NPC SM6451

SM6451BV
Audio Variable Volume IC
NIPPON PRECISION CIRCUITS INC.
OVERVIEW
The SM6451BV is a 3-wire serial-controlled electronic variable volume IC for audio applications. It provides
electronic volume control for a stereo system (left and right channels), and independent channel attenuation
and muting, with greatly enhanced digital zip noise suppression. The chip address function allows up to four
SM6451BV devices to be connected and individually controlled over the 3-wire control interface from a single
CPU. It is available in 16-pin VSOP packages.
FEATURES
■
■
■
■
■
■
■
Stereo inputs and outputs
Attenuation function
• 2-channel independent control
• 1.0 dB/step over 80 steps
• 0 to −80 dB range
Mute function
3-wire serial data control (MDT, MCK, MLEN)
Chip addressing (up to 4 devices can be connected
in parallel)
Low noise
• 0.003 % THD + noise
• 12 µVrms residual noise
2.5 to 3.6 V single power supply
Silicon-gate CMOS process
(Top View)
RSTN
1
16
MDT
ADRS1
MCK
ADRS2
MLEN
6451BV
■
PINOUT
DVDD
LOUT
LIN
DVSS
ROUT
RIN
AVDD
VRL
AVSS
8
9
VRR
APPLICATIONS
■
PACKAGE DIMENSIONS
Audio equipment
(Unit: mm)
P ackag e
SM6451BV
16-pin V S O P
+ 0.1
0.05
0.15 -
0.275TYP
5.1 0.2
0 10
0.65
0.10
+ 0.10
0.22 - 0.05
0.12 M
0.10 0.05
1.15 0.1
D e vice
16 pin VSOP
4.4 0.2
6.4 0.2
ORDERING INFORMATION
0.5 0.2
NIPPON PRECISION CIRCUITS—1
SM6451BV
BLOCK DIAGRAM
DVDD
DVSS
Attenuation
Control
LIN
LOUT
1/2VDD
Reference
Voltage
Circuits
ADRS1
ADRS2
VRL
Attenuation Decoder
Chip
Address
Decoder
Interface Control
MLEN
MCK
MDT
RSTN
VRR
1/2VDD
Attenuation
Control
RIN
AVDD
ROUT
AVSS
PIN DESCRIPTION
1.
Number
Name
I/O 1
A/D1
1
RSTN
Ip
D
System reset input (LOW -level reset)
2
ADRS1
Ip
D
Chip address set 1
3
ADRS2
Ip
D
Chip address set 2
4
DV D D
–
D
Digital supply
5
LOUT
O
A
Left-channel audio output
6
LIN
I
A
Left-channel audio input
7
AV D D
–
A
Analog supply
8
VRL
O
A
Left-channel reference voltage (0.5V D D ). Connect a 10 µF capacitor
between VRL and AV S S .
9
VRR
O
A
Right-channel reference voltage (0.5V D D ). Connect a 10 µF capacitor
between VRR and AV S S .
