DATA SHEET MOS INTEGRATED CIRCUIT µPD75218 4-BIT SINGLE-CHIP MICROCOMPUTER The µPD75218 is a microcomputer with a CPU capable of 1-, 4-, and 8-bit-wise data processing, ROM, RAM, I/O ports, an FIP controller/driver, a watch timer, a timer/pulse generator capable of outputting 14-bit PWM pulses, a serial interface and a vectored interrupt function integrated on a single chip. It is most suitable for applications which use fluorescent display tubes as display devices and require the timer/ watch function and high-speed interrupt servicing, such as VCR, CD and ECR. It can help to provide the unit with many functions and to decrease performance costs. The µPD75218 has larger ROM and RAM capacity than its predecessor, µPD75217. So several codes required before have been reduced to only one code in the µPD75218 specifications. The one-time PROM product, µPD75P218 and various development tools (IE-75001-R, assembler, etc.) are available for system development evaluation or small production. The following manual provides detailed description of the functions of the µPD75218. Be sure to read this manual when you design an application system. µPD75218 User’s Manual: IEU-692 FEATURES • On-chip large-capacity ROM and RAM • Program memory (ROM) : 32K × 8 bits • Data memory (RAM) : 1K × 4 bits • Architecture equal to that of an 8-bit microcomputer • High-speed operation: Minimum instruction execution time : 0.67 µs (when the microcomputer operates at 6.0 MHz) • Instruction execution time variable function realizing a wide range of operating voltages • On-chip programmable fluorescent indication panel (FIP) controller/driver • Timer function : 4 ch • 14-bit PWM output capability with the voltage synthesizer type electronic tuner • Buzzer output capability • Interrupt function with importance attached to applications • For power-off detection • For reception of remote-controller signal • Product with an on-chip PROM : µPD75P218 (on-chip EPROM : WQFN package) The information in this document is subject to change without notice. Document No. IC-3035 (O. D. No. IP-8484) Date Published November 1993 P Printed in Japan Major changes in this version are indicated by stars (★) in the margins. © NEC Corporation 1993 µPD75218 ORDERING INFORMATION Part number Package µ PD75218CW-××× µ PD75218GF-×××-3BE Remark Quality grade 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) Standard Standard ××× is a ROM code. Please refer to "Quality Grades on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications LIST OF FUNCTIONS Item Function Built-in memory ROM: 32640 × 8 bits, RAM: 1024 × 4 bits I/O line (including FIP ® dualfunction pins and excluding FIP dedicated pins) • • 33 lines • • Instruction cycle • 0.67 µs, 1.33 µs, 10.7 µs (with main system clock operating at 6.0 MHz) • 0.95 µs, 1.91 µs, 15.3 µs (with main system clock operating at 4.19 MHz) • 122 µs (with subsystem clock operating at 32.768 kHz) FIP controller/driver • • • • • CMOS input : 8 lines CMOS I/O : 20 lines (LED drive: 8 lines) CMOS output : 1 line (PWM/pulse output) P-ch open-drain output with high withstand voltage and high current: 4 lines (LED drive) Number of segments : 9 to 16 segments Number of digits : 9 to 16 digits Dimmer function : 8 levels Mask option for pull-down resistors Key scan interrupt generation Timer 4 channels 2 • • • • Timer/pulse generator : 14-bit PWM output enabled Watch timer : Buzzer output enabled Timer/event counter Basic interval timer : Watchdog timer application capability Serial interface • MSB start/LSB start switchable • Serial bus configuration capability Vectored interrupt External : 3, Internal : 5 Test input External : 1, Internal : 1 System clock oscillator • Ceramic/crystal oscillator for main system clock oscillation : 6.0 MHz standard • Ceramic/crystal oscillator for main system clock oscillation : 4.19 MHz standard • Crystal oscillator for subsystem clock oscillation : 32.768 kHz standard Mask option • High withstand-voltage port (pull-down resistor) • Port 6 (pull-down resistor) Operating temperature range –40 to +85 °C Operating supply voltage 2.7 to 6.0 V (standby data hold : 2.0 to 6.0 V) Package • 64-pin plastic shrink DIP (750 mil) • 64-pin plastic QFP (14 × 20 mm) µPD75218 CONTENTS 1. PIN CONFIGURATION (TOP VIEW) ......................................................................................... 5 2. BLOCK DIAGRAM ...................................................................................................................... 6 3. PIN FUNCTIONS ........................................................................................................................ 7 3.1 PORT PINS ...................................................................................................................................... 7 3.2 NON-PORT PINS ............................................................................................................................ 8 3.3 PIN INPUT/OUTPUT CIRCUIT LIST .............................................................................................. 9 3.4 HANDLING UNUSED PINS ........................................................................................................... 10 3.5 NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN ......................................................... 11 3.6 NOTES ON USE OF THE XT1, XT2 AND P50 PIN ...................................................................... 11 4. MEMORY CONFIGURATION .................................................................................................... 12 5. PERIPHERAL HARDWARE FUNCTIONS .................................................................................. 15 5.1 PORTS .............................................................................................................................................. 15 5.2 CLOCK GENERATOR ...................................................................................................................... 16 5.3 BASIC INTERVAL TIMER ............................................................................................................... 17 5.4 WATCH TIMER .............................................................................................................................. 18 5.5 TIMER/EVENT COUNTER ............................................................................................................. 19 5.6 TIMER/PULSE GENERATOR ......................................................................................................... 20 5.7 SERIAL INTERFACE ....................................................................................................................... 21 5.8 FIP CONTROLLER/DRIVER ............................................................................................................ 23 6. INTERRUPT FUNCTIONS .......................................................................................................... 24 7. STANDBY FUNCTIONS ............................................................................................................. 26 8. RESET FUNCTIONS ................................................................................................................... 27 9. INSTRUCTION SET .................................................................................................................... 29 10. MASK OPTION SELECTION ...................................................................................................... 38 11. APPLICATION BLOCK DIAGRAM ............................................................................................. 39 11.1 VCR TIMER TUNER ........................................................................................................................ 39 11.2 COMPACT DISK PLAYER .............................................................................................................. 40 11.3 ECR ................................................................................................................................................... 41 3 µPD75218 ★ 12. ELECTRICAL SPECIFICATIONS ............................................................................................... 42 ★ 13. CHARACTERISTIC CURVES (FOR REFERENCE) ..................................................................... 53 14. PACKAGE DIMENSIONS ........................................................................................................... 55 15. RECOMMENDED SOLDERING CONDITIONS ........................................................................ 57 APPENDIX A FUNCTIONS OF µPD752×× SERIES PRODUCTS ................................................ 58 APPENDIX B DEVELOPMENT TOOLS ......................................................................................... 59 APPENDIX C RELATED DOCUMENTS ........................................................................................ 