DATA SHEET MOS INTEGRATED CIRCUIT µPD78001B(A), 78002B(A) 8-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The µPD78001B(A)/78002B(A) are products in the µPD78002 subseries within the 78K/0 series. The µPD78001B(A)/78002B(A) have various peripheral hardware such as timer, serial interface and interrupt function. A one-time PROM or EPROM product, the µPD78P014, capable of operating in the same power supply voltage range as that of the mask ROM product and other development tools is provided. Functions are described in detail in the following User's Manual, which should be read when carrying out design work. µPD78002, 78002Y Series User's Manual: IEU-1334 FEATURES • The µPD78001B, in comparison with the 78002B, is a higher reliability device, as a result of a more comprehensive quality assurance program (Refer to Quality Grade on NEC Semiconductor Devices (IEI-1209)) • Large on-chip ROM & RAM Item Program Memory Data Memory Product Name (ROM) (Internal High-Speed RAM) Package µPD78001B(A) 8K bytes 256 bytes • 64-pin plastic shrink DIP (750 mil) µPD78002B(A) 16K byte 384 bytes • 64-pin plastic QFP ( 14 mm) • External memory expansion space: 64K bytes • Instruction execution time can be varied from high-speed (0.4 µs) to ultra-low-speed (122 µs) • I/O ports: 53 (N-ch open-drain : 4) • Serial interface : 1 channel • Timer: 4 channels • Operating voltage range : 2.7 to 6.0 V APPLICATION Transmission equipment control device, gas detector circuit breaker, safety devices, etc. The information in this document is subject to change without notice. Document No. IC-3599 (O.D. No. IC-9078) Date Published February 1995 P Printed in Japan © 1995 µPD78001B(A), 78002B(A) ORDERING INFORMATION Part Number Package Quality Grade µPD78001BCW (A)-××× 64-pin plastic shrink DIP (750 mil) Special µPD78001BGC (A)-×××-AB8 64-pin plastic QFP (■ ■ 14 mm) Special µPD78002BCW (A)-××× 64-pin plastic shrink DIP (750 mil) Special µPD78002BGC (A)-×××-AB8 64-pin plastic QFP (■ ■ 14 mm) Special Remark ××× indicates ROM code No. Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications. Difference between the µPD78001B(A), 78002B(A) and the µPD78001B, 78002B. Product Name Item Quality Grade 2 µPD78001B(A), 78002B(A) µPD78001B, 78002B Special Standard µPD78001B(A), 78002B(A) 78K/0 SERIES PRODUCT DEVELOPMENT These products are a further development in the 78K/0 Series. The designations appearing inside the boxes are subseries names. Products in Volume Production Products under Development 2 Y series products are compatible with I C bus. For control 100-pin 80-pin 64-pin 64-pin 64-pin 42/44-pin µ PD78078 µ PD78054 µ PD78018F µ PD78014 µ PD78002 µ PD78083 µ PD78078Y µ PD78054Y µPD78018FY µ PD78014Y µ PD78002Y Timer added to the µ PD78054, external interface functions UART and D/A added to the µ PD78014, I/O enhanced Low-voltage (1.8 V) operation version of the µ PD78014, with enhanced ROM and RAM variations A/D and 16-bit timer added to the µ PD78002 Basic subseries for control Internal UART, low-voltage (1.8 V) operation possible 78K/0 Series For FIP® driving I/O, FIP C/D of the µPD78044A enhanced, display output total: 53 6-bit U/D counter added to the µPD78024, display output total: 34 Basic subseries for FIP driving, display output total: 26 100-pin µ PD780208 80-pin µPD78044A 64-pin µ PD78024 For LCD driving µ PD78064 100-pin For IEBus 80-pin µ PD78064Y Subseries for LCD driving, internal UART TM IEBus controller added to the µPD78054 µ PD78098 The major functional differences among the subseries are shown below. Function Timer A/D Name For Control 8-bit 16-bit Watch Watchdog µPD78078 4ch 1ch 1ch 1ch µPD78054 2ch 8-bit × 8ch µPD78018F D/A Serial Interface 8-bit × 2ch 3ch (UART: 1ch) — 2ch I/O VDD MIN. Value External Expansion 88 1.8 V C 69 2.0 V 53 1.8 V µPD78014 2.7 V µPD78002 — µPD78083 For FIP driving µPD780208 — 2ch 1ch 1ch 1ch — 1ch 8-bit × 8ch 1ch (UART: 1ch) 8-bit × 8ch — 2ch 33 1.8 V — 74 2.7 V — µPD78044A 68 µPD78024 54 For LCD driving µPD78064 2ch 1ch 1ch 1ch 8-bit × 8ch For IEBusTM µPD78098 2ch 1ch 1ch 1ch 8-bit × 8ch — 2ch (UART: 1ch) 57 2.0 V — 8-bit × 2ch 3ch (UART: 1ch) 69 2.7 V C 3 µPD78001B(A), 78002B(A) OVERVIEW OF FUNCTION Product Name µPD78001B(A) Item Internal memory ROM Internal highspeed RAM 16K bytes 384 bytes 64K bytes General registers 8 bits × 32 registers (8 bits × 8 registers × 4 banks) Instruction cycle On-chip instruction execution time cycle modification function 0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (at 10.0 MHz operation) 122 µs (at 32.768 kHz operation) Instruction set • 16-bit operation • Bit manipulation (set, reset, test, boolean operation) • BCD correction, etc. I/O ports Total • CMOS input • CMOS I/O • N-channel open-drain I/O (15 V withstand voltage) Serial interface : 53 : 02 : 47 : 04 • 3-wire/SBI/2-wire mode selectable • 8-bit timer/event counter • Watch timer • Watchdog timer Timer : 2 channels : 1 channel : 1 channel Timer output 2 Clock output 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz (at main system clock 10.0 MHz operation), 32.768 kHz (at subsystem clock 32.768 kHz operation) Buzzer output 2.4 kHz, 4.9 kHz, 9.8 kHz (at main system clock 10.0 MHz operation) Vectored Maskable interrupts Internal : 5 External : 4 Non-maskable interrupt Internal : 1 Software interrupt Internal : 1 interrupts 4 8K bytes 256 bytes Memory space When main system clock selected When subsystem clock selected µPD78002B(A) Test input Internal : 1 External : 1 Operating voltage range VDD = 2.7 to 6.0 V Operating ambient temperature range –40 to +85°C Package • 64-pin plastic shrink DIP (750 mil) • 64-pin plastic QFP (■ ■ 14 mm) µPD78001B(A), 78002B(A) CONTENTS 1. PIN CONFIGURATION (TOP VIEW) ..................................................................................................... 6 2. BLOCK DIAGRAM ................................................................................................................................... 9 3. PIN FUNCTIONS ..................................................................................................................................... 10 3.1 PORT PINS ...................................................................................................................................................... 10 3.2 OTHER PINS ................................................................................................................................................... 12 3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS ...................................... 13 4. MEMORY SPACE .................................................................................................................................... 15 5. PERIPHERAL HARDWARE FUNCTION FEATURES ............................................................................ 16 6. 5.1 PORTS .............................................................................................................................................................. 16 5.2 CLOCK GENERATOR ...................................................................................................................................... 17 5.3 TIMER/EVENT COUNTER .............................................................................................................................. 18 5.4 CLOCK OUTPUT CONTROL CIRCUIT ......................................................................................................... 