10
AV S S
–
A
Analog ground
11
RIN
I
A
Right-channel audio input
12
ROUT
O
A
Right-channel audio output
13
DV S S
–
D
Digital ground
14
MLEN
Ip
D
Microcontroller latch enable input
15
MCK
Ip
D
Microcontroller clock input
16
MDT
Ip
D
Microcontroller data input
Description
Ip = input pin with pull-up, A = analog, D= digital
NIPPON PRECISION CIRCUITS—2
SM6451BV
SPECIFICATIONS
Absolute Maximum Ratings
DVSS = AVSS = 0 V, DVDD = AVDD = VDD
P arameter
Symbol
Rating
Unit
Supply voltage
VDD
−0.3 to 7.0
V
Input voltage
V IN
V S S − 0.3 to V D D + 0.3
V
Pow er dissipation
PD
150
mW
Storage temperature
T stg
−55 to 125
°C
Soldering temperature
T sld
255
°C
Soldering time
tsld
10
s
Symbol
Rating
Unit
VDD
2.5 to 3.6
V
Supply voltage deviation
DV D D − AV D D , DV S S − AV S S
±0.1
V
Operating temperature
T opr
−40 to 85
°C
Recommended Operating Conditions
DVSS = AVSS = 0 V, DVDD = AVDD = VDD
P arameter
Supply voltage
DC Characteristics
DVDD = AVDD = VDD = 2.5 to 3.6 V, VSS = 0 V, Ta = −40 to 85 °C
Rating
P arameter
DVDD Current consumption
Symbol
ID D D 1
ID D D 2
Condition
Data transfer stopped, MDT, MCK,
MLEN, RSTN, ADRS1, ADRS2 = V D D
A D R S 1 = A D R S 2 = 0 V, 0.8 Vr ms
analog input, ATT = 0 d B , data transfer
active
Unit
min
typ
max
–
0.2
1.0
µA
–
0.4
1.0
mA
–
1.9
5.5
mA
AVDD Current consumption
ID D A
HIGH-level input voltage 1
V IH
0.7V D D
–
–
V
voltage 1
V IL
–
–
0.3V D D
V
L O W -level input
Input
current 1
Input leakage
1.
current 1
IIL
V IN = 0 V
–
70
150
µA
IIH
V IN = V D D
–
–
1.0
µA
M D T, MCK, MLEN, RSTN, ADRS1, ADRS2
NIPPON PRECISION CIRCUITS—3
SM6451BV
AC Digital Characteristics
DVDD = AVDD = VDD = 2.5 to 3.6 V, VSS = 0 V, Ta = −40 to 85 °C
Serial inputs (MDT, MCK, MLEN)
Rating
P arameter
Symbol
Unit
min
typ
max
M C K , M L E N r ise time
tr
–
–
100
ns
MCK, MLEN fall time
tf
–
–
100
ns
MDT setup time
tM D S
50
–
–
ns
MDT hold time
tM D H
50
–
–
ns
MLEN setup time
tM C S
50
–
–
ns
MLEN hold time
tM C H
50
–
–
ns
M L E N L OW -level pulsewidth
tM E W L
50
–
–
ns
MLEN HIGH-level pulsewidth
tM E W H
50
–
–
ns
0.5VDD
MDT
tMDS
tMDH
MCK
0.5VDD
tMCS
tMCH
MLEN
0.5VDD
tMEWL
tMEWH
tf
tr
0.9VDD
MCK
MLEN
0.9VDD
0.1VDD
0.1VDD
0.5VDD
Reset input (RSTN)
Rating
P arameter
R S T N L OW -level pulsewidth
Symbol
tR S T N
Unit
min
typ
max
100
–
–
ns
NIPPON PRECISION CIRCUITS—4
SM6451BV
AC Analog Characteristics
VDD = 3.0 V, 0.8 Vrms amplitude, 1 kHz input frequency, 100 kΩ output load resistance, Ta = 25 °C,
AC-coupled inputs
Analog inputs (LIN, RIN)
Rating
P arameter
Symbol
Condition
Unit
min
typ
max
Reference input amplitude
V AI
–
0.8
–
Vr m s
Input resistance
R IN
40
50
60
kΩ
–
1.1
–
Vr m s
Input clipping voltage
VCLP
THD + N = 1%, ATT = 0 dB
Analog outputs (LOUT, ROUT)
Rating
P arameter
Symbol
Residual noise voltage
VNS
Signal-to-noise ratio
SNR