60 ★ 4 µPD75218 1. PIN CONFIGURATION (TOP VIEW) P02/SO P03/SI P10/INT0 P11/INT1 P12/INT2 P13/TI0 VDD S4 S5 S6 S7 S8 S9 VPRE VLOAD T15/S10 T14/S11 T13/S12/PH0 T12/S13/PH1 T11/S14/PH2 T10/S15/PH3 T9 T8 T7 T6 T5 T4 T3 T2 T1 T0 RESET P53 P52 P51 P50 XT2 XT1 P20 P21 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P22 P23/BUZ P30 P31 P32 P33 P60 P61 P62 P63 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 µ PD75218CW-× × × P40 S3 S2 S1 S0 P00/INT4 P01/SCK P02/SO P03/SI P10/INT0 P11/INT1 P12/INT2 P13/TI0 P20 P21 P22 P23/BUZ P30 P31 P32 P33 P60 P61 P62 P63 P40 P41 P42 P43 PPO X1 X2 VSS P41 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 52 32 P01/SCK P42 53 31 P00/INT4 P43 54 30 S0 PPO 55 29 S1 X1 56 28 S2 X2 57 27 S3 VSS 58 XT1 µ PD75218GF-× × ×-3BE 62 22 S7 P52 63 21 S8 P53 64 1 S9 VPRE VLOAD T15/S10 T14/S11 8 T13/S12/PH0 7 T12/S13/PH1 6 T11/S14/PH2 5 T10/S15/PH3 4 T9 3 T8 2 20 9 10 11 12 13 14 15 16 17 18 19 T7 S6 P51 T6 S5 23 T5 24 61 T4 60 P50 T3 XT2 T2 S4 T1 25 T0 VDD 59 RESET 26 5 INTBT TI0/P13 Program counter (15) Timer/event counter #0 Bank INTT0 Timer/pulse generator Port 0 4 P00–P03 Port 1 4 P10–P13 Port 2 4 P20–P23 Port 3 4 P30–P33 Port 4 4 P40–P43 Port 5 4 P50–P53 Port 6 4 P60–P63 10 T0–T9 4 T10/S15/PH3– T13/S12/PH0 2 T14/S11, T15/S10 10 S0–S9 SP(8) SBS(4) CY ALU General register 2. BLOCK DIAGRAM 6 Basic interval timer PPO INTTPG SI/P03 SO/P02 ROM Program memory 32640 × 8 bits Decode and control Serial interface SCK/P01 RAM Data memory 1024 × 4 bits INTSIO INT0/P10 FIP controller/ driver INT1/P11 INT2/P12 INT4/P00 Interrupt control INTW Watch timer fX/2 N Clock divider System clock generator Sub Standby control VPRE VLOAD CPU clock Φ Main INTKS BUZ/P23 XT1 XT2 X1 X2 VDD VSS RESET 4 PH0–PH3 µPD75218 Port H µPD75218 3. PIN FUNCTIONS 3.1 PORT PINS Pin I/O Dualfunction pin P00 Input INT4 P01 Input/output SCK F P02 Input/output SO G P03 Input SI B P10 Input INT0 Noise elimination function available P11 INT1 Noise elimination function available P12 INT2 P13 TI0 P20 P21 Input/ output ––– Function 4-bit input port (PORT0) 8-bit I/O After reset Input / output circuit typeNote × Input B Input B Input E Input E Input E Input E 4-bit input port (PORT1) 4-bit input/output port (PORT2) × ––– P22 ––– P23 BUZ P30 to P33 Input/ output ––– Programmable 4-bit input/ output port (PORT3). Input/output specifiable in 1-bit units. P40 to P43 Input/ output ––– 4-bit input/output port (PORT4). LED direct drive capability. P50 to P53 Input/ output ––– 4-bit input/output port (PORT5). LED direct drive capability. P60 to P63 Input/ output ––– Programmable 4-bit input/output port (PORT6). Input/output specifiable in 1-bit units. On-chip pull-down resistor available (mask option). Suitable for key input. × Input V PH0 Output T13/S12 4-bit P-ch open-drain output port with high withstand voltage and high current (PORTH). LED direct drive capability. On-chip pull-down resistor available (mask option). × Low level (with an onchip pulldown resistor) or high impedance. I PH1 T12/S13 PH2 T11/S14 PH3 T10/S15 Note ● The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered input. 7 µPD75218 3.2 NON-PORT PINS Pin T0 to T9 I/O Dualfunction pin Output ––– T10/S15 to T13/S12 PH3 to PH0 T14/S11, T15/S10 ––– After reset Output pins with high withstand voltage Low level (with an onand high current for digit output chip pullOutput pins with high withstand voltage down and high current also used for digit/seg- resistor ) or high ment output impedance Extra pins can be used as PORTH. (without a pull-down Output pins with high withstand voltage resistor) and high current also used for digit/ segment output Static output also possible. High withstand-voltage output for segment output. Static output also possible. S0 to S8 High withstand-voltage output for segment output PPO Output ––– Timer/pulse generator pulse output TI0 Input P13 External event pulse input for timer/event counter SCK Input/output P01 SO Input/output SI Input / output circuit typeNote I High impedance D ––– B Serial clock input/output Input F P02 Serial data output or serial data input/output Input G Input P03 Serial data input or normal input Input B INT4 Input P00 Edge-detected vectored interrupt input (rising and falling edge detection). ––– B INT0 Input P10 Edge-detected vectored interrupt input with noise elimination function (detection edge selection possible). ––– B ––– B Input E P11 INT2 Input P12 Edge-detected testable input (rising edge detection). BUZ Input/output P23 Fixed frequency output (for buzzer or system clock trimming). X1 Input ––– ––– ––– X2 ––– Crystal/ceramic connection pin for main system clock oscillation. External clock input to X1 and its inverted clock input to X2. ––– Crystal connection pin for subsystem clock oscillation. External clock input to XT1. Leave XT2 open. ––– ––– Input ––– System reset input (low level active). ––– B VPRE ––– ––– FIP controller/driver output buffer power supply. ––– I VLOAD ––– ––– FIP controller/driver pull-down resistor connection pin. ––– I VDD ––– ––– Positive power supply. ––– ––– VSS ––– ––– GND potential. ––– ––– XT1 Input XT2 ––– RESET Note 8 FIP controller/ driver output pins. Pull-down resistor can be incorporated in bit units (mask option). S9 INT1 ★ Function The circuit-type codes enclosed in circles indicate that the corresponding circuits have a Schmitt-triggered input. µPD75218 3.3 PIN INPUT/OUTPUT CIRCUIT LIST Type A Type F VDD Data IN/OUT Type D Output disable P-ch IN Type B N-ch Input/output circuit consisting of type D push-pull output and type B schmitt trigger input CMOS-specified input buffer Type B Type G VDD P-ch output disable Data P-ch IN/OUT IN N-ch Type B Schmitt trigger input having hysteresis characteristics Input/output circuit capable of switching between push-pull output and N-ch open-drain output (with P-ch off). Type D Type V VDD Data Data IN/OUT P-ch OUT Output disable Type D Output disable N-ch Type A Pull-down resistor Push-pull output which can be set to high-impedance output (off for both P-ch and N-ch) Type E Type I VDD Data Output disable (Mask option) VDD IN/OUT Type D Data P-ch N-ch Type A P-ch OUT Pull-down resistor (Mask option) VLOAD VPRE Input/output circuit consisting of type D push-pull output and type A input buffer 9 µPD75218 3.4 HANDLING UNUSED PINS Pin Recommended connection P00/INT4 Connect to VSS P01/SCK Connect to VSS or VDD P02/SO P03/SI P10/INT0 to P12/INT2 Connect to VSS P13/TI0 P20 to P22 Input state : Connect to VSS or V DD P23/BUZ Output state : Leave open P30 to P33 P40 to P43 P50 to P53 P60 to P63 PPO Leave open S0 to S9 T15/S10 to T14/S11 T0 to T9 T10/S15/PH3 to T13/S12/PH0 XT1 Connect to VSS or VDD XT2 Leave open VLOAD when there is no on- Connect to VSS or VDD chip load resistor 10 µPD75218 3.5 NOTES ON USE OF THE P00/INT4 PIN AND RESET PIN P00/INT4 and RESET pins have the function (especially for IC test) to test µ PD75218 internal operations in addition to the functions described in sections 3.1 and 3.2. The test mode is set when a voltage larger than VDD is applied to one of these pins. If noise larger than VDD is applied in normal operation, the test mode may be set thereby adversely affecting normal operation. Since there is a display output pin having a high-voltage amplitude (35 V) next to the P00/INT4 and RESET pins, if cables for the related signals are routed in parallel, wiring noise larger than VDD may be applied to the P00/INT4 and RESET pins causing errors. Thus, carry out wiring so that wiring noise can be minimized, If noise still cannot be suppressed, take the measure against noise using the following external components. • Connecting a diode between the pins and VDD • Connecting a capacitor between the pins and VDD VDD VDD VDD VDD P00/INT4, RESET P00/INT4, RESET 3.6 NOTES ON USE OF THE XT1, XT2 AND P50 PIN When selecting the 32.768 kHz subsystem clock connected to the XT1 and XT2 pins as the watch timer source clock, the signal to be input or output to the P50 pin next to the XT2 pin must be a signal required to be switched between high and low the minimum number of times (once/second or less). If the P50 pin signal is switched frequently between high and low, a spike is generated in the XT2 pin because of capacitance coupling of the P50 and XT2 pins and the correct watch functions cannot be achieved (the watch becomes fast). If it is necessary to allow the P50 pin signal to switch between high and low, mount an external capacitor to the P50 pin as shown below. µ PD75218 P50 XT1 XT2 0.0068 µ F 32.768 kHz 11 µPD75218 4. MEMORY CONFIGURATION • Program memory (ROM): 32640 words × 8 bits • 0000H and 0001H: Vector table which contains the program start address after reset • 0002H to 000FH : Vector table which contains the program start addresses when interrupts occur • 0020H to 007FH : Table area referenced by a GETI instruction • Data memory • Data area : 1024 words × 4 bits (000H to 3FFH) • Peripheral hardware area : 128 words × 4 bits (F80H to FFFH) 12 µPD75218 Fig. 4-1 Program Memory Map 0000H MBE RBE Internal reset start address (high-order 6 bits) Internal reset start address (low-order 8 bits) 0002H MBE