20 5.5 BUZZER OUTPUT CONTROL CIRCUIT ....................................................................................................... 20 5.6 SERIAL INTERFACES ..................................................................................................................................... 21 INTERRUPT FUNCTIONS AND TEST FUNCTIONS .......................................................................... 22 6.1 INTERRUPT FUNCTIONS ............................................................................................................................... 22 6.2 TEST FUNCTIONS .......................................................................................................................................... 25 7. EXTERNAL DEVICE EXPANSION FUNCTIONS ................................................................................. 26 8. STANDBY FUNCTIONS ......................................................................................................................... 26 9. RESET FUNCTION .................................................................................................................................. 26 10. INSTRUCTION SET ................................................................................................................................ 27 11. ELECTRICAL SPECIFICATIONS ............................................................................................................. 30 12. CHARACTERISTIC CURVE (REFERENCE VALUES) ........................................................................... 48 13. PACKAGE DRAWINGS ........................................................................................................................... 52 14. RECOMMENDED SOLDERING CONDITIONS ..................................................................................... 56 APPENDIX A. DEVELOPMENT TOOLS ...................................................................................................... 57 APPENDIX B. RELATED DOCUMENTS ...................................................................................................... 59 5 µPD78001B(A), 78002B(A) 1. PIN CONFIGURATION (TOP VIEW) 64-Pin Plastic Shrink DIP (750 mil) 1 64 IC3 P21 2 63 IC2 P22 3 62 P17 P23 4 61 P16 P24 5 60 P15 P25/SI0/SB0 6 59 P14 P26/SO0/SB1 7 58 P13 P27/SCK0 8 57 P12 P30 9 56 P11 P31/TO1 10 55 P10 P32/TO2 11 54 IC1 P33/TI1 12 53 P04/XT1 P34/TI2 13 52 XT2 51 IC0 50 X1 49 X2 48 V DD 47 P03/INTP3 46 P02/INTP2 45 P01/INTP1 P35/PCL 14 P36/BUZ 15 P37 16 V SS 17 P40/AD0 18 P41/AD1 19 P42/AD2 20 P43/AD3 21 44 P00/INTP0 P44/AD4 22 43 RESET P45/AD5 23 42 P67/ASTB P46/AD6 24 41 P66/WAIT P47/AD7 25 40 P65/WR P50/A8 26 39 P64/RD P51/A9 27 38 P63 P52/A10 28 37 P62 P53/A11 29 36 P61 P54/A12 30 35 P60 P55/A13 31 34 P57/A15 V SS 32 33 P56/A14 Always connect the IC0, IC1 and IC3 (Internally Connected) pins to VSS directly. Always connect the IC2 pin to VDD directly. 6 µPD78001BCW(A)– × × × µPD78002BCW(A)– × × × Remark P20 µPD78001B(A), 78002B(A) P12 P13 P14 P15 P16 P17 IC2 IC3 P20 P21 P22 P23 P24 P25/SI0/SB0 P30 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 P11 P31/TO1 2 47 P10 P32/TO2 3 46 IC1 P33/TI1 4 45 P04/XT1 P34/TI2 5 44 XT2 43 IC0 42 X1 41 X2 40 V DD 39 P03/INTP3 38 P02/INTP2 37 P01/INTP1 P35/PCL 6 P36/BUZ 7 P37 8 V SS 9 µPD78001BGC(A)– × × × –AB8 µPD78002BGC(A)– × × × –AB8 P65/WR P66/WAIT P64/RD P67/ASTB P63 34 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P62 15 P46/AD6 P61 P45/AD5 P60 RESET P57/A15 P00/INTP0 35 P56/A14 36 14 V SS 13 P44/AD4 P55/A13 P43/AD3 P54/A12 12 P53/A11 P42/AD2 P52/A10 11 P51/A9 10 P41/AD1 P50/A8 P40/AD0 P47/AD7 Remark P26/SO0/SB1 P27/SCK0 64-Pin Plastic QFP (■ ■ 14 mm) Always connect the IC0, IC1 and IC3 (Internally Connected) pins to VSS directly. Always connect the IC2 pin to VDD directly. 7 µPD78001B(A), 78002B(A) P00 to P04 P10 to P17 P20 to P27 P30 to P37 P40 to P47 P50 to P57 P60 to P67 INTP0 to INTP3 TI1, TI2 TO1, TO2 SB0, SB1 SI0 SO0 SCK0 8 : : : : : : : : : : : : : : Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Interrupt From Peripherals Timer Input Timer Output Serial Bus Serial Input Serial Output Serial Clock PCL BUZ AD0 to AD7 A8 to A15 RD WR WAIT ASTB X1, X2 XT1, XT2 RESET VDD VSS IC0 to IC3 : : : : : : : : : : : : : : Programmable Clock Buzzer Clock Address/Data Bus Address Bus Read Strobe Write Strobe Wait Address Strobe Crystal (Main System Clock) Crystal (Subsystem Clock) Reset Power Supply Ground Internally Connected µPD78001B(A), 78002B(A) 2. BLOCK DIAGRAM TO1/P31 TI1/P33 TO2/P32 TI2/P34 8-bit TIMER/ EVENT COUNTER 1 PORT0 P00 P01-P03 P04 8-bit TIMER/ EVENT COUNTER 2 PORT1 P10-P17 PORT2 P20-P27 WATCH TIMER PORT3 P30-P37 SERIAL INTERFACE 0 PORT4 P40-P47 INTERRUPT CONTROL PORT5 P50-P57 PORT6 P60-P67 WATCHDOG TIMER 78K/0 CPU CORE SI0/SB0/P25 SO0/SB1/P26 SCK0/P27 INTP0/P00 – INTP3/P03 ROM RAM BUZ/P36 BUZZER OUTPUT PCL/P35 CLOCK OUTPUT CONTROL AD0/P40AD7/P47 EXTERNAL ACCESS VDD Remark VSS IC0IC3 SYSTEM CONTROL A8/P50A15/P57 RD/P64 WR/P65 WAIT/P66 ASTB/P67 RESET X1 X2 XT1/P04 XT2 Internal ROM & RAM capacity varies depending on the product. 9 µPD78001B(A), 78002B(A) 3. PIN FUNCTIONS 3.1 PORT PINS (1/2) Pin Name I/O P00 Input P01 Input/ output P02 Reset DualFunction Pin Input only Input INTP0 Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Input INTP1 Function Port 0 5-bit I/O port After INTP2 P03 INTP3 Input only P04* Input P10 to P17 Input/ output Port 1 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. P20 Input/ output Port 2 8-bit input/output port. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. P21 P22 Input XT1 – Input – – – P23 – P24 – P25 SI0/SB0 P26 SO0/SB1 P27 SCK0 P30 P31 Input/ output P32 Port 3 8-bit input/output port. Input/output can be specified in bit-wise. When used as an input port, pull-up resistor can be used by software. Input – TO1 TO2 P33 TI1 P34 TI2 P35 PCL P36 BUZ P37 – P40 to P47 Input/ output Port 4 8-bit input/output port. Input/output can be specified in 8-bit unit. When used as an input port, pull-up resistor can be used by software. Test input flag (KRIF) is set to 1 by falling edge detection. Input AD0 to AD7 * When using the P04/XT1 pins as an input port, set 1 to bit 6 (FRC) of the processor control register. (Do not use the on-chip feedback register of the subsystem clock oscillator.) 10 µPD78001B(A), 78002B(A) 3.1 PORT PINS (2/2) Pin Name I/O P50 to P57 Input/ output Port 5 8-bit input/output port. LED can be driven directly. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. P60 Input/ output Port 6 8-bit input/output port. Input/output can be specified bit-wise. P61 P62 Function N-ch open-drain input/output port. Onchip pull-up resistor can be specified by mask option. LED can be driven directly. After Dual- Reset Function Pin Input A8 to A15 Input P63 When used as an input port, pull-up resistor can be used by software. P64 P65 RD WR P66 WAIT P67 ASTB Caution When pull-up resistors are not used (specified by mask option), the low-level input leak current increases with -200 µA (MAX.) under either of the following conditions. 1 When the external device expansion function is used and a low-level is input to the pin. 2 During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode register (PM6). 