Total harmonic distortion + noise
THD + N
Condition
Input signal: 0 Vr m s ,
A - weight filter, 0 dBr = 0.8
Vr m s , ATT = 0 dB
ATT = 0 dB, 20 kHz
lowpass filter
Unit
min
typ
max
–
12
20
µVr m s
92
96
–
dBr
–
0.0025
0.005
%
Gain control range
RCNT
– 80
–
0
dB
Step size
Step
0.8
1.0
1.8
dB
Attenuation error (1k to 20kHz)
ERR1
0 to −60 dB
–2
–
1
dB
ERR2
−61 to −80 dB
–6
–
0
dB
AT 0
ATT = 0 dB
–
– 0.0
–
dB
AT 2
ATT = −20 dB
–
– 20.0
–
dB
AT 4
ATT = −40 dB
–
– 40.0
–
dB
AT 6
ATT = −60 dB
–
– 60.4
–
dB
AT 8
ATT = −80 dB
–
– 84.2
–
dB
Mute
ATT = Mute
– 85.0
– 88.0
–
dB
Channel crosstalk
CT
ATT = 0 dB
– 103
– 105
–
dB
Frequency response
FR
ATT = 0 dB, f = 200 kHz
– 10
–8
–
dB
Quiescent output zip noise voltage
(while ATT value adjusting)
NJ
0 Vr ms input
–
–
3
mV
RML
ATT = 0 dB, THD + N = 1%
–
8
12
kΩ
Symbol
Condition
Absolute attenuation (1 kHz)
Mute attenuation (1 kHz)
Minimum driver load resistance
Reference voltage (VRL, VRR)
Rating
P arameter
Reference voltage output
VREF
Unit
min
typ
max
0.45V D D
0.5V D D
0.55V D D
V
NIPPON PRECISION CIRCUITS—5
SM6451BV
MEASUREMENT CIRCUIT
Chip address: ADRS1 = LOW, ADRS2 = LOW
0.001µF
0.022µF
MDT 16
2 ADRS1
MCK 15
3 ADRS2
MLEN 14
4 DVDD
DVSS 13
5 LOUT
ROUT 12
6 LIN
+
10µF
+
1µF
0.022µF
+
7 AVDD
+
10µF
SM6451
+
10µF
1 RSTN
8 VRL
0.022µF
CPU
RIN 11
AVSS 10
VRR 9
0.022µF
1µF
+
10µF
+
1µF
+
1µF
100kΩ
100kΩ
Generator
Analyzer
Audio Precision
System Two SYS − 2322A
NIPPON PRECISION CIRCUITS—6
SM6451BV
MICROCONTROLLER INTERFACE
The SM6451BV uses a 3-wire serial interface comprising MDT (data), MCK (clock) and MLEN (latch enable)
to select channels and attenuation levels for the addressed device.
Input Timing
The microcontroller data input timing is shown in figure 1.
MDT
D15 D14 D13 D12 D11 D10 D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
MCK
MLEN
Figure 1. Microcontroller data input timing
Data is shifted into the internal shift register on the rising edge of MCK, and the attenuation value is updated on
the rising edge of MLEN. Accordingly, data on MDT should be changed on the falling edge of MCK. The dotted lines for MCK and MLEN also indicate valid timing.
Note, however, a minimum of 16 MCK input pulses are required.
Data Format
Attenuation
Data 7
Attenuation
Data 6
Attenuation
Data 5
Attenuation
Data 4
Attenuation
Data 3
Attenuation
Data 2
Attenuation
Data 1
Attenuation
Data 0
D15 D14 D13 D12 D11 D10 D9
Channel
Select
Channel
Select
Don't
Care
Don't
Care
Chip
Address 2
Chip
Address 1
Don't
Care
MDT
Don't
Care
The format of microcontroller input data is shown in figure 2.
D8
D7
D6
D5
D4
D3
D2
D1
D0
Figure 2. Microcontroller data format
D15, D14
Don’t care.
D13, D12
Chip address bits. D13 corresponds to ADRS1 and D12 corresponds to ADRS2. The device is addressed only
when ADRS1:ADRS2 matches D13:D12.