RBE INTBT/INT4 start address (high-order 6 bits) INTBT/INT4 start address (low-order 8 bits) 0004H MBE RBE INT0 start address (high-order 6 bits) INT0 start address (low-order 8 bits) 0006H MBE RBE INT1 start address (high-order 6 bits) INT1 start address (low-order 8 bits) 0008H MBE RBE INTSO start address Branch address specified in BRA !addr instruction (high-order 6 bits) INTSO start address (low-order 8 bits) 000AH MBE RBE INTT0 start address (high-order 6 bits) INTT0 start address Entry address specified in CALLF !faddr instruction (low-order 8 bits) 000CH MBE RBE INTTPG start address (high-order 6 bits) INTTPG start address (low-order 8 bits) 000EH MBE RBE INTKS start address (high-order 6 bits) INTKS start address (low-order 8 bits) Branch address specified in BRCB !caddr instruction Branch address specified in CALLA !addr instruction Relative branch address specified in BR $addr instruction (–15 to –1, +2 to +16) Branch address specified in BR !addr instruction 0020H GETI instruction reference table 007FH 0080H 07FFH 0800H 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H 3FFFH 4000H 4FFFH 5000H 5FFFH 6000H 6FFFH 7000H 7F7FH Branch address specified in CALL !addr instruction Branch/call address specified in GETI instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Branch address specified in BRCB !caddr instruction Caution The start address of an interrupt vector shown above consists of 14 bits. So the start address must be set within a 16K-byte space (0000H to 3FFFH). Remark In all cases other than those listed above, branch to the address with only the lower 8 bits of the PC changed is enabled by BR PCDE and BR PCXA instructions. 13 µPD75218 Fig. 4-2 Data Memory Map Data memory General register area Memory bank 000H (32 × 4) 01FH 0 020H 256 × 4 0FFH 100H Stack area Data area Static RAM (1024 × 4) 256 × 4 Display data memory, etc. 1BFH 1C0H 1 (64 × 4) 1FFH 200H 256 × 4 2 256 × 4 3 2FFH 300H 3 FFH Not contained F80H Peripheral hardware area 128 × 4 FFFH 14 15 µPD75218 5. PERIPHERAL HARDWARE FUNCTIONS 5.1 PORTS The µPD75218 has the following three types of I/O port: • 8 CMOS input pins (PORT0 and PORT1) • 20 CMOS I/O pins (PORT2, PORT3, PORT4, PORT5, and PORT6) • 4 P-ch open-drain output pins with high withstand voltage and high current (PORTH) Total: 32 pins Table 5-1 Functions of Ports Port PORT0 Function 4-bit input PORT1 PORT2 PORT4 PORT5 4-bit input/output PORT3 PORT6 PORTH Operation and feature Remarks Always read or test possible irrespective of the dual-function pin operating mode. Shares the pins with SI, SO, SCK and INT4. Always read or test possible, P10 and P11 are inputs with the noise elimination function. Shares the pins with INT0 to INT2 and TI0. Can be set to the input or output mode in 4-bit units. Ports 4 and 5 can input/output data in pairs in 8-bit units. Ports 4 and 5 can directly drive LEDs. P23 shares the pin with BUZ. Can be set bit-wise to the input or output mode. Port 6 can incorporate a pull-down resistor by mask option. 4-bit output P-ch open-drain output port with high withstand voltage and high current. Can drive an FIP and LED directly. Can incorporate a pull-down resistor in bit units by mask option. Shares the pins with T10/S15 to T13/S12. 15 µPD75218 5.2 CLOCK GENERATOR Operation of the clock generator is specified by the processor clock control register (PCC) and system clock control register (SCC). The main system clock or subsystem clock can be selected. The instruction execution time is variable. 0.67 µs, 1.33 µs, 10.7 µs (main system clock: 6.0 MHz) 0.95 µs, 1.91 µs, 15.3 µs (main system clock: 4.19 MHz) 122 µs (subsystem clock: 32.768 kHz) Fig. 5-1 Clock Generator Block Diagram XT1 XT2 Subsystem clock generator fXT Watch timer Timer/pulse generator Main system clock generator fX Selector X1 X2 • FIP controller • Basic interval timer (BT) • Timer/event counter • Serial interface • Watch timer • INT0 noise eliminator 1/8 to 1/4096 fXX Frequency divider 1/2 1/6 SCC Oscillation stop Frequency divider Selector SCC3 SCC0 1/4 • CPU • INT0 noise eliminator • INT1 noise eliminator PCC PCC0 Internal bus Φ PCC1 4 HALT F/F HALTNote STOPNote PCC2 S PCC3 R PCC2 and PCC3 clear STOP F/F Q Q Wait release signal from BT S RES signal (internal reset) Note Instruction execution R Remarks 1. fX = Main system clock frequency 2. fXT = Subsystem clock frequency 3. fXX = System clock frequency 4. 5. 6. 7. ★ Φ = CPU clock PCC: Processor clock control register SCC: System clock control register 1 clock cycle (tCY) of Φ is 1 machine cycle of an instruction. For tCY, see ”AC Characteristics“ in Chapter 12. 16 Standby release signal from interrupt control circuit µPD75218 5.3 BASIC INTERVAL TIMER The basic interval timer has the following functions: • • • • Interval timer operation to generate reference time Watchdog timer application to detect inadvertent program loop Wait time select and count upon standby mode release Count contents read Fig. 5-2 Basic Interval Timer Configuration From clock generator Clear Clear fXX/25 fXX/27 Set Basic interval timer (8-bit frequency divider) MPX BT interrupt request flag fXX/29 BT fXX/212 IRQBT Vectored interrupt request signal 3 BTM3 SET1Note BTM2 BTM1 BTM0 Wait release signal during standby release BTM 8 4 Internal bus Note Instruction execution 17 µPD75218 5.4 WATCH TIMER The µPD75218 incorporates one channel of watch timer. The watch timer has the following functions: • Sets the test flag (IRQW) at 0.5 sec intervals. The standby mode can be released by IRQW. • 0.5 second interval can be set with the main system clock and subsystem clock. • The fast mode enables to set 128-time (3.91 ms) interval useful to program debugging and inspection. • The fixed frequencies (2.048 kHz) can be output to the P23/BUZ pin for use to generate buzzer sound and trim the system clock oscillator frequency. • Since the frequency divider can be cleared, the watch can be started from zero second. Fig. 5-3 Watch Timer Block Diagram fW (256 Hz : 3.91 ms) 7 2 From clock generator fXX 128 (32.768 kHz) Selector fW 14 2 fW Frequency divider (32.768 kHz) fXT (32.768 kHz) INTW IRQW set signal Selector 2 Hz 0.5 sec fW 16 (2.048 kHz) Clear Output buffer P23/BUZ WM WM7 WM6 PORT2.3 WM5 WM4 WM3 WM2 WM1 WM0 P23 output latch Bit 2 of PMGB Port 2 input/output mode 8 Internal bus Remark Values when fXX is 4.194304 MHz and fXT is 32.768 kHz are indicated in parentheses. Caution When the main system clock operates at 6.0 MHz, a time interval of 0.5 second cannot be produced. Before producing this time interval, the main system clock must be changed to the subsystem clock. 18 µPD75218 5.5 TIMER/EVENT COUNTER The µPD75218 incorporates one channel of timer/event counter. The timer/event counter has the following functions: • Program interval timer operation • Event counter operation • Count state read function Fig. 5-4 Timer/Event Counter Block Diagram Internal bus 8 SET1Note 8 8 TM0 TMOD0 Modulo register (8) TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0 8 Match Comparator (8) Input buffer INTT0 IRQT0 set signal 8 T0 P13/TI0 From clock generator (See Fig. 5-1.) Count register (8) MPX CP Clear Timer operation start IRQT0 clear Note Instruction execution 19 µPD75218 5.6 TIMER/PULSE GENERATOR The µPD75218 incorporates one channel of timer/pulse generator which can be used as a timer or a pulse generator. The timer/pulse generator has the following functions: (a) Functions available in the timer mode • 8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels • Square wave output to PPO pin (b) Functions available in the PWM pulse generation mode • 14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to-analog converter and applicable to tuning) 2 15 • Fixed time interval ( = 5.46 ms when the microcomputer operates at 6.0 MHz)Note interrupt generation fX If pulse output is not necessary, the PPO pin can be used as a 1-bit output port. Note 7.81 ms when the microcomputer operates at 4.19 MHz Caution If the STOP mode is set while the timer/pulse generator is in operation, erroneous operation may result. To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode register. Fig. 5-5 Block Diagram of Timer/Pulse Generator (Timer Mode) Internal bus 8 8 MODL Modulo register L (8) MODH Modulo register H (8) TPGM3 (Set to 1) INTTPG IRQTPG set signal Modulo latch H (8) 8 Match Comparator (8) Output buffer Selector T F/F PPO Frequency divider fX 1/2 TPGM1 CP Prescalar select latch (5) Clear 20 Set 8 Count register (8) Clear TPGM4 TPGM5 TPGM7 µPD75218 Fig. 5-6 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode) Internal bus 8 8 MODH Modulo register H (8) MODL Modulo register L (8) (2) TPGM3 MODL7-2 (6) MODH (8) Modulo latch (14) Output buffer TPGM1 fX PWM pulse generator 1/2 Selector PPO Frequency divider INTTPG TPGM5 (IRQTPG set signal) 15 2 ( = 5.46 ms : when fX is 6.0 MHz)Note fX Note TPGM7 7.81 ms when the microcomputer operates at 4.19 MHz. 5.7 SERIAL INTERFACE The serial interface has the following functions: • Clock synchronous 8-bit send/receive operation (simultaneous send/receive) • Clock synchronous 8-bit serial bus operation (data input/output from the SO pin. N-ch open-drain SO output) • Start LSB/MSB switching These functions facilitate data communication with another microcomputer of µPD7500 series or 78K series via a serial bus and coupling with peripheral devices. 