11 µPD78001B(A), 78002B(A) 3.2 OTHER PINS Pin Name INTP0 I/O Input Function Effective edge (rising edge, falling edge, or both rising edge and falling edge) After Dual- Reset Function Pin Input P00 INTP1 can be specified. P01 INTP2 External interrupt input. P02 INTP3 Falling edge detection external interrupt input. P03 SI0 Input SO0 Output SB0 Input SB1 /output SCK0 Input Serial interface serial data input. Input P25/SB0 Serial interface serial data output. Input P26/SB1 Serial interface serial data input/output. Input P25/SI0 P26/SO0 Serial interface serial clock input/output. Input P27 External count clock input to 8-bit timer (TM1). Input P33 /output TI1 Input TI2 TO1 External count clock input to 8-bit timer (TM2). Output TO2 8-bit timer (TM1) output. P34 Input 8-bit timer (TM2) output. P31 P32 PCL Output Clock output (for main system clock, subsystem clock trimming). Input P35 BUZ Output Buzzer output. Input P36 Low-order address/data bus at external memory expansion. Input P40 to P47 AD0 to AD7 Input /output A8 to A15 Output High-order address bus at external memory expansion. Input P50 to P57 RD Output External memory read operation strobe signal output. Input P64 WR External memory write operation strobe signal output. WAIT Input ASTB Output P65 Wait insertion at external memory access. Input P66 Strobe output which latches the address information output at port 4 and Input P67 port 5 to access external memory. RESET Input System reset input. — — X1 Input Main system clock oscillation crystal connection. — — X2 — — — Input P04 — — XT1 Input Subsystem clock oscillation crystal connection. XT2 — VDD — Positive power supply. — — VSS — Ground potential. — — IC0 to IC3 — Internal connection. IC0/IC1/IC3 and IC2 should be connected directly to VSS — — VDD, respecitively. 12 µPD78001B(A), 78002B(A) 3.3 PIN I/O CIRCUIT AND RECOMMENDED CONNECTION OF UNUSED PINS The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, see Fig. 3-1. Table 3-1 Input/Output Circuit Type of Each Pin Pin Name Input/Output I/O Circuit Type Recommended Connection when Not Used Input Connected to VSS . 8-A Input/output Connected to VSS through resistor independently. P04/XT1 16 Input Connected to VDD or VSS . P10 to P17 5-A Input/output Connected to VDD or VSS through resistor independently. P00/INTP0 2 P01/INTP1 P02/INTP2 P03/INTP3 P20 to P24 P25/SI0/SB0 10-A P26/SO0/SB1 P27/SCK0 P30 5-A P31/TO1 P32/TO2 P33/TI1 8-A P34/TI2 P35/PCL 5-A P36/BUZ P37 P40/AD0 to P47/AD7 5-E Connected to VDD through resistor independently. P50/A8 to P57/A15 5-A Connected to VDD or VSS through resistor independently. P60 to P63 13-B Connected to VDD through resistor independently. P64/RD 5-A Connected to VDD or VSS through resistor independently. P65/WR P66/WAIT P67/ASTB RESET 2 Input — XT2 16 — Leave open. IC0, IC1, IC3 — IC2 Connected to VSS directly. Connected to VDD directly. 13 µPD78001B(A), 78002B(A) Fig. 3-1 Pin Input/Output Circuits V DD Type 10-A Type 2 pullup enable P-ch V DD IN data P-ch IN / OUT open drain output disable N-ch Schmitt-Triggered Input with Hysteresis Characteristic Type 5-A Type 13-B V DD pullup enable V DD Mask Option P-ch data output disable V DD data IN / OUT N-ch P-ch V DD IN / OUT output disable N-ch input enable Middle-High Voltage Input Buffer Type 5-E pullup enable data P-ch RD Type 16 V DD feedback cut-off P-ch P-ch V DD P-ch IN / OUT output disable N-ch XT1 V DD Type 8-A pullup enable P-ch V DD data P-ch IN / OUT output disable 14 N-ch XT2 µPD78001B(A), 78002B(A) 4. MEMORY SPACE The memory map of µPD78001B(A)/78002B(A) is shown in Fig. 4-1. Fig. 4-1 Memory Map FFFFH Special Function Registers (SFR) 256 × 8 Bits FF00H FEFFH FEE0H FEDFH General Registers 32 × 8 Bits Internal High-Speed RAM* mmmmH nnnnH mmmmH–1 Program Area Data Memory Use Prohibited 1000H 0FFFH Space CALLF Entry Area 0800H 07FFH FA80H FA7FH Program Area Program Memory External Memory 0080H 007FH Space nnnnH+1 CALLT Table Area nnnnH 0040H 003FH Internal ROM* 0000H 0000H Remark Vector Table Area Shaded area indicates internal memory. * Intermal ROM and internal high-speed RAM capacities vary depending on the product (see the table below). Product Name Internal ROM Internal High-Speed End Address RAM Start Address nnnnH mmmmH µPD78001B(A) 1FFFH FE00H µPD78002B(A) 3FFFH FD80H 15 µPD78001B(A), 78002B(A) 5 PERIPHERAL HARDWARE FUNCTION FEATURES 5.1 PORTS The I/O port has the following three types. • CMOS input (P00, P04) • CMOS input/output (P01 to P03, port 1 to port 5, P64 to P67) • N-ch open-drain input/output (15V withstand voltage) (P60 to P63) : : 47 Total : 53 : 2 4 Table 5-1 Functions of Ports Port Name Port 0 Pin Name P00, P04 Dedicated Input port P01 to P03 Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Input/output ports. Input/output can be specified in 8-bit units. When used as an input port, pull-up resistor can be used by software. Test input flag (KRIF) is set to 1 by falling edge detection. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. LED can be driven directly. N-ch open-drain input/output port. Input/output can be specified bit-wise. On-chip pull-up resistor can be specified by mask option. LED can be driven directly. Input/output ports. Input/output can be specified bit-wise. When used as an input port, pull-up resistor can be used by software. Port 1 P10 to P17 Port 2 P20 to P27 Port 3 P30 to P37 Port 4 P40 to P47 Port 5 P50 to P57 Port 6 P60 to P63 P64 to P67 Caution Function When pull-up resistors are not used (specified by mask option), low-level input leak current increases with –200 µA (MAX.) under either of the following conditions. 1 When the external device expansion function is used and a low-level is input to the pin. 2 During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode register (PM6). 16 µPD78001B(A), 78002B(A) 5.2 CLOCK GENERATOR There are two types of clock generator: main system clock and subsystem clock. The instruction exection time can be changed. • 0.4 µs/0.8 µs/1.6 µs/3.2 µs/6.4 µs (mainsystem clock: at 10.0 MHz operation) • 122 µs (subsystem clock: at 32.768 KHz operation) Fig. 5-1 Clock Generator Block Diagram XT1/P04 XT2 Watch Timer Clock Output Function Subsystem fXT Clock Osicillator Prescaler X1 X2 Main System Clock Osicillator fX Clock to Peripheral Hardware Prescaler fX 2 fX 22 fX 23 fX 24 STOP Selector Standby Control Circuit Wait Control Circuit CPU Clock (fCPU) INTP0 Sampling Clock 17 µPD78001B(A), 78002B(A) 5.3 TIMER/EVENT COUNTER The following four channels are incorporated in the timer/event counter. • 8-bit timer/event counter • Watch timer • Watchdog timer : 2 channels : 1 channel : 1 channel Table 5-2 Types and Features of Timer/Event Counter Type Functions 8-bit Timer/Event Counter Watch Timer Watchdog Timer Interval timer 2 channels 1 channel 1 channel External event counter 2 channels – – Timer output 2 outputs – – Sqare wave output 2 outputs – – 2 2 1 Interrupt request Fig. 5-2 8-Bit Timer/Enent Counter Block Diagram Internal Bus INTTM1 8-Bit Compare Register (CR10) 8-Bit Compare Register (CR20) Selector Match Match Output Control Circuit INTTM2 fX/2 – fX/210 fX/212 TO2/P32 Selector 8-Bit Timer Register 1 (TM1) Selector TI1/P33 Clear 8-Bit Timer Register 2 (TM2) Clear fX/2 – fX/210 fX/212 Selector Selector TI1/P34 Output Control Circuit Internal Bus 18 TO1/P31 µPD78001B(A), 78002B(A) Fig. 5-3 Watch Timer Block Diagram Selector fX/2 8 Selector fW 5-Bit Counter fW 214 Selector Prescaler fXT fW 24 fW 25 fW 26 fW 27 fW 28 INTWT fW 213 fW 29 INTTM3 Selector Fig. 5-4 Watchdog Timer Block Diagram fW 24 Prescaler fW 25 fW 26 fW 27 fW 28 fW 29 fW fW 210 212 INTWDT Maskable Interrupt Request Selector 8-Bit Counter Control Circuit RESET INTWDT Non-Maskable Interrupt Request 19 µPD78001B(A), 78002B(A) 