SM6453AB 3-wire Serial Data Volume Control for Headphone Amplifier IC OVERVIEW The SM6453AB is a stereo headphone amplifier IC with built-in electronic volume controlled by 3-wire serial data. Two switchable input systems are supported. It features bass boost function, automatic gain control (AGC) function, power-down function, and beep sound input/output function, making it ideal for use in portable electronic products. ■ ■ DVDD1 DVDD2 DVSS LRMXO AGCTC BSTC BSTN 21 6 20 7 19 8 18 9 17 10 11 12 13 14 15 16 PACKAGE DIMENSIONS (Unit: mm) ORDERING INFORMATION (Top view) (Bottom view) 6.20 ± 0.1 0.50 5.00 ± 0.05 3.22TYP 1.00 32-pin QFN 32 SM6453AB .7 0 Package C0 Device 5.20 ± 0.1 6.00 ± 0.05 0.60 ± 0.10 ■ 22 5 0.60 ± 0.10 1 0.50 1.00 0.05 0.22 ± 0.05 0.05 M 0.22 ± 0.05 ■ ■ 23 4 BSTO BEEPLO LOUT AVSS2 AVDD2 AVDD3 AVSS3 ROUT BEEPRO 2.68TYP ■ 3 0.90 ± 0.05 ■ 24 0.005MIN 0.02TYP 0.04MAX ■ 32 31 30 29 28 27 26 25 2 AVDD1 LIN1 LIN2 AVSS1 RIN1 RIN2 VBIAS ■ 1 .2 ■ MLEN MCK MDT RSTN MUTEN PDN BEEPI VREF1 VREF2 C0 ■ (Top view) − ■ 2 stereo system inputs, selectable 1 output system Headphone amplifier function • +12dB to -68dB output voltage gain range (GCNT) • +12dB headphone amplifier gain (GHPA) Attenuation function • 1.0dB step width, 81 steps, 0 to –80dB range (GEVR) Mute function Bass boost function (2 boost characteristics controlled by external RC network) Auto gain control function (AGC) Beep sound input/output circuit 26mW+26mW maximum output power (1kHz, THD + N = 10%, 16Ω load, 2.0V supply voltage) Power-down function 1.8 to 3.6V operating supply voltage range Low current consumption (2.3mA total, 2.4V supply voltage) Silicon-gate CMOS process 32-pin QFN package 3 ■ PINOUT 0 FEATURES NIPPON PRECISION CIRCUITS INC.—1 SM6453AB PIN DESCRIPTION Number Name I/O1 1 MLEN Ip Microcontroller latch enable input 2 MCK Ip Microcontroller clock input 3 MDT Ip Microcontroller data input 4 RSTN Ip System reset (LOW-level reset) 5 MUTEN I Mute input (LOW-level mute) 6 PDN I Power-down mode select (LOW-level power-down) 7 BEEPI I Beep signal input 8 VREF1 O Reference voltage 1 9 VREF2 O Reference voltage 2 10 AVDD1 − EVR-stage analog VDD 11 LIN1 I Left-channel analog input 1 12 LIN2 I Left-channel analog input 2 13 AVSS1 − EVR-stage analog VSS 14 RIN1 I Right-channel analog input 1 15 RIN2 I Right-channel analog input 2 16 VBIAS O EVR-stage bias voltage 17 BEEPRO O Right-channel beep signal output 18 ROUT O Right-channel output 19 AVSS3 − Headphone amplifier right-channel analog VSS 20 AVDD3 − Headphone amplifier right-channel analog VDD 21 AVDD2 − Headphone amplifier left-channel analog VDD 22 AVSS2 − Headphone amplifier left-channel