21 22 Fig 5-7 Serial Interface Block Diagram Internal bus 8 8 Selector P03/SI SIO0 SET1Note 2 SIO7 SIO SIOM Shift register (8) Note 1 P02/SO 8 SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0 SO output latch Serial clock counter (3) INTSIO IRQSIO set signal Overflow Clear IRQSIO clear signal Serial start P01/SCK R Q Φ S fXX/24 MPX fXX/210 CMOS output and N-ch open-drain output switchable output buffer. Instruction execution µPD75218 Notes 1. 2. µPD75218 5.8 FIP CONTROLLER/DRIVER The FIP controller/driver in the µPD75218 has the same functions as that in its predecessor, µPD75216A: • The FIP controller/driver outputs the segment signal by automatically reading display data (DMA operation) and automatically generates the digit signal. • The FIP controller/driver can control the FIP of 9 to 16 segments and 9 to 16 digits with the display mode register (DSPM) and the digit select register (DIGS) (within the range of up to 26 display outputs). • The display outputs unused for dynamic display can be used as static outputs. • The dimmer function provides eight levels of intensity. • Such hardware is contained that a key scan application is possible. • • • • A • • A A key scan interrupt (IRQKS) is caused. (A key scan timing is detected.) Key scan data can be output from key scan registers (KS0 and KS1) onto a segment output pin. high-voltage output pin (40 V) is provided which can directly drive the FIP. Pins dedicated to segments (S0 to S9): VOD = 40 V, IOD = 3 mA Digit output pins (T0 to T15): VOD = 40 V, IOD = 15 mA mask option enables a pull-down resistor to be incorporated for each bit. Fig. 5-8 FIP Controller/Driver Block Diagram Internal bus Display data memory (64 × 4 bits) Key scan registers (KS0 and KS1) 4 4 4 Display mode register Digit select register Dimmer select register Key scan flag (KSF) Port H 12 4 Digit signal generator Segment data latch (16) 4 IRQKS generation signal 4 Selector 10 2 2 4 4 Selector 2 4 10 Output buffer with a high withstand voltage 10 S0-S9 2 T15/S10 and T14/S11 4 T13/S12/PH0T10/S15/PH3 10 T0-T9 VLOAD VPRE Caution The FIP controller/driver can only operate at the high and intermediate speeds (PCC = 0011B or 0010B) of the main system clock (SCC.0 = 0). It may cause errors with any other clock or in the standby mode. Thus, be sure to stop FIP controller operation (DSPM.3 = 0) and then shift the unit to any other clock mode or the standby mode. 23 µPD75218 6. INTERRUPT FUNCTIONS The µPD75218 has eight types of interrupt sources and can generate multiple interrupts with priority order. It is also equipped with two types of test sources. INT2 is an edge detected testable input. The µPD75218 interrupt control circuit has the following functions: • Hardware-controlled vectored interrupt function which can control interrupt acknowledge with the interrupt enable flag (IE×××) and the interrupt master enable flag (IME). • Function of setting any interrupt start address. • Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS). • Interrupt request flag (IRQ×××) test function. (Interrupt generation can be checked by software.) • Standby mode release function (Interrupts to be released can be selected by interrupt enable flags.) 24 Fig. 6-1 Interrupt Control Circuit Block Diagram Internal bus 2 2 IM1 IM0 INT BT Both edges detection circuit INT4/ P00 INT0/ P10 Note INT1/ P11 Note Edge detection circuit Edge detection circuit Note IPS IST Decoder IRQBT IRQ4 VRQn IRQ0 IRQ1 IRQSIO INTT0 IRQT0 Priority control circuit Vector table address generator circuit IRQTPG INTKS IRQKS INTW IRQW Rising edge detection circuit 2 Interrupt enable flag (IE XXX ) INTSIO INTTPG INT2/ P12 (IME) 4 Standby release signal IRQ2 Noise eliminator µPD75218 25 µPD75218 7. STANDBY FUNCTIONS Two standby modes (STOP mode and HALT mode) are available for the µPD75218 to decrease power consumption in the program standby mode. Table 7-1 Operation Status in Standby Mode HALT mode STOP mode STOP instruction HALT instruction System clock when set Setting enabled only for main system clock Setting enabled for either main system clock or subsystem clock Clock oscillator Oscillator stops only for main system clock Stops only for CPU clock Φ (oscillation continued) Basic interval timer Operation stopped Operation continued (IRQBT set at reference time intervals) Serial interface Operation enabled only when external SCK input is selected for serial clock Operation enabled when serial clock other than Φ is specified Timer/event counter Operation enabled only when TI0 pin input is specified for count clock Operation enabled Timer/pulse generator Operation stopped Operation enabled Watch timer Operation enabled only fXT is selected for Operation enabled count clock FIP controller/driver Operation disabled (display off mode set before disabling) CPU Operation stopped Operating State Set instruction Release signal 26 Interrupt request signals (except INT0, INT1, and INT2) from operable hardware enabled by interrupt enable flags, or RESET input. µPD75218 8. RESET FUNCTIONS The reset signal (RES) generator has a configuration shown in Fig. 8-1. Fig. 8-1 Reset Signal Generator Internal reset signal (RES) RESET Fig. 8-2 shows the reset operation. Fig. 8-2 Reset Operation by RESET Input Wait (21.8 ms/when the microcomputer operates at 6.0 MHz)Note RESET input Normal operation mode or standby mode HALT mode Normal operation mode Internal reset operation Note 31.3 ms when the microcomputer operates at 4.19 MHz Table 8-1 lists the hardware statuses after reset operation. 27 µPD75218 Table 8-1 Hardware Statuses after Reset Operation Hardware Program counter (PC) PSW Carry flag (CY) Skip flag (SK0-SK2) Interrupt status flag (IST0, IST1) RESET input during operation Set the low-order six bits at address 0000H in program memory to PC13-8, set the contents of address 0001H to PC7-0, and set PC14 to zero. Set the low-order six bits at address 0000H in program memory to PC13-8, set the contents of address 0001H to PC7-0, and set PC14 to zero. Retained Undefined 0 0 0 0 Set bit 6 of address 0000H in program memory to RBE and set bit 7 to MBE. Set bit 6 of address 0000H in program memory to RBE and set bit 7 to MBE. Stack pointer (SP) Undefined Undefined Stack bank selection register (SBS) Undefined Undefined RetainedNote Undefined Retained Undefined 0, 0 0, 0 Undefined Undefined 0 0 Bank enable flag (MBE, RBE) Data memory (RAM) General register (X, A, H, L, D, E, B, C) Bank selection register (MBS, RBS) Basic interval timer Counter (BT) Mode register (BTM) Timer/event counter Counter (T0) Modulo register (TMOD0) Mode register (TM0) 0 0 FFH FFH 0 0 Retained Undefined Timer/pulse generator Modulo register (MODH, MODL) Mode register (TPGM) 0 0 Clock timer Mode register (WM) 0 0 Serial interface Shift register (SIO) Retained Undefined Set bit 4 to 1 and other bits to 0. Set bit 4 to 1 and other bits to 0. Processor clock control register (PCC) 0 0 System clock control register (SCC) 0 0 Interrupt request flag (IRQ×××) Mode register (SIOM) Clock generator Interrupt Digital port Reset (0) Reset (0) Interrupt enable flag (IE×××) 0 0 Priority specification flag (IPS) 0 0 INT0/INT1 mode register (IM0, IM1) 0, 0 0, 0 Output buffer Off Off Output latch Cleared (0) Cleared (0) 0 0 Retained Undefined Display mode register (DSPM) 0 0 Digit selection register (DIGS) 1000B 1000B I/O mode register (PMGA, PMGB) PORT H Output latch FIP controller/driver Dimmer selection register (DIMS) Display data memory Output buffer Note 28 RESET input in standby mode 0 0 Retained Undefined Off Off Data from address 0F8H to address 0FDH in the data memory becomes undefined by RESET input. µPD75218 9. INSTRUCTION SET (1) Representation format and description method of operands An operand is described in the operand field of each instruction according to the description method corresponding to the operand representation format of the instruction (refer to "RA75X Assembler Package User's Manual, Language" (EEU-1363) for details). When two or more elements are described in the description method field, select one of them. Uppercase letters, a plus sign (+), and a minus sign (-) are keywords, so they can be used without alteration. Specify an appropriate numeric value or label for immediate data. Representation format Note Description method reg X, A, B, C, D, E, H, L reg1 X, B, C, D, E, H, L rp XA, BC, DE, HL rp1 BC, DE, HL rp2 BC, DE rp’ XA, BC, DE, HL, XA’, BC’, DE’, HL’ rp’1 BC, DE, HL, XA’, BC’, DE’, HL’ rpa HL, HL+, HL-, DE, DL rpa1 DE, DL n4 4-bit immediate data or label n8 8-bit immediate data or label mem 8-bit immediate data or labelNote bit 2-bit immediate data or label fmem FB0H-FBFH/FF0H-FFFH immediate data or label pmem FC0H-FFFH immediate data or label addr1 0000H-7F7FH immediate data or label addr 0000H-3F7FH immediate data or label caddr 12-bit immediate data or label faddr 11-bit immediate data or label taddr 20H-7FH immediate data (bit 0 = 0) or label PORTn PORT0-PORT6 IE××× IEBT, IESIO, IET0, IETPG, IE0, IE1, IEKS, IEW, IE4 RBn RB0-RB3 MBn MB0, MB1, MB2, MB3, MB15 Only even addresses can be specified for 8-bit data processing. 