5.4 CLOCK OUTPUT CONTROL CIRCUIT The clock with the following frequencies can be output for clock output. • 39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz (Main system clock: at 10.0 MHz operation) • 32.768 kHz (Subsystem clock: at 32.768 kHz operation) Fig. 5-5 Clock Output Control Block Diagram fX/2 3 fX/2 4 fX/2 5 fX/2 6 Selector Synchronization Circuit Output Control Circuit fX/2 7 fX/2 8 fXT 5.5 BUZZER OUTPUT CONTROL CIRCUIT The clock with the following frequencies can be output for buzzer output. • 2.4 kHz/4.9 kHz/9.8 kHz (Main system clock: at 10.0 MHz operation) Fig. 5-6 Buzzer Output Control Block Diagram fX/210 fX/211 fX/212 20 Selector Output Control Circuit BUZ/P36 PCL/P35 µPD78001B(A), 78002B(A) 5.6 SERIAL INTERFACES There is one on-chip clocked serial interface. Serial Interface channel 0 has the following three modes. • 3-wire serial I/O mode • SBI (Serial Bus Interface) mode • 2-wire serial I/O mode : MSB/LSB-first switchable : MSB-first : MSB-first Fig. 5-7 Serial Interface Channel 0 Block Diagram Internal Bus SI0/SB0/P25 Selector Serial I/O Shift Register 0 (SIO0) Output Latch SO0/SB1/P26 Selector SCK0/P27 Bus Release/Command/ Acknowledge Detection Circuit Serial Counter Busy/Acknowledge Output Circuit Interrupt Request Signal Generator INTCSI0 fX/22 – fX/2 9 Serial Clock Control Circuit Selector TO2 21 µPD78001B(A), 78002B(A) 6. INTERRUPT FUNCTIONS AND DEST FUNCTIONS 6.1 INTERRUPT FUNCTIONS There are 11 interrupt functions of 3 different kinds as shown below. • Non-maskable interrupt • Maskable interrupt • Software interrupt : : : 1 9 1 Table 6-1 Interrrupt Source List Interrupt Type Default Priority *1 Nonmaskable Maskable Software Interrupt Source Name Trigger INTWDT Watchdog timer overflow (with nonmaskable interrupt selected) 0 INTWDT Watchdog timer overflow (with interval timer selected) 1 INTP0 2 Pin input edge detection Internal/ External Vector Table Adress Basic Configuration Type *2 Internal 0004H A B 0006H C INTP1 0008H D 3 INTP2 000AH 4 INTP3 000CH 5 INTCSI0 Serial interface channel 0 transfer end 6 INTTM3 Reference time interval signal from watch timer 0012H 7 INTTM1 8-bit timer/event counter 1 match signal generation 0016H 8 INTTM2 8-bit timer/event counter 2 match signal generation 0018H BRK BRK instruction execution External Internal Internal 000EH 003EH B E * 1. The default priority is the priority applicable when more priority than one maskable interrupt is generated. 0 is the highest and 11, the lowest. 2. Basic configuration types A to E correspond to (A) to (E) on the next page. 22 µPD78001B(A), 78002B(A) Fig. 6-1 Interrupt Function Basic Configuration (1/2) (A) Internal Non-Maskable Interrupt Internal Bus Interrupt Request Vector Table Address Generator Priority Control Circuit Standby Release Signal (B) Internal Maskable Interrupt Internal Bus MK Interrupt Request PR IE ISP Priority Control Circuit IF Vector Table Address Generator Standby Release Signal (C) External Maskable Interrupt (INTP0) Internal Bus Sampling Clock Select Register (SCS) Interrupt Request Sampling Clock External Interrupt Mode Register (INTM0) Edge Detector MK IF IE PR Priority Control Circuit ISP Vector Table Address Generator Standby Release Signal 23 µPD78001B(A), 78002B(A) Fig. 6-1 Interrupt Function Basic Configuration (2/2) (D) External Maskable Interrupt (Except INTP0) Internal Bus External Interrupt Mode Register (INTM0) Interrupt Request Edge Detector MK IE PR Priority Control Circuit IF ISP Vector Table Address Generator Standby Release Signal (E) Software Interrupt Internal Bus Interrupt Request Remarks 24 1. IF 2. 3. IE : Interrupt enable flag ISP : In-service priority flag : Interrupt request flag 4. 5. MK : Interrupt mask flag PR : Priority spcification flag Priority Control Circuit Vector Table Address Generator µPD78001B(A), 78002B(A) 6.2 TEST FUNCTIONS There are two test functions as shown in Table 6-2. Table 6-2 Test Source List Test Source Internal/External Name Trigger INTWT Watch timer overflow Internal NTPT4 Port 4 falling edge detection External Fig. 6-2 Test Function Basic Configuration Internal Bus MK Test Input Remarks 1. IF 2. MK : Test mask flag IF Standby Release Signal : Test input flag 25 µPD78001B(A), 78002B(A) 7. EXTERNAL DEVICE EXPANSION FUNCTIONS The external device expansion function is used to connect external devices to areas other than the internal ROM, RAM and SFR. Ports 4 to 6 are used for connection with external devices. 8. STANDBY FUNCTIONS There are the following two standby functions to reduce the current dissipation. • HALT mode : The CPU operating clock is stopped. The average consumption current can be reduced by intermittent operation in combination with the normal operating mode. • STOP mode : The main system clock oscillation is stopped. The whole operation by the main system clock is stopped, so that the system operates with ultra-low power consumption using only the subsystem clock. Fig. 8-1 Standby Functions CSS=1 Main System Clock Operation Interrupt Request CSS=0 HALT Instruction STOP Instruction Interrupt Request STOP Mode (Main system clock oscillation stopped) * HALT Mode (Clock supply to CPU is stopped, oscillation) Interrupt Request HALT Instruction HALT Mode* (Clock supply to CPU is stopped, oscillation) The power consumption can be reduced by stopping the main system clock. When the CPU is operating on the subsystem clock, set the MCC to stop the main system clock. The STOP instruction cannot be used. Caution When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program by the program. 9. RESET FUNCTION There are the following two reset methods. • External reset input by RESET pin. • Internal reset by watchdog timer runaway time detection. 26 Subsystem Clock Operation* µPD78001B(A), 78002B(A) 10. INSTRUCTION SET (1) 8-Bit Instruction MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ 2nd Operand [HL+byte] #byte A r* sfr saddr !addr16 PSW [DE] [HL] 1st Operand A r [HL+B] $addr16 1 None [HL+C] ADD MOV MOV MOV MOV ADDC XCH XCH XCH XCH SUB ADD ADD ADD MOV MOV MOV MOV XCH XCH XCH ROL ADD ADD RORC ROLC SUBC ADDC ADDC ADDC ADDC ADDC AND SUB SUB SUB SUB SUB OR SUBC SUBC SUBC SUBC SUBC XOR AND AND AND AND AND CMP OR OR OR OR OR XOR XOR XOR XOR XOR CMP CMP CMP CMP CMP MOV ROR MOV INC ADD DEC ADDC SUB SUBC AND OR XOR CMP r1 DBNZ sfr MOV MOV saddr MOV MOV ADD DBNZ INC DEC ADDC SUB SUBC AND OR XOR CMP !addr16 PSW MOV MOV MOV PUSH POP [DE] MOV [HL] MOV ROR4 ROL4 [HL+byte] MOV [HL+B] [HL+C] * Except r = A 27 µPD78001B(A), 78002B(A) (2) 16-Bit Instruction MOVW, XCHW ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW 2nd Operand #word AX rp* sfrp ADDW MOVW MOVW SUBW XCHW saddrp !addr16 SP None 1st Operand AX MOVW MOVW MOVW CMPW rp MOVW MOVW* INCW, DECW PUSH, POP sfrp MOVW MOVW saddrp MOVW MOVW !addr16 SP MOVW MOVW MOVW * Only when rp = BC, DE, HL. (3) Bit Operation Instruction MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR 2nd Operand A.bit sfr.bit saddr.bit PWS.bit [HL].bit CY $addr16 None 1st Operand A.bit MOV1 BT SET1 BF CLR1 BTCLR sfr.bit MOV1 BT SET1 BF CLR1 BTCLR saddr.bit MOV1 BT SET1 BF CLR1 BTCLR PSW.bit MOV1 BT SET1 BF CLR1 BTCLR [HL].bit MOV1 BT SET1 BF CLR1 BTCLR CY 28 MOV1 MOV1 MOV1 MOV1 MOV1 SET1 AND1 AND1 AND1 AND1 AND1 CLR1 OR1 OR1 OR1 OR1 OR1 NOT1 XOR1 XOR1 XOR1 XOR1 XOR1 µPD78001B(A), 78002B(A) (4) Call Instruction/Branch Instruction CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF,BTCLR, DBNZ 2nd Operand AX !addr16 !addr11 [addr5] BR CALL, BR CALLF CALLT $addr16 1st Operand Basic instruction Compound instruction BR, BC, BNC, BZ, BNZ BT, BF, BTCLR, DBNZ (5) Other Instruction ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP 29 µPD78001B(A), 78002B(A) 11. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25 °C) Parameter Supply voltage Input voltage Symbol Test Conditions Rating Unit –0.3 to + 7.0 V –0.3 to VDD + 0.3 V –0.3 to +16 V –0.3 to VDD + 0.3 V 1 pin –10 mA P10 to P17, P20 to P27, P30 to P37 total –15 mA P01 to P03, P40 to P47, P50 to P57, P60 to P67 total –15 mA Peak value 30 mA Effective value 15 mA Peak value 100 mA Effective value 70 mA P01 to P03, P56, P57, Peak value 100 mA P60 to P67 total Effective value 70 mA P01 to P03, Peak value 50 mA P64 to P67 total Effective value 20 mA P10 to P17, P20 to P27, P30 to P37 Peak value 50 mA total Effective value 20 mA TA –40 to +85 °C Tstg –65 to +150 °C VDD VI1 P00 to P04, P10 to P17, P20 to P27, P30 toP37 P40 to P47, P50 to P57, P64 to P67, X1, X2, XT2 VI2 Output voltage IOH Output 1 pin current low P40 to P47, P50 to P55 total IOL* Operating ambient temperature Storage temperature * Open-drain VO Output current high P60 to P67 Effective value should be calculated as follows: [Effective value] = [Peak value] × √duty Caution Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. That is, the absolute maximuam ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded. 30 µPD78001B(A), 78002B(A) Capacitance (TA = 25 °C, VDD = VSS = 0 V) Parameter Symbol Input capacitance CIN Test Conditions MIN. TYP. f=1 MHz Unmeasured pins returned to 0 V I/O capacitance MAX. Unit 15 pF 15 pF 20 pF P01 to P03, P10 to P17, f=1 MHz Unmeasured CIO pins returned to 0 V P20 to P27, P30 to P37, P40 toP47, P50 to P57, P64 to P67 P60 to P63 Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise. Main System Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) Recommended Circuit Resonator Ceramic X1 resonator X2 VSS Parameter Test Conditions Oscillator VDD = Oscillator frequency (fX) *1 voltage range MIN. TYP. 1 MAX. Unit 10 MHz 4 ms 10 MHz R1 C1 C2 Crystal After VDD reaches oscil- stabilization time *2 lator voltage range MIN. Oscillator X1 resonator C1 X2 VSS C2 External clock Oscillation 1 frequency (fX) *1 Oscillation 8.38 10 VDD = 4.5 to 6.0 V ms stabilization time *2 30 X1 input X2 X1 µPD74HCU04 frequency (fX) *1 1.0 10.0 MHz 42.5 500 ns X1 input high/low level width (tXH , tXL) * 1. Indicates only oscillation circuit characteristics. Refer to “AC Characteristics” for instruction execution time. 2. Time required to stabilize oscillation after reset or STOP mode release. Cautions 1. When using the main system clock oscillator, wiring the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance. 2. • Wiring should be as short as possible. • Wiring should not cross other signal lines. • Wiring should not be placed close to a varying high current. • The potential of the oscillator capacitor ground should be the same as VSS. • Do not ground wiring to a ground pattern in which a high current flows. • Do not fetch a signal from the oscillator. When the main system clock is stopped and the system is operated by the subsystem clock, the subsystem clock should be switched again to the main system clock after the oscillation stabilization time is secured by the program. 31 µPD78001B(A), 78002B(A) Subsystem Clock Oscillation Circuit Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) Recommended Circuit Resonator Crystal XT1 XT2 VSS resonator Test Conditions Parameter MIN. TYP. MAX. Unit 32 32.768 35 kHz 1.2 2 Oscillator frequency (fXT) *1 R2 C3 C4 Oscillation VDD = 4.5 to 6.0 V s stabilization time *2 External 10 XT1 input clock XT1 XT2 frequency (fXT) *1 32 100 kHz 5 15 µs XT1 input high/low level width (tXTH , tXTL) * 1. Indicates only oscillation circuit characteristics. Refer to “AC Characteristics” for instruction execution time. 2. Time required to stabilize oscillation after VDD reaches oscillator voltage MIN. Cautions 1. When using the subsystem clock oscillator, wiring in the area enclosed with the broken line should be carried out as follows to avoid an adverse effect from wiring capacitance. 2. • Wiring should be as short as possible. • Wiring should not cross other signal lines. • Wiring should not be placed close to a varying high current. • The potential of the oscillator capacitor ground should be the same as VSS. • Do not ground wiring to a ground pattern in which a high current flows. • Do not fetch a signal from the oscillator. The subsystem clock oscillation circuit is a circuit with a low amplification level, more prone to misoperation due to noise than the main system clock. When using the subsystem clock, special care is needed regarding the wiring method. 32 µPD78001B(A), 78002B(A) RECOMMENDED OSCILLATION CIRCUIT CONSTANT Main System Clock Ceramic Resonator (TA = –40 to +85 °C) Manufacturer Murata m.f.g. Products Recommended Oscillation Constant Frequency (MHz) Oscillation Voltage Range C1 (pF) C2 (pF) R1 (kΩ) MIN. (V) MAX. (V) 1.00 100 100 6.8 2.9 6.0 CSB × × × × J 1.01-1.25 100 100 4.7 2.7 6.0 CSA × . × × × MK 1.26-1.79 100 100 0 2.7 6.0 100 100 0 2.7 6.0 On-chip On-chip 0 2.7 6.0 30 30 0 2.7 6.0 On-chip On-chip 0 2.7 6.0 30 30 0 2.7 6.0 On-chip On-chip 0 2.7 6.0 30 30 0 2.9 6.0 On-chip On-chip 0 2.9 6.0 4.19 – – – 2.7 6.0 4.19 33 33 – 2.7 6.0 10.0 33 33 – 2.8 6.0 1.00 100 100 2.2 2.7 6.0 CSB1000J CSA × . × × MG CST × . × × MG 1.80-2.44 CSA× . × × MG CST× . × × MGW 2.45-4.18 CSA× . × × MG CST× . × × MGW 4.19-6.00 CSA× . × × MT CST× . × × MTW 6.01-10.0 KBR-4.19MWS Kyocera KBR-4.19MKS KBR-4.19MSA PBRC4.19A KBR-10.0M KBR-1000F KBR-1000Y Remark × × × × , × . × × × , × . × × indicates frequency. Subsystem Clock: Crystal Resonator (TA = –40 to +60 °C) Manufacturer Daishinku corp. Caution Products DT-38 (1TA632E00, Load capacitance 6.3pF) Frequency (MHz) 32.768 Recommended Circuit Constant Oscillation Voltage Range C3 (pF) C4 (pF) R2 (kΩ) MIN. (V) MAX. (V) 8 8 100 2.7 6.0 Regarding the oscillator circuit constant, operation is guaranteed, but reliability is not guaranteed. Customers who require high reliability should directly consult the resonator manufacturer. 33 µPD78001B(A), 78002B(A) DC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) Parameter Input voltage Symbol VIH1 high Test Conditions MIN. P10 to P17, P21, P23, P30 to P32, P35 to P37, TYP. MAX. Unit 0.7 VDD VDD V P40 to P47, P50 to P57, P64 to P67 Input voltage VIH2 P00 to P03, P20, P22, P24 to P27, P33, P34, RESET 0.8 VDD VDD V VIH3 P60 to P63 0.7 VDD 15 V VIH4 X1, X2 VDD-0.5 VDD V VIH5 XT1/P04, XT2 VDD-0.5 VDD V VDD-0.3 VDD V 0 0.3 VDD V 0 0.2 VDD V 0 0.3 VDD V 0 0.2 VDD V 0 0.4 V 0 0.4 V 0 0.3 V VIL1 low Open-drain VDD = 4.5 to 6.0 V P10 to P17, P21, P23, P30 to P32, P35 to P37 P40 to P47, P50 to P57, P64 to P67 VIL2 P00 to P03, P20, P22, P24 to P27, P33, P34, RESET VIL3 P60 to P63 VIL4 VIL5 Output voltage VOH1 high VDD = 4.5 to 6.0 V X1, X2 XT1/P04, XT2 VDD = 4.5 to 6.0 V VDD = 4.5 to 6.0 V,IOH = –1 mA IOH = –100 µA Output voltage low P50 to P57, P60 to P63 VDD = 4.5 to 6.0 V, VDD-1.0 V VDD-0.5 V 0.4 2.0 V 0.4 V 0.2 VDD V 0.5 V 3 µA X1, X2, XT1/P04, XT2 20 µA P60 to P63 80 µA –3 µA –20 µA –200 µA IOL = 15 mA VOL1 P01 to P03, P10 to P17, P20 to P27, VDD = 4.5 to 6.0 V, P30 to P37, P40 to P47, P64 to P67 IOL = 1.6 mA VDD = 4.5 to 6.0 V, VOL2 SB0, SB1, SCK0 open-drain pulled-up (R = 1 KΩ ) VOL3 IOL = 400 µA Input leakage current high P00 to P03, P10 to P17, P20 to P27, P30 to P37, ILIH1 VIN = VDD P40 to P47, P50 to P57, P60 to P67, RESET ILIH2 ILIH3 VIN = 15 V Input leakage current high P00 to P03, P10 to P17, P20 to P27, P30 to P37, ILIL1 P40 to P47, P50 to P57, VIN = 0 V * X1, X2, XT1/P04, XT2 ILIL3 P60 to P63 *1 Other than above –3 *2 µA 1. When memory expansion mode is used by the memory expansion mode register (MM) with no on-chip pull-up resistor by mask option. 