 to A8 Y1 00026 00028 00126 00128 Y160 0002A 0004C 0004E 0014E No. 0 No. 2 07E00 07E26 07E28 07E4E X128 07F00 07F02 07F24 07F26 07F28 07F2A 07F4C 07F4E X1 08000 08002 08024 08026 08028 0802A 0804C 0804E 08126 08128 08100 µ PD16667 • 0814E No. 1 No. 3 0FE00 X128 0FF00 0FF02 0FF24 Y160 0FE26 0FE28 0FF26 0FF28 Y1 0FE4E 0FF2A 0FF4C Y160 µ PD16664 Data Sheet S13780EJ1V0DS00 0FF4E Y1 µ PD16664 19 µ PD16664 • 184-output Mode Specified by A7 to A0 µPD16664 Y184 Y1 Specified by A16 to A18 X1 00000 0002A 00002 00100 µPD16667 µ PD16664 Y1 0002C 0002E 0012C 0012E Y184 00030 00058 0005A 0015A No. 0 No. 2 07E00 07E2C 07E2E 07E5A X128 07F00 07F02 07F2A 07F2C 07F2E 07F30 07F58 07F5A X1 08000 08002 0802A 0802C 0802E 08030 08058 0805A 0812C 0812E µ PD16667 08100 0815A No. 1 No. 3 0FE2C 0FE2E 0FE00 X128 0FF00 0FF02 0FF2A Y184 0FF2C Y1 0FF2E 0FE5A 0FF58 0FF30 Y184 0FF5A Y1 µ PD16664 µPD16664 • 208-output Mode Specified by A7 to A0 µ PD16664 µ PD16664 Y208 Y1 Specified by A16 to A8 X1 00000 00030 00002 µ PD16667 00100 Y1 00032 00034 00132 00134 00036 07E32 07E34 07E66 07F00 07F02 07F30 07F32 07F34 07F36 07F64 07F66 08000 08002 08030 08032 08034 08036 08064 08066 08132 08134 µ PD16667 08100 08166 No. 1 No. 3 0FE00 X128 00066 No. 2 07E00 X1 00064 00166 No. 0 X128 0FF00 0FF02 0FF30 Y208 0FE32 0FE34 0FF32 0FF34 Y1 0FE66 0FF36 0FF64 Y208 µ PD16664 20 Y208 Data Sheet S13780EJ1V0DS00 0FF66 Y1 µ PD16664 Data Sheet S13780EJ1V0DS00 08020 Y144 Y1 Y144 0FF24 0FF22 0FF20 µPD16664 08022 08124 08122 08024 0FF46 0FF44 0FF26 08026 07F26 07F24 07F22 07F20 0FE24 0FE22 No. 3 00122 00022 00020 07E24 07E22 00124 00024 0FE46 08146 08044 No. 2 00026 Y1 µ PD16664 No. 1 No. 0 07E00 00100 00000 0FE00 08100 08000 Y1 0FF02 0FF00 08002 07F02 07F00 00002 Y144 X1 X128 X1 X128 µ PD16667 08046 07F46 07F44 07E46 00146 00044 Y144 Specified by A7 to A0 00046 Y1 µ PD16664 • µ PD16664 µ PD16664 Vertically Long Address DIR = H, DMODE = H • 144-output Mode Specified by A16 to A8 µ PD16667 21 22 Data Sheet S13780EJ1V0DS00 Y160 0FF4E 0FF4C 0FE4E 0814E µ PD16664 No. 3 No. 2 00126 00026 00024 08026 0FE28 0FE26 08128 08126 08028 08024 Y1 Y160 0FF2A 0FF28 0FF26 0FF24 0802A 07F2A 07F28 07F26 07F24 07E28 07E26 00128 00028 Y1 µPD16664 No. 1 No. 0 07E00 00100 00000 0FE00 08100 08000 Y1 0FF02 0FF00 08002 07F02 07F00 00002 Y160 X1 X128 X1 X128 µ PD16667 0804E 0804C 07F4E 07F4C 07E4E 0014E 0002A Y160 µ PD16664 Specified by A7 to A0 0004E 0004C Y1 µPD16664 µ PD16664 • 160-output Mode Specified by A16 to A8 µ PD16667 Data Sheet S13780EJ1V0DS00 Y184 0FF5A 0FF58 0FE5A 0815A µ PD16664 Y1 Y184 0FF30 0FF2E 0FF2C 0FF2A 0FE2E 0FE2C 0812E 0812C 0802E 0802C 0802A 08030 µ PD16664 No. 1 No. 0 07E00 00100 00000 0FE00 08100 08000 Y1 0FF02 0FF00 08002 07F02 07F00 00002 Y184 X1 X128 X1 X128 µ PD16667 0805A 08058 07E2E 07E2C 07F30 07F2E 07F2C 07F2A No. 3 No. 2 0012E 0012C 0002E 0002C 0002A Y1 07F5A 07F58 07E5A 0015A 00030 Y184 µ PD16664 Specified by A7 to A0 0005A 00058 Y1 µ PD16664 µ PD16664 • 184-output Mode Specified by A16 to A8 µ PD16667 23 24 Data Sheet S13780EJ1V0DS00 08030 Y1 Y208 µ PD16664 No. 1 No. 0 07E00 00100 00000 0FE00 08100 08000 Y1 0FF02 0FF00 08002 07F02 07F00 00002 Y208 X128 X1 X128 X1 µ PD16667 Y208 0FF34 0FF32 0FF30 µ PD16664 08032 08134 08132 08034 0FF66 0FF64 0FF36 08036 07F36 07F34 07F32 07F30 0FE34 0FE32 No. 3 00132 00032 00030 07E34 07E32 00134 00034 0FE66 08166 08064 No. 2 00036 Y1 µ PD16667 08066 07F66 07F64 07E66 00166 00064 Y208 µ PD16664 Specified by A7 to A0 00066 Y1 µPD16664 µ PD16664 • 208-output Mode Specified by A16 to A8 µ PD16664 12. CPU INTERFACE 12.1 Function of RDY(ready) Pin The internal RAM is a single-port RAM. The CPU is kept waiting so that access from the CPU does not conflict with reading by the driver. (1) Timing A0 to A16,/UBE /CS /OE,/WE Hi-Z Hi-Z RDY Wait Ready Wait (2) Connection of RDY pin The RDY pin uses a three-state buffer. The RDY pin should be connected to an external pull-up resistor. If more than one LSI are used, the RDY pins of each LSI are wired together. VCC2 CPU Pull-up resistor Ready input Data Sheet S13780EJ1V0DS00 RDY Column driver RDY Column driver 25 µ PD16664 12.2 Access Timing (1) Display data read timing A16 to A0 /UBE /CS /OE Hi-Z Hi-Z RDY Hi-Z Hi-Z D15 to D0 Dout (2) Display data write timing A16 to A0 /UBE /CS /WE Hi-Z Hi-Z RDY Din D15 to D0 (3) Gray level palette data write timing A16 to A0 /UBE /CS /WE Hi-Z RDY Din D15 to D0 26 Data Sheet S13780EJ1V0DS00 µ PD16664 13. INITIALIZATIONAL FUNCTION The µ PD16664 has two types of initialization functions. 13.1 Initialization by /RESET /RESET is the pin that is used to forcibly initialize the internal status of the IC from outside the IC. In the case of /RESET = L, the internal status of IC is as follows: • Oscillator stopped. • Liquid crystal timing generation circuit initialized. • Internal timing generation circuit initialized. • Self-diagnostic circuit initialized. At power-on, be sure to perform initialization using /RESET. 13.2 Initialization by /REFRH /REFRH is the pin that is used when the internal self-diagnostic circuit initializes the internal status of IC in cases when the timing of the column drivers deviate due to external noise, etc. In the case of /REFRH = L, the internal status of IC is as follows: • Oscillator stopped. • Liquid crystal timing generation circuit initialized. • Internal timing generation circuit initialized. 14. DISPLAY-OFF FUNCTION When /DOFF = L, all column driver outputs Yn become V1 level, and because the /DOUT output becomes L at the same time, the row driver will be /DOFF’ = L and all row driver outputs Xn will also be V1 level. Therefore, the display is forcibly turned off without regard to the display data. At power-on, be sure to make /DOFF = L until each power supply is stabilized. Remark /DOFF’ is the input pin of the row driver. Data Sheet S13780EJ1V0DS00 27 µ PD16664 15. LIQUID CRYSTAL TIMING GENERATION CIRCUIT If the master mode is set by making MS high, /FRM and STB are generated