29 µPD75218 (2) Legend A : A register, 4-bit accumulator B : B register, 4-bit accumulator C : C register, 4-bit accumulator D : D register, 4-bit accumulator E : E register, 4-bit accumulator H : H register, 4-bit accumulator L : L register, 4-bit accumulator X : X register, 4-bit accumulator XA : Register pair (XA), 8-bit accumulator BC : Register pair (BC), 8-bit accumulator DE : Register pair (DE), 8-bit accumulator HL : Register pair (HL), 8-bit accumulator XA’ : Extended register pair (XA’) BC’ : Extended register pair (BC’) DE’ : Extended register pair (DE’) HL’ : Extended register pair (HL’) PC : Program counter SP : Stack pointer CY : Carry flag, bit accumulator PSW : Program status word MBE : Memory bank enable flag RBE : Register bank enable flag PORTn : Port n (n = 0 to 6) IME : Interrupt master enable flag IPS : Interrupt priority specification register IE××× : Interrupt enable flag 30 RBS : Register bank select register MBS : Memory bank select register PCC : Processor clock control register . : Address/bit delimiter (××) : Contents addressed by ×× ××H : Hexadecimal data µPD75218 (3) Explanation of the symbols in the addressing area field Remarks 1. 2. 3. 4. *1 MB = MBE•MBS (MBS = 0, 1, 2, 3, or 15) *2 MB = 0 *3 MBE = 0: MB = 0 (00H-7FH) MB = 15 (80H-FFH) MBE = 1: MB = MBS (MBS = 0, 1, 2, 3, or 15) *4 MB = 15, fmem = FB0H-FBFH or FF0H-FFFH *5 MB = 15, pmem = FC0H-FFFH *6 addr = 0000H-3F7FH *7 addr = (Current PC) - 15 to (Current PC) - 1 or (Current PC) + 2 to (Current PC) + 16 *8 caddr = 0000H-0FFFH 1000H-1FFFH 2000H-2FFFH 3000H-3FFFH 4000H-4FFFH 5000H-5FFFH 6000H-6FFFH 7000H-7F7FH *9 faddr = 0000H-07FFH *10 taddr = 0020H-007FH *11 addr1 = 0000H-7F7FH (PC14,13,12 (PC14,13,12 (PC14,13,12 (PC14,13,12 (PC14,13,12 (PC14,13,12 (PC14,13,12 (PC14,13,12 = = = = = = = = 000B) 001B) 010B) 011B) 100B) 101B) 110B) 111B) Data memory addressing or or or or or or or Program memory addressing MB indicates an accessible memory bank. For *2, MB is always 0 irrespective of MBE and MBS. For *4 and *5, MB is always 15 irrespective of MBE and MBS. *6 to *11 indicate each addressable area. (4) Explanation of the machine cycle column S represents the number of machine cycles required when a skip instruction with the skip function performs a skip operation. S assumes one of the following values: • When no skip operation is performed : S=0 • When a 1-byte instruction or 2-byte instruction is skipped : S = 1 • When a 3-byte instruction is skipped : S=2 Caution The GETI instruction is skipped in one machine cycle. One machine cycle is equal to one cycle of the CPU clock Φ (= tCY), and three types of times are available for selection according to the PCC setting. 31 µPD75218 Instruction Mnemonic Transfer MOV XCH Table reference 32 MOVT Operand Number Machine Operation of bytes cycle Addressing area Skip condition A,#n4 1 1 A ← n4 reg1,#n4 2 2 reg1 ← n4 XA,#n8 2 2 XA ← n8 String effect A HL,#n8 2 2 HL ← n8 String effect B rp2,#n8 2 2 rp2 ← n8 A,@HL 1 1 A ← (HL) *1 A,@HL+ 1 2+S A ← (HL), then L ← L + 1 *1 L=0 A,@HL- 1 2+S A ← (HL), then L ← L - 1 *1 L = FH A,@rpa1 1 1 A ← (rpa1) *2 XA,@HL 2 2 XA ← (HL) *1 @HL,A 1 1 (HL) ← A *1 @HL,XA 2 2 (HL) ← XA *1 A,mem 2 2 A ← (mem) *3 XA,mem 2 2 XA ← (mem) *3 mem,A 2 2 (mem) ← A *3 mem,XA 2 2 (mem) ← XA *3 A,reg 2 2 A ← reg XA,rp’ 2 2 XA ← rp’ reg1,A 2 2 reg1 ← A rp’1,XA 2 2 rp’1 ← XA A,@HL 1 1 A ↔ (HL) *1 A,@HL+ 1 2+S A ↔ (HL), then L ← L + 1 *1 L=0 A,@HL- 1 2+S A ↔ (HL), then L ← L - 1 *1 L = FH A,@rpa1 1 1 A ↔ (rpa1) *2 XA,@HL 2 2 XA ↔ (HL) *1 A,mem 2 2 A ↔ (mem) *3 XA,mem 2 2 XA ↔ (mem) *3 A,reg1 1 1 A ↔ reg1 XA,rp’ 2 2 XA ↔ rp’ XA,@PCDE 1 3 XA ← (PC14-8+DE)ROM XA,@PCXA 1 3 XA ← (PC14-8+XA)ROM XA, @BCDE 1 3 XA ← (BCDE)ROM *11 XA, @BCXA 1 3 XA ← (BCXA)ROM *11 String effect A µPD75218 Operand Instruction Mnemonic Bit transfer Arithmetic/logical ing area Skip condition 2 CY ← (fmem.bit) *4 CY,pmem.@L 2 2 CY ← (pmem7-2+L3-2.bit(L 1-0)) *5 CY,@H+mem.bit 2 2 CY ← (H+mem3-0.bit) *1 fmem.bit,CY 2 2 (fmem.bit) ← CY *4 pmem.@L,CY 2 2 (pmem7-2+L3-2.bit(L1-0)) ← CY *5 @H+mem.bit,CY 2 2 (H+mem3-0.bit) ← CY *1 A,#n4 1 1+S A ← A + n4 carry XA,#n8 2 2+S XA ← XA + n8 carry A,@HL 1 1+S A ← A + (HL) XA,rp’ 2 2+S XA ← XA + rp’ carry rp’1,XA 2 2+S rp’1 ← rp’1 + XA carry A,@HL 1 1 A,CY ← A + (HL) + CY XA,rp’ 2 2 XA,CY ← XA + rp’ + CY rp’1,XA 2 2 rp’1,CY ← rp’1 + XA + CY A,@HL 1 1+S A ← A - (HL) XA,rp’ 2 2+S XA ← XA - rp’ borrow rp’1,XA 2 2+S rp’1 ← rp’1 - XA borrow A,@HL 1 1 A,CY ← A - (HL) - CY XA,rp’ 2 2 XA,CY ← XA - rp’ - CY rp’1,XA 2 2 rp’1,CY ← rp’1 - XA - CY A,#n4 2 2 A←A A,@HL 1 1 ∧ A←A∧ XA,rp’ 2 2 XA ← XA rp’1,XA 2 2 rp’1 ← rp’1 A,#n4 2 2 A,@HL 1 1 XA,rp’ 2 2 rp’1,XA 2 2 A,#n4 2 2 A,@HL 1 1 XA,rp’ 2 2 rp’1,XA 2 2 ∨ n4 A ← A ∨ (HL) XA ← XA ∨ rp’ rp’1 ← rp’1 ∨ XA A ← A ∨ n4 A ← A ∨ (HL) XA ← XA ∨ rp’ rp’1 ← rp’1 ∨ XA RORC A 1 1 CY ← A0, A3 ← CY, An-1 ← An NOT A 2 2 A←A ADDS SUBC AND OR XOR lation Address- 2 SUBS tor manipu- Operation of bytes cycle CY,fmem.bit MOV1 ADDC Accumula- Number Machine *1 carry *1 *1 borrow *1 n4 *1 (HL) ∧ rp’ ∧ XA A←A *1 *1 33 µPD75218 Operand Instruction Mnemonic 34 Addressing area Skip condition 1 1+S reg ← reg + 1 reg = 0 rp1 1 1+S rp1 ← rp1 + 1 rp1 = 00H @HL 2 2+S (HL) ← (HL) + 1 *1 (HL) = 0 mem 2 2+S (mem) ← (mem) + 1 *3 (mem) = 0 reg 1 1+S reg ← reg - 1 reg = FH rp’ 2 2+S rp’ ← rp’ - 1 rp’ = FFH reg,#n4 2 2+S Skip if reg = n4 reg = n4 @HL,#n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4 A,@HL 1 1+S Skip if A = (HL) *1 A = (HL) XA,@HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A,reg 2 2+S Skip if A = reg A = reg XA,rp’ 2 2+S Skip if XA = rp’ XA = rp’ SET1 CY 1 1 CY ← 1 CLR1 CY 1 1 CY ← 0 SKT CY 1 1+S NOT1 CY 1 1 DECS Carry flag manipulation Operation of bytes cycle reg Increment/ INCS decrement Comparison Number Machine SKE Skip if CY = 1 CY ← CY CY = 1 µPD75218 Instruction Mnemonic SET1 Memory bit manipulation CLR1 SKT SKF SKTCLR AND1 OR1 XOR1 Branch BR Operand Number Machine Operation of bytes cycle Addressing area Skip condition mem.bit 2 2 (mem.bit) ← 1 *3 fmem.bit 2 2 (fmem.bit) ← 1 *4 pmem.@L 2 2 (pmem 7-2+L3-2.bit(L 1-0)) ← 1 *5 @H+mem.bit 2 2 (H+mem3-0.bit) ← 1 *1 mem.bit 2 2 (mem.bit) ← 0 *3 fmem.bit 2 2 (fmem.bit) ← 0 *4 pmem.@L 2 2 (pmem 7-2+L3-2.bit(L 1-0)) ← 0 *5 @H+mem.bit 2 2 (H+mem3-0.bit) ← 0 *1 mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7-2+L3-2.bit(L 1-0)) = 1 *5 (pmem.@L) = 1 @H+mem.bit 2 2+S Skip if (H+mem3-0.bit) = 1 *1 (@H+mem.bit) = 1 mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S Skip if (pmem7-2+L3-2.bit(L 1-0)) = 0 *5 (pmem.@L) = 0 @H+mem.bit 2 2+S Skip if (H+mem3-0.bit) = 0 *1 (@H+mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7-2 + L3-2.bit(L1-0)) = 1 and clear *5 (pmem.@L) = 1 @H+mem.bit 2 2+S Skip if (H+mem3-0.bit) = 1 and clear *1 (@H+mem.bit) = 1 CY,fmem.bit 2 2 CY,pmem.@L 2 2 CY,@H+mem.bit 2 2 CY,fmem.bit 2 2 CY,pmem.@L 2 2 CY,@H+mem.bit 2 2 CY,fmem.bit 2 2 CY,pmem.@L 2 2 CY,@H+mem.bit 2 2 ∧ (fmem.bit) CY ← CY ∧ (pmem7-2+L3-2.bit(L1-0)) CY ← CY ∧ (H+mem3-0.bit) CY ← CY ∨ (fmem.bit) CY ← CY ∨ (pmem7-2+L3-2.bit(L1-0)) CY ← CY ∨ (H+mem3-0.bit) CY ← CY ∨ (fmem.bit) CY ← CY ∨ (pmem7-2+L3-2.bit(L1-0)) CY ← CY ∨ (H+mem3-0.bit) addr1 — — PC14-0 ← addr1 CY ← CY *4 *5 *1 *4 *5 *1 *4 *5 *1 *11 (The assembler selects an appropriate instruction from the BR !addr, BRA !addr1, BRCB !caddr, and BR $addr instructions.) $addr 1 2 PC14-0 ← addr *7 !addr 3 3 PC14 ← 0, PC13-0 ← !addr *6 PCDE 2 3 PC14-0 ← PC14-8 + DE PCXA 2 3 PC14-0 ← PC14-8 + XA BCDE 2 3 PC14-0 ← BCDE BCXA 2 3 PC14-0 ← BCXA BRA !addr1 3 3 PC14-0 ← !addr1 *11 BRCB !caddr 2 2 PC14-0 ← PC14,13,12 + caddr11-0 *8 35 µPD75218 Operand Instruction Mnemonic Subroutine stack control CALL (SP-6)(SP-3)(SP-4) ← PC11-0 *6 3 3 (SP-6)(SP-3)(SP-4) ← PC11-0 (SP-5) ← 0,PC14,PC13, PC12 (SP-2) ← ×,×,MBE,RBE PC14-0 ← addr1, SP ← SP - 6 *11 CALLF !faddr 2 3 (SP-6)(SP-3)(SP-4) ← PC11-0 (SP-5) ← 0,PC14,PC13, PC12 (SP-2) ← ×,×,MBE,RBE PC14-0 ← 0000, faddr, SP ← SP - 6 *9 RET 1 3 ×,×,MBE,RBE ← (SP+4) PC11-0 ← (SP)(SP+3)(SP+2) ×,PC14,PC13,PC12 ← (SP+1) SP ← SP + 6 RETS 1 3+S ×,×,MBE,RBE ← (SP+4) PC11-0 ← (SP)(SP+3)(SP+2) ×,PC14,PC13,PC12 ← (SP+1) SP ← SP + 6 then skip unconditionally RETI 1 3 ×,PC14,PC13,PC12 ← (SP+1) PC11-0 ← (SP)(SP+3)(SP+2) PSW ← (SP+4)(SP+5), SP ← SP + 6 rp 1 1 (SP-1)(SP-2) ← rp, SP ← SP - 2 BS 2 2 (SP-1) ← MBS, (SP-2) ← RBS, SP ← SP - 2 rp 1 1 rp ← (SP+1)(SP), SP ← SP + 2 BS 2 2 MBS ← (SP+1), RBS ← (SP), SP ← SP + 2 2 2 IME(IPS.3) ← 1 2 2 IE××× ← 1 2 2 IME(IPS.3) ← 0 IE××× 2 2 IE××× ← 0 A,PORTn 2 2 A ← PORTn (n=0 to 6) XA,PORTn 2 2 XA ← PORTn+1,PORTn (n=4) PORTn,A 2 2 PORTn ← A (n=2 to 6) PORTn,XA 2 2 PORTn+1,PORTn ← XA (n=4) EI IE××× INNote OUTNote 36 4 ing area !addr1 DI Note 3 Skip condition Address- CALLA POP I/O Operation of bytes cycle (SP-5) ← 0,PC14,PC13, PC12 (SP-2) ← ×,×,MBE,RBE PC14 ← 0, PC13-0 ← addr, SP ← SP - 6 PUSH Interrupt control !addr Number Machine Unconditionally MBE = 0, or MBE = 1 and MBS = 15 must be set when an IN/OUT instruction is executed. µPD75218 Instruction Mnemonic CPU control Special Operand Number Machine of bytes cycle Operation HALT 2 2 Set HALT mode (PCC.2 ← 1) STOP 2 2 Set STOP mode (PCC.3 ← 1) NOP 1 1 No operation RBn 2 2 RBS ← n (n=0-3) MBn 2 2 MBS ← n (n=0,1,2,3,15) taddr 1 3 • For a TBR instruction PC13-0 ← (taddr)5-0 + (taddr+1) PC14 ← 0 4 • For a TCALL instruction (SP-6)(SP-3)(SP-4) ← PC11-0 (SP-5) ← 0, PC14, PC13, PC12 (SP-2) ← ×,×,MBE,RBE PC13-0 ← (taddr)5-0 + (taddr+1) SP ← SP-6 PC14 ← 0 3 • For an instruction other than TBR and TCALL SEL GETINote Executes the instruction in (taddr)(taddr+1). Note Addressing area Skip condition *10 Depends upon the referenced instruction. The TBR and TCALL instructions are table definition assembler pseudo instructions of the GETI instructions. 