analog VSS 23 LOUT O Left-channel output 24 BEEPLO O Left-channel beep signal output 25 BSTO O Bass boost auxiliary output 26 BSTN I Bass boost auxiliary input 27 BSTC O Bass boost capacitor connection 28 AGCTC O AGC time constant set capacitor connection 29 LRMXO O Left and right-channel mixer detector output 30 DVSS − Digital VSS 31 DVDD2 − Digital VDD2 32 DVDD1 − Digital VDD1 Description VDD VDD2 VDD1 VDD2 1. Ip = input with pull-up resistance VDD1, VDD2, VSS definitions VDD1 = DVDD2 = AVDD1 = AVDD2 = AVDD3 VDD2 = DVDD1 VSS = DVSS = AVSS1 = AVSS2 = AVSS3 NIPPON PRECISION CIRCUITS INC.—2 SM6453AB 32 MLEN 31 30 29 28 BSTN BSTC AGCTC LRMXO DVSS DVDD2 DVDD1 BLOCK DIAGRAM 27 26 25 1 BSTO MDT RSTN 3 Level Shifter MCK Microcontroller Interface BST 2 24 AGC +12dB 23 HPA 22 4 BEEPLO LOUT AVSS2 EVR(0 to -80dB) MUTEN PDN 5 21 EVR AMP +12dB 6 HPA 20 AVDD2 AVDD3 EVR(0 to -80dB) 8 VREF2 17 Selector 13 14 15 AVSS3 ROUT BEEPRO 16 VBIAS 12 RIN2 11 RIN1 10 AVSS1 9 18 BEEP VREF1 LIN2 VREF2 19 EVR AMP LIN1 VREF1 7 AVDD1 BEEPI NIPPON PRECISION CIRCUITS INC.—3 SM6453AB SPECIFICATIONS Absolute Maximum Ratings Parameter Symbol Rating Unit VDD1, VDD2 − 0.3 to 4.6 V Digital system input voltage1 VIND VSS − 0.3 to VDD2 + 0.3 V Analog system input voltage2 VINA VSS − 0.3 to VDD1 + 0.3 V Storage temperature TSTG − 55 to 125 °C Output current IO 100 mA Power dissipation3 PD 370 mW Supply voltage 1. Digital system inputs: MLEN, MDT, MCK, RSTN, MUTEN, PDN, BEEPI 2. Analog system inputs: LIN1, LIN2, RIN1, RIN2, BSTN 3. NPC specified value θJa = 107.6°C/W PD = {(TJMAX – Ta)/θJa} (TJMAX = 125°C, Ta = 85°C) Recommended Operating Conditions VSS = DVSS = AVSS1 = AVSS2 = AVSS3 = 0V, VDD1 = DVDD2 = AVDD1 = AVDD2 = AVDD3, VDD2 = DVDD1 Parameter Symbol Conditions Unit Supply voltage 1 VDD1 1.8 to 3.6 V Supply voltage 2 VDD2 1.8 to 3.6 V DVDD2-AVDD1, DVDD2-AVDD2, DVDD2-AVDD3, AVDD1-AVDD2, AVDD1-AVDD3, AVDD2-AVDD3 ± 0.1 V Ta − 40 to 85 °C Supply voltage difference Operating temperature NIPPON PRECISION CIRCUITS INC.—4 SM6453AB DC Characteristics AVSS1 = AVSS2 = AVSS3 = DVSS = 0V, AVDD1 = AVDD2 = AVDD3 = DVDD2 = 1.8 to 3.6V, DVDD1 = 1.8 to 3.6V, Ta = – 40 to 85°C unless otherwise noted. Rating Parameter Pins Symbol DVDD1 DVDD2 Input voltage 1 typ max (Note 1) – 0.03 0.06 mA IDDD1S (Note 2) – 0.2 1.0 µA IDDD2A (Note 1) – 0.05 0.3 mA IDDD2S (Note 2) – 0.2 1.0 µA IDDAA (Note 1) – 2.3 3.6 mA IDDAS (Note 2) – 13.0 25.0 µA IDDAM1 (Note 3) – 1.7 3.1 mA IDDAM2 (Note 4) – 0.5 – mA IDDAT (Note 5) – 7.0 10.0 mA H-level VIH1 0.8×DVDD1 – – V L-level VIL1 – – 0.2×DVDD1 V H-level VIH2 1.2 – – V L-level VIL2 – – 0.4 V (*1) Input voltage 2 Unit min IDDD1A Current consumption