Example 1: If D13 = LOW, D12 = HIGH and ADRS1 = LOW, ADRS2 = LOW, then the device is not
addressed since ADRS2 and D12 do not match.
Example 2: If D13/D12 = LOW and ADRS1/ADRS2 = LOW, then the device is addressed and all input data
is read and the attenuation settings updated.
D11, D10
Don’t care.
NIPPON PRECISION CIRCUITS—7
SM6451BV
D9, D8
Channel select bits. The selected channel(s) are shown in table 1.
Table 1. Channel select
D9
D8
Selected channel
LOW
LOW
Both left and right channels
LOW
HIGH
Left channel
HIGH
LOW
Right channel
HIGH
HIGH
No change
D7 to D0
Attenuation register (ATT) set bits.
Table 2. Attenuation setting1
Attenuation
0 dB
−1 dB
−2 dB
:
−15 dB
−16 dB
−17 dB
:
−63 dB
−64 dB
−65 dB
:
−79 dB
−80 dB
Mute
Mute
:
Mute
Mute
1.
AT T H
00
01
02
:
0F
10
11
:
3F
40
41
:
4F
50
51
52
:
FE
FF
D7
LOW
LOW
LOW
:
LOW
LOW
LOW
:
LOW
LOW
LOW
:
LOW
LOW
LOW
LOW
:
HIGH
HIGH
D6
LOW
LOW
LOW
:
LOW
LOW
LOW
:
LOW
HIGH
HIGH
:
HIGH
HIGH
HIGH
HIGH
:
HIGH
HIGH
D5
LOW
LOW
LOW
:
LOW
LOW
LOW
:
HIGH
LOW
LOW
:
LOW
LOW
LOW
LOW
:
HIGH
HIGH
D4
LOW
LOW
LOW
:
LOW
HIGH
HIGH
:
HIGH
LOW
LOW
:
LOW
HIGH
HIGH
HIGH
:
HIGH
HIGH
D3
LOW
LOW
LOW
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
LOW
:
HIGH
HIGH
D2
LOW
LOW
LOW
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
LOW
:
HIGH
HIGH
D1
LOW
LOW
HIGH
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
:
HIGH
LOW
LOW
HIGH
:
HIGH
HIGH
D0
LOW
HIGH
LOW
:
HIGH
LOW
HIGH
:
HIGH
LOW
HIGH
:
HIGH
LOW
HIGH
LOW
:
LOW
HIGH
Outputs are muted after system reset.
Attenuation error is changed dependent on the supply voltage when attenuation level is under – 60dB. In the case of the supply voltage being
under 2.6V, mute level inverses up to the same level of – 80dB setting or more. (see Figure 6)
NIPPON PRECISION CIRCUITS—8
SM6451BV
ANALOG PERFORMANCE CHARACTERISTICS
DVDD = AVDD = 3.0 V, 100 kΩ output load resistance, Ta = 25 °C
0.1
1
ATT=0dB
20kHz LPF
0.1
THD+N(%)
THD+N(%)
f=1kHz
ATT=0dB
20kHz LPF
VDD=3.3V
VDD=3.0V
VDD=2.7V
VIN=0.2Vrms
0.01
0.01
VIN=0.5Vrms
VIN=0.8Vrms
0.001
.1
.2
1
.5
1.2
VIN(Vrms)
0.001
20
20k
-64
VIN=0.8Vrms
f=1kHz
1
-68
0
Ideal Gain
-72
Gain(dB)
Error(dB)
10k
Figure 4. THD + N vs. input frequency
2
-1
-2
-76
VDD=2.7V
-3
-84
-4
-88
0
-10
-20
-30
-40
-50
-60
-70
VDD=3V
-80
VDD=2.5V
-92
-64
-80
-68
ATT(dB)
-72
-76
-80 Mute
ATT(dB)
Figure 5. Attenuation error
Figure 6. Attenuation characteristic (– 64dB to MUTE)
20
+10
+0
VIN=0Vrms
A-Weight Filter
16
-20
12
8
VIN=0.8Vrms
ATT=0dB
-10
Gain(dB)
Residual Noise(µVrms)
1k
Frequency(Hz)
Figure 3. THD + N vs. input amplitude
-5
100
ATT=-20dB
-30
-40
ATT=-40dB
-50
-60
ATT=-60dB
-70
4
-80
ATT=-80dB
-90
ATT=MUTE
0
0
-10
-20
-30
-40
-50
-60
-70
ATT(dB)
Figure 7. Residual noise vs. ATT
-80
-100
20
100
1k
10k
100k 200k
Frequency(Hz)
Figure 8. Frequency response
NIPPON PRECISION CIRCUITS—9
SM6451BV
-40
+0
FFT Spectrum(dBr)
Cross Talk(dB)
VIN=0.8Vrms=0dBr
f=1kHz
ATT=0dB
BH Window
-20
VIN=0.8Vrms
ATT=0dB
-60
-80
-100
-40
-60
-80
-100
-120
-120
-140
20
100
1k
10k
100k 200k
-140
0
2k
4k
Frequency(Hz)
8k
10k
12k
14k
16k
18k
20k
Frequency(Hz)
Figure 9. Crosstalk frequency response
Figure 10. FFT spectrum
100
6
Current Consumption(mA)
VIN=0.8Vrms
f=1kHz
ATT=0dB
20kHz LPF
10
THD+N(%)
6k
1
0.1
0.01
0.001
1
10
Load Resistance(kΩ)
100
Figure 11. THD + N vs. load resistance
5
AVDD+DVDD
ADRS1=ADRS2=0V
4
3
2
1
0
2.4
2.7
3
3.3
3.6
Power Supply(V)
Figure 12. Current consumption vs. supply voltage
Current Consumption(mA)
6
5
AVDD+DVDD
ADRS1=ADRS2=0V
4
3
VDD=3.3V
VDD=3.0V
2
VDD=2.7V
1
0
-50
-25
0
25
50
75
100
Operating Temperature(°C)
Figure 13. Current consumption vs. operating
temperature
NIPPON PRECISION CIRCUITS—10
SM6451BV
TYPICAL APPLICATIONS
Connection Guidelines
Decoupling capacitors of approximately 10 µF should be connected from AVDD, VRL, VRR to AVSS, and
from DVDD to DVSS.
In addition, approximately 0.01 µF capacitors should also be connected from AVDD, VRL, VRR to AVSS, and
from DVDD to DVSS to suppress digital switch noise.
An approximately 0.001 µF capacitor connected from RSTN to DVSS will force a system reset when power is
applied.
Connection 1 (to DAC)
CPU
MDT MCK MLEN
LPF
LIN
LOUT
LPF
RIN
ROUT
L-ch OUT
DAC
R-ch OUT
SM6451
2.5 to 3.6V
DVDD
DVSS
AVDD
AVSS
ADRS1
ADRS2
Connection 2
When there is a possibility that the input peak-to-peak amplitude will exceed the supply voltage, input protection diodes should be connected to prevent device breakdown.
AVDD
L-ch Input
LIN
LOUT
L-ch Output
SM6451
R-ch Input
RIN
ROUT
R-ch Output
AVSS
NIPPON PRECISION CIRCUITS—11
SM6451BV
NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to
improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility fo r
the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits
are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision
Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.
The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or
malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter,
including compliance with expor t controls on the distribution or dissemination of the products. Customers shall not expor t, directly or
indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.
NIPPON PRECISION CIRCUITS INC.
NIPPON PRECISION CIRCUITS INC.
4-3, Fukuzumi 2-chome
Koto-ku, Tokyo 135-8430, Japan
Telephone: 03-3642-6661
Facsimile: 03-3642-6698
NC9925AE
2000.02
NIPPON PRECISION CIRCUITS—12