37 µPD75218 10. MASK OPTION SELECTION The µPD75218 has the following mask options enabling or disabling on-chip components. Pin P60 to P63 Mask option Pull-up resistor incorporation enabled in bit units T0/T9 T10/S15/PH3 to T13/S12/PH0 T14/S11, T15/S10 S0 to S9 XT1, XT2 The feedback resistor for the subsystem clock oscillator can be removed Cautions 1. In a system not using subsystem clocks, power consumption in the STOP mode can be decreased by removing the feedback resistor from the oscillator. 2. The feedback resistor must be incorporated when the subsystem clock is used. 38 µPD75218 11. APPLICATION BLOCK DIAGRAM 11.1 VCR TIMER TUNER Main power supply + Super capacitor Power failure detection Electronic tuner Tape count pulse Tape up/down SCK System controller SO microcomputer SI LPF VSS T0–T9 10 VDD INT4 PPO µPD75218 Timer Tuner Remote controller INT1 signal reception Tape counter Fluorescent indication panel (FIP) 16 segments × 10 digits Key matrix (16 × 4) PORT6 SCK SO µ PD75104 or µPD75106 EEPROM™ µ PD6252 µ PD6253 µ PD6254 S0–S15 16 Remote-controller signal INT0 µ PC2800A BUZ X1 X2 XT1 XT2 BZ Piezoelectric buzzer 39 µPD75218 11.2 COMPACT DISK PLAYER SIO Servo control IC T0–T13 14 SCK SI/SO S0–S11 12 Loading circuit Fluorescent indication panel (FIP) 12 segments × 14 digits µPD75218 PORT6 Key matrix (12 × 4) BUZ BZ Remote-controller signal INT0 µ PC2800A X1 40 X2 µPD75218 11.3 ECR Main power supply Power failure detection + VDD VSS INT4 T0–T15 16 S0–S9 10 Fluorescent indication panel (FIP) 10 segments × 16 digits RAM µPD75218 Key matrix (10 × 4) Printer PPO BZ X1 X2 XT1 XT2 41 µPD75218 ★ 12. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C) Parameter Power supply voltage Input voltage Symbol Conditions Rating Unit VDD –0.3 to +7.0 V VLOAD VDD – 40 to VDD + 0.3 V VPRE VDD – 11 to VDD + 0.3 V VI –0.3 to VDD + 0.3 V –0.3 to VDD + 0.3 V VDD – 40 to VDD + 0.3 V VO Pins except display output pins VOD Display output pins Output voltage Output high current Output low current Total lossNote 1 IOH IOL PT Per pin except display output pins –15 mA Per pin for S0 to S9 –15 mA Per pin for T0 to T15 –30 mA Total of pins except display output pins –20 mA Total of display output pins –120 mA Per pin 17 mA Total of pins 60 mA Plastic QFP 450 mW Plastic shrink DIP 600 mW Operating temperature Topt –40 to +85 °C Storage temperature Tstg –65 to +150 °C OPERATING SUPPLY VOLTAGE (Ta = –40 to +85 °C) Parameter Min. Max. Unit CPUNote 2 Note 3 6.0 V Display controller 4.5 6.0 V Timer/pulse generator 4.5 6.0 V 2.7 6.0 V Other 42 Conditions hardwareNote 2 µPD75218 Notes 1. Calculation of total loss Design so that the sum of the following three power consumption values for the µPD75218CW/GF will be less than the total loss PT (It is recommended to use the system with 80 % or less of the rating). ➀ CPU loss : Given as VDD (Max.) × IDD1 (Max.) ➁ Output pin loss : There are normal output pin loss and display output pin loss. It is necessary to add a loss derived from the flow of maximum current to each output pin. ➂ Example Pull-down register loss: Power loss due to a pull-down resistor incorporated in the display output pin by mask option. Suppose 4-LED output with 9 segments and 11 digits, VDD = 5 V + 10 % and 4.19 MHz oscillation and let a maximum of 3 mA, 15 mA and, 10 mA flow to a segment pin, timing pin and LED output pin, respectively. Further, let the voltage of fluorescent display tube (VLOAD voltage) be –30 V and normal voltage be small. ➀ CPU loss : 5.5 V × 9.0 mA = 49.5 mW ➁ Pin loss : Segment pin ..... 2 V × 3 mA × 9 = 54 mW Timing pin ......... 2 V × 15 mA = 30 mW LED output ........ ➂ 10 ×2V 15 × 10 mA × 4 = 53 mW 2 Pull-down resistor loss ........ (30 + 5.5 V) × 10 = 504.1 mW 25 kΩ PT = ➀ + ➁ + ➂ = 690.6 mW In this example, the power consumption of 690.6 mW is higher than the allowable total loss for the shrink DIP package (600 mW). It is necessary to decrease power consumption by decreasing the number of onchip pull-down resistors. In this example, power consumption can be adjusted to 577.8 mW by incorporating pull-down resistors in only 11 digit outputs and 7 segment outputs and externally mounting pull-down resistors to the 2 remaining segment outputs. 2. Except the system clock oscillator, display controller and timer/pulse generator. 3. The operating voltage range varies depending on the cycle time. Refer to the AC characteristics. CAPACITANCE (Ta = 25 °C, VDD = 0 V) Parameter Input capacitance Symbol CIN Except display output Output capacitance COUT Display output Input /output capacitance Conditions CIO f = 1 MHz 0 V for pins other than pins to be measured Min. Typ. Max. Unit 15 pF 15 pF 35 pF 15 pF 43 µPD75218 CHARACTERISTICS OF THE MAIN SYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V) Resonator Recommended constants Ceramic resonator X1 X2 Note 3 C1 C2 Parameter Oscillator frequency (fXX) Note 1 VDD = Oscillation voltage range Oscillation settling time After VDD reaches Min. of the oscillation voltage range Note 2 Crystal resonator X1 X2 C2 Oscillation settling time Min. Typ. 2.0 2.0 Oscillator frequency (fXX) Note 1 Note 3 C1 Conditions 4.19 VDD = 4.5 to 6.0 V Note 2 External clock X1 X2 µ PD74HCU04 Notes 1. Max. Unit 6.2 MHz 4 ms 6.2 MHz 10 ms 30 ms X1 input frequency (fX) Note 1 2.0 6.2 MHz X1 input high/low level width (tXH, tXL) 100 250 ns 2. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min. 3. of the oscillation voltage range or after the STOP mode is released. See "Recommended Parameters for the Oscillation Circuit" for the resonators. Caution When the main system clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity. • The wiring must be as short as possible. • Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be kept away as far as possible. • The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current. • No signal must be taken from the oscillator. 44 µPD75218 CHARACTERISTICS OF THE SUBSYSTEM CLOCK OSCILLATOR (Ta = -40 to +85 °C, VDD = 2.7 to 6.0 V) Resonator Recommended constants Crystal resonator XT1 XT2 Note 3 330 kΩ C3 C4 Conditions Parameter Oscillator frequency (fXT) Note 1 Oscillation settling time Min. Typ. Max. Unit 32 32.768 35 kHz 1.0 2 s 10 s VDD = 4.5 to 6.0 V Note 2 VDD External clock XT1 XT2 Leave open XT1 input frequency (fXT) 32 100 kHz XT1 input high/low level width (tXTH, tXTL) 10 32 µs Notes 1. The oscillator frequency and input frequency indicate only the oscillator characteristics. See the item of AC characteristics for the instruction execution time. 2. The oscillation settling time means the time required for the oscillation to settle after VDD reaches Min. of the oscillation voltage range. Recommended resonators are listed on the next page. 3. Caution When the subsystem clock oscillator is used, conform to the following guidelines when wiring at the portions surrounded by dotted lines in the figures above to eliminate the influence of the wiring capacity. • The wiring must be as short as possible. • Other signal lines must not run in these areas. Any line carrying a high fluctuating current must be kept away as far as possible. • The grounding point of the capacitor of the oscillator must have the same potential as that of VDD. It must not be grounded to ground patterns carrying a large current. • No signal must be taken from the oscillator. When the subsystem clock is used, pay special attention to its wiring; the subsystem clock oscillator has low amplification to minimize current consumption and is more likely to malfunction due to noise than the main system clock oscillator. 