AVDD1 + AVDD2 + AVDD3 Condition (*2) Input current 1 (*1) IIL1 VIN = 0V – 25 90 µA Input current 2 (*3) IIH1 VIN = VDD1 – 280 900 µA Input leakage current 1 (*1) IIH2 VIN = VDD1 – – 1.0 µA Input leakage current 2 (*2) IIL2 VIN = 0V – – 1.0 µA Input leakage current 3 (*2) IIH3 VIN = VDD1 – – 1.0 µA Input leakage current 4 (*3) IIL3 VIN = 0V – – 1.0 µA (Note 1) MUTEN = HIGH, PDN = HIGH, 600Ω resistor connected between VREF1 and all analog inputs (LIN1, LIN2, RIN1, RIN2), GEVR = 0dB, Microcontroller clock frequency = 4MHz, data transfer from microcontroller. (Note 2) MUTEN = LOW, PDN = LOW, 600Ω resistor connected between VREF1 and all analog inputs (LIN1, LIN2, RIN1, RIN2), GEVR = 0dB, data transfer from microcontroller stopped, Pins (*1) = VDD2. (Note 3) MUTEN = LOW, PDN = HIGH, 600Ω resistor connected between VREF1 and all analog inputs (LIN1, LIN2, RIN1, RIN2), GEVR = 0dB, data transfer from microcontroller stopped, Pins (*1) = VDD2. Other than idling current of final stage of headphone amplifiers. (Note 4) MUTEN = HIGH, PDN = HIGH, 600Ω resistor connected between VREF1 and all analog inputs (LIN1, LIN2, RIN1, RIN2), GEVR = 0dB, data transfer from microcontroller stopped, Pins (*1) = VDD2. Idling current of final stage of headphone amplifiers only. (Note 5) MUTEN = HIGH, PDN = HIGH, reference voltage see "Measurement circuit", All analog inputs (LIN1, LIN2, RIN1, RIN2) connected reference input voltage, Bass boost = OFF, AGC = OFF, Frequency = 1kHz, PO = 0.5mW + 0.5mW Pin types Pin types Name (*1) MLEN, MDT, MCK, RSTN (*2) MUTEN, PDN (*3) BEEPI NIPPON PRECISION CIRCUITS INC.—5 SM6453AB AC Characteristics AVDD1 = AVDD2 = AVDD3 = DVDD1 = DVDD2 = 1.8 to 3.6V, AVSS1 = AVSS2 = AVSS3 = DVSS = 0V, Ta = – 40 to 85°C unless otherwise noted. Serial inputs (MDT, MCK, MLEN) Rating Parameter Symbol Unit min typ max MCK, MLEN rise time tr – – 100 ns MCK, MLEN fall time tf – – 100 ns MDT setup time tMDS 50 – – ns MDT hold time tMDH 50 – – ns Setup time tMCS 50 – – ns Hold time tMCH 50 – – ns LOW-level pulsewidth tMEWL 50 – – ns HIGH-level pulsewidth tMEWH 50 – – ns MLEN 0.5V DD2 MDT tMDS tMDH MCK 0.5V DD2 tMCS tMCH MLEN 0.5V DD2 tMEWL tMEWH tf tr 0.9VDD2 MLEN MCK 0.9VDD2 0.1VDD2 0.1VDD2 Reset input (RSTN) Rating Parameter RSTN LOW-level pulsewidth Symbol tRSTN Unit min typ max 100 – – ns NIPPON PRECISION CIRCUITS INC.—6 SM6453AB AC Analog Characteristics VDD1 = VDD2 = 2.0V, analog input amplitude = 0.025Vrms, input frequency = 1kHz, Ta = 25°C, Measurement circuit, PDN = HIGH, MUTEN = HIGH, MDT D0 to D12 = LOW, unless otherwise noted. Analog input characteristics (LIN1, RIN1, LIN2, RIN2) Parameter Symbol Reference input amplitude VