NEC UPD75306BGK

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75304B,75306B,75308B
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75308B is a 75X Series 4-bit single-chip microcomputer capable of the same data processing as an
8-bit microcomputer.
It is a low voltage operation version of the µPD75308 with on-chip LCD controller/driver. Operation at an
ultra-low voltage of 2.0 V is possible. An ultra small-sized plastic QFP (12 × 12 mm) is also provided and it is
perfect for small-sized set that uses an LCD panel.
Functions, etc., are described in detail in the User's Manual. Please be sure to read this manual when
carrying out design work.
µPD75308 User's Manual: IEM-5016
FEATURES
• Ultra-low-voltage operation possible: VDD = 2.0 to 6.0 V
• Can be driven by two 1.5 V manganese batteries.
• On-chip memory
• Program memory (ROM) : 8064 × 8 bit (µ PD75308B)
: 6016 × 8 bit (µ PD75306B)
: 4096 × 8 bit (µ PD75304B)
• Data memory (RAM)
: 512 × 4 bit
• Instruction execution time adjustment function convenient in high-speed operation and power saving
• 0.95 µs, 1.91 µs, 15.3 µs (4.19 MHz operation)
• 122 µs (32.768 kHz operation)
• Built-in programmable LCD controller/driver
• LCD drive voltage: 2.0 V to VDD
• An ultra small-sized plastic QFP (12 × 12 mm) is provided.
• Suitable for small-sized set, such as a camera.
• On-chip PROM products available
• On-chip one-time PROM products : µPD75P308, 75P316A
• On-chip EPROM products
: µPD75P308, 75P316B
APPLICATIONS
Remote control, integrated camera type VCR, camera, gas meter, etc.
Unless there are any particular functional differences, the µPD75308B is described in this document as a
representative product.
The information in this document is subject to change without notice.
Document No. IC-2913C
(O. D. No. IC-8082D)
Date Published January 1994 P
Printed in Japan
The mark ★ shows major revised points.
© NEC Corporation 1991
µPD75304B,75306B,75308B
ORDERING INFORMATION
Ordering Code
µPD75304BGC-×××-3B9
µPD75304BGF-×××-3B9
µPD75304BGK-×××-BE9
µPD75306BGC-×××-3B9
µPD75306BGF-×××-3B9
µPD75306BGK-×××-BE9
µPD75308BGC-×××-3B9
µPD75308BGF-×××-3B9
µPD75308BGK-×××-BE9
Remarks
Package
80-pin
80-pin
80-pin
80-pin
80-pin
80-pin
80-pin
80-pin
80-pin
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
plastic
QFP (■
■ 14 mm)
QFP (14 × 20 mm)
TQFP(fine pitch)(■
■ 12 mm)
QFP (■
■ 14 mm)
QFP (14 × 20 mm)
TQFP(fine pitch)(■
■ 12 mm))
QFP (■
■ 14 mm)
QFP (14 × 20 mm)
TQFP(fine pitch)(■
■ 12 mm)
Quality Grade
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
Standard
××× is the ROM code number.
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
2
µPD75304B,75306B,75308B
FUNCTION OUTLINE (1/2)
Item
Function
Number of basic instructions
41
Instruction cycle
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)
122 µs (subsystem clock: 32.768 kHz operation)
ROM
8064 × 8 bits (µPD75308B), 6016× 8 bits (µPD75306B), 4096× 8 bits (µPD75304B)
RAM
512 × 4 bits
On-chip memory
General register
• 4-bit manipulation: 8 (B, C, D, E, H, L, X, A)
• 8-bit manipulation: 4 (BC, DE, HL, XA)
Accumulators
• Bit accumulator (CY)
• 4-bit accumulator (A)
• 8-bit accumulator (XA)
Instruction set
•
•
•
•
Various bit manipulation instructions
Efficient 4-bit data manipulation instructions
8-bit data transfer instructions
GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1
byte
8
CMOS input
16
CMOS input/output
8
CMOS output
Used with segment pin
8
N-ch open-drain
input/output
10 V withstand voltage, pull-up by mask option
possible : 8
Pull-up by software possible : 23
I/O lines
40
LCD controller/driver
• Number of segments selection: 24/28/32 segments (4/8 can be switched at bit
port output.)
• Display mode selection: Static, 1/2 duty, 1/3 duty (1/2 bias), 1/3 duty (1/3 bias),
1/4 duty
• LCD drive division resistor can be incorporated by mask option
Supply voltage range
VDD = 2.0 to 6.0 V
• 8-bit timer/event counter
• Clock source: 4 stages
• Event count possible
Timer
3 channels
• 8-bit basic interval timer
• Standard clock generation: 1.95 ms, 7.82 ms, 31.3 ms, 250 ms
(4.19 MHz operation)
• Watchdog timer application possible
3
µPD75304B,75306B,75308B
FUNCTION OUTLINE (2/2)
Item
Function
• Watch timer
• 0.5 seconds time interval generation
• Count clock source: Main system clock and subsystem clock
switchable
• Fast watch mode (3.9 ms time interval generation)
• Buzzer output possible (2 kHz)
Timer
3 channels
8-bit serial interface
• Three modes application possible
• 3-wire serial I/O mode
• 2-wire serial I/O mode
• SBI mode
• LSB top/MSB top switchable
Bit sequential buffer
Special bit manipulation memory: 16 bits
• Perfect for remote control application
Timer/event counter output (PTO0): Arbitrary frequency square wave output
Clock output function
Clock output (PCL): Φ, 524, 262, 65.5 kHz (4.19 MHz operation)
Buzzer output (BUZ): 2 kHz (4.19 MHz or 32.768 kHz operation)
4
Vectored interrupt
• External: 3
• Internal: 3
Test input
• External: 1
• Internal: 1
System clock oscillator
• Main system clock oscillation ceramic/crystal oscillation circuit: 4.194304 MHz
• Subsystem clock oscillation crystal oscillation circuit: 32.768 kHz
Standby
STOP/HALT mode
Package
• 80-pin plastic QFP (14 × 20 mm)
• 80-pin plastic QFP (■
■ 14 mm)
• 80-pin plastic TQFP (fine pitch) (■
■ 12 mm)
µPD75304B,75306B,75308B
CONTENTS
1. PIN CONFIGURATION (TOP VIEW)...............................................................................................
6
2. BLOCK DIAGRAM............................................................................................................................
8
3. PIN FUNCTIONS ..............................................................................................................................
9
3.1
3.2
3.3
PORT PINS ..............................................................................................................................................
NON-PORT PINS .....................................................................................................................................
PIN INPUT/OUTPUT CIRCUITS ..............................................................................................................
9
11
13
3.4
3.5
RECOMMENDED CONNECTION OF UNUSED PINS .............................................................................
PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN ...........................................................
15
16
4.
MEMORY CONFIGURATION ..........................................................................................................
16
5.
PERIPHERAL HARDWARE FUNCTIONS ........................................................................................
21
5.1
5.2
PORTS .....................................................................................................................................................
CLOCK GENERATOR ...............................................................................................................................
21
22
5.3
5.4
5.5
5.6
CLOCK OUTPUT CIRCUIT .......................................................................................................................
BASIC INTERVAL TIMER ........................................................................................................................
WATCH TIMER ........................................................................................................................................
TIMER/EVENT COUNTER .......................................................................................................................
23
24
25
26
5.7
5.8
5.9
SERIAL INTERFACE .................................................................................................................................
LCD CONTROLLER/DRIVER ....................................................................................................................
BIT SEQUENTIAL BUFFER ......................................................................................................................
28
30
32
6.
INTERRUPT FUNCTION .................................................................................................................
32
7.
STANDBY FUNCTION ....................................................................................................................
34
8.
RESET FUNCTION ..........................................................................................................................
35
9.
INSTRUCTION SET .........................................................................................................................
37
10. MASK OPTION SELECTION ............................................................................................................ 45
11. ELECTRICAL SPECIFICATIONS ......................................................................................................
46
12. PACKAGE INFORMATION ..............................................................................................................
64
13. RECOMMENDED SOLDERING CONDITIONS ................................................................................
67
APPENDIX A. DIFFERENCES AMONG SERIES PRODUCTS ..............................................................
70
APPENDIX B. DEVELOPMENT TOOLS ...............................................................................................
72
APPENDIX C. RELATED DOCUMENTS ..............................................................................................
73
5
µPD75304B,75306B,75308B
P61/KR1
S1
S0
RESET
P73/KR7
P72/KR6
P71/KR5
P70/KR4
P63/KR3
P62/KR2
S6
S5
S4
S3
S2
8079787776 757473 7271 70696867666564636261
S12
S13
S14
S15
S16
1
4
5
60
59
58
57
56
S17
6
7
8
9
55
54
53
52
XT1
VDD
P33
P32
51
50
49
48
47
46
45
44
43
P31/SYNC
P30/LCDCL
P23/BUZ
P22/PCL
P21
P20/PTO0
P13/TI0
P12/INT2
P11/INT1
19
42
P10/INT0
20
2122232425 262728 2930 31323334353637383940
41
P03/SI/SB1
P50
P51
P52
P53
P00/INT4
P01/SCK
P02/SO/SB0
COM0
S31/BP7
P40
P41
P42
P43
VSS
S25/BP1
S26/BP2
S27/BP3
S28/BP4
S29/BP5
S30/BP6
COM3
BIAS
VLC0
VLC1
VLC2
S23
S24/BP0
10
11
12
13
14
15
16
17
18
COM1
COM2
S22
2
3
µPD75304BGC-×××-3B9
µPD75304BGK-×××-BE9
µPD75306BGC-×××-3B9
µPD75306BGK-×××-BE9
µPD75308BGC-×××-3B9
µPD75308BGK-×××-BE9
S18
S19
S20
S21
6
S9
S8
S7
S11
S10
1. PIN CONFIGURATION (TOP VIEW)
P60/KR0
X2
X1
NC
XT2
80797877767574737271706968676665
1
2
3
4
5
6
7
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24/BP0
S25/BP1
S26/BP2
S27/BP3
S28/BP4
S29/BP5
S30/BP6
S31/BP7
COM0
COM1
COM2
COM3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25262728293031323334353637383940
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
P70/KR4
P63/KR3
P62/KR2
P61/KR1
P60/KR0
X2
X1
NC
XT2
XT1
VDD
P33
P32
P31/SYNC
P30/LCDCL
P23/BUZ
P22/PCL
P21
P20/PTO0
P13/TI0
P12/INT2
P11/INT1
P10/INT0
P03/SI/SB1
VLC0
VLC1
VLC2
P40
P41
P42
P43
VSS
P50
P51
P52
P53
P00/INT4
P01/SCK
P02/SO/SB0
BIAS
µPD75304BGF-×××-3B9
µPD75306BGF-×××-3B9
µPD75308BGF-×××-3B9
P00 to 03
P10 to 13
P20 to 23
P30 to 33
P40 to 43
P50 to 53
P60 to 63
P70 to 73
BP0 to 7
KR0 to 7
SCK
SI
SO
SB0,1
RESET
S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0
RESET
P73/KR7
P72/KR6
P71/KR5
S11
µPD75304B,75306B,75308B
Port 0
Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Bit Port
Key Return
Serial Clock
Serial Input
Serial Output
Serial Bus 0, 1
Reset Input
S0 to 31
COM0 to 3
VLC0-2
BIAS
LCDCL
SYNC
TI0
PTO0
BUZ
PCL
INT0, 1, 4
INT2
X1, 2
XT1, 2
NC
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Segment Output 0 to 31
Common Output 0 to 3
LCD Power Supply 0 to 2
LCD Power Supply Bias Control
LCD Clock
LCD Synchronization
Timer Input 0
Programmable Timer Output 0
Buzzer Clock
Programmable Clock
External Vectored Interrupt 0, 1, 4
External Test Input 2
Main System Clock Oscillation 1, 2
Subsystem Clock Oscillation 1, 2
No Connection
7
INTBT
PROGRAM
COUNTER *
SP(8)
TIMER/EVENT
COUNTER
#0
TI0/P13
PTO0/P20
ALU
BANK
WATCH
TIMER
INTW
SI/SB1/P03
f LCD
CLOCKED
SERIAL
INTERFACE
SO/SB0/P02
SCK/P01
PROGRAM
MEMORY
(ROM)
8064×8BITS
: µPD75308B
6016×8BITS
: µPD75306B
4096×8BITS
: µPD75304B
4
P00-P03
PORT 1
4
P10-P13
PORT 2
4
P20-P23
PORT 3
4
P30-P33
PORT 4
4
P40-P43
PORT 5
4
P50-P53
PORT 6
4
P60-P63
PORT 7
4
P70-P73
CY
INTT0
BUZ/P23
PORT 0
GENERAL REG.
DECODE
AND
CONTROL
DATA
MEMORY
(RAM)
512 × 4 BITS
INTCSI
24
2. BLOCK DIAGRAM
8
BASIC
INTERVAL
TIMER
S0-S23
INT0/P10
INT1/P11
INT2/P12
INT4/P00
KR0/P60
–KR7/P73
8
N
fX / 2
BIT SEQ.
BUFFER (16)
CLOCK
OUTPUT
CONTROL
PCL/P22
*
LCD
CONTROLLER
/DRIVER
13bits : µPD75306B, 75308B
12bits : µPD75304B
CLOCK
DIVIDER
SYSTEM CLOCK
GENERATOR
SUB
MAIN
XT1 XT2 X1 X2
CPU
CLOCK
STAND BY
CONTROL
VDD
VSS RESET
fLCD
8
S24/BP0
–S31/BP7
4
COM0–COM3
3
VLC0–VLC2
BIAS
LCDCL/P30
SYNC/P31
µPD75304B,75306B,75308B
INTERRUPT
CONTROL
µPD75304B,75306B,75308B
3. PIN FUNCTIONS
3.1
PORT PINS (1/2)
Pin Name
Input/Output
DualFunction Pin
P00
Input
INT4
P01
Input/output
SCK
P02
Input/output
SO/SB0
P03
Input/output
SI/SB1
INT0
P10
Input
P12
INT2
P13
TI0
P20
PTO0
—
P21
Input/output
P22
PCL
P23
BUZ
P30 *2
LCDCL
P31 *2
SYNC
Input/output
P32 *2
—
P33 *2
—
P40 to P43 *2
P50 to P53 *2
1.
8-bit I/O
After
Reset
I/O Circuit
Type *1
B
4-bit input port (PORT 0)
On-chip pull-up resistor can be specified for
P01 to P03 as a 3-bit unit by software.
F -A
×
Input
F -B
M-C
With noise elimination function
INT1
P11
*
Function
Input/output
Input/output
×
Input
B -C
4-bit input/output port (PORT 2)
On-chip pull-up resistor can be specified as a
4-bit unit by software.
×
Input
E-B
Programmable 4-bit input/output port (PORT 3)
Input/output can be specified bit-wise.
On-chip pull-up resistor can be specified as a
4-bit unit by software.
×
Input
E-B
4-bit input port (PORT 1)
On-chip pull-up resistor can be specified as a
4-bit unit by software.
—
N-ch open-drain 4-bit input/output port (PORT
4)
On-chip pull-up resistor can be specified bitwise (mask option).
Open-drain: 10 V withstand voltage
High level (onchip pull-up
resistor) or highimpedance
—
N-ch open-drain 4-bit input/output port (PORT
5)
On-chip pull-up resistor can be specified bitwise (mask option).
Open-drain: 10 V withstand voltage
High level (onchip pull-up
resistor) or highimpedance
M
M
: Schmitt trigger input
2. LED direct drive possible
9
µPD75304B,75306B,75308B
3.1
PORT PINS (2/2)
Pin Name
Input/Output
DualFunction Pin
P60
KR0
P61
KR1
Input/output
P62
KR2
P63
KR3
P70
KR4
P71
KR5
Input/output
P72
KR6
P73
KR7
BP0
S24
BP1
Function
8-bit I/O
Programmable 4-bit input/output port (PORT 6)
Input/output can be specified bit-wise.
On-chip pull-up resistor can be specified as a
4-bit unit by software.
4-bit input/output port (PORT 7)
On-chip pull-up resistor can be specified as a
4-bit unit by software.
After
Reset
I/O Circuit
Type *1
Input
F -A
Input
F -A
*2
G-C
S25
Output
BP2
S26
BP3
S27
BP4
S28
BP5
1-bit output port (BIT PORT)
Also used as segment output pin.
×
S29
Output
*
BP6
S30
BP7
S31
1.
: Schmitt trigger input
2. BP0 to BP7 select V LC1 as the input source.
However, the output level depends on BP0 to BP7 and VLC1 external circuit.
Example
BP0 to BP7 are connected mutually within the µPD75308B. Therefore, the output level of BP0 to BP7
is determined by the value of R1, R2 and R3.
µPD75308B
VDD
R2
BP0
ON
VLC1
R1
BP1
ON
10
R3
µPD75304B,75306B,75308B
3.2
NON-PORT PINS
Pin Name
Input/Output
DualFunction Pin
After
Reset
I/O Circuit
Type *1
TI0
Input
P13
External event pulse input pin to timer/event counter
Input
B -C
PTO0
Input/output
P20
Timer/event counter output pin
Input
E-B
PCL
Input/output
P22
Clock output pin
Input
E-B
BUZ
Input/output
P23
Fixed frequency output pin (for buzzer or system clock
trimming)
Input
E-B
SCK
Input/output
P01
Serial clock input/output pin
Input
F -A
SO/SB0
Input/output
P02
Serial data output pin
Serial bus input/output pin
Input
F -B
SI/SB1
Input/output
P03
Serial data input pin
Serial bus input/output pin
Input
M -C
INT4
Input
P00
Edge detection vectored interrupt input pin (both rising
edge and falling edge detection effective)
Input
B
Input
B -C
Input
B -C
P10
INT0
Input
INT1
*
P11
Function
Edge detection vectored
interrupt input pin (detection
edge selectable)
Edge detection testable input
pin (rising edge detection)
Clock synchronous
system
Asynchronous
INT2
Input
P12
KR0 to KR3
Input/output
P60 to P63
Parallel falling edge detection testable input pin
Input
F -A
KR4 to KR7
Input/output
P70 to P73
Parallel falling edge detection testable input pin
Input
F -A
S0 to S23
Output
—
Segment signal output pin
*2
G-A
S24 to S31
Output
BP0 to BP7
Segment signal output pin
*2
G-C
COM0 to COM3
Output
—
Common signal output pin
*2
G-B
VLC0 to VLC2
—
—
LCD drive power supply pin
On-chip split resistor (mask option)
—
—
BIAS
Output
—
External split resistor cut output pin
*3
—
LCDCL *4
Input/output
P30
External expansion driver drive clock output pin
Input
E-B
SYNC *4
Input/output
P31
External expansion driver synchronization clock output
pin
Input
E-B
X1, X2
Input
—
Main system clock oscillation crystal/ceramic connection
pin. For external clock, the external clock signal is input
to X1 and its opposite phase is input to X2.
—
—
XT1
Input
—
—
—
XT2
—
—
Subsystem clock oscillation crystal connection pin. For
external clock, the external clock signal is input to XT1
and XT2 is opened. XT1 can be used as a 1-bit input
(test) pin.
RESET
Input
—
System reset input pin
—
B
NC *5
—
—
NO CONNECTION
—
—
VDD
—
—
Positive power supply pin
—
—
VSS
—
—
GND potential pin
—
—
1.
Asynchronous
: Schmitt trigger input
2. Display outputs are selected with VLCX shown below as the input source.
S0 to S31: VLC1, COM0 to COM2: V LC2, COM3: VLC0
However, the level of each display output depends on the display output and VLCX external circuit.
11
µPD75304B,75306B,75308B
*
3. On-chip split resistor ........ Low level
No on-chip split resistor ... High-impedance
4. Pins provided for system expansion. Currently, only used as P30 and P31.
5. If a printed wiring board is shared with the µPD75P316A/75P316B, the NC pin should be connected to
VDD.
12
µPD75304B,75306B,75308B
3.3 PIN INPUT/OUTPUT CIRCUITS
The input/output circuits of each pin of the µPD75308B are shown by in abbreviated form.
TYPE D (For TYPE E-B, F-A)
TYPE A (For TYPE E-B)
VDD
VDD
data
P-ch
OUT
P-ch
IN
output
disable
N-ch
N-ch
Push-pull output that can be made high-impedance output
CMOS Standard Input Buffer
TYPE B
(P-ch and N-ch OFF)
TYPE E-B
VDD
P.U.R.
P.U.R.
enable
P-ch
data
IN
IN/OUT
Type D
output
disable
Type A
P.U.R.:Pull-Up Resistor
Schmitt-Trigger Input with Hysteresis Characteristic
TYPE B-C
TYPE F-A
VDD
P.U.R.
VDD
P.U.R.
enable
P.U.R.
P-ch
P.U.R.
enable
P-ch
data
IN/OUT
Type D
output
disable
IN
Type B
P.U.R. : Pull-Up Resistor
P.U.R.:Pull-Up Resistor
13
µPD75304B,75306B,75308B
TYPE F-B
TYPE G-C
VDD
P.U.R.
P.U.R.
enable
VDD
P-ch
P-ch
VDD
output
disable
(P)
VLC0
P-ch
VLC1
IN/OUT
P-ch
data
output
disable
SEG
data/Bit Port data
N-ch
output
disable
(N)
OUT
N-ch
VLC2
N-ch
P.U.R.:Pull-Up Resistor
TYPE G-A
TYPE M
VDD
P.U.R.
enable
(Mask Option)
IN/OUT
VLC0
P-ch
data
VLC1
N-ch
P-ch
SEG
data
output
disable
OUT
N-ch
VLC2
N-ch
Middle-High Voltage Input Buffer
(+10 V Withstand Voltage)
P.U.R.:Pull-Up Resistor
TYPE G-B
TYPE M-C
VDD
VLC0
P-ch
P.U.R.
VLC1
P.U.R.
enable
P-ch N-ch
IN/OUT
OUT
COM
data
N-ch
P-ch
P-ch
data
N-ch
output
disable
VLC2
N-ch
P.U.R.:Pull-Up Resistor
14
µPD75304B,75306B,75308B
3.4
★
RECPMMENDED CONNECTION OF UNUSED PINS
Table 3-1 Connection of Unused Pins
Pin
P00/INT4
Recommended Connection
Connect to VSS
P01/SCK
P02/SO/SB0
Connect to VSS or VDD
P03/SI/SB1
P10/INT0-P12/INT2
Connect to VSS
P13/TI0
P20/PTO0
P21
P22/PCL
P23/BUZ
P30/LCDCL
P31/SYNC
Input state
:
Outputstate :
Connect to VSS or V DD
Leave open
P32
P33
P40 to P43
P50 to P53
P60/KR0 to P63/KR3
P70/KR4 to P73/KR7
S0 to S23
S24/BP0 to S31/BP7
Leave open
COM0 to COM3
VLC0 to VLC2
BIAS
Connect to VSS
Connect to VSS only when VLC0 to VLC2
are all unused; otherwise leave open
XT1
Connect to VSS or VDD
XT2
Leave open
15
µPD75304B,75306B,75308B
★
3.5
PRECAUTIONS CONCERNING P00/INT4 PIN AND RESET PIN
In addition to the functions shown in 3.1 and 3.2, the P00/INT4 pin and RESET pin are also used to set the
test mode for testing internal µPD75308B operation (for IC testing).
The test mode is set when a voltage greater than VDD is applied to either of these pins. Consequently, if
noise exceeding VDD is applied during normal operation, the test mode may be entered, making it impossible
for normal operation to continue.
For example, misoperation may result if inter-wiring noise is applied to the P00/INT4 or RESET pin due to
the length of the wiring from these pins, and the pin voltage exceeds VDD.
Wiring should therefore be carried out so that inter-wiring noise is suppressed as far as possible. If it is
completely impossible to suppress noise, noise prevention measures should be taken using an external component as shown below.
o Diode connected between
P00/INT4 or RESET and VDD
o Capacitor connected between
P00/INT4 or RESET and VDD
VDD
VDD
Diode with
VDD
VDD
Small VF
P00/INT4, RESET
P00/INT4, RESET
4. MEMORY CONFIGURATION
• Program memory (ROM) ... 8064 × 8 bits (0000H to 1F7FH): µPD75308B
6016 × 8 bits (0000H to 177FH): µPD75306B
4096 × 8 bits (0000H to 0FFFH): µPD75304B
• 0000H to 0001H: Vector table in which the program start address after a reset is written.
• 0002H to 000BH: Vector table in which program start addresses in case of interrupts are written.
• 0020H to 007FH: Table area referenced by the GETI instruction.
• Data memory
• Data area ... 512 × 4 bits (000H to 1FFH)
• Peripheral hardware area ... 128 × 4 bits (F80H to FFFH)
16
µPD75304B,75306B,75308B
Fig. 4-1 Program Memory Map
(a) µPD75308B
Address
7
0000H
6
5
0
MBE 0
0
Internal Reset Start Address (High-Order 5 Bits)
Internal Reset Start Address (Low-Order 8 Bits)
0002H
MBE 0
0
INTBT/INT4 Start Address (High-Order 5 Bits)
INTBT/INT4 Start Address (Low-Order 8 Bits)
0004H
MBE 0
0
INT0 Start Address (High-Order 5 Bits)
CALLF
! faddr
Instruction
Entry
Address
INT0 Start Address (Low-Order 8 Bits)
0006H
MBE 0
0
INT1 Start Address (High-Order 5 Bits)
INT1 Start Address (Low-Order 8 Bits)
0008H
MBE 0
0
INTCSI Start Address (High-Order 5 Bits)
BR !addr
Instruction
Branch Address
INTCSI Start Address (Low-Order 8 Bits)
000AH
MBE 0
0
BRCB
! caddr
Instruction
Branch
Address
INTT0 Start Address (High-Order 5 Bits)
INTT0 Start Address (Low-Order 8 Bits)
≈
CALL !addr
Instruction
Subroutine
Entry Address
BR $addr
Instruction
Relative
Branch Address
(-15 to -1,
+2 to +16)
≈
0020H
GETI Instruction Reference Table
007FH
0080H
≈
≈
≈
≈
Branch Destination
Address and
Subroutine Entry Address
by GETI Instruction
07FFH
0800H
0FFFH
1000H
≈
≈
BRCB
! caddr
Instruction
Branch
Address
1F7FH
17
µPD75304B,75306B,75308B
(b) µPD75306B
Address
7
0000H
6
5
0
MBE 0
0
Internal Reset Start Address (High-Order 5 Bits)
Internal Reset Start Address (Low-Order 8 Bits)
0002H
MBE 0
0
INTBT/INT4 Start Address (High-Order 5 Bits)
INTBT/INT4 Start Address (Low-Order 8 Bits)
0004H
MBE 0
0
INT0 Start Address (High-Order 5 Bits)
CALLF
! faddr
Instruction
Entry
Address
INT0 Start Address (Low-Order 8 Bits)
0006H
MBE 0
0
INT1 Start Address (High-Order 5 Bits)
INT1 Start Address (Low-Order 8 Bits)
0008H
MBE 0
0
INTCSI Start Address (High-Order 5 Bits)
BR !addr
Instruction
Branch Address
INTCSI Start Address (Low-Order 8 Bits)
000AH
MBE 0
0
BRCB
! caddr
Instruction
Branch
Address
INTT0 Start Address (High-Order 5 Bits)
INTT0 Start Address (Low-Order 8 Bits)
≈
CALL !addr
Instruction
Subroutine
Entry Address
BR $addr
Instruction
Relative
Branch Address
(-15 to -1,
+2 to +16)
≈
0020H
GETI Instruction Reference Table
007FH
0080H
≈
≈
≈
≈
Branch Destination
Address and
Subroutine Entry Address
by GETI Instruction
07FFH
0800H
0FFFH
1000H
≈
177FH
18
≈
BRCB
! caddr
Instruction
Branch
Address
µPD75304B,75306B,75308B
(c) µPD75304B
Address
7
0000H
6
5
0
MBE 0
0
Internal Reset Start Address (High-Order 4 Bits)
Internal Reset Start Address (Low-Order 8 Bits)
0002H
MBE 0
0
INTBT/INT4 Start Address (High-Order 4 Bits)
INTBT/INT4 Start Address (Low-Order 8 Bits)
0004H
MBE 0
0
INT0 Start Address (High-Order 4 Bits)
CALLF
! faddr
Instruction
Entry
Address
INT0 Start Address (Low-Order 8 Bits)
0006H
MBE 0
0
INT1 Start Address (High-Order 4 Bits)
INT1 Start Address (Low-Order 8 Bits)
0008H
MBE 0
0
INTCSI Start Address (High-Order 4 Bits)
BR !caddr
Instruction
Branch Address
INTCSI Start Address (Low-Order 8 Bits)
000AH
MBE 0
0
CALL !addr
Instruction
Subroutine
Entry Address
INTT0 Start Address (High-Order 4 Bits)
INTT0 Start Address (Low-Order 8 Bits)
≈
≈
BR $addr
Instruction
Relative
Branch Address
(-15 to -1,
+2 to +16)
0020H
GETI Instruction Reference Table
007FH
0080H
≈
≈
≈
≈
07FFH
Branch Destination
Address and
Subroutine Entry Address
by GETI Instruction
0800H
0FFFH
19
µPD75304B,75306B,75308B
Fig. 4-2 Data Memory Map
Data Memory
General
Register Area
Memory Bank
000H
(8 × 4)
007H
008H
0
Stack Area
256 × 4
(248 × 4)
0FFH
Data Area
Static RAM
(512 × 4)
100H
256 × 4
(224 × 4)
1
1DFH
1E0H
(32 × 4)
Display Data Memory Area
1FFH
Not On-Chip
F80H
128 × 4
Peripheral Hardware Area
FFFH
20
15
µPD75304B,75306B,75308B
5. PERIPHERAL HARDWARE FUNCTIONS
5.1
PORTS
There are four kinds of I/O ports, as follows.
•
•
•
•
CMOS input (PORT0, 1)
CMOS input/output (PORT2, 3, 6, 7)
: 8
: 16
N-ch open drain (PORT4, 5)
CMOS output (BP0 to BP7)
: 8
: 8
Total
40
Fig. 5-1 Port Functions
Port (Symbol)
Function
PORT 0
4-bit input
Operation/Features
Always readable or testable irrespective of
dual-function pin operating mode.
Remarks
Dual function as INT4, SCK, SO/
SB0 & SI/SB1 pins
Dual function as pins INT0 to
INT2 & TI0
PORT 1
PORT 2
Can be set to input or output mode as 4-bit
unit. Ports 6 & 7 can be paired for 8-bit data
input/output.
PORT 7
Dual function as PTO0, PCL &
BUZ pins
Dual function as pins KR4 to
KR7
4-bit input/output
Dual function as LCDCL & SYNC
pins
PORT 3 *
Can be set to input or output mode bit-wise.
Dual function as pins KR0 to
KR3
PORT 6
PORT 4 *
PORT 5 *
BP0 to BP7
*
4-bit input/output
(N-ch open-drain
10 V withstand
voltage)
1-bit output
Can be set to input or output mode as 4-bit
unit. Ports 4 & 5 can be paired for 8-bit data
input/output.
Incorporation of pull-up resistor
can be specified bit-wise by
mask option.
Outputs data bit-wise. Switchable by
software with LCD drive segment outputs
S24 to S31.
Small drive capability.
For CMOS load drive.
Direct LED drive capability
21
µPD75304B,75306B,75308B
5.2 CLOCK GENERATOR
The operation of the clock generator is determined by the processor clock control register (PCC) and system
clock control register (SCC).
There are two kinds of clock, the main system clock and subsystem clock, and the instruction execution time
can be changed.
• 0.95 µs/1.91 µs/15.3 µs (4.19 MHz main system clock operation)
• 122 µs (32.768 kHz subsystem clock operation)
Fig. 5-1 Clock Generator Block Diagram
• Basic Interval Timer (BT)
• Timer/Event Counter
• Serial Interface
• Watch Timer
• LCD Controller/Driver
• INT0 Noise Elimination Circuit
• Clock Output Circuit
XT1
VDD
XT2
Subsystem
Clock Oscillation Circuit
fXT
Main System
Clock Oscillation Circuit
fX
LCD Controller/
Driver
Watch Timer
X1
VDD
X2
1/8 to 1/4096
Frequency Divider
Oscillation
Stop
Selector
WM. 3
SCC
Selector
1/2 1/16
SCC3
Internal Bus
SCC0
Frequency
Divider
1/4
Φ
• CPU
• INT0 Noise
Elimination Circuit
• Clock Output Circuit
PCC
PCC0
PCC1
4
HALT F/F
HALT *
PCC2
S
PCC3
STOP *
R
PCC2,
PCC3
Clear
STOP F/F
Q
Q
Wait Release Signal from BT
S
RESET Signal
R
Remarks
★
22
Standby Release Signal from
Interrupt Control Circuit
1.
2.
3.
4.
fX = Main system clock frequency
fXT = Subsystem clock frequency
PCC: Processor clock control register
SCC: System clock control register
5.
6.
* indicates instruction execution.
One Φ clock cycle (t CY) is one machine cycle. See "AC CHARACTERISTICS" in 11. "ELECTRICAL
SPECIFICATIONS" for details of tCY.
µPD75304B,75306B,75308B
5.3 CLOCK OUTPUT CIRCUIT
The clock output circuit is a circuit which outputs a clock pulse from P22/PCL pin and is used to supply clock
pulses to remote control outputs or peripheral LSI’s.
• Clock output (PCL) : Φ 524, 262, 65.5 kHz (at 4.19 MHz operation)
• Buzzer output (BUZ): 2 kHz (at 4.19 MHz or 32.768 kHz operation)
The configuration of the clock output circuit is shown below.
Fig. 5-2 Clock Output Circuit Configuration
From Clock
Generator
Φ
fX/2
3
Output Buffer
Selector
fX/2
fX/2
4
PCL/P22
6
PORT2.2
CLOM3
0
CLOM1CLOM0
CLOM
P22
Output Latch
Bit 2 of PMGB
Bit Specified
In Port 2
Input/Output
Mode
4
Internal Bus
Remarks
Consideration is given so that a low amplitude pulse is not output when switching between clock
output enable and disable.
23
µPD75304B,75306B,75308B
5.4 BASIC INTERVAL TIMER
The basic interval timer includes the following functions.
•
•
•
•
It operates as an interval timer which generates reference time interrupts.
It can be applied as a watchdog timer which detects when a program is out of control.
Selects and counts wait times when the standby mode is released.
It reads count contents.
Fig. 5-3 Basic Interval Timer Configuration
From Clock
Generator
fX/2
fX/2
Clear
5
7
fX/2
Set
Basic Interval Timer
(8-Bit Frequency Divider)
MPX
fX/2
Clear
9
BT
12
3
BTM3
*SET1
BTM2
BTM1
Wait Release
Signal During
Standby Release
BTM0 BTM
8
4
Internal Bus
Remarks
24
* indicates instruction execution.
BT Interrupt
Request Flag
IRQBT
Vectored
Interrupt
Request
Signal
µPD75304B,75306B,75308B
5.5 WATCH TIMER
The µPD75308B incorporates a single watch timer channel. The watch timer has the following functions.
• Sets test flags (IRQW) at 0.5 second intervals. The standby mode can be released with IRQW.
• 0.5 sec. time intervals can be created in either the main system clock or the subsystem clock.
• In the fast watch mode, time intervals which are 128 times normal (3.91 ms) can be set, making this
function convenient for program debugging and testing.
• A fixed frequency (2.048 kHz) can be output to the P23/BUZ pin for use in generating buzzer sounds and
trimming system clock oscillation frequencies.
• The frequency divider can be cleared, so this clock can be started at 0 second.
Fig. 5-4 Watch Timer Block Diagram
fW
6
2
(512 Hz : 1.95 ms)
fLCD
fW
(256 Hz : 3.91 ms)
7
2
From
Clock
Generator
fW
128
(32.768 kHz)
Selector
fW
14
2
fW
Frequency Divider
(32.768 kHz)
fXT
(32.768 kHz)
INTW
IRQW
Set Signal
Selector
2Hz
0.5 sec
fW
16
(2.048 kHz) Clear
Output Buffer
P23/BUZ
WM
WM7
PORT2.3
0
0
0
WM3 WM2 WM1 WM0
8
P23
Output
Latch
Bit 2 of PMGB
Port 2
Input/Output
Mode
Bit Test Instruction
Internal Bus
Remarks
Values in parentheses are when fX = 4.194304 MHz and fXT = 32.768 kHz.
25
µPD75304B,75306B,75308B
5.6 TIMER/EVENT COUNTER
The µPD75308B incorporates a single timer/event counter channel. The timer/event counter has the following
functions.
•
•
•
•
•
•
26
Operates as a programmable interval timer.
Outputs square waves in the desired frequency to the PTO0 pin.
Operates as an event counter.
Divides the TI0 pin input into N divisions and outputs it to the PTO0 pin (frequency divider operation).
Supplies a serial shift clock to the serial interface circuit.
Count status read function.
Fig. 5-5 Timer/Event Counter Block Diagram
Internal Bus
SET1
8
*1
8
8
TM0
TMOD0
Modulo Register (8)
TM06 TM05 TM04 TM03 TM02
8
PORT1.3
Input Buffer
To Serial
Interface
TOUT
F/F
8
Reset
P13/TI0
T0
Count Register (8)
MPX
PORT2.0 Bit 2 of PGMB
Port 2
P20
Input/
Output
Output
Latch
Mode
Match
Comparator (8)
*2
From Clock
Generator
TOE0
TO
Enable
Flag
CP
P20/PTO0
Output
Buffer
INTT0
IRQT0
Set Signal
Clear
RESET
IRQT0
Clear Signal
*
1 SET1: Instruction execution
2 For detail, see Fig. 5-1.
27
µPD75304B,75306B,75308B
Timer Operation Start
µPD75304B,75306B,75308B
5.7 SERIAL INTERFACE
The µPD75308B incorporates a clocked 8-bit serial interface. The serial interface has the following three
modes.
• 3-wire serial I/O mode
• 2-wire serial I/O mode
• SBI mode (serial bus interface mode)
28
Fig. 5-6 Serial Interface Block Diagram
Internal Bus
8/4 Bit
Test
CSIM
8
8
Bit Manipulation
Slave Address Register (SVA)
Addres Comparator
(8)
(8)
RELT
CMDT
SO
SET CLR Latch
D
Q
ACKT
ACKE
BSYE
Shift Register (SIO)
SBIC
Match
Signal
(8)
P03/SI/SB1
Selector
Bit Test
8
Selector
P02/SO/SB0
Busy/
Acknowledge
Output Circuit
Bus Release/
Command/
Acknowledge
Detection Circuit
P01/SCK
P01
Output
Latch
INTCSI
INTCSI Control
Circuit
 IRQCSI



 Set Signal 
3
Serial Clock
Control Circuit
Serial
Clock
Slector
fX/24
fX/2
6
fX/2
TOUT F/F
(From Timer/
Event Counter)
External
SCK
29
µPD75304B,75306B,75308B
Serial Clock
Counter
RELD
CMDD
ACKD
µPD75304B,75306B,75308B
5.8 LCD CONTROLLER/DRIVER
The µPD75308B has an on-chip display controller which generates segment signals and common signals in
accordance with data in display data memory as well as a segment driver and common driver capable of
directly driving the LCD panel.
The configuration of the LCD controller/driver is shown in Fig. 5-7
The functions of the on-chip LCD controller/driver of the µPD75308B are as follows.
• Display data memory are read automatically through DMA operations and segment signals and common
signals are generated.
• 5 different display modes can be selected.
➀ Static
➁ 1/2 duty (1/2 bias)
➂ 1/3 duty (1/2 bias)
4
1/3 duty (1/3 bias)
➄ 1/4 duty (1/3 bias)
• In each of the display modes, 4 types of frame frequency can be selected.
• The segment signal output is a maximum of 32 segments (S0 to S31) and 4 common outputs (COM0 to
COM3).
• Segment signal outputs (S24 to S27, S28 to S31) are in 4-segment units and they can be switched for use
as output ports (BP0 to BP3, BP4 to BP7).
• Split resistors can be built-in for the LCD driver power supply (mask option).
• Conformity to various bias methods and LCD driver voltages is possible.
• When the display is OFF, the current flowing to the split resistors is cut.
• Display data memory not used for the display can be used as ordinary data memory.
• Operation by the subsystem clock is also possible.
.
30
Fig. 5-7 LCD Controller/Driver Block Diagram
4
Display Data
Memory
1FFH
1FEH
1E9H
1E0H
1E8H
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3 2
1 0
3
2
1
0
3
2
1
0
3
2
1
0
3
2
1
0
3 2
1 0
8
4
4
8
Display Mode
Register
Display
Control
Register
Port 3
Output
Latch
1 0
Port Mode
Register
Group A
1
0
Timing
Controller
fLCD
Multiplexer
Common Driver
Segment Driver
S31/PB7
S30/PB6
S24/PB0
S23
S0
LCD Driver Voltage
Control
COM3 COM2COM1COM0 V
LC2
VLC1
VLC0 P31/ P30/
SYNC LCDCL
31
µPD75304B,75306B,75308B
Selector
µPD75304B,75306B,75308B
5.9 BIT SEQUENTIAL BUFFER ..... 16 BITS
The bit sequential buffer is special data memory for bit manipulations and can be used easily particularly for
bit manipulations where addresses and bit specifications are changed sequentially, so it is convenient for
processing data with long bit lengths bit-wise.
Fig. 5-8 Bit Sequential Buffer Format
Address
Bit
FC3H
3
Symbol
2
1
FC2H
0
3
2
BSB3
L Register L = F
1
FC1H
0
3
2
BSB2
L=CL=B
1
0
FC0H
3
2
1
BSB1
L=8L=7
0
BSB0
L=4 L=3
L=0
DECS L
INCS L
Remarks
In pmem.@L addressing, the specified bit corresponding to the L register is moved.
6. INTERRUPT FUNCTION
The µPD75218has 8 interrupt sources, and prioritized multiple interrupts are possible.
There are also two test sources, of which INT2 is an edge-detected testable input.
The µPD75218 interrupt control circuit has the following functions
• Hardware control vectored interrupt function that can control interrupt acceptance by interrupt flag
•
•
•
•
32
(IE×××) and interrupt master enable flag (IME).
Arbitrary setting of interrupt start address.
Multiple interrupt function with priority specifiable by the interrupt priority selection register (IPS).
Interrupt request flag (IRQ×××) test function (interrupt generation confirmation by software possible).
Standby mode release (selection of interrupt that releases the standby mode by interrupt enable flag
possible).
Fig. 6-1 Interrupt Control Circuit Block Diagram
Internal Bus
2
1
3
IM2
IM1
IM0
Interrupt Enable Flag (IE XXX )
INT1
/P11
Both Edges
Detection
Circuit
*
Edge
Detection
Circuit
IRQ1
IRQCSI
INTT0
IRQT0
INTW
IRQW
KR0/P60
Falling Edge
Detection
Circuit
Priority Control
Circuit
Vector
Table
Address
Generator
IRQ2
Standby Release
Signal
IM2
*
Noise elimination circuit
33
µPD75304B,75306B,75308B
INTCSI
Rising Edge
Detection
Circuit
VRQn
IRQ4
IRQ0
Edge
Detection
Circuit
INT2
/P12
KR7/P73
IRQBT
Selector
INT0
/P10
IST0
Decoder
INT
BT
INT4
/P00
IME
µPD75304B,75306B,75308B
7. STANDBY FUNCTION
To reduce the power consumption during program wait, the µPD75308B has two standby modes: STOP
mode and HALT mode.
Table 7-1 Operation Status at Standby Mode
STOP Mode
STOP instruction
HALT instruction
System clock at setting
Only main system clock settable
Main system clock or subsystem
clock settable
Clock oscillator
Only main system clock oscillation
stopped
Only CPU clock Φ stopped
(oscillation continued)
Basic interval timer
Stopped
Operating (IRQBT set at reference time
intervals)*
Serial interface
Operable only when external SCK
input selected as serial clock
Operable*
Timer/event counter
Operable only when TI0 pin input
specified as count clock
Operable*
Operation Status
Setting instruction
Operable only when fXT selected as
Watch timer
34
count clock
LCD controller
Operable only when fXT selected as
LCDCL
External interrupt
INT1, 2, 4: Operable
Only INT0 inoperable
CPU
Stopped
Release signal
*
HALT Mode
Interrupt request signal from operable
hardware enabled by interrupt enable
flag, or RESET input
In-operable only with main system clock oscillation stopped.
Operable
Operable
Interrupt request signal from operable
hardware enabled by interrupt enable
flag, or RESET input
µPD75304B,75306B,75308B
8. RESET FUNCTION
The µPD75308B is reset and the hardware is initialized as shown in Table 8-1 by RESET input. The reset
operation timing is shown in Fig. 8-1.
Fig. 8-1 Reset Operation by RESET Input
Wait
(31.3 ms/4.19 MHz)
RESET Input
Operating Mode or Standby
Mode
HALT Mode
Operating Mode
Internal Reset Operation
Table 8-1 Status of Each Hardware after Resetting (1/2)
Hardware
Program counter (PC)
Carry flag (CY)
PSW
Low-order 5(4)*1 bits of
program memory address
0000H are set in PC12(11)*1
to 8 and the contents of
address 0001H are set in
PC7 to 0.
RESET Input during
Operation
Low-order 5(4)*1 bits of
program memory address
0000H are set in
PC12(11)*1 to 8 and the
contents of address 0001H
are set in PC7 to 0.
Held
Undefined
Skip flag (SK0 to 2)
0
0
Interrupt status flag (IST0)
0
0
Bank enable flag (MBE)
Bit 7 of program memory
address 0000H is set in
MBE.
Bit 7 of program memory
address 0000H is set in
MBE.
Undefined
Undefined
Data memory (RAM)
Held*2
Undefined
General register
(X, A, H, L, D, E, B, C)
Held
Undefined
0
0
Stack pointer (SP)
Bank selection register (MBS)
*
RESET Input in Standby
Mode
1. Figures in parentheses apply to the µPD75304B.
2. Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input.
35
µPD75304B,75306B,75308B
Table 8-1 Status of Each Hardware after Resetting (2/2)
RESET Input in Standby
Mode
RESET Input during
Operation
Undefined
Undefined
Mode register (BTM)
0
0
Counter (To)
0
0
FFH
FFH
0
0
0,0
0,0
0
0
Held
Undefined
Operating mode register (CSIM)
0
0
SBI control register (SBIC)
0
0
Held
Undefined
Processor clock control register (PCC)
0
0
System clock control register (SCC)
0
0
Clock output mode register (CLOM)
0
0
Display mode register (LCDM)
0
0
Display control register (LCDC)
0
0
Interrupt request flag (IRQ×××)
Reset (0)
Reset (0)
Interrupt enable flag (IE×××)
0
0
Interrupt master enable flag (IME)
0
0
0, 0, 0
0, 0, 0
Output buffer
OFF
OFF
Output latch
Clear (0)
Clear (0)
I/O mode register (PMGA, B)
0
0
Pull-up resistor specification register
(POGA)
0
0
Held
Undefined
Hardware
Counter (BT)
Basic interval
timer
Timer/event
counter
Modulo register (TMOD0)
Mode Register (TM0)
TOE0, TOUT F/F
Watch timer
Mode register (WM)
Shift register (SIO)
Serial interface
Slave address register (SVA)
Clock generator,
clock output
circuit
LCD controller
Interrupt function
INT0, 1, 2 mode registers (IM0, 1, 2)
Digital port
Bit sequential buffer (BSB0 to 3)
36
µPD75304B,75306B,75308B
9. INSTRUCTION SET
(1) Operand identifier and description
The operand is described in the operand field of each instruction in accordance with the description for the
operand identifier of the instruction. (See the RA75X Assembler Package User's Manual Language Volume
(EEU-730) for details.) When there are multiple elements in the description, one of the elements is selected.
Upper case letters and symbols (+,–) are keywords and are described unchanged.
For immediate data, a suitable value or label is described.
Various register or flag symbols can be used as a label instead of mem, fmem, pmem, bit, etc. (See the
µ PD75308 User’s Manual (IEM-5016) for details). However, there are restrictions on the labels for which fmem
and pmem can be used (see the table on the previous page).
Identifier
*
Description
reg
regl
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rpl
XA, BC, DE, HL
BC, DE, HL
rp2
BC, DE
rpa
rpal
HL, DE, DL
DE, DL
n4
4-bit immediate data or label
n8
8-bit immediate data or label
mem*
bit
8-bit immediate data or label
2-bit immediate data or label
fmem
FB0H to FBFH, FF0H to FFFH immediate data or label
pmem
FC0H to FFFH immediate data or label
µPD75304B
0000H to 0FFFH immediate data or lebel
addr
µPD75306B
0000H to 177FH immediate data or lebel
µPD75308B
0000H to 1F7FH immediate data or lebel
caddr
faddr
12-bit immediate data or label
11-bit immediate data or label
taddr
20H to 7FH immediate data (however, bit0 = 0) or label
PORTn
IE×××
MBn
PORT 0 to PORT 7
IEBT, IECSI, IET0, IE0, IE1, IE2, IE4, IEW
MB0, MB1, MB15
Only an even address can be written for mem in the case of 8-bit data processing.
37
µPD75304B,75306B,75308B
(2) Operation description legend
A
: A register; 4-bit accumulator
B
: B register;
38
C
D
E
H
:
:
:
:
C register;
D register;
E register;
H register;
L
X
XA
BC
:
:
:
:
L register;
X register; 4-bit accumulator
Register pair (XA); 8-bit accumulator
Register pair (BC)
DE
HL
PC
SP
:
:
:
:
Register pair (DE)
Register pair (HL)
Program counter
Stack pointer
CY
PSW
MBE
PORTn
:
:
:
:
Carry flag; bit accumulator
Program status word
Memory bank enable flag
Portn (n = 0 to 7)
IME
IE×××
MBS
PCC
:
:
:
:
Interrupt master enable flag
Interrupt enable flag
Memory bank selection register
Processor clock control register
•
(××)
××H
: Address, bit delimiter
: Contents addressed by ××
: Hexadecimal data
µPD75304B,75306B,75308B
(3) Description of addressing area field symbols
*1
MB = MBE • MBS (MBS = 0, 1, 15)
*2
MB = 0
*3
MBE = 0 : MB = 0 (00H to 7FH)
MB = 15 (80H to FFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4
MB = 15, fmem = FB0H to FBFH,
FF0H to FFFH
*5
MB = 15, pmem = FC0H to FFFH
*6
*7
µPD75304B
addr=0000H to 0FFFH
µPD75306B
addr=0000H to 177FH
µPD75308B
addr=0000H to 1F7FH
addr = (Current PC) –15 to (Current PC) –1
(Current PC) + 2 to (Current PC) + 16
µPD75304B
*8
Data memory
addressing
caddr= 0000H to 0FFFH
µPD75306B
caddr= 0000H to 0FFFH (PC12=0) or
µPD75308B
caddr=0000H to 0FFFH (PC12=0) or
1000H to 177FH (PC12=1)
*9
faddr = 0000H to 07FFH
*10
taddr = 0020H to 007FH
Remarks
Program memory
addressing
1000H to 1F7FH (PC12=1)
1. MB indicates the accessible memory bank.
2. For *2, MB = 0 without regard to MBE and MBS.
3. For *4 and *5, MB = 15 without regard to MBE and MBS.
4. *6 to *10 indicate the addressable area.
(4) Explanation of machine cycle field
S shows the number of machine cycles required when skip is performed by an instruction with skip. The
value of S changes as follows:
• No skip ....................................................................................................................................................................... S = 0
• When instruction to be skipped is 1-byte or 2-byte instruction ......................................................................... S = 1
• When instruction to be skipped is 3-byte instruction (BR !addr, CALL !addr instruction) ............................. S = 2
Note
One machine cycle is required to skip a GETI instruction.
One machine cycle is equivalent to one cycle (=tCY) of the CPU clock Φ. Three times can be selected by PCC
setting.
39
µPD75304B,75306B,75308B
Note
Mnemonic
Transfer
MOV
XCH
Addressing Area
Bytes
Machine
Cycles
A, #n4
1
1
A ← n4
regl, #n4
2
2
regl ← n4
XA, #n8
2
2
XA ← n8
Stack A
HL, #n8
2
2
HL ← n8
Stack B
rp2, #n8
2
2
rp2 ← n8
A, @HL
1
1
A ← (HL)
*1
A, @rpal
1
1
A ← (rpal)
*2
XA, @HL
2
2
XA ← (HL)
*1
@HL, A
1
1
(HL) ← A
*1
@HL, XA
2
2
(HL) ← XA
*1
A, mem
2
2
A ← (mem)
*3
XA, mem
2
2
XA ← (mem)
*3
mem, A
2
2
(mem) ← A
*3
mem, XA
2
2
(mem) ← XA
*3
A, reg
2
2
A ← reg
XA, rp
2
2
XA ← rp
regl, A
2
2
regl ← A
rpl, XA
2
2
rpl ← XA
A, @HL
1
1
A ↔ (HL)
*1
A, @rpal
1
1
A ↔ (rpal)
*2
XA, @HL
2
2
XA ↔ (HL)
*1
A, mem
2
2
A ↔ (mem)
*3
XA, mem
2
2
XA ↔ (mem)
*3
A,regl
1
1
A ↔ regl
XA, rp
2
2
XA ↔ rp
Operand
Operation
Skip Condition
Stack A
Operation
Table reference
● µPD75304B
XA ← (PC11–8 + DE)ROM
Note
40
XA, @PCDE
1
3
MOVT
● µPD75306B, 75308B
XA ← (PC12–8 + DE)ROM
● µPD75304B
XA ← (PC11–8 + XA)ROM
XA, @PCXA
1
3
A, #n4
1
1+S
A ← A + n4
A, @HL
1
1+S
A ← A + (HL)
*1
ADDC
A, @HL
1
1
A, CY ← A + (HL) + CY
*1
SUBS
A, @HL
1
1+S
A ← A – (HL)
*1
SUBC
A, @HL
1
1
A, CY ← A – (HL) – CY
*1
ADDS
Instruction Group
● µPD75306B, 75308B
XA ← (PC12–8 + XA)ROM
carry
carry
borrow
µPD75304B,75306B,75308B
Note Mne1
monic
Bytes
Machine
Cycles
A, #n4
2
2
A ← A ∧ n4
A, @HL
1
1
A ← A ∧ (HL)
A, #n4
2
2
A ← A ∨ n4
A, @HL
1
1
A ← A ∨ (HL)
A, #n4
2
2
A ← A ∨ n4
A, @HL
1
1
A ← A ∨ (HL)
RORC
A
1
1
CY ← A0, A3 ← CY, An–1 ← A n
NOT
A
2
2
A←A
reg
1
1+S
reg ← reg + 1
@HL
2
2+S
(HL) ← (HL) + 1
*1
(HL) = 0
mem
2
2+S
(mem) ← (mem) + 1
*3
(mem) = 0
reg
1
1+S
reg ← reg – 1
reg = FH
reg, #n4
2
2+S
Skip if reg = n4
reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
Skip if A = reg
Operation
AND
Operand
OR
Note 3
Note 2
XOR
INCS
Note 4
Comparison
DECS
SKE
Memory bit manipulation
Addressing Area
Skip Condition
*1
*1
*1
reg = 0
A = reg
A, reg
2
2+S
SET1
CY
1
1
CY ← 1
CLR1
CY
1
1
CY ← 0
SKT
CY
1
1+S
NOT1
CY
1
1
CY ← CY
mem.bit
2
2
(mem.bit) ← 1
*3
fmem.bit
2
2
(fmem.bit) ← 1
*4
pmem.@L
2
2
(pmem7–2 + L3–2.bit (L1–0)) ← 1
*5
@H + mem.bit
2
2
(H + mem3–0.bit) ← 1
*1
mem.bit
2
2
(mem.bit) ← 0
*3
fmem.bit
2
2
(fmem.bit) ← 0
*4
pmem.@L
2
2
(pmem7–2 + L3–2.bit (L1–0)) ← 0
*5
@H + mem.bit
2
2
(H + mem3–0.bit) ← 0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1
*5
(pmem.@L) = 1
@H + mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 1
*1
(@H + mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem.@L
2
2+S
Skip if (pmem7–2 + L3–2.bit (L1–0)) = 0
*5
(pmem.@L) = 0
@H + mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 0
*1
(@H + mem.bit) = 0
SET1
CLR1
SKT
SKF
Note
Operation
CY = 1
Skip if CY = 1
1. Instruction Group
2. Accumulator operation
3. Increment and decrement
4. Carry flag operation
41
µPD75304B,75306B,75308B
Note
Mnemonic
Bytes
Machine
Cycles
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
2
2+S
Skip if (pmem7–2 + L3–2.bit (L1–0)) = 1 and clear
*5
(pmem.@L) = 1
@H + mem.bit
2
2+S
Skip if (H + mem3–0.bit) = 1 and clear
*1
(@H + mem.bit) = 1
CY, fmem.bit
2
2
CY ← CY ∧ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY ∧ (pmem7–2 + L 3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY ∧ (H + mem3-0.bit)
*1
CY, fmem.bit
2
2
CY ← CY ∨ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY ∨ (pmem7–2 + L 3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY ∨ (H + mem3-0.bit)
*1
CY, fmem.bit
2
2
CY ← CY ∨ (fmem.bit)
*4
CY, pmem.@L
2
2
CY ← CY ∨ (pmem7–2 + L 3–2.bit (L1–0))
*5
CY, @H + mem.bit
2
2
CY ← CY ∨ (H + mem3-0.bit)
*1
Operand
fmem.bit
Memory bit manipulation
SKTCLR pmem.@L
AND1
OR1
XOR1
Operation
Addressing Area
● µPD75304B
PC11–0 ← addr
(The assembler selects the optimum
instruction from among the BRCB !caddr,
and BR $addr instructions.)
addr
—
—
Branch
BR
!addr
$addr
Subroutine stack control
BRCB
Note
42
CALL
!caddr
!addr
Instruction Group
3
3
● µPD75306B, 75308B
PC12–0 ← addr
(The assembler selects the optimum
instruction from among the BR !addr, BRCB
!caddr, and BR $addr instructions.)
● µPD75306B, 75308B
PC12–0 ← addr
*6
*6
● µPD75304B
PC11–0 ← addr
1
2
● µPD75306B, 75308B
PC12–0 ← addr
*7
● µPD75304B
PC11–0 ← caddr11–0
2
2
● µPD75306B, 75308B
PC12–0 ← PC 12 + caddr11–0
*8
● µPD75304B
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, 0, 0, 0
PC11–0 ← addr, SP ← SP – 4
3
3
● µPD75306B, 75308B
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, 0, 0, PC12
PC12–0 ← addr, SP ← SP – 4
*6
Skip Condition
µPD75304B,75306B,75308B
Note Mnemonic
1
Operand
Bytes Machine
Cycles
Operation
Addressing Area
Skip Condition
● µPD75304B
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, 0, 0, 0
PC11–0 ← 0, faddr, SP ← SP – 4
CALLF
!faddr
2
2
● µPD75306B, 75308B
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, 0, 0, PC12
PC12–0 ← 00, faddr, SP ← SP – 4
*9
● µPD75304B
MBE, ×, ×, × ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4
Subroutine stack control
RET
1
RETS
PUSH
POP
Note 2
● µPD75306B, 75308B
MBE, ×, ×, PC12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4
● µPD75304B
MBE, ×, ×, × ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4 the skip unconditionally
1
EI
DI
3+S
● µPD75306B, 75308B
MBE, ×, ×, PC12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
SP ← SP + 4 the skip unconditionally
Unconditional
● µPD75304B
MBE, ×, ×, × ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
PSW ← (SP + 4) (SP + 5), SP ← SP + 6
RETI
Note
3
1
3
● µPD75306B, 75308B
MBE, ×, ×, PC12 ← (SP + 1)
PC11–0 ← (SP) (SP + 3) (SP + 2)
PSW ← (SP + 4) (SP + 5), SP ← SP + 6
rp
1
1
(SP – 1) (SP – 2) ← rp, SP ← SP – 2
BS
2
2
(SP – 1) ← MBS, (SP – 2) ← 0, SP ← SP – 2
rp
1
1
rp ← (SP + 1) (SP), SP ← SP + 2
BS
2
2
MBS ← (SP + 1), SP ← SP + 2
2
2
IME ← 1
2
2
IE × × × ← 1
2
2
IME ← 0
2
2
IE × × × ← 0
IE × × ×
IE × × ×
1. Instruction Group
2. Interrupt control
43
µPD75304B,75306B,75308B
Bytes
Machine
Cycles
A, PORTn
2
2
A ← PORTn
(n = 0–7)
XA, PORTn
2
2
XA ← PORTn+1, PORTn
(n = 4, 6)
PORTn, A
2
2
PORTn ← A
(n = 2–7)
PORTn, XA
2
2
PORTn+1, PORTn ← XA
(n =4, 6)
HALT
2
2
Set HALT Mode (PCC.2 ← 1)
STOP
2
2
Set STOP Mode (PCC.3 ← 1)
NOP
1
1
No Operation
2
2
MBS ← n (n = 0, 1, 15)
Note 2
Input/output
Note Mne1
monic
Operand
IN*
OUT*
SEL
MBn
Addressing Area
Operation
Special
● µPD75304B
• TBR Instruction
PC11-0 ← (taddr) 3–0 + (taddr + 1)
----------------------------------------------------------------• TCALL Instruction
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
(SP – 3) ← MBE, 0, 0, 0
PC11–0 ← (taddr) 3–0 ← (taddr + 1)
SP ← SP – 4
----------------------------------------------------------------• Other than TBR and TCALL Instruction
-----------------------------
----------------------------Conforms to
referenced
instruction.
Execution of an instruction addressed at
(taddr) and (taddr + 1)
GETI
taddr
1
3
● µPD75306, 75308BB
• TBR Instruction
PC12-0 ← (taddr) 4–0 + (taddr + 1)
----------------------------------------------------------------• TCALL Instruction
(SP – 4) (SP – 1) (SP – 2) ← PC11–0
*10
(SP – 3) ← MBE, 0, 0, PC12
PC12–0 ← (taddr) 4–0 ← (taddr + 1)
SP ← SP – 4
----------------------------------------------------------------• Other than TBR and TCALL Instruction
Execution of an instruction addressed at
(taddr) and (taddr + 1)
*
-----------------------------
----------------------------Conforms to
referenced
instruction.
At IN/OUT instruction execution, MBE = 0 or MBE = 1, MBS = 15 must be set in advance.
Note
1. Instruction Group
2. CPU control
Remarks
44
Skip Condition
The TBR and TCALL instructions are assembler pseudo-instructions for GETI instruction table
definition.
µPD75304B,75306B,75308B
10. MASK OPTION SELECTION
The following pin mask options are available.
Pin Functions
Mask Options
P40 to P43,
● Pull-up resistor incorporated (specifiable bit-wise)
P50 to P53
● No pull-up resistor (specifiable bit-wise)
VLC0 to VLC2,
● LCD drive power supply split resistor incorporated (specifiable as 4-bit unit)
BIAS
● No LCD drive power supply split resistor (specifiable as 4-bit unit)
45
µPD75304B,75306B,75308B
11. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)
PARAMETER
Power supply
voltage
SYMBOL
TEST CONDITIONS
RATING
UNIT
–0.3 to +7.0
V
–0.3 to VDD +0.3
V
–0.3 to VDD +0.3
V
–0.3 to +11
V
–0.3 to VDD +0.3
V
One pin
–15
mA
All pins
–30
mA
Peak value
30
mA
rms
15
mA
Peak value
100
mA
rms
60
mA
Peak value
100
mA
rms
60
mA
VDD
VI1
Except ports 4 and 5
V12
Ports 4 and 5
Input voltage
On-chip pull-up resistor
Open–drain
Output voltage
VO
Output current
high
IOH
One pin
Output current low
IOL*
Total of ports 0, 2, 3 and 5
Total of ports 4, 6, and 7
*
Operating
temperature
Topt
–40 to +85
°C
Storage
temperature
Tstg
–65 to +150
°C
Rms is calculated using the following expression: [rms] = [peak value] × √duty
CAPACITANCE (Ta = 25 °C, VDD = 0 V)
PARAMETER
Input capacitance
Output capacitance
I/O capacitance
46
SYMBOL
TEST CONDITIONS
CIN
COUT
CIO
f = 1 MHz
Unmeasured pins returned to 0 V.
MIN.
TYP.
MAX.
UNIT
15
pF
15
pF
15
pF
µPD75304B,75306B,75308B
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
RECOMMENDED
CONSTANT
RESONATOR
PARAMETER
TEST
CONDITIONS
Oscillator
frequency (fx)*1
X1
TYP.
MAX.
UNIT
5.0*3
MHz
4
ms
5.0*3
MHz
10
ms
30
ms
1.0
5.0*3
MHz
100
500
ns
1.0
X2
Ceramic
resonator*3
C2
C1
Oscillation
stabilization time*2
VDD
After VDD
reached the
MIN. of the
oscillation
voltage
range
Oscillator
frequency (fx)*1
X1
MIN.
1.0
4.19
X2
VDD = 4.5
to 6.0 V
Crystal
resonator*3
C2
C1
Oscillation
stabilization time*2
VDD
X1
X2
External
clock
X1 input
frequency (fx)*1
X1 input
µPD74HCU04
high-/low-level
width (tXH, tXL)
*
1. The oscillator frequency and X1 input frequency indicate only the oscillator characteristics. For the
instruction execution time refer to the AC characteristics.
2. The oscillation stabilization time is necessary for oscillation to stabilize after applying VDD or releasing the
STOP mode.
3. When the oscillation frequency is 4.19 MHz < fX ≤ 5.0 MHz, PCC = 0011 should not be selected as the
instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 s, and the
specification MIN. value of 0.95 µs will not be achieved.
47
★
µPD75304B,75306B,75308B
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
RECOMMENDED
CONSTANT
RESONATOR
XT1
PARAMETER
Oscillator
frequency (fXT)
XT2
C3
C4
MIN.
TYP.
MAX.
UNIT
32
32.768
35
kHz
1.0
2
s
10
s
32
100
kHz
5
15
µs
VDD = 4.5
to 6.0 V
R
Crystal
resonator
TEST
CONDITIONS
Oscillation
stabilization time*
VDD
XT1 input
frequency (fXT)
XT1
External
clock
XT2
Leave
Open
XT1 input high-/
low-level width
(tXTH,tXTL)
*
This is the time required for oscillation to stabilize after VDD reaches the MIN. value of the oscillation voltage
range.
★ Note
When the main system clock and subsystem clock oscillators are used, the following should be noted
concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring
capacitance, etc.
• The wiring should be kept as short as possible.
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.
• The oscillator capacitor grounding point should be at the same potential as VDD. Do not ground to a
ground pattern carrying a high current.
• A signal should not be taken from the oscillator.
The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption
current, and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.
48
µPD75304B,75306B,75308B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1/2)
PARAMETER
SYMBOL
TEST CONDITIONS
TYP.
MAX.
UNIT
VIH1
Ports 2 and 3
0.7 VDD
VDD
V
VIH2
Ports 0,1,6,7, RESET
0.8 VDD
VDD
V
On-chip pull-up resistor
0.7 VDD
VDD
V
VIH3
Ports 4 and 5
Open–drain
0.7 VDD
10
V
VDD –0.5
VDD
V
Input voltage
high
Input voltage
low
MIN.
VIH4
X1, X2, XT1
VIL1
Ports 2, 3, 4 and 5
0
0.3 VDD
V
VIL2
Ports 0, 1, 6, 7 RESET
0
0.2 VDD
V
VIL3
X1, X2, XT1
0
0.4
V
VOH1
Ports 0, 2,3, 6, 7,
BIAS
Output voltage
high
VOH2
BP0 to BP7
(with 2 IOH outputs)
VDD = 4.5 to 6.0 V
IOH = –1 mA
VDD –1.0
V
IOH = -100 µA
VDD –0.5
V
VDD = 4.5 to 6.0 V
IOH = –100 µA
VDD –2.0
V
IOH = –30 µA
VDD –1.0
V
Ports 3, 4 and 5
VDD = 4.5 to 6.0 V
IOL = 15 mA
Ports
0, 2, 3, 4, 5, 6 and 7
VOL1
Output voltage
low
SB0, 1
VOL2
BP0 to BP7
(with 2 IOL outputs)
I L1H1
2.0
V
VDD = 4.5 to 6.0 V
IOL = 1.6 mA
0.4
V
IOL = 400 µA
0.5
V
0.2 VDD
V
VDD = 4.5 to 6.0 V
IOL = 100 µA
1.0
V
IOL = 50 µA
1.0
V
Other than below
3
µA
X1, X2, XT1
20
µA
Ports 4 and 5
(when open–drain)
20
µA
Other than below
–3
µA
X1, X2, XT1
–20
µA
3
µA
20
µA
–3
µA
Open–drain
pull-up resistor ≥ 1 kΩ
0.5
VIN = VDD
Input leakage
current high
ILIH2
ILIH3
Input leakage
current low
Output leakage
current high
Output leakage
current low
VIN = 10 V
ILIL1
VIN = 0 V
ILIL2
ILOH1
VOUT = VDD
Other than below
ILOH2
VOUT = 10 V
Ports 4 and 5
(when open–drain)
ILOL
VOUT = 0 V
49
µPD75304B,75306B,75308B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) (2/2)
PARAMETER
SYMBOL
RL1
On-chip pull-up
resistor
RL2
TEST CONDITIONS
Ports 0, 1, 2, 3, 6
and 7 (Except P00)
VIN = 0 V
Ports 4 and 5
VOUT = VDD –2.0 V
MIN.
kΩ
VDD
V
150
kΩ
0
±0.2
V
0
±0.2
V
LCD output voltage
deviation
(segment)
VODS
IO = ±1 µA
VLCD0 = VLCD
VLCD1 = VLCD × 2/3
VLCD2 = VLCD × 1/3
2.7 V ≤ VLCD ≤ VDD
40
100
VDD = 5 V ±10%*4
3.0
9
mA
VDD = 3 V ±10%*5
0.4
1.2
mA
VDD = 5 V ±10%
600
1800
µA
VDD = 3 V ±10%
180
540
µA
40
120
µA
12
36
µA
1
25
µA
0.5
15
µA
0.5
5
µA
HALT
mode
VDD = 3 V ±10%
HALT
mode
VDD = 3 V ±10%
VDD = 5 V ±10%
*
kΩ
60
IO = ±5 µA
XT1 = 0 V
STOP mode
70
10
VODC
IDD5
kΩ
VDD = 3.0 V ±10%
LCD output voltage
deviation*1
(common)
IDD4
300
15
60
32 kHz*6
crystal oscillation
kΩ
VDD = 5.0 V ±10%
RLCD
IDD3
80
30
LCD split resistor
Supply current*2
40
VDD = 3.0 V ±10%
2.0
IDD2
UNIT
15
VLCD
4.19 MHz*3
crystal oscillation
C1 = C2 = 22 pF
MAX.
VDD = 5.0 V ±10%
LCD drive voltage
IDDI
TYP.
VDD =
3 V ±10%
Ta = 25 °C
1. The voltage deviation is the difference between the output voltage and the segment or common output
desired value (VLCDn ; n= 0, 1, 2).
2. Current which flows in the on-chip pull-up resistor or LCD split resistor is not included.
3. Including oscillation of the subsystem clock.
4. When the processor clock control register (PCC) is set to 0011 and the device is operated in the highspeed mode.
5. When PCC is set to 0000 and the device is operated in the low-speed mode.
6. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem
clock, with main system clock oscillation stopped.
50
µPD75304B,75306B,75308B
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
CPU clock
cycle time
(minimum
instruction
execution time)*1
tCY
TI0 input
frequency
fTI
TI0 input width
high/low
tTIH,
tTIL
Interrupt input
width high/low
tINTH,
tINTL
RESET width low
TEST CONDITIONS
Operating on main
system clock
MIN.
VDD = 4.5 to 6.0 V
TYP.
MAX.
UNIT
0.95
64
µs
3.8
64
µs
125
µs
Operating on
subsystem clock
114
VDD = 4.5 to 6.0 V
0
1
MHz
0
275
kHz
122
0.48
µs
1.8
µs
INT0
*2
µs
INT1, 2, 4
10
µs
KR0 to KR7
10
µs
10
µs
VDD = 4.5 to 6.0 V
tRSL
1. The CPU clock (Φ ) cycle time (minimum
instruction execution time) is determined by
tCY vs VDD
(Operating on Main System Clock)
the oscillatior frequency of the connected
resonator, the system clock control register
(SCC) and the processor clock control register
(PCC). The figure at the right indicates the
cycle time t CY versus supply voltage VDD
characteristic with the main system clock
operating.
2. 2t CY or 128/fX is set by setting the interrupt
mode register (IM0).
70
64
30
6
Guaranteed
5
Operation Range
4
Cycle Time tCY [µs]
*
SYMBOL
3
2
1
0.5
0
1
2
3
4
5
6
Supply Voltage VDD [V]
51
µPD75304B,75306B,75308B
SERIAL TRANSFER OPERATION
2-Wired and 3-Wired Serial I/O Modes (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY1/2-50
ns
tKCY1/2-150
ns
tKCY1
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL1
tKH1
SI setup time
(to SCK↑)
tSIK1
150
ns
SI hold time
(from SCK↑)
tKSI1
400
ns
SO output
delay time
from SCK↓
tKSO1
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pF*
250
ns
1000
ns
2-Wired and 3-Wired Serial I/O Modes (SCK ... External clock input): (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
MAX.
UNIT
800
ns
3200
ns
400
ns
1600
ns
tKCY2
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL2
tKH2
SI setup time
(to SCK↑)
tSIK2
100
ns
SI hold time
(from SCK ↑)
tKSI2
400
ns
SO output
delay time
from SCK↓
tKSO2
*
52
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
RL and CL are load resistor and load capacitance of the SO output line.
300
ns
1000
ns
µPD75304B,75306B,75308B
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY3/2-50
ns
tKCY3/2-150
ns
tKCY3
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL3
tKH3
SB0, 1 setup time
(to SCK ↑)
tSIK3
150
ns
SB0, 1 hold time
(from SCK ↑)
tKSI3
tKCY3/2
ns
SB0, 1 output
delay time from
SCK ↓
tKSO3
SB0, 1 ↓ from SCK ↑
tKSB
tKCY3
ns
SCK from SB0, 1 ↓
tSBK
tKCY3
ns
SB0, 1 width low
tSBL
tKCY3
ns
SB0, 1 width high
tSBH
tKCY3
ns
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pF*
0
250
ns
0
1000
ns
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
*
MIN.
TYP.
MAX.
UNIT
800
ns
3200
ns
400
ns
1600
ns
tKCY4
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL4
tKH4
SB0, 1 setup time
(to SCK ↑)
tSIK4
100
ns
SB0, 1 hold time
(from SCK ↑)
tKSI4
tKCY4/2
ns
SB0, 1 output
delay time from
SCK ↓
tKSO4
SB0, 1 ↓ from SCK ↑
tKSB
tKCY4
ns
SCK ↓ from SB0, 1 ↓
tSBK
tKCY4
ns
SB0, 1 width low
tSBL
tKCY4
ns
SB0, 1 width high
tSBH
tKCY4
ns
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
0
300
ns
0
1000
ns
RL and CL are load resistor and load capacitance of the SB0, 1 output lines.
53
µPD75304B,75306B,75308B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V) (1/2)
PARAMETER
SYMBOL
TEST CONDITIONS
TYP.
MAX.
UNIT
VIH1
Ports 2 and 3
0.8 VDD
VDD
V
VIH2
Ports 0, 1, 6, 7, RESET
0.8 VDD
VDD
V
On-chip pull-up resistor
0.8 VDD
VDD
V
VIH3
Ports 4 and 5
Open–drain
0.8 VDD
10
V
VDD –0.3
VDD
V
Input voltage
high
Input voltage
low
MIN.
VIH4
X1, X2, XT1
VIL1
Ports 2, 3, 4 and 5
0
0.2 VDD
V
VIL2
Ports 0, 1, 6, 7, RESET
0
0.2 VDD
V
VIL3
X1, X2, XT1
0
0.3
V
VOH1
Ports 0, 2, 3, 6,
7, BIAS
IOH = –100 µA
VDD –0.5
V
VOH2
BP0 to BP7 (with
2 IOH outputs)
IOH = –10 µA
VDD –0.4
V
Ports 0, 2, 3, 4, 5
6, and 7
IOL = 400 µA
SB0, 1
Open–drain,
pull-up resistor ≥ 1 kΩ
BP0 to BP7
(with 2 IOL outputs)
IOL = 10 µA
Output voltage
high
0.5
V
0.2 VDD
V
0.4
V
Other than below
3
µA
X1, X2, XT1
20
µA
Ports 4 and 5
(with open–drain)
20
µA
Other than below
–3
µA
X1, X2, XT1
–20
µA
VOL1
Output voltage
low
VOL2
ILIH1
VIN = VDD
Input leakage
current high
ILIH2
ILIH3
Input leakage
current low
Output leakage
current high
Output leakage
current low
54
VIN = 10 V
ILIL1
VIN = 0 V
ILIL2
ILOH1
VOUT = VDD
Other than below
3
µA
ILOH2
VOUT = 10 V
Ports 4 and 5
(with open–drain)
20
µA
ILOL
VOUT = 0 V
–3
µA
µPD75304B,75306B,75308B
DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V) (2/2)
PARAMETER
SYMBOL
TEST CONDITIONS
TYP.
MAX.
UNIT
RL1
Ports 0, 1, 2, 3, 6
and 7 (Except P00)
VIN = 0 V
VDD = 2.5 V ±10%
50
600
kΩ
RL2
Ports 4 and 5
VOUT = VDD –1.0 V
VDD = 2.5 V ±10%
10
60
kΩ
VDD
V
150
kΩ
0
±0.2
V
0
±0.2
V
On-chip pull-up
resistor
LCD drive voltage
VLCD
2.0
LCD split resistor
RLCD
60
LCD output voltage
deviation *1
(common)
VODC
IO = ±5 µA
LCD output
voltage deviation
(segment)
VODS
IO = ±1 µA
IDDI
4.19 MHz*3
crystal oscillation
C1 = C2 = 22 pF
low-speed mode
IDD2
IDD3
Supply current*2
32 kHz*5
crystal oscillation
VLCDO = VLCD
VLCD1 = VLCD × 2/3
VLCD2 = VLCD × 1/3
2.0 V ≤ V LCD ≤ V DD
0.4
1.2
mA
VDD = 2.5 V ±10%*4
0.3
0.9
mA
HALT
VDD = 3 V ±10%
180
540
µA
mode
VDD = 2.5 V ±10%
120
360
µA
VDD = 3 V ±10%
40
120
µA
VDD = 2.5 V ±10%
25
75
µA
HALT
VDD = 3 V ±10%
12
36
µA
mode
VDD = 2.5 V ±10%
9
27
µA
0.5
15
µA
0.5
5
µA
0.4
15
µA
0.4
5
µA
VDD = 3 V ±10%
IDD5
XT1 = 0 V
STOP mode
100
VDD = 3 V ±10%*4
IDD4
*
MIN.
VDD = 2.5 V
±10%
Ta = 25 °C
Ta = 25°C
1. The voltage deviation is the difference between the output voltage and the segment or common output
desired value (VLCDn; n = 0, 1, 2).
2. Current which flows in the on-chip pull-up resistor or LCD split resistor is not included.
3. Including oscillation of the subsystem clock.
4. When PCC is set to 0000 and the device is operated in the low-speed mode.
5. When the system clock control register (SCC) is set to 1001 and the device is operated on the subsystem
clock, with main system clock oscillation stopped.
55
µPD75304B,75306B,75308B
AC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
PARAMETER
CPU clock
cycle time
(minimum
instruction
execution time)*1
SYMBOL
TEST CONDITIONS
Operation on main
system clock
tCY
MIN.
MAX.
UNIT
VDD = 2.7 to 6.0 V
3.8
64
µs
VDD = 2.0 to 6.0 V
5
64
µs
3.4
64
µs
125
µs
275
kHz
Ta = –40 to + 60 °C
VDD = 2.2 to 6.0 V
Operation on
subsystem clock
TI0 input
frequency
TYP.
114
122
fTI
0
TI0 input width
high/low
tTIH,
tTIL
1.8
µs
INT0
*2
µs
Interrupt input
width high/low
tINTH,
tINTL
INT1, 2, 4
10
µs
KR0 to KR7
10
µs
10
µs
RESET width low
*
tRSL
1. The CPU clock (Φ ) cycle time (minimum
instruction execution time) is determined by
the oscillatior frequency of the connected
tCY vs VDD
(Operating on Main System Clock)
70
64
30
resonator, the system clock control register
(SCC) and the processor clock control register
(PCC). The figure at the right indicates the
cycle time t CY versus supply voltage VDD
5
Cycle Time t CY [µs]
characteristic with the main system clock
operating.
2. 2t CY or 128/fX is set by setting the interrupt
mode register (IM0).
6
Guaranteed
4
Operation Range
3
2
1
0.5
0
1
2
3
4
5
Supply Voltage VDD [V]
56
6
µPD75304B,75306B,75308B
SERIAL TRANSFER OPERATION
2-Wired and 3-Wired Serial I/O Mode (SCK ... Internal clock output): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY1/2-50
ns
tKCY1/2-150
ns
tKCY1
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL1
tKH1
SI setup time
(to SCK ↑)
tSIK1
250
ns
SI hold time
(from SCK ↑)
tKSI1
400
ns
SO output
delay time
from SCK ↓
tKSO1
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pF*
250
ns
1000
ns
2-Wired and 3-Wired Serial I/O Mode (SCK ... External clock input): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
*
MIN.
TYP.
MAX.
UNIT
800
ns
3200
ns
400
ns
1600
ns
tKCY2
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL2
tKH2
SI setup time
(to SCK↑)
tSIK2
100
ns
SI hold time
(from SCK↑)
tKSI2
400
ns
SO output
delay time
from SCK↓
tKSO2
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
300
ns
1000
ns
RL and CL are load resistor and load capacitance of the SO output line.
57
µPD75304B,75306B,75308B
SBI Mode (SCK ... Internal clock output (Master)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
SCK cycle time
MIN.
TYP.
MAX.
UNIT
1600
ns
3800
ns
tKCY3/2-50
ns
tKCY3/2-150
ns
tKCY3
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL3
tKH3
SB0, 1 setup
time (to SCK↑)
tSIK3
250
ns
SB0, 1 hold
time (from SCK↑)
tKSI3
tKCY3/2
ns
SB0, 1 output
delay time
from SCK↓
tKSO3
SB0, 1 ↓ from SCK↑
tKSB
tKCY3
ns
SCK from SB0, 1 ↓
tSBK
tKCY3
ns
SB0, 1 width low
tSBL
tKCY3
ns
SB0, 1 width high
tSBH
tKCY3
ns
VDD = 4.5 to 6.0 V
RL = 1 kΩ,
CL = 100 pF*
0
250
ns
0
1000
ns
SBI Mode (SCK ... External clock input (Slave)): (Ta = –40 to +85 °C, VDD = 2.0 to 6.0 V)
PARAMETER
SCK cycle time
SYMBOL
TEST CONDITIONS
VDD = 4.5 to 6.0 V
MIN.
TYP.
MAX.
UNIT
800
ns
3200
ns
400
ns
1600
ns
tKCY4
VDD = 4.5 to 6.0 V
SCK width high/
low
tKL4
tKH4
SB0, 1 setup
time (to SCK ↑)
tSIK4
100
ns
SB0, 1 hold
time (from SCK ↑)
tKSI4
tKCY4/2
ns
SB0, 1
output delay
time from SCK ↓
tKSO4
SB0, 1 ↓ from SCK ↑
tKSB
tKCY4
ns
SCK↓ from SB0, 1 ↓
tSBK
tKCY4
ns
SB0, 1 width low
tSBL
tKCY4
ns
SB0, 1 width high
tSBH
tKCY4
ns
*
58
RL = 1 kΩ,
CL = 100 pF*
VDD = 4.5 to 6.0 V
0
300
ns
0
1000
ns
RL and CL are load resistor and load capacitance of the SB0, 1 output lines.
µPD75304B,75306B,75308B
AC Timing Test Point (Excluding X1 and XT1 inputs)
0.8 VDD
0.8 VDD
Test Points
0.2 VDD
0.2 VDD
Clock Timings
1/fX
tXL
tXH
VDD -0.5 V
0.4 V
X1 Input
1/fXT
tXTL
tXTH
VDD -0.5 V
0.4 V
XT1 Input
TI0 Timing
1/fTI
tTIL
tTIH
TI0
59
µPD75304B,75306B,75308B
Serial Transfer Timing
3-wired serial I/O mode:
tKCY1
tKL1
tKH1
SCK
tKSI1
tSIK1
Input Data
SI
tKSO1
SO
Output Data
2-wired serial I/O mode:
tKCY2
tKL2
tKH2
SCK
tSIK2
SB0,1
tKSO2
60
tKSI2
µPD75304B,75306B,75308B
Serial Transfer Timing
Bus release signal transfer:
tKL3,4
tKCY3,4
tKH3,4
SCK
tKSB
tSBL
tSBH
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
Command signal transfer:
tKL3,4
tKCY3,4
tKH3,4
SCK
tKSB
tSIK3,4
tSBK
tKSI3,4
SB0,1
tKSO3,4
Interrupt Input Timing
tINTL
tINTH
INT0,1,2,4
KR0-7
RESET Input Timing
tRSL
RESET
61
µPD75304B,75306B,75308B
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to 85 °C)
PARAMETER
SYMBOL
Data retention supply voltage
VDDDR
Data retention supply current*1
IDDDR
Release signal setup time
tSREL
Oscillation stabilization
wait time*2
tWAIT
*
TEST CONDITIONS
MIN.
TYP.
2.0
VDDDR = 2.0 V
0.3
Release by interrupt request
UNIT
6.0
V
15
µA
µs
0
Release by RESET
MAX.
217/fx
ms
*3
ms
1. Current which flows in the on-chip pull-up resistor is not included.
2. The oscillation stabilization wait time is the time during which the CPU operation is stopped to prevent
unstable operation at the oscillation start.
3. Depends on the basic interval timer mode register (BTM) setting (table below).
62
BTM3
BTM2
BTM1
BTM0
WAIT TIME
(Figures in parentheses are for operation at fx = 4.19 MHz)
—
0
0
0
220/fx (approx. 250 ms)
—
0
1
1
217/fx (approx. 31.3 ms)
—
1
0
1
215/fx (approx. 7.82 ms)
—
1
1
1
213/fx (approx. 1.95 ms)
µPD75304B,75306B,75308B
Data Retention Timing (STOP mode release by RESET)
Internal Reset Operation
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
Data Retention Timing (Standby release signal: STOP mode release by interrupt signal)
HALT Mode
STOP Mode
Operating
Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
Standby Release Signal
(Interrupt Request)
tWAIT
63
µPD75304B,75306B,75308B
12. PACKAGE INFORMATION
80 PIN PLASTIC QFP ( 14)
A
B
41
40
60
61
Q
5°±5°
S
C
D
detail of lead end
21
20
F
80
1
G
H
I M
J
M
P
K
N
L
S80GC-65-3B9-3
NOTE
Each lead centerline is located within 0.13
mm (0.005 inch) of its true position (T.P.) at
maximum material condition.
64
ITEM
MILLIMETERS
INCHES
A
17.2 ± 0.4
0.677 ± 0.016
B
14.0 ± 0.2
0.551+0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.2 ± 0.4
0.677 ± 0.016
F
0.8
0.031
G
0.8
0.031
H
0.30 ± 0.10
0.012+0.004
–0.005
I
0.13
0.005
J
0.65 (T.P.)
0.026 (T.P.)
K
1.6 ± 0.2
0.063 ± 0.008
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.10
0.004
P
2.7
0.106
Q
0.1 ± 0.1
0.004 ± 0.004
S
3.0 MAX.
0.119 MAX.
µPD75304B,75306B,75308B
80 PIN PLASTIC QFP (14×20)
A
B
41
40
64
65
F
Q
5°±5°
S
C
D
detail of lead end
25
24
80
1
G
H
I M
J
M
P
K
N
L
P80GF-80-3B9-2
NOTE
Each lead centerline is located within 0.15
mm (0.006 inch) of its true position (T.P.) at
maximum material condition.
ITEM
MILLIMETERS
INCHES
A
23.6 ± 0.4
0.929 ± 0.016
B
20.0 ± 0.2
0.795 +0.009
–0.008
C
14.0 ± 0.2
0.551+0.009
–0.008
D
17.6 ± 0.4
0.693 ± 0.016
F
1.0
0.039
G
0.8
0.031
H
0.35 ± 0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8 ± 0.2
0.071 –0.009
L
0.8 ± 0.2
0.031+0.009
–0.008
M
0.15+0.10
–0.05
0.006+0.004
–0.003
N
0.15
0.006
P
2.7
Q
0.1 ± 0.1
S
3.0 MAX.
+0.008
0.106
0.004 ± 0.004
0.119 MAX.
65
µPD75304B,75306B,75308B
80 PIN PLASTIC TQFP (FINE PITCH) (
12)
A
B
60
41
61
40
21
F
80
1
20
H
I
M
J
K
M
P
G
R
Q
S
D
C
detail of lead end
N
L
NOTE
Each lead centerline is located within 0.10 mm (0.004 inch) of
its true position (T.P.) at maximum material condition.
ITEM MILLIMETERS
A
14.0±0.2
INCHES
0.551 +0.009
–0.008
B
12.0±0.2
0.472 +0.009
–0.008
C
12.0±0.2
0.472 +0.009
–0.008
D
14.0±0.2
0.551 +0.009
–0.008
F
1.25
G
1.25
H
0.22 +0.05
–0.04
0.049
0.049
0.009±0.002
I
0.10
J
0.5 (T.P.)
K
1.0±0.2
0.039 +0.009
–0.008
L
0.5±0.2
0.020 +0.008
–0.009
M
0.145 +0.055
–0.045 0.006±0.002
N
0.10
P
1.05
Q
0.05±0.05
R
5°±5°
S
1.27 MAX.
0.004
0.020 (T.P.)
0.004
0.041
0.002±0.002
5°±5°
0.050 MAX.
P80GK-50-BE9-4
66
µPD75304B,75306B,75308B
★
13. RECOMMENDED SOLDERING CONDITIONS
These products should be soldered and mounted under the conditions recommended below.
For details of recommended soldering conditions, refer to the information document "Surface Mount
Technology Manual (IEI 1207)".
For soldering methods and conditions other than those recommended, please contact our salesman.
Table 13-1 Surface Mount Type Soldering Conditions
(1) µPD75304BGC-×××-3B9: 80-Pin Plastic QFP (■
■ 14 mm)
µPD75306BGC-×××-3B9: 80-Pin Plastic QFP (■
■ 14 mm)
µPD75308BGC-×××-3B9: 80-Pin Plastic QFP (■
■ 14 mm)
Soldering Method
Soldering ConditionsRecommended
Condition Symbol
Infrared reflow
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)
Number of applications: one
Time limit: 7 days* (thereafter 20 hours 125°C prebaking required)
IR30-207-1
VPS
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)
Number of applications: one
Time limit: 7 days* (thereafter 20 hours 125°C prebaking required)
VP15-207-1
Pin part heating
Pin part temperature: 300°C or less
Duration: 3 sec. max. (per side of device)
(2) µPD75304BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)
µPD75306BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)
µPD75308BGF-×××-3B9: 80-Pin Plastic QFP (14 × 20 mm)
Soldering Method
*
Soldering ConditionsRecommended
Condition Symbol
Infrared reflow
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)
Number of applications: one
IR30-00-1
VPS
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)
Number of applications: one
VP15-00-1
Wave soldering
Solder bath temperature: 260°C or less Duration: 10 sec. max.
Number of applications: one
Preparatory heating temperature: 120°C max. (package surface temperature)
WS60-00-1
Pin part heating
Pin part temperature: 300°C or less
Duration: 3 sec. max. (per side of device)
For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.
Note
Use of more than one soldering method should be avoided (except in the case of pin part heating).
67
µPD75304B,75306B,75308B
(3) µPD75304BGK-×××-3B9: 80-Pin Plastic TQFP (■
■ 12 mm)
µPD75306BGK-×××-3B9: 80-Pin Plastic TQFP (■
■ 12 mm)
µPD75308BGK-×××-3B9: 80-Pin Plastic TQFP (■
■ 12 mm)
Soldering Method
*
Soldering ConditionsRecommended
Condition Symbol
Infrared reflow
Package peak temperature: 230°C Duration: 30 sec. max. (210°C or above)
Number of applications: one
Time limit: 1 day* (thereafter 16 hours 125°C prebaking required)
IR30-161-1
VPS
Package peak temperature: 215°C Duration: 40 sec. max. (200°C or above)
Number of applications: one
Time limit: 1 day* (thereafter 16 hours 125°C prebaking required)
VP15-161-1
Pin part heating
Pin part temperature: 300°C or less
Duration: 3 sec. max. (per side of device)
For the storage period after dry-pack decapsulation, storage conditions are max. 25°C, 65% RH.
Note
Use of more than one soldering method should be avoided (except in the case of pin part heating).
NOTICE
Recommended soldering conditions have been improved for some of these products.
(Improvements: Relaxation of infrared reflow peak temperature (235°C, number of applications (two),
time limit, etc.)
Please contact your NEC sales representative for details.
68
µPD75304B,75306B,75308B
[MEMO]
69
µPD75304B,75306B,75308B
★
APPENDIX A. DIFFERENCES AMONG SERIES PRODUCTS
Product Name
Item
µPD75304/75306/75308
Supply voltage range
µPD75312/75316
2.0 to 6.0 V
ROM configuration
µPD75P316
5V±5%
EPROM/Onetime
Mask ROM
Program memory (bytes)
4096/6016/8064
12160/16256
Data memory (× 4 bits)
Instruction cycle
µPD75P308
8064
One-time
PROM
16256
512
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)
122 µs (subsystem clock: 32.768 kHz operation)
8
CMOS input
Pull-up resistor incorporation spesifiable by software: 23
16
CMOS input/output
Input/output
ports
CMOS output
N-ch open–drain
input/output
40
8
Used with segment pin
8
10 V withstand voltage. Pull-up
resistor incorporation spesifiable
by mask option
10 V withstand voltage. Pull-up
resistor incorporation spesifiable by
mask option.
(without pull-up resistor)
• Common output: Static – 1/4 duty selected
• Segment output: Max. 32
LCD controller/driver
LCD drive split resistor can be incorporated by
mask option.
LCD drive voltage
No LCD drive split resistor.
2.0 to VDD
Timer/counter
• 8-bit timer/event counter
• 8-bit basic interval timer
• Watch timer
Serial interface
• NEC standard serial bus interface (SBI)
• Clock synchronous serial interface
Vectored interrupt
• External: 3
• Internal: 3
Test input
• External: 1
• Internal: 1
Clock output (PCL)
Φ, 524 kHz, 262 kHz, 65.5 kHz (main system clock: 4.19 MHz operation)
Buzzer output (BUZ)
2 kHz (Main system clock: in 4.19 MHz operation or subsystem clock: in 32.768 kHz
operation)
Package
On-chip PROM product
70
80-pin plastic QFP
(14 × 20 mm)
80-pin plastic QFP
80-pin ceramic
(14 × 20 mm)
WQFN (LCC with
window)
80-pin plastic QFP (14 × 20 mm)
µPD75P308
µPD75P316
µPD75P316A
µPD75304B,75306B,75308B
Product Name
Item
µPD75304B/75306B/75308B
µPD75312B
µPD75P316B*
µPD75P316A
One-time
PROM
EPROM/Onetime
2.0 to 6.0 V
Supply voltage range
ROM configuration
Mask ROM
4096/6016/8064
Program memory (bytes)
12160
16256
512
Data memory (× 4 bits)
Instruction cycle
µPD75316B
1024
0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz operation)
122 µs (subsystem clock: 32.768 kHz operation)
CMOS input
8
CMOS input/output
16
Pull-up resistor incorporation spesifiable by software: 23
Input/output
ports
CMOS output
N-ch open–drain
input/output
40
8
Used with segment pin
8
10 V withstand voltage. Pullup resistor incorporation
spesifiable by mask option
10 V withstand voltage. Pull-up resistor
incorporation spesifiable by mask option.
(without pull-up resistor)
• Common output: Static – 1/4 duty selected
• Segment output: Max. 32
LCD controller/driver
LCD drive split resistor can be incorporated by mask option.
LCD drive voltage
*
No LCD drive split resistor.
2.0 to VDD
Timer/counter
• 8-bit timer/event counter
• 8-bit basic interval timer
• Watch timer
Serial interface
• NEC standard serial bus interface (SBI)
• Clock synchronous serial interface
Vectored interrupt
• External: 3
• Internal: 3
Test input
• External: 1
• Internal: 1
Clock output (PCL)
Φ, 524 kHz, 262 kHz, 65.5 kHz (main system clock: 4.19 MHz operation)
Buzzer output (BUZ)
2 kHz (Main system clock: in 4.19 MHz operation or subsystem clock: in 32.768 kHz
operation)
Package
80-pin plastic QFP
• (14 × 20 mm)
• (■
■ 14mm)
80-pin
plastic TQFP(■
■ 12mm)
On-chip PROM product
GF package: µPD75P316A
GC/GK package: µPD75P316B
80-pin plastic QFP (■
■ 14mm)
80-pin plastic TQFP(■
■ 12mm)
80-pin
ceramic
WQFN
80-pin plastic
QFP
(14 × 20 mm)
µPD75P316B
Under development
71
µPD75304B,75306B,75308B
APPENDIX B. DEVELOPMENT TOOLS
The following development tools are available for system development using the µPD75304B/75306B/
75308B.
IE-75000-R*1
IE-75001-R
75X series in-circuit emulator
IE-75000-R-EM*2
Emulation board for the IE-75000-R or IE-75001-R
EV-9200G-80
Emulation probe for the µPD75304BGF, 75306BGF and 75308BGF.
An 80-pin conversion socket (EV-9200G-80) is also provided.
EV-9200GC-80
Emulation probe for the µPD75304BGC, 75306BGC and 75308BGC.
An 80-pin conversion socket (EV-9200GC-80) is also provided.
EV-9500GK-80
Emulation probe for the µPD75304BGK, 75306BGK and 75308BGK.
An 80-pin conversion adapter (EV-9200GK-80) is also provided.
EP-75308GF-R
Software
Hardware
EP-75308BGC-R
*
EP-75308BGK-R
PG-1500
PROM programmer
PA-75P308GF
PROM programmer adapter for the µPD75P316AGF, connected to the
PG-1500.
PA-75P316BGC
PROM programmer adapter for the µPD75P316BGC, connected to the
PG-1500.
PA-75P316BGK
PROM programmer adapter for the µPD75P316BGK, connected to the
PG-1500.
IE Control Program
Host machines
PG-1500 Controller
PC-9800 series (MS-DOS™ Ver. 3.30 to Ver. 5.00A*3)
RA75X Relocatable Assembler
IBM PC/AT™(PC DOS™ Ver. 3.1)
1. Maintenance product
2. Not incorporated in the IE-75001-R.
3. A task swapping function is provided in Ver. 5.00/5.00A, but this function cannot be used with this
software.
Remarks
72
Please refer to the 75X Series Selection Guide (IF-151) for third party development tools.
µPD75304B,75306B,75308B
APPENDIX C. RELATED DOCUMENTS
Device Related Documents
Document Name
Document Number
User's Manual
IEM-5016
Instruction Application Table
IEM-994
IEM-5035
Application Note
IEM-5041
75X Series Selection Guide
IF-151
Development Tools Documents
Software
Hardware
Document Name
Document Number
IE-75000-R/IE-75001-R User's Manual
EEU-846
IE-75000-R-EM User's Manual
EEU-673
EP-75308GF-R User's Manual
EEU-689
EP-75308BGC-R User's Manual
EEU-825
EP-75308BGK-R User's Manual
EEU-838
PG-1500 User's Manual
EEU-651
RA75X Assembler Package User's Manual
Operation
EEU-731
Language
EEU-730
PG-1500 Controller User's Manual
EEU-704
Other Documents
Document Name
*
Document Number
Package Manual
IEI-635
Surface Mount Technology Manual
IEI-1207
Quality Grande on NEC Semiconductor Device
IEI-1209
NEC Semiconductor Device Reliability & Quality Control
IEM-5068
Electrostatic Discharge(ESD) Test
MEM-539
Semiconductor Devices Quality Guarantee Guide
MEI-603
Microcomputer Related Products Guide Other Manufacturers Volume
MEI-604
The contents of the above related documents are subject to change without notice. The latest documents
should be used for design, etc.
73
µPD75304B,75306B,75308B
[MEMO]
74
µPD75304B,75306B,75308B
75
µPD75304B,75306B,75308B
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear
reactor control systems and life support systems. If customers intend to use NEC devices for above applications
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact
our sales people in advance.
Application examples recommended by NEC Corporation
Standard :
Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Special
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime systems, etc.
:
M4 92.6
MS-DOS is a trademark of MicroSoft Corporation.
PC DOS, PC/AT is a trademark of IBM Corporation.