at timing with a duty factor (1/128,1/160). Driver drive voltage select signals L1 and L2 are generated for a row driver. /FRM is generated two times in 1 frame. When a duty rate is 1/160, STB is generated 81 times in 1/2 frame and 162 times in 1 frame. When a duty rate is 1/128, STB is generated 65 times in 1/2 frame and 130 times in 1 frame. • /FRM and STB Signal Generation OSC1 PULSE STB 1 3 2 4 DUTY 1/160 STB 81 1 2 3 80 81 1 2 3 80 81 1 2 2 3 64 65 1 2 /FRM Frame DUTY 1/128 STB 65 1 2 3 64 65 1 /FRM Frame • L1 and L2 Signal Generation 28 STB 1 2 3 4 ··· 1 2 3 4 ··· 1 2 3 4 ··· 1 2 3 4 ··· L1 1 1 1 1 ··· 1 1 1 1 ··· 0 0 0 0 ··· 0 0 0 0 ··· L2 1 0 1 0 ··· 0 1 0 1 ··· 0 1 0 1 ··· 1 0 1 0 ··· Data Sheet S13780EJ1V0DS00 µ PD16664 16. SELF-DIAGNOSIS FUNCTION This function checks whether the timing of each column driver is different from that of the others due to external noise. A slave chip compares internally generated L1 and L2 with L1 and L2 of the master chip. If a discrepancy is found, a refresh signal is transmitted to all column drivers. On reception of the refresh signal, internal reset is effected, and timing is initialized. At this time, the display is turned OFF while /REFRH = L for 4 frame cycles. Discrepancy between L1 and L2 is monitored at the rising edge of /FRM once in 1/2 frame. L1(master) Discrepancy L2(master) L1(slave) Discrepancy L2 (slave) /REFRH Initialization Initialization Block Configuration (slave side) /RESET Internal reset /REFRH Self-diagnosis circuit L1 Internal L1 signal L2 Internal L2 signal Data Sheet S13780EJ1V0DS00 29 µ PD16664 17. SYSTEM CONFIGURATION EXAMPLE Here is an example using a liquid crystal panel of 416 x 320 pixels, horizontally long by using four µ PD16664s and two row drivers. • The LSI No. of each column driver is set by the PL0 and PL1 pins. • The DIR pin of each column driver is set to low. • The CMODE0, CMODE1 and DMODE pins of each column driver are set to low. • One of the column drivers is set as a master and the others are set as slaves. The master column driver supplies signals to the slave column drivers and row drivers. • A resistor for oscillation is connected to the OSC1 and OSC2 pins of the master. These pins of the slaves are left open. • All the signals from the system (D0 to D15, A0 to A16, /CS, /OE, /WE, /UBE, RDY, /RESET, and /DOFF) are connected in parallel with the column drivers. A pull-up resistor is connected to the RDY pin. • The TEST pin is used to test the LSI and is open or connected to GND when the system is constructed. VCC2 RDY /DOFF /RESET D0 to D15 A0 to A16 Control (/CS, /OE, /WE, /UBE) PULSE STB /FRM /DOUT,/DOFF' L1 L2 OSC1 OSC2 /REFRH Y208 Y1 Y208 Row driver 160 Row driver 160 Scan direction Scan direction Y1 Y208 Y1 Slave No. 1 30 Slave No. 2 Master No. 0 Y1 Y208 Slave No. 3 Data Sheet S13780EJ1V0DS00 µ PD16664 18. CHIP SET POWER-UP SEQUENCE It is recommended to apply power in the following sequence: VCC2 → VCC1 → input → VDD, VEE → V1, V2 Be sure to apply LCD drive voltages V1, V2 in the end. ON VCC2 VCC1 OFF ON 4.5 V OFF 0 s or more CPU Interface (A0 to A16,/CS,/OE, /WE,/UBE,D0 to D15) /RESET VCC2 0V VCC2 0V 0.3 VCC2 100 ns or longer /DOFF 0 s or more VCC2 0.3 VCC2 0V 0 s or more VDD Note OFF ON OFF VEE Note ON 0 s or more V1 ON OFF ON V2 OFF Note VDD and VEE do not have to be turned ON at the same time. Caution Turn OFF power to the chip set in the sequence reverse to the above. Data Sheet S13780EJ1V0DS00 31 µ PD16664 19. EXAMPLE OF CONNECTING OF INTERNAL SCHOTTKY BARRIER DIODE OF MODULE TO REINFORCE POWER SUPPLY PROTECTION VDDNote VCC1 V2 V1 V0 VSS VEENote Diodes enclosed in a dotted line in the above figure must be connected when V0 is other than 0 V (GND). Note VDD and VEE are LCD power supply lines of row driver. Remark Use schottky barrier diodes with Vf = 0.5 V or less. 32 Data Sheet S13780EJ1V0DS00 µ PD16664 20. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°C) Parameter Supply voltage (1) Note1 Supply voltage (2) Note2 Symbol Ratings Unit VCC1 –0.5 to +6.5 V VCC2 –0.5 to +4.5 V Input/output voltage (1) Note1 VI/O1 –0.5 to VCC1 + 0.5 V Input/output voltage (2) Note2 VI/O2 –0.5 to VCC2 + 0.5 V Input/output voltage (3) Note3 VI/O3 –0.5 to VCC1 + 0.5 V Operating ambient temperature TA –20 to +70 °C Storage temperature Tstg –40 to +125 °C Notes 1. VCC1 signals (/FRM, STB, /DOUT, L1, L2, PULSE) 2. VCC2 signals (MS, DIR, PL0 and PL1, A0 to A16, /CS, /OE, /WE, /UBE, RDY, D0 to D15, /RESET, OSC1, OSC2, /DOFF, TEST, BMODE, /REFRH, CMODE0, CMODE1, DMODE) 3. Liquid crystal power (V0, V1, V2, Y1 to Y208) Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings. Recommended Operating Conditions (TA = –20 to +70°C, V0 = 0 V) Parameter Symbol MIN. TYP. MAX. Unit 5.0 5.5 V Supply voltage (1) VCC1 4.5 Supply voltage (2) VCC2 2.4 3.6 V Input voltage (1) Note1 VI1 0 VCC1 V Input voltage (2) Note2 VI2 0 VCC2 V V1 input voltage V1 V0 V2 V V2 input voltage V2 V1 VCC1 V External resistor for OSC ROSC 75 270 kΩ Notes 1. VCC1 signals (/FRM, STB, L1, L2, PULSE) 2. VCC2 signals (MS, DIR, PL0 and PL1, A0 to A16, /CS, /OE, /WE, /UBE, RDY, D0 to D15, /RESET, OSC1, OSC2, /DOFF, TEST, BMODE, /REFRH, CMODE0, CMODE1, DMODE) Data Sheet S13780EJ1V0DS00 33 µ PD16664 DC Characteristics (Unless otherwise specified, VCC1 = 4.5 to 5.5 V, V0 = 0 V, V1 = 1.4 to 2.0 V, V2 = 2.8 to 4.0 V, TA = –20 to +70°C) {VCC2 = 3.0 to 3.6 V Parameter Symbol High-level input voltage (1), VCC1 Note1 VIH1 Low-level input voltage (1), VCC1 Note1 VIL1 High-level input voltage (2), VCC2 Note2 Low-level input voltage (2), VCC2 VIL2 High-level input voltage (2), VCC2 Note3 VIH3 Low-level input voltage (2), VCC2 Note3 VIL3 Low-level output voltage (1), VCC1 Note4 Note4 MIN. TYP. MAX. 0.7 VCC1 0.7 VCC2 0.8 VCC2 V V 0.2 VCC2 IOH = –1 mA V V 0.3 VCC2 VOH1 Unit V 0.3 VCC1 VIH2 Note2 High-level output voltage (1), VCC1 Conditions VCC1 – 0.4 V V VOL1 IOL = 2 mA High-level output voltage (2), VCC1 Note1 VOH2 IOH = –2 mA Low-level output voltage (2), VCC1 Note1,3 VOL2 IOL = 4 mA High-level output voltage (3), VCC2 Note5 VOH3 IOH = –1 mA VOL3 IOL = 2 mA 0.4 V II1 Other than TEST pin, ±10 µA 100 µA Low-level output voltage (3), VCC2 Note5 Input leakage current (1) 0.4 VCC1 – 0.4 V V 0.4 VCC2 – 0.4 V V V1 = VCC2 or GND Input leakage current (2) II2 Pull down (TEST pin), 10 40 V1 = VCC2 • • • • Display operating current consumption (1) Note6 IMAS1 Master, VCC1 80 µA Display operating current consumption (2) Note6 IMAS2 Master, VCC2 200 µA Display operating current consumption (3) Note6 ISLV1 Slave, VCC1 50 µA Display operating current consumption (4) Note6 ISLV2 Slave, VCC2 130 µA 2 kΩ Liquid crystal driver output ON resistance Note7 RON 1 Notes 1. VCC1 signal (/FRM, STB, L1, L2, PULSE) 2. VCC2 signal (MS, DIR, PL0 and PL1, A0 to A16, /CS, /OE, /WE, /UBE, RDY, D0 to D15, /RESET, /DOFF, TEST, BMODE, CMODE0, CMODE1, DMODE) 3. /REFRH pin 4. /DOUT pin 5. D0 to D15, RDY, OSC2 pins 6. Frame frequency: 70 Hz, output: no load, not accessed by CPU (D0 to D15, A0 to A16, /UBE = GND, /CS, /OE, /WE = VCC2) 7. Resistance between Y and V pins (any of V0, V1, and V2) when a load current (ION = 100 µ A) flows through one pin of Y1 to Y208. 34 Data Sheet S13780EJ1V0DS00 µ PD16664 { VCC2 = 2.4 to 3.0 V Parameter Symbol High-level input voltage (1), VCC1 Low-level input voltage (1), VCC1 Low-level input voltage (2), VCC2 0.7 VCC2 0.3 VCC2 0.8 VCC2 IOH = –1 mA VOL1 IOL = 2 mA Note1 VOH2 IOH = –2 mA Note1,3 VOL2 IOL = 4 mA Note5 High-level output voltage (3), VCC2 V V V 0.2 VCC2 VOH1 Unit V VIL3 Note4 High-level output voltage (2), VCC1 Low-level output voltage (2), VCC1 0.3 VCC1 VIH3 Note4 MAX. V VIL2 Note3 Low-level output voltage (1), VCC1 TYP. 0.7 VCC1 VIH2 Note3 High-level output voltage (1), VCC1 MIN. VIL1 Note2 Note2 High-level input voltage (2), VCC2 Conditions VIH1 Note1 High-level input voltage (2), VCC2 Low-level input voltage (2), VCC2 Note1 VCC1 – 0.4 V V 0.4 VCC1 – 0.4 V V 0.4 VCC2 – 0.4 V VOH3 IOH = –1 mA Low-level output voltage (3), VCC2 Note5 V VOL3 IOL = 2 mA 0.4 V Input leakage current (1) II1 Other than TEST pin, ±10 µA 100 µA V1 = VCC2 or GND Input leakage current (2) II2 Pull down (TEST pin), 10 40 V1 = VCC2 • • • • Display operating current consumption (1) Note6 IMAS1 Master, VCC1 100 µA Display operating current consumption (2) Note6 IMAS2 Master, VCC2 150 µA Display operating current consumption (3) Note6 ISLV1 Slave, VCC1 60 µA Display operating current consumption (4) Note6 ISLV2 Slave, VCC2 100 µA 2.4 kΩ Liquid crystal driver output ON resistance Note7 RON 1.2 Notes 1. VCC1 signal (/FRM, STB, L1, L2, PULSE) 2. VCC2 signal (MS, DIR, PL0 and PL1, A0 to A16, /CS, /OE, /WE, /UBE, RDY, D0 to D15, /RESET, /DOFF, TEST, BMODE, CMODE0, CMODE1, DMODE) 3. /REFRH pin 4. /DOUT pin 5. D0 to D15, RDY, OSC2 pins 6. Frame frequency: 70 Hz, output: no load, not accessed by CPU (D0 to D15, A0 to A16, /UBE = GND, /CS, /OE, /WE = VCC2) 7. Resistance between Y and V pins (any of V0, V1, and V2) when a load current (ION = 100 µ A) flows through one pin of Y1 to Y208. Data Sheet S13780EJ1V0DS00 35 µ PD16664 AC Characteristics 1 Display Data Transfer Timing (1) Master Mode (Unless otherwise specified, VCC1 = 4.5 to 5.5 V, VCC2 = 2.4 to 3.6 V, V0 = 0 V, V1 = 1.4 to 2.0 V, V2 = 2.8 to 4.0 V, TA = –20 to +70°C, frame frequency: 70 Hz (fOSC = 90.72 kHz at 1/160 duty, 72.8 kHz at 1/128 duty), output load: 100 pF) Parameter Symbol STB clock cycle time tCYC STB high-level width tCWH STB low-level width tCWL Conditions MIN. TYP. MAX. Unit 1/160 duty 87 8/fOSC µs 1/128 duty 108 8/fOSC µs 1/160 duty 43 4/fOSC µs 1/128 duty 54 4/fOSC µs 1/160 duty 43 4/fOSC µs 1/128 duty 54 4/fOSC µs STB rise time tR 100 ns STB fall time tF 100 ns STB - /FRM delay time tPSF 20 µs /FRM - STB delay time tPFS 20 µs tCYC tCWL tCWH tR tF 0.9 VCC1 STB (output) tPSF tPFS tPSF 0.1 VCC1 tPFS 0.9 VCC1 /FRM (output) 36 0.1 VCC1 Data Sheet S13780EJ1V0DS00 µ PD16664 (2) Slave mode (Unless otherwise specified, VCC1 = 4.5 to 5.5 V, VCC2 = 2.4 to 3.6 V, V0 = 0 V, V1 = 1.4 to 2.0 V, V2 = 2.8 to 4.0 V, TA = –20 to +70 °C) Parameter Symbol Conditions MIN. TYP. MAX. Unit STB clock cycle time tCYC 10 µs STB high-level width tCWH 4 µs STB low-level width tCWL 4 µs STB rise time tR STB fall time tF /FRM setup time tSFR 1 µs /FRM hold time tHFR 1 µs 150 150 ns ns tCYC tCWL tCWH tF tR 0.7 VCC1 STB (input) tSFR tHFR tSFR tHFR 0.3 VCC1 0.7 VCC1 /FRM (input) 0.3 VCC1 Data Sheet S13780EJ1V0DS00 37 µ PD16664 (3) Parameters Common to Master/Slave (Unless otherwise specified, VCC1 = 4.5 to 5.5 V, V0 = 0 V, V1 = 1.4 to 2.0 V, V2 = 2.8 to 4.0 V, TA = –20 to +70°C) {VCC2 = 3.0 to 3.6 V Parameter Symbol Conditions MIN. TYP. MAX. Unit Output delay time (L1, L2) tDOUT1 No output load 50 100 ns Output delay time (Y1 to Y208) tDOUT2 No output load 90 150 ns TYP. MAX. Unit {VCC2 = 2.4 to 3.0 V Parameter Symbol Conditions MIN. Output delay time (L1, L2) tDOUT1 No output load 120 ns Output delay time (Y1 to Y208) tDOUT2 No output load 180 ns STB (output) 0.9 VCC1 tDOUT1 tDOUT1 L1, L2 0.9 VCC1 tDOUT2 tDOUT2 0.9 V2 0.1 V2 Y1 to Y208 0.9 V2 0.1 V2 38 Data Sheet S13780EJ1V0DS00 µ PD16664 AC Characteristics 2 Drawing Access Timing (Unless otherwise specified, VCC1 = 4.5 to 5.5 V, V0 = 0 V, V1 = 1.4 to 2.0 V, V2 = 2.8 to 4.0 V, TA = –20 to +70°C, tr = tf = 5 ns) {VCC2 = 3.0 to 3.6 V Parameter Symbol Conditions MIN. TYP. MAX. Unit /OE,/WE recovery time tRY 30 ns Address setup time tAS 10 ns Address hold time tAH 20 ns RDY output delay time tRYR RDY float time Note 1 Wait status time Note 2 Ready status time (without conflict) Ready status time (with conflict) Data access time (read cycle) Data float time (read cycle) Note 2 Note 2 Note 3 Note 1 /CS - /OE time (read cycle) CL = 15 pF 30 ns tRYZ 30 ns tRYW 35 ns tRYF1 60 100 ns tRYF2 650 1200 ns tACS 100 ns tHZ 40 ns tCSOE 10 ns /OE - /CS time (read cycle) tOECS 20 ns Write pulse width 1 (write cycle 1) Note 2 tWP1 50 ns Note 2 