45 µPD75218 RECOMMENDED PARAMETERS FOR THE OSCILLATION CIRCUIT When a ceramic resonator is used for the main system clock (Ta = -40 to +70 ˚C) Manufacturer Murata Mfg. Product name CSA×××MG External capacitance Oscillation voltage Oscillation frequency (pF) range (V) (MHz) Min. C1 C2 Max. 2.00 to 2.44 CST×××MG CSA×××MG093 2.45 to 3.50 CST×××MGW093 CSA×××MGU 2.51 to 6.00 CST×××MGWU CSA×××MG 2.45 to 3.50 CST×××MGW CSA×××MG 2.51 to 6.00 CST×××MGW 30 30 Built-in Built-in 30 30 Built-in Built-in 30 30 Built-in Built-in 30 30 Built-in Built-in 30 30 Built-in Built-in 2.7 6.0 3.0 3.3 When a ceramic resonator is used for the main system clock (Ta = -20 to +80 ˚C) Manufacturer Kyocera Product name External capacitance Oscillation voltage Oscillation frequency (pF) range (V) (MHz) Min. C1 C2 Max. KBR-2.0MS 2.0 KBR-4.0MWS 4.0 33 33 KBR-4.19MWS 4.19 Built-in Built-in 47 47 KBR-4.19MSA 33 33 KBR-4.19MKS Built-in Built-in 33 33 Built-in Built-in KBR-6.0MSA 33 33 KBR-6.0MKS Built-in Built-in PBRC 6.00A 33 33 PBRC 4.19A KBR-6.0MWS 6.0 2.7 6.0 When a crystal resonator is used for the main system clock (Ta = -20 to +70 ˚C) Manufacturer Kinseki Product name HC-49/U-S External capacitance Oscillation voltage Oscillation frequency (pF) range (V) (MHz) Min. C1 C2 Max. 3.072 to 6.000 18 18 2.7 6.0 When a crystal resonator is used for the subsystem clock (Ta = -15 to +60 ˚C) Manufacturer Kyocera Product name KF-38G Oscillation frequency (MHz) 32.768 External capacitance and resistance C1 (pF) C2 (pF) R (kΩ) 18 18 220 Oscillation voltage range (V) Min. Max. 4.0 6.0 Caution When finely adjusting the oscillation frequency of a crystal resonator, adjust external capacitance C1 or C3. 46 µPD75218 DC CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V) Parameter Input high voltage Input low voltage Output high voltage Symbol Conditions Min. Max. Unit VIH1 Except below 0.7V DD VDD V VIH2 Ports 0, 1, RESET 0.75VDD VDD V VIH3 X1, X2, XT1 V DD–0.4 VDD V VIH4 Port 6 0.65VDD VDD V 0.7V DD VDD V VDD = 4.5 to 6.0 V VIL1 Except below 0 0.3VDD V VIL2 Ports 0, 1, 6, RESET 0 0.2VDD V VIL3 X1, X2, XT1 0 0.4 V VOH All output pins VDD = 4.5 to 6.0 V, IOH = –1 mA V DD–1.0 IOH = –100 µA Output low voltage Typ. VOL Input high leakage current ILIH1 Input low leakage current ILIL1 ILIH2 Ports 4, 5 V V DD–0.5 VDD = 4.5 to 6.0 V, IOL = 15 mA V 2.0 V All output pins VDD = 4.5 to 6.0 V, IOL = 1.6 mA 0.4 V IOL = 400 µA 0.5 V 3 µA 20 µA –3 µA –20 µA 0.5 Except X1,X2,XT1 VIN = VDD X1, X2, XT1 Except X1,X2,XT1 VIN = 0 V ILIL2 X1, X2, XT1 Output high leakage current ILOH All output pins VOUT = VDD 3 µA Output low leakage current ILOL1 Except display output VOUT = 0 V –3 µA –10 µA Display output current ILOL2 IOD Display output S0 to S9 T0 to T15 Built-in pull-down resistor (mask option) RP6 RL Supply currentNote 2 IDD1 VDD = 4.5 to 6.0 V Display output VOD – VLOAD = 35 V 6.0 MHz crystal oscillation C1 = C2 = 15pF IDD4 IDD5 –3 –5.5 mA –1.5 –3.5 mA –15 –22 mA –7 –15 mA 20 80 20 25 200 kΩ 1000 kΩ 70 135 kΩ V DD = 5 V ±10 %Note 3 4.0 13.5 mA VDD = 3 V ±10 %Note 4 0.55 1.8 mA HALT mode VDD = 5 V ±10 % 600 1800 µA VDD = 3 V ±10 % 200 600 µA VDD = 5 V ±10 %Note 3 3.0 9.0 mA V DD = 4 V ±10 %Note 4 0.45 1.5 mA HALT mode VDD = 5 V ±10 % 550 1800 µA VDD = 3 V ±10 % 180 600 µA VDD = 3 V ±10 % 32 kHz crystal oscillationNote 5 HALT mode VDD = 3 V ±10 % 40 120 µA 5 15 µA VDD = 5 V ±10 % 0.5 20 µA VDD = 3 V ±10 % 0.1 10 µA 4.19 MHz crystal oscillation C1 = C2 = 15pF IDD2 IDD3 VDD = VPRE = VDD – 9 ±1 4.5 to 6.0 V VPRE = 0 V VOD = VPRE = VDD – 9 ±1 VNote 1 VDD – 2 V VPRE = 0 V VNote 1 Port 6 VIN = VDD IDD2 IDD1 VOUT = VLOAD = VDD – 35 V XT1 = 0 V STOP mode 47 µPD75218 Notes 1. The following external circuit is recommended. µ PD75218 +5 V VDD RD9. 1EL RD9. 1EL : Zener diode (NEC) Zener voltage = 8.29 to 9.30 V VPRE 68 kΩ VLOAD –30 V VSS 2. Current to the on-chip pull-down resistor (mask option) is not included. 3. When the processor clock control register (PCC) is set to 0011 and is operated in the high-speed mode. 4. When the PCC register is set to 0000 and is operated in the low-speed mode. 5. When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock with main system clock oscillation stopped. 48 µPD75218 AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V) Parameter Symbol CPU clock cycle time (minimum instruction execution time = 1 machine cycle)Note 1 tCY TI0 input frequency fTI TI0 input high and lowlevel widths SCK cycle time SCK high and low-level widths Conditions Min. VDD = 4.5 to 6.0 V Operation with main system clock tKCY tKH, tKL Max. Unit 0.67 32 µs 2.6 32 µs 125 µs 0 0.6 MHz 0 165 kHz 114 Operation with subsystem clock tTIH, tTIL Typ. VDD = 4.5 to 6.0 V 0.83 µs 3 µs Input 0.8 µs Output 0.95 µs Input 3.2 µs Output 3.8 µs Input 0.4 µs VDD = 4.5 to 6.0 V VDD = 4.5 to 6.0 V VDD = 4.5 to 6.0 V 122 tKCY/2–50 1.6 ns Input Output tKCY/2–150 ns Output µs SI setup time (referred to SCK↑) tSIK 100 ns SI hold time (referred to SCK↑) tKSI 400 ns Delay from SCK↓ to SO output tKSO Interrupt input high and low-level widths tINTH, tINTL RESET low-level width Notes 1. VDD = 4.5 to 6.0 V ns µs INT1 2tCY µs INT2, INT4 10 µs 10 µs VS VDD (Operation with main system clock) 40 32 30 6 5 Guaranteed operation range 4 Cycle time tCY [ µs] 2tCY or 128/fXX is set by interrupt mode register (IM0) setting. 1000 Note 2 tCY and the processor clock control register (PCC). The cycle time tCY characteristics for power supply voltage VDD when the main system clock is in operation is shown on the right. 2. ns INT0 tRSL CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator, the system clock control register (SCC) 300 3 2 1 0.5 0 1 2 3 4 5 6 Power supply voltage VDD [V] 49 µPD75218 AC Timing Measurement Values (Except X1 and XT1 Inputs) 0.75VDD 0.75VDD Test points 0.2VDD 0.2VDD Clock Timing 1/fX tXL tXH X1 input VDD - 0.4 V 0.4 V 1/fXT tXTL tXTH XT1 input VDD - 0.4 V 0.4 V TI0 Timing 1/fTI tTIL TI0 50 tTIH µPD75218 Serial Transfer Timing tKCY tKH tKL SCK tSIK SI tKSI Input data tKSO SO Output data Interrupt Input Timing tINTH tINTL INT0, INT1, INT2 and INT4 RESET Input Timing tRSL RESET 51 µPD75218 DATA RETENTION CHARACTERISTICS FOR DATA MEMORY AT LOW SUPPLY VOLTAGE IN STOP MODE (Ta = –40 to +85 °C) Parameter Symbol Data retention supply voltage VDDDR Data retention supply currentNote 1 IDDDR Release signal set time tSREL Oscillation settling timeNote 2 tWAIT Notes 1. 2. 3. Conditions Min. Typ. Max. Unit 6.0 V 10 µA 2.0 VDDDR = 2.0 V 0.1 µs 0 Release by RESET 217/fX ms Release by interrupt request Note 3 ms Current to the on-chip pull-down resistor (mask option) is not included. Oscillation settling time is time to stop CPU operation to prevent unstable operation upon oscillation start. According to the setting of the basic interval timer mode register (BTM) (See below.) BTM3 BTM2 BTM1 BTM0 Settling time (values at fXX = 6.0 MHz in parentheses) — 0 0 0 220/fXX (approx. 175 ms) — 0 1 1 217/fXX (approx. 21.8 ms) — 1 0 1 215/fXX (approx. 5.46 ms) — 1 1 1 213/fXX (approx. 1.37 ms) Data Retention Timing (STOP Mode Release by RESET) Internal reset operation HALT mode Normal operation mode STOP mode Data retention mode VDD VDDDR tSREL STOP instruction execution RESET tWAIT Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal) HALT mode Normal operation mode STOP mode Data retention mode VDD VDDDR tSREL STOP instruction execution Standby release signal (Interrupt request) tWAIT 52 µPD75218 ★ 13. CHARACTERISTIC CURVES (FOR REFERENCE) IDD vs VDD (Main system clock: 6.0 MHz) (Ta = 25 ˚C) PCC = 0011 5000 PCC = 0010 PCC = 0000 Main system clock HALT mode + 32 kHz oscillation 1000 Supply current IDD ( µ A) 500 Subsystem clock Normal operation mode 100 50 Main system clock STOP mode + 32 kHz oscillation Subsystem clock HALT mode 10 X1 X2 Crystal resonator 6.0 MHz 5 15 pF 15 pF XT1 XT2 Crystal resonator 32.768 kHz 330 kΩ 15 pF 15 pF 1 0 1 2 3 4 5 6 7 Supply voltage VDD (V) 53 µPD75218 IDD vs VDD (Main system clock: 4.19 MHz) (Ta = 25 ˚C) 5000 PCC = 0011 PCC = 0010 PCC = 0000 Main system clock HALT mode + 32 kHz oscillation 1000 Supply current IDD (µ A) 500 Subsystem clock Normal operation mode 100 50 Main system clock STOP mode + 32 kHz oscillation Subsystem clock HALT mode 10 X1 X2 Crystal resonator 4.19 MHz 5 15 pF 15 pF XT1 XT2 Crystal resonator 32.768 kHz 330 kΩ 15 pF 1 0 1 2 3 4 5 Supply voltage VDD (V) 54 6 7 15 pF µPD75218 14. PACKAGE DIMENSIONS 64 PIN PLASTIC SHRINK DIP (750 mil) 64 33 1 32 A K H G J I L F D N M NOTE B C M ITEM MILLIMETERS R INCHES 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. A 58.68 MAX. 2.311 MAX. B 1.78 MAX. 0.070 MAX. 2) Item "K" to center of leads when formed parallel. C 1.778 (T.P.) 0.070 (T.P.) D 0.50±0.10 0.020 +0.004 –0.005 F 0.9 MIN. 0.035 MIN. G 3.2±0.3 0.126±0.012 H 0.51 MIN. 0.020 MIN. I 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K 19.05 (T.P.) 0.750 (T.P.) L 17.0 0.669 M 0.25 +0.10 –0.05 0.010 +0.004 –0.003 N 0.17 0.007 R 0~15° 0~15° P64C-70-750A,C-1 55 µPD75218 64 PIN PLASTIC QFP (14×20) A B detail of lead end 33 32 51 52 C D S R Q 64 1 20 19 F G H I M J K M P N L NOTE Each lead centerline is located within 0.20 mm (0.008 inch) of its true position (T.P.) at maximum material condition. 