2. When pull-up resistors are not used (specified by mask option), the low-level input leakage current increases with –200 µA (MAX.) under either of the following conditions. q w Remark 34 P64 to P67, RESET ILIL2 When the external device expansion function is used and a low level is input to the pin. During the 3-clock period when a read instruction is executed on port 6 (P6) and the port mode registor (PM6). The characteristics of a dual-function pin and a port pin are the same unless specified otherwise. µPD78001B(A), 78002B(A) DC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) Parameter Output leakage current high Output leakage current low Mask option pullup resister Symbol Test Conditions Unit 3 µA ILOL VOUT = 0 V –3 µA R1 VIN = 0 V, P60 to P63 VIN = 0 V, P01 to P03, P10 to P17, P20 to P27, R2 P30 to P37, P40 to P47, P50 to P57, P64 to P67 20 40 90 kΩ 4.5 V ≤ VDD < 6.0 V 15 40 90 kΩ 2.7 V ≤ VDD < 4.5 V 20 500 kΩ 8.38 MHz Crystal oscillation operating mode VDD = 5.0 V ± 10 % *1 7.5 22.5 mA VDD = 3.0 V ± 10 % 0.8 2.4 mA 8.38 MHz Crystal oscillation HALT mode VDD = 5.0 V ± 10 % 1.4 4.2 mA IDD2 VDD = 3.0 V ± 10 % 550 1650 µA VDD = 5.0 V ± 10 % 60 120 µA IDD3 32.768 kHz Crystal oscillation operating mode VDD = 3.0 V ± 10 % 35 70 µA 32.768 kHz Crystal oscillation HALT mode VDD = 5.0 V ± 10 % 25 50 µA IDD4 VDD = 3.0 V ± 10 % 5 10 µA XT1 = 0 V STOP mode When feedback resister is used VDD = 5.0 V ± 10 % 1 20 µA VDD = 3.0 V ± 10 % 0.5 10 µA XT1 = 0 V STOP mode When feedback resister is unused VDD = 5.0 V ± 10 % 0.1 20 µA VDD = 3.0 V ± 10 % 0.05 10 µA Power supply IDD1 IDD5 IDD6 * MAX. VOUT = VDD up resister current TYP. ILOH1 Software pull- *3 MIN. *2 1. Operating in high-speed mode (when set the processor clock control register to 00H). 2. Operating in low-speed mode (when set the processor clock control register to 04H). 3. Port current are excluded. Remark The characteristics of a dual-function pin and a port pin are the same unless specified otherwise. 35 µPD78001B(A), 78002B(A) AC Characteristics (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) (1) Basic Operation Parameter Symbol Cycle time Test Conditions Operating on main (Min. instruction TCY VDD = 4.5 to 6.0 V fTI tTIH low-level width tTIL Interrupt input tINTH high/low-level tINTL width RESET low * 64 µs µs µs 0 4 MHz 0 275 kHz VDD = 4.5 to 6.0 V 122 100 ns 1.8 µs 8/fsam* µs INTP1 to INTP3 10 µs KR0 to KR7 10 µs 10 µs INTP0 tRSL level width Unit 64 40 VDD = 4.5 to 6.0 V MAX. 125 0.96 Operationg on subsystem clock frequency TI input high/ TYP. 0.4 system clock execution time) TI input MIN. In combination with bits 0 (SCS0) and 1 (SCS1) of sampling clock select register, selection of fsam is possible between fX/2N+1, µPD78001B(A), 78002B(A) µPD78P014 (Reference) TCY vs VDD (At main system clock operation) TCY vs VDD (At main system clock operation) 60 60 10 10 Operation Guaranteed Range 2.0 Cycle Time TCY [µs] Cycle Time TCY [µs] fX/64 and fx/128 (when N = 0 to 4). Operation Guaranteed Range 2.0 1.0 1.0 0.5 0.4 0.5 0.4 0 0 1 2 3 4 5 6 1 Supply Voltage VDD [V] 36 3 4 5 6 Supply Voltage VDD [V] Remark Caution 2 indicates TA=–40 to +40 °C indicates TA=–40 to +85 °C The operation guaranteed range of the µPD78001B(A), and 78002B(A) differs from that of the µPD78P014. µPD78001B(A), 78002B(A) (2) Read/Write Operation (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) Parameter Symbol Test Conditions MIN. MAX. Unit ASTB high-level width tASTH 0.5tCY ns Address setup time tADS 0.5tCY–30 ns Address hold time tADH 10 ns Data input time from address tADD1 Load resistor ≥ 5 kΩ tADD2 Data input time from RD↓ 5 (2+2n)tCY–50 ns (3+2n)tCY–100 ns tRDD1 (1+2n)tCY–25 ns tRDD2 (2.5+2n)tCY–100 ns Read data hold time tRDH 0 ns RD low-level width tRDL1 (1.5+2n)tCY–20 ns tRDL2 (2.5+2n)tCY–20 WAIT↓ input time from RD↓ WAIT↓ input time from WR↓ WAIT low-level width ns tRDWT1 0.5tCY ns tRDWT2 1.5tCY ns tWRWT 0.5tCY ns (2+2n)tCY ns tWTL (0.5+2n)tCY +10 Write data setup time tWDS 100 ns Write data hold time tWDH 5 ns WR low-level width tWRL1 (2.5+2n)tCY –20 ns RD↓ delay time from ASTB↓ tASTRD 0.5tCY–30 ns WR↓ delay time from ASTB↓ tASTWR 1.5tCY –30 ns tRDAST tCY-10 tCY+40 ns tRDADH tCY tCY+50 ns tRDWD 10 ASTB↑ delay time from RD↑ in external fetch Address hold time from RD↑ in external fetch Write data output time from RD↑ WR↓ delay time from write data VDD = 4.5 to 6.0 V 0.5tCY–120 ns 0.5tCY ns 0.5tCY–170 0.5tCY ns tCY tCY+60 ns tCY tCY+100 ns tWDWR Address hold time from WR↑ VDD =4.5 to 6.0 V tWRADH RD↑ delay time from WAIT↑ tWTRD 0.5tCY 2.5tCY+80 ns WR↑ delay time from WAIT↑ tWTWR 0.5tCY 2.5tCY+80 ns Remarks 1. tCY = TCY/4 2. n indicates number of waits. 3. CL = 100 pF (CL indicates load capacitance of P40/AD0 to P47/AD7, P50/A8 to P57/A15, P64/RD, P65/WR, P66/WAIT,P67/ASTB pins). 37 µPD78001B(A), 78002B(A) (3) Serial Interface (TA = –40 to +85 °C, VDD = 2.7 to 6.0 V) (a) 3-wire serial I/O mode (SCK... Internal clock output) Parameter Symbol SCK cycle time Test Conditions VDD = 4.5 to 6.0 V MIN. TYP. MAX. Unit 800 ns 3200 ns tKCY1/2-50 ns tKL1 tKCY1/2-150 ns SI setup time (to SCK↑) tSIK1 100 ns SI hold time (from SCK↑) tKSI1 tKCY1 SCK high/low-level width tKH1 VDD = 4.5 to 6.0 V 400 SO output delay time from ns VDD = 4.5 to 6.0 V tKSO1 ns 1000 ns MAX. Unit C = 100 pF* SCK↓ * 300 C is the load capacitance of SO output line. (b) 3-wire serial I/O mode (SCK... External clock input) Parameter Symbol SCK cycle time Test Conditions VDD = 4.5 to 6.0 V MIN. TYP. 800 ns 3200 ns 400 ns tKCY2 SCK high/low-level width tKH2 VDD = 4.5 to 6.0 V tKL2 1600 ns SI setup time (to SCK↑) tSIK2 100 ns SI hold time (from SCK↑) tKSI2 400 SO output delay time from VDD = 4.5 to 6.0 V tKSO2 1000 tR2 tF2 * 38 ns C = 100 pF* SCK↓ SCK rise, fall time ns 300 When external device expansion 160 ns 1000 ns function is used When external device expansion function is not used C is the load capacitance of SO output line. µPD78001B(A), 78002B(A) (c) SBI mode (SCK... Internal clock output) Parameter SCK cycle time SCK high/low-level width Symbol tKCY3 tKH3 Test Conditions TYP. MAX. Unit VDD = 4.5 to 6.0 V 800 ns 3200 ns VDD = 4.5 to 6.0 V tKCY3/2-50 ns tKCY3/2-150 ns 100 ns 300 ns tKCY3/2 ns tKL3 SB0, SB1 setup time MIN. VDD = 4.5 to 6.0 V tSIK3 (to SCK↑) SB0, SB1 hold time tKSI3 from SCK↓ SB0, SB1 output delay time R = 1 kΩ , VDD = 4.5 to 6.0 V 0 250 ns 0 1000 ns tKSO3 (from SCK↑) * C = 100 pF* SB0, SB1↓ from SCK↑ tKSB tKCY3 ns SCK↓ from SB0, SB1↓ tSBK tKCY3 ns SB0, SB1 high-level width tSBH tKCY3 ns SB0, SB1 low-level width tSBL tKCY3 ns R and C are the load resistors and load capacitance of the SB0 and SB1 output line. (d) SBI mode (SCK... External clock input) Parameter Symbol SCK cycle time Test Conditions VDD = 4.5 to 6.0 V MIN. TYP. MAX. Unit 800 ns 3200 ns 400 ns 1600 ns 100 ns 300 ns tKCY4/2 ns tKCY4 SCK high/low-level width tKH4 VDD = 4.5 to 6.0 V tKL4 SB0, SB1 setup time VDD = 4.5 to 6.0 V tSIK4 (to SCK↑) SB0, SB1 hold time tKSI4 (from SCK↓) SB0, SB1 output delay time R = 1 kΩ , VDD = 4.5 to 6.0 V 0 300 ns 0 1000 ns tKSO4 from SCK↑ C = 100 