tWP2 50 ns Data setup time (write cycles 1, 2) tDW 20 ns Data hold time (write cycles 1, 2) tDH 20 ns /CS - /WE time (write cycles 1, 2) tCSWE 10 ns /WE - /CS time (write cycles 1, 2) tWECS 20 ns Reset pulse width tWRES 100 ns RDY - /OE time tRDOE Note 4 – RDY - /WE time tRDWE Note 4 – Write pulse width 2 (write cycle 2) Notes 1. Load circuit VCC2 1.8 kΩ 1.0 kΩ 5 pF Data Sheet S13780EJ1V0DS00 39 µ PD16664 2. Load circuit VCC2 1.8 kΩ 1.0 kΩ 60 pF 3. Load circuit VCC2 1.8 kΩ 1.0 kΩ 100 pF 4. The display may be affected if the time from the rising of RDY to /OE or /WE is too long. It is recommended that tRDOE and tRDWE be 1000 ns or less. 40 Data Sheet S13780EJ1V0DS00 µ PD16664 {VCC2 = 2.4 to 3.0 V Parameter Symbol Conditions MIN. TYP. MAX. Unit /OE,/WE recovery time tRY 40 ns Address setup time tAS 20 ns Address hold time tAH 30 ns RDY output delay time tRYR RDY float time Note 1 Wait status time Note 2 Ready status time (without conflict) Ready status time (with conflict) Data access time (read cycle) Data float time (read cycle) Note 2 Note 2 Note 3 Note 1 /CS - /OE time (read cycle) CL = 15 pF 40 ns tRYZ 40 ns tRYW 50 ns tRYF1 120 ns tRYF2 1600 ns tACS 120 ns tHZ 50 ns tCSOE 20 ns /OE - /CS time (read cycle) tOECS 30 ns Write pulse width 1 (write cycle 1) Note 2 tWP1 60 ns Note 2 tWP2 60 ns Data setup time (write cycles 1, 2) tDW 30 ns Data hold time (write cycles 1, 2) tDH 30 ns /CS - /WE time (write cycles 1, 2) tCSWE 20 ns /WE - /CS time (write cycles 1, 2) tWECS 30 ns Reset pulse width tWRES 120 ns RDY - /OE time tRDOE Note 4 – RDY - /WE time tRDWE Note 4 – Write pulse width 2 (write cycle 2) Notes 1. Load circuit VCC2 1.8 kΩ 1.0 kΩ 5 pF Data Sheet S13780EJ1V0DS00 41 µ PD16664 2. Load circuit VCC2 1.8 kΩ 1.0 kΩ 60 pF 3. Load circuit VCC2 1.8 kΩ 1.0 kΩ 100 pF 4. The display may be affected if the time from the rising of RDY to /OE or /WE is too long. It is recommended that tRDOE and tRDWE be 1000 ns or less. 42 Data Sheet S13780EJ1V0DS00 µ PD16664 /OE,/WE Recovery Time tRY 0.7 VCC2 /OE,/WE 0.3 VCC2 Read Cycle 0.7 VCC2 A16 to A0 /UBE 0.3 VCC2 tAS tAH 0.7 VCC2 /CS 0.3 VCC2 0.3 VCC2 tCSOE tOECS tRDOE 0.7 VCC2 /OE 0.3 VCC2 tRYR tRYW tRYF tRYZ 0.9 VCC2 RDY 0.1 VCC2 Hi-Z 0.1 VCC2 tACS tHZ OUT D15 to D0 0.9 VCC2 0.1 VCC2 Data Sheet S13780EJ1V0DS00 43 µ PD16664 Write Cycle 1 (on writing display data) 0.7 VCC2 A16 to A0 /UBE 0.3 VCC2 tAH tAS 0.7 VCC2 /CS 0.3 VCC2 0.3 VCC2 tCSWE tRDWE tWECS 0.7 VCC2 /WE 0.3 VCC2 tRYF tRYR tRYZ tRYW 0.9 VCC2 RDY 0.1 VCC2 0.1 VCC2 Hi-Z tWP1 0.7 VCC2 IN D15 to D0 0.3 VCC2 tDW tDH Write Cycle 2 (on writing gray level palette) 0.7 VCC2 A16 to A0 /UBE 0.3 VCC2 tAH tAS /CS 0.3 VCC2 tWECS tCSWE 0.7 VCC2 /WE 0.3 VCC2 tWP2 RDY Hi-Z 0.7 VCC2 IN D15 to D0 0.3 VCC2 tDW 44 Data Sheet S13780EJ1V0DS00 tDH µ PD16664 Reset Pulse Width /RESET 0.3 VCC2 tWRES AC Characteristics 3 CR Oscillation {VCC2 = 2.4 to 3.6 V, TA = –20 to +70 °C, 1/160 duty Parameter Oscillation frequency Symbol fOSC Frame frequency – Conditions