56 ITEM MILLIMETERS INCHES A 23.6±0.4 0.929±0.016 B 20.0±0.2 0.795 +0.008 –0.009 C 14.0±0.2 0.551+0.009 –0.008 D 17.6±0.4 0.693±0.016 F 1.0 0.039 G 1.0 0.039 H 0.40±0.10 0.016 +0.004 –0.005 0.008 I 0.20 J 1.0 (T.P.) 0.039 (T.P) K 1.8±0.2 0.071 +0.008 –0.009 L 0.8±0.2 0.031 +0.009 –0.008 M 0.15 +0.10 –0.05 0.006 +0.004 –0.003 N P Q R S 0.10 0.004 2.7 0.106 0.1±0.1 0.004±0.004 5°±5° 5°±5° 3.0 MAX. 0.119 MAX. P64GF-100-3B8,3BE,3BR-2 µPD75218 15. RECOMMENDED SOLDERING CONDITIONS The following conditions (see table below) must be met when soldering this product. For the details of the recommended soldering conditions refer to our document SMD Surface Mount Technology Manual(IEI-1207). Please consult with our sales offices in case other soldering process is used, or in case soldering is done under different conditions. Table 15-1 Soldering Conditions for Surface-Mount Devices µPD75218GF-×××-3BE: 64-pin plastic QFP (14 × 20 mm) Soldering process Soldering conditions Symbol Wave soldering Temperature in the soldering vessel: 260 ˚C or less Soldering time: 10 seconds or less Number of soldering processes: 1 Pre-heating temperature: 120 ˚C max. (package surface temperature) Exposure limitNote: 2 days (20 hours of pre-baking is required at 125 ˚C afterward.) WS60-202-1 Infrared ray reflow Peak package’s surface temperature: 230 ˚C Reflow time: 30 seconds or less (at 210 ˚C or more) Number of reflow processes: 1 Exposure limitNote: 2 days (20 hours of pre-baking is required at 125 ˚C afterward.) IR30-202-1 VPS Peak package’s surface temperature: 215 ˚C Reflow time: 40 seconds or less (at 200 ˚C or more) Number of reflow processes: 1 Exposure limitNote: 2 days (20 hours of pre-baking is required at 125 ˚C afterward.) VP15-202-1 Partial heating method Terminal temperature: 300 ˚C or less Flow time: 3 seconds or less (one side per device) Note – Exposure limit before soldering after dry-pack package is opened. Storage conditions: Temperature of 25 ˚C and maximum relative humidity at 65 % or less Caution Do not apply more than a single process at once, except for "Partial heating method." Table 15-2 Soldering Conditions for Inserted Devices µPD75218CW-×××: 64-pin plastic shrink DIP (750 mil) Soldering conditions Soldering process Wave soldering (only for leads) Temperature in the soldering vessel: 260 °C or less Soldering time: 10 seconds or less Partial heating method Terminal temperature: 260 °C or less Flow time: 10 seconds or less Caution In wave soldering, apply solder only to the lead section. Care must be taken that jet solder does not contact the main body of the package. Notice Other versions of the products are available. For these versions, the recommended reflow soldering conditions have been mitigated as follows: Higher peak temperature (235 °C), two-stage, and longer exposure limit. Contact an NEC representative for details. 57 µPD75218 APPENDIX A FUNCTIONS OF µPD752×× SERIES PRODUCTS ROM 16256 × 8 24448 × 8 32640 × 8 RAM 512 × 4 768 × 4 1024 × 4 I/O lines including FIP dualfunction pins and excluding FIP dedicated pins FIP controller/ driver When main system clock is selected 0.95 µs/1.91 µs/15.3 µs (When the microcomputer operates at 4.19 MHz) When sub-system clock is selected 122 µs (When the microcomputer operates at 32.768 kHz) Total number of I/O lines 33 CMOS input lines 8 CMOS I/O lines 20: 8 lines for driving LED 0.67 µs/1.33 µs/10.7 µs (When the microcomputer operates at 6.0 MHz) 0.95 µs/1.91 µs/15.3 µs (When the microcomputer operates at 4.19 MHz) Port 6: Pull-down resistors contained (mask option) CMOS output lines 1: Timer/pulse generator output P-ch open-drain output with high withstand voltage and high current 4 lines for driving LED: (mask option) Output with high withstand voltage 26 lines: 40 V max. Number of segments 9 to 16 Number of digits 9 to 16 Pull-down resistors contained Whether built-in pull-down resistors are used or the pins are used as open-drain output is selected bit by bit (mask option). Port 6: No pull-down resistors contained No pull-down resistors contained S0-S8,T0-T9: Built-in pull-down resistors used S9,T10-T15: Open-drain output Timer 4 channels Serial interface MSB or LSB first can be selected. Serial bus can be configured. Vectored interrupt External: 3, internal: 5 Test input External: 1, internal: 1 • • • • System clock oscillator 2 built-in circuits 58 µPD75P218 µPD75217 Instruction cycle ★ µPD75218 µPD75216A Item Power-on reset circuit Incorporated (mask option) Data retention at low supply voltage Possible (2 V) Timer/event counter Basic interval timer : Watchdog timer operation is possible. Timer/pulse generator : 14-bit PWM output is possible. Watch timer : Buzzer output is possible. • When main system clock is selected: 6.0 MHz (the µPD75218 and µPD75P218 only) 4.19 MHz • When subsystem clock is selected: 32.768 kHz None Operating temperature range -40 to +85 °C Operating supply voltage 2.7 to 6.0 V Package 64-pin plastic shrink DIP (750 mil) 64-pin plastic QFP (14 × 20 mm) 64-pin ceramic WQFN (the µPD75P218 only) -40 to +70 °C µPD75218 APPENDIX B DEVELOPMENT TOOLS Software Hardware The following development tools are provided for developing systems including the µPD75218: IE-75000-RNote 1 IE-75001-R In-circuit emulator for the 75X series IE-75000-R-EMNote 2 Emulation board for the IE-75000-R and IE-75001-R EP-75216ACW-R Emulation probe for the µPD75218CW EP-75216AGF-R Emulation probe for the µPD75218GF. A 64-pin conversion socket, the EV-9200G-64, is attached to the probe. EV-9200G-64 PG-1500 PROM programmer PA-75P216ACW PROM programmer adapter for the µPD75P218CW. Connected to the PG-1500. PA-75P218GF PROM programmer adapter for the µPD75P218GF. Connected to the PG-1500. PA-75P218KB PROM programmer adapter for the µPD75P218KB. Connected to the PG-1500. IE control program Host machine • PC-9800 series (MS-DOSTM Ver. 3.30 to Ver. 5.00ANote 3) • IBM PC/ATTM (PC DOS TM Ver. 3.1) PG-1500 controller RA75X relocatable assembler Notes 1. Maintenance service only 2. Not contained in the IE-75001-R 3. These software cannot use the task swap function, which is available in MS-DOS Ver. 5.00 and Ver. 5.00A. Remark Refer to "75X Series Selection Guide" (IF-1027) for development tools manufactured by third parties. 59 µPD75218 APPENDIX C RELATED DOCUMENTS Documents related to the device Document name Document No. User’s manual IEU-692 75X series selection guide IF-1027 Documents related to development tools Software Hardware Document name Document No. IE-75000-R/IE-75001-R User’s Manual EEU-1416 IE-75000-R-EM User’s Manual EEU-1294 EP-75216ACW-R User’s Manual EEU-1321 EP-75216AGF-R User’s Manual EEU-1309 PG-1500 User’s Manual EEU-1335 RA75X Assembler Package User’s Manual PG-1500 Controller User’s Manual Operation EEU-1346 Language EEU-1363 EEU-1291 Other related documents Document name Document No. Package Manual IEI-1213 SMD Surface Mount Technology Manual IEI-1207 Quality Grades on NEC Semiconductor Devices IEI-1209 NEC Semiconductor Device Reliability/Quality Control System IEI-1203 Electrostatic Discharge (ESD) Test IEI-1201 Guide to Quality Assurance for Semiconductor Devices MEI-1202 Caution The above documents may be revised without notice. Use the latest versions when you design an application system. 60 µPD75218 Cautions on CMOS Devices 1 Countermeasures against static electricity for all MOSs Caution When handling MOS devices, take care so that they are not electrostatically charged. Strong static electricity may cause dielectric breakdown in gates. When transporting or storing MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not allow MOS devices to stand on plastic plates or do not touch pins. Also handle boards on which MOS devices are mounted in the same way. 2 CMOS-specific handling of unused input pins Caution Hold CMOS devices at a fixed input level. Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediate-level input may be caused by noise. This allows current to flow in the CMOS device, resulting in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused pins may function as output pins at unexpected times, each unused pin should be separately connected to the VDD or GND pin through a resistor. If handling of unused pins is documented, follow the instructions in the document. 3 Statuses of all MOS devices at initialization Caution The initial status of a MOS device is unpredictable when power is turned on. Since characteristics of a MOS device are determined by the amount of ions implanted in molecules, the initial status cannot be determined in the manufacture process. NEC has no responsibility for the output statuses of pins, input and output settings, and the contents of registers at power on. However, NEC assures operation after reset and items for mode setting if they are defined. When you turn on a device having a reset function, be sure to reset the device first. 61 µPD75218 [MEMO] No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. Special : Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 EEPROM is a trademark of NEC Corporation. FIP is a trademark of NEC Corporation. MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are a trademarks of IBM Corporation.