pF* SB0, SB1↓ from SCK↑ tKSB tKCY4 ns SCK↓ from SB0, SB1↓ tSBK tKCY4 ns SB0, SB1 high-level width tSBH tKCY4 ns SB0, SB1 low-level width tSBL SCK rise, fall time tR4 tF4 tKCY4 When external device expansion ns 160 ns 1000 ns function is used When external device expansion function is not used * R and C are the load resistors and load capacitance of the SB0 and SB1 output line. 39 µPD78001B(A), 78002B(A) (e) 2-wire serial I/O mode (SCK... Internal clock output) Parameter Symbol SCK cycle time Test Conditions VDD = 4.5 to 6.0 V MIN. TYP. MAX. Unit 1600 ns 3800 ns tKCY5 SCK high-level width tKH5 tKCY5/2-50 ns SCK low-level width tKL5 R = 1 kΩ, C = 100 pF* tKCY5/2-50 ns tSIK5 300 ns tKSI5 600 ns SB0, SB1 setup time (to SCK↑) SB0, SB1 hold time (from SCK↑) SB0, SB1 output delay time R = 1 kΩ, VDD = 4.5 to 6.0 V 0 250 ns 0 1000 ns MAX. Unit tKSO5 from SCK↓ * C = 100 pF* R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line. (f) 2-wire serial I/O mode (SCK... External clock input) Parameter Symbol SCK cycle time Test Conditions VDD = 4.5 to 6.0 V MIN. TYP. 1600 ns tKCY6 3800 ns SCK high-level width tKH6 650 ns SCK low-level width tKL6 800 ns tSIK6 100 ns tKSI6 tKCY6/2 ns SB0, SB1 setup time (to SCK↑) SB0, SB1 hold time (from SCK↑) SB0, SB1 output delay time R = 1 kΩ, VDD = 4.5 to 6.0 V 0 300 ns 0 1000 ns 160 ns 1000 ns tKSO6 from SCK↓ C = 100 pF* SCK rise, fall time When external device expansion tR6 function is used tF6 When external device expansion function is not used * 40 R and C are the load resistors and load capacitance of the SCK0, SB0 and SB1 output line. µPD78001B(A), 78002B(A) AC Timing Test Point (Excluding X1, XT1 Input) 0.8 VDD 0.2 VDD 0.8 VDD 0.2 VDD Test Points Clock Timing 1/fX tXL tXH VDD - 0.5 V 0.4V X1 Input 1/fXT tXTL tXTH VDD - 0.5 V 0.4V XT1 Input TI Timing 1/fTI tTIL tTIH TI1, TI2 41 µPD78001B(A), 78002B(A) Read/Write Operation External fetch (no wait): A8-A15 Upper 8-Bit Address Lower 8-Bit Address tADD1 Hi-z AD0-AD7 tADS tASTH Operation Code tRDADH tRDD1 tADH tRDAST ASTB RD tRDL1 tASTRD tRDH External fetch (wait insertion): A8-A15 Upper 8-Bit Address Lower 8-Bit Address tADD1 Hi-z AD0-AD7 Operation Code tRDADH tRDD1 tADS tASTH tADH tRDAST ASTB RD tASTRD tRDL1 tRDH WAIT tRDWT1 42 tWTL tWTRD µPD78001B(A), 78002B(A) External data access (No wait): A8-A15 Upper 8-Bit Address Lower 8-Bit Address tADD2 Hi-z AD0-AD7 Read Data tADS Hi-z Write Data tRDD2 tADH tRDH tASTH ASTB RD tRDWD tWDS tRDL2 tASTRD tWDH tWDWR tWRADH WR tASTWR tWRL1 External data access (Wait insertion): A8-A15 Upper 8-Bit Address Lower 8-Bit Address tADD2 Hi-z AD0-AD7 Read Data Hi-z Write Data tRDD2 tADS tADH tRDH tASTH ASTB tASTRD RD tRDL2 tWDH tWDS tRDWD tWDWR WR tASTWR tWRL1 tWRADH WAIT tRDWT2 tWTRD tWTL tWRWT tWTL tWTWR 43 µPD78001B(A), 78002B(A) Serial Transfer Timing 3-wire serial I/O mode: tKCY 1,2 tKL1,2 tKH1,2 tR2 tF2 SCK tSIK1,2 SI tKSI1,2 Input Data tKSO1,2 SO Output Data SBI mode (Bus release signal transfer): tKCY3,4 tKL3,4 tKH3,4 tR4 tF4 SCK tKSB tSBL tSBK tSBH tSIK3,4 tKSI3,4 tSIK3,4 tKSI3,4 SB0, SB1 tKSO3,4 SBI mode (Command signal transfer): tKCY3,4 tKL3,4 tKH3,4 tR4 tF4 SCK tKSB tSBK SB0, SB1 tKSO3,4 44 µPD78001B(A), 78002B(A) 2-wire serial I/O mode: tKCY5,6 tKL5,6 tKH5,6 tR6 tF6 SCK tSIK5,6 tKSI5,6 tKSO5,6 SB0, SB1 45 µPD78001B(A), 78002B(A) Data Memory Stop Mode Low Supply Voltage Data Retention Characteristics (TA = –40 to +85 °C) Parameter Symbol Test Conditions MIN. TYP. MAX. Unit 6.0 V 10 µA Data retention VDDDR 2.0 supply voltage Data retention supply current IDDDR Release signal set time tSREL Oscillation stabilization VDDDR = 2.0 V Subsystem clock stop and feed-back resister disconnected 0.1 µs 0 Release by RESET 218/fx µs * µs tWAIT wait time Release by interrupt * In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register, selection of 213/fx and 215/fx to 218/fx is possible. Data Retention Timing (STOP Mode Release by RESET) HALT Mode Operating Mode STOP Mode Data Retension Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal) Internal Reset Operation HALT Mode Operating Mode STOP Mode Data Retension Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT 46 µPD78001B(A), 78002B(A) Interrupt Input Timing tINTL tINTH INTP0-INTP2 tINTL INTP3 RESET Input Timing tRSL RESET 47 µPD78001B(A), 78002B(A) 12. CHARACTERISTIC CURVE (REFERENCE VALUES) IDD vs VDD (Main System Clock : 8.38 MHz) (TA=25°C) 10.0 PCC=00H PCC=01H 5.0 PCC=02H PCC=03H PCC=04H PCC=30H HALT (X1 Oscillation, XT1 Oscillation) 1.0 Supply Current IDD [mA] 0.5 0.1 PCC=B0H 0.05 HALT (X1 Stop, XT1 Oscillation) STOP (X1 Stop, XT1 Oscillation) 0.01 f X =8.38MHz f XT=32.768kHz 0.005 0.001 0 2 3 4 5 Supply Voltage VDD [V] 48 6 7 8 µPD78001B(A), 78002B(A) IDD vs VDD (Main System Clock : 4.19 MHz) (TA=25°C) 10.0 5.0 PCC=00H PCC=01H PCC=02H PCC=03H PCC=04H PCC=30H HALT (X1 Oscillation, XT1 Oscillation) 1.0 Supply Current IDD [mA] 0.5 0.1 PCC=B0H 0.05 HALT (X1 Stop, XT1 Oscillation) STOP (X1 Stop, XT1 Oscillation) 0.01 f X =4.19MHz f XT=32.768kHz 0.005 0.001 0 2 3 4 5 6 7 8 Supply Voltage VDD [V] 49 µPD78001B(A), 78002B(A) IDD vs fX (VDD = 3 V, TA = 25 °C) 5 Supply Current IDD [mA] PCC=00H 4 3 PCC=01H 2 PCC=02H PCC=03H PCC=04H HALT (X1 Oscillation) 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 Clock Oscillator Frequency fX [MHz] IDD vs fX (VDD = 5 V, TA = 25 °C) 12 11 10 9 Supply Current IDD [mA] PCC=00H 8 7 6 PCC=01H 5 4 PCC=02H PCC=03H PCC=04H HALT (X1 Oscillation) 3 2 1 0 0 1 2 3 4 5 6 7 8 9 Clock Oscillator Frequency fX [MHz] 50 10 11 12 µPD78001B(A), 78002B(A) VOL vs IOL (Port 0, 2 to 5, P64 to P67) VOL vs IOL (P60 to P63) (TA=25 °C) (TA=25 °C) VDD=5 V VDD= 6 V VDD=4 V VDD=3 V 20 10 0 VDD=6 V 30 Output Current Low IOL [mA] Output Current Low IOL [mA] 30 0 0.5 VDD=5 V VDD=4 V VDD=3 V 20 10 1.0 Output Voltage Low VOL [V] 0 0 0.5 1.0 Output Voltage Low VOL [V] VOL vs IOL (Port 1) VOH vs IOH (Port 0 to 5, P64 to P67) (TA=25 °C) (TA=25 °C) Output Current Low IOL [mA] VDD=4 V VDD=3 V 20 10 Output Current High IOH [mA] VDD=6 V VDD=5 V 30 VDD=5 V VDD=4 V -10 VDD=6 V VDD=3 V -5 0 0 0 0 0.5 0.5 1.0 1.0 Output Voltage Low VOL [V] Output Voltage High VDD – VOH [V] 51 µPD78001B(A), 78002B(A) 13. PACKAGE DRAWINGS DRAWINGS OF MASS-PRODUCTION PRODUCT PACKAGES (1/2) 64-PIN PLASTIC SHRINK DIP (750 mil) 64 33 1 32 A K F D H G J I L N M NOTE B C M R ITEM MILLIMETERS INCHES 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition. A 58.68 MAX. 2.311 MAX. B 1.78 MAX. 0.070 MAX. 2) Item "K" to center of leads when formed parallel. C 1.778 (T.P.) 0.070 (T.P.) D 0.50±0.10 0.020 +0.004 –0.005 F 0.9 MIN. 0.035 MIN. G 3.2±0.3 0.126±0.012 H 0.51 MIN. 0.020 MIN. I 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K 19.05 (T.P.) 0.750 (T.P.) L 17.0 0.669 M 0.25 +0.10 –0.05 0.010 +0.004 –0.003 N 0.17 0.007 R 0~15° 0~15° P64C-70-750A,C-1 Caution Dimensions and materials of ES products are different from those of mass-production products. Refer to DRAWINGS OF ES PRODUCT PACKAGES (1/2). 52 µPD78001B(A), 78002B(A) DRAWINGS OF MASS-PRODUCTION PRODUCT PACKAGES (2/2) 64-PIN PLASTIC QFP (■ ■ 14) A B 48 49 33 32 F Q 5°±5° S D C detail of lead end 64 1 G 17 16 H I M J M P K N L P64GC-80-AB8-3 NOTE Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition. Caution ITEM MILLIMETERS INCHES A 17.6 ± 0.4 0.693 ± 0.016 B 14.0 ± 0.2 0.551+0.009 –0.008 C 14.0 ± 0.2 0.551+0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.35 ± 0.10 0.014 +0.004 –0.005 I 0.15 0.006 J 0.8 (T.P.) 0.031 (T.P.) K 1.8 ± 0.2 0.071 ± 0.008 L 0.8 ± 0.2 0.031+0.009 –0.008 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.10 0.004 P 2.55 0.100 Q 0.1 ± 0.1 0.004 ± 0.004 S 2.85 MAX. 0.112 MAX. Dimensions and materials are different from those of mass-production products. Refer to DRAWINGS OF ES PRODUCT PACKAGES (2/2). 