MIN. TYP. MAX. Unit External resistor: 130 kΩ 80 95 110 kHz External resistor: 130 kΩ 61.7 73.3 84.9 Hz MIN. TYP. MAX. Unit External resistor: 160 kΩ 64 76 88 kHz External resistor: 160 kΩ 61.5 73.1 84.6 Hz {VCC2 = 2.4 to 3.6 V, TA = –20 to +70 °C, 1/128 duty Parameter • • Oscillation frequency Frame frequency Symbol fOSC – Conditions Data Sheet S13780EJ1V0DS00 45 µ PD16664 21. RELATION BETWEEN OSCILLATION FREQUENCY, FRAME FREQUENCY, AND STB FREQUENCY The relation between the oscillation frequency, frame frequency, and STB frequency is as follows: 1/160 duty Frame frequency = STB frequency = 1 × Oscillation frequency 162 × 2 × 4 1 × Oscillation frequency 2× 4 1/128 duty Frame frequency = STB frequency = 46 1 × Oscillation frequency 130 × 2 × 4 1 × Oscillation frequency 2× 4 Data Sheet S13780EJ1V0DS00 µ PD16664 22. PACKAGE DRAWINGS Standard TCP Package Drawing (µPD16664N-001) (1/3) Material Polyimide UPILEX-S t = 75 µm Adhesive Epoxy t = 12 µm Copper Electrolysis Cu t = 18 µm Plating Sn t = 0.15 µm min Solder Resist Epoxy t = 25 µm This products is single side Flex type. This figure is shown by Copper side over Polymide. All tolerances unless otherwise specified 0.05 mm. Corner radius is 0.30 mm MAX. 13 Sprocket holes (61.75 mm) for 1 Pattern. Data Sheet S13780EJ1V0DS00 47 µ PD16664 Standard TCP Package Drawing (µPD16664N-001) (2/3) from P.C. EIAJ test pad details from P.C. from P.C. from P.C. Alignment details TCP tape winding direction Output lead Tape pull-up direction Wind-up direction The Cu pattern side is the underside of the tape 48 Data Sheet S13780EJ1V0DS00 µ PD16664 Standard TCP Package Drawing (µPD16664N-001) (3/3) Pin configuration No.1 DUMMY V0 No.2 V1 No.3 V2 No.4 VCC1 No.5 GND No.6 VCC2 No.7 GND No.8 A0 No.9 A1 No.10 A2 No.11 A3 No.12 A4 No.13 A5 No.14 A6 No.15 A7 No.16 A8 No.17 A9 No.18 A10 No.19 A11 No.20 A12 No.21 A13 No.22 A14 No.23 A15 No.24 A16 No.25 D0 No.26 D1 No.27 D2 No.28 D3 No.29 D4 No.30 D5 No.31 D6 No.32 D7 No.33 D8 No.34 D9 No.35 D10 No.36 D11 No.37 D12 No.38 D13 No.39 D14 No.40 D15 No.41 VCC2 No.42 OSC1 No.43 OSC2 No.44 GND No.45 DIR No.46 PL0 No.47 PL1 No.48 No.49 /REFRH No.50 /RESET /UBE No.51 /CS No.52 /OE No.53 /WE No.54 RDY No.55 /DOFF No.56 TEST No.57 No.58 BMODE No.59 CMODE0 No.60 CMODE1 No.61 DMODE MS No.62 VCC2 No.63 GND No.64 No.65 PULSE /FRM No.66 STB No.67 No.68 /DOUT L2 No.69 L1 No.70 VCC1 No.71 GND No.72 V2 No.73 V1 No.74 V0 No.75 No.76 DUMMY Data Sheet S13780EJ1V0DS00 DUMMY DUMMY Y208 Y207 Y206 Y205 Y204 Y203 Y202 Y201 Y200 Y199 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 DUMMY DUMMY No.201 No.202 No.203 No.204 No.205 No.206 No.207 No.208 No.209 No.210 No.211 No.212 49 µ PD16664 [MEMO] 50 Data Sheet S13780EJ1V0DS00 µ PD16664 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet S13780EJ1V0DS00 51 µ PD16664 Reference Documents NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades to NEC’s Semiconductor Devices (C11531E) • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98. 8