53 µPD78001B(A), 78002B(A) DRAWINGS OF ES PRODUCT PACKAGES (1/2) 64PIN CERAMIC SHRINK DIP (SEAM WELD) (750 mil) 64 33 1 32 K A H G J I L F D B N M M C 0~15° P64D-70-750A1 NOTES 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition. 2) 54 Item "K" to center of leads when formed parallel. ITEM MILLIMETERS INCHES A 58.16 MAX. 2.290 MAX. B 1.521 MAX. 0.060 MAX. C 1.778 (T.P.) 0.070 (T.P.) D 0.46 ± 0.05 0.018 ± 0.002 F 0.8 MIN. 0.031 MIN. G 3.5 ± 0.3 0.138 ± 0.012 H 1.02 MIN. 0.040 MIN. I 3.14 0.124 J 5.08 MAX. 0.200 MAX. K 19.05 (T.P.) 0.750 (T.P.) L 18.8 0.740 M 0.25 ± 0.05 0.010 –0.003 N 0.25 0.01 +0.002 µPD78001B(A), 78002B(A) DRAWINGS OF ES PRODUCT PACKAGES (2/2) 64 PIN CERAMIC QFP (14 × 14) (FOR ES) A 33 32 64 1 17 16 F C 48 49 G H D B J T (Bottom View) U V M Q K ITEM MILLIMETERS X64B-80A-1 INCHES A 22.0 ± 0.4 0.866 ± 0.016 B 14.0 0.551 C 14.0 0.551 D 22.0 ± 0.4 0.866 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.32 0.013 J 0.8 (T.P.) 0.031 (T.P.) K 4.0 ± 0.15 0.157+0.007 –0.006 M 0.25 0.01 Q 3.0 MAX. 0.119 MAX. T 0.55 0.022 U 1.0 0.039 V 1.2 0.047 55 µPD78001B(A), 78002B(A) 14. RECOMMENDED SOLDERING CONDITIONS The µPD78001B(A)/78002B(A) should be soldered and mounted under the conditions recommended in the table below. For detail of recommended soldering conditions, refer to the information document “Semiconductor Device Mounting Technology Manual” (IEI-1207). For soldering methods and conditions other than those recommended below, contact our sales personnel. Table 14-1 Surface Mounting Type Soldering Conditions µPD78001BGC(A)-×××-AB8 : µPD78002BGC(A)-×××-AB8 : 64-Pin Plastic QFP (■ ■ 14 mm) 64-Pin Plastic QFP (■ ■ 14 mm) Soldering Method Infrared reflow Soldering Conditions Package peak temperature: 235°C, Duration: 30 sec. max. (at 210°C or above), Number of times: Twice max. Recommended Condition Symbol IR35-00-2 < Points to note > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. VPS Package peak temperature: 215°C, Duration: 40 sec. max. (at 200°C or above) Number of times: Twice max. VP15-00-2 < Points to note > (1) Start the second reflow after the device temprature by the first reflow returns to normal. (2) Flux washing by the water after the first reflow should be avoided. Pin part heating Pin temperature: 300°C max., Duration: 3 sec. max. (per device side) Caution — Use of more than one soldering method should be avoided (except in the case of pin part heating). Table 14-2 Insertion Type Soldering Conditions µPD78001BCW(A)-××× : µPD78002BCW(A)-××× : Soldering Method Soldering Conditions Wave soldering (Pin only) Solder bath temperature: 260°C max., Duration: 10 sec. max. Pin part heating Pin temperature: 300°C max., Duration: 3 sec. max. (per pin) Caution Wave soldering is only for the pins in order that jet solder can not contact with the chip directly. 56 64-Pin Plastic Shrink DIP (750 mil) 64-Pin Plastic Shrink DIP (750 mil) µPD78001B(A), 78002B(A) APPENDIX A. DEVEROPMENT TOOLS The following development tools are available for system development using the µPD78001B(A), 78002B(A). Language Processing Software RA78K/0*1, 2, 3 78K/0 series common assembler package CC78K/0*1, 2, 3 78K/0 series common C compiler package DF78002*1, 2, 3 µPD78002 subseries device file *1, 2, 3 CC78K/0-L 78K/0 series common C compiler library source file PROM Programming Tools PG-1500 PROM programmer PA-78P014CW PA-78P014GC Programmer adapter connected to PG-1500 PG-1500 controller*1, 2 PG-1500 control program Debugging Tools IE-78000-R 78K/0 series common in-circuit emulator IE-78000-R-BK 78K/0 series common break board IE-78014-R-EM µPD78002/78014 subseries evaluation emulation board EP-78240CW-R EP-78240GC-R Emulation probe common to µPD78244 subseries EV-9200GC-64 Socket to be mounted on user system board created for the 64-pin plastic QFP SD78K/0*1, 2 IE-78000-R screen debugger SM78K/0 *4, 5, 6 78K/0 series common system simulator µPD78002 subseries device file *1, 2, 4, 5 DF78002 Enbedded OS MX78K/0*1, 2, 3, 6 78K/0 series common enbedded OS Fuzzy Inference Development Support System FE9000*1/FE9200*5 *1 *2 Fuzzy knowledge data creation tool FT9080 /FT9085 Translator FI78K0*1, 2 Fuzzy inference module FD78K0*1, 2 Fuzzy inference debugger * 1. PC-9800 series (MS-DOSTM) based. 2. IBM PC/ATTM (PC DOSTM) based. 3. HP9000 series 300TM, HP9000 series 700TM (HP-UXTM) based, SPARCstationTM, (Sun OSTM) based, EWS-4800 series (EWS-UX/V) based. 4. PC-9800 series (MS-DOS + WindowsTM) based. 57 µPD78001B(A), 78002B(A) 5. IBM PC/AT (PC DOS + Windows) based. 6. Under development. Remarks 1. For development tools manufactured by a third party, see the "78K/0 Series Selection Guide" (IF1185). 2. RA78K/0, CC78K/0, SD78K/0, and SM78K/0 are used in combination with DF78002. 58 µPD78001B(A), 78002B(A) APPENDIX B. RELATED DOCUMENTS Device Related Documents Document Name Document No. (Japanese) Document No. (Engligh) User's Manual IEU-788 IEU-1334 78K/0 Series User's Manual - Instruction IEU-849 IEU-1372 Basic I IEA-715 IEA-1288 Basic II IEA-740 IEA-1299 Document No. (Japanese) Document No. (Engligh) Operation EEU-809 EEU-1399 Language EEU-815 EEU-1404 EEU-817 EEU-1402 Operation EEU-656 EEU-1280 Language EEU-655 EEU-1284 PG-1500 PROM Programmer EEU-651 EEU-1335 PG-1500 Controller EEU-704 EEU-1291 IE-78000-R EEU-810 EEU-1398 IE-78000-R-BK EEU-867 EEU-1427 IE-78014-R-EM EEU-805 EEU-1400 EP-78240 EEU-986 In preparation Beginner's guide EEU-852 EEU-1414 Reference EEU-816 EEU-1413 Document No. (Japanese) Document No. (Engligh) Fuzzy Knowledge Data Creation Tool EEU-892 EEU-1438 78K/0, 78K/II, 87AD Series Fuzzy Inference Development Support System - Translator EEU-862 EEU-1444 Application Note Development Tools Documents (User's Manual) Document Name RA78K Series Assembler Package RA78K Series Structured Assembler Preprocessor CC78K Series C Compiler SD78K/0 Screen Debugger Embedded Software Documents (User's Manual) Document Name Caution These documents above are subject to change without notice. Besure to use the latest document for designing your system. 59 µPD78001B(A), 78002B(A) Other Documents Document Name Document No. (Japanese) Document No. (Engligh) Package Manual IEI-635 IEI-1213 Semiconductor Device Mounting Technology Manual IEI-616 IEI-1207 Quality Grade on NEC Semiconductor Devices IEI-620 IEI-1209 MEI-603 MEI-1202 Semiconductor Device Quality Guarantee Guide Caution 60 These documents above are subject to change without notice. Besure to use the latest document for designing your system. µPD78001B(A), 78002B(A) NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 61 µPD78001B(A), 78002B(A) [MEMO] The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: “Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on a customer designated “quality assurance program“ for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance. Anti-radioactive design is not implemented in this product. FIP is a registered trademark of NEC Corporation. M4 94.11 IEBus is a trademark of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation. HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company. SPARCstation is a trademark of SPARC International, Inc. SunOS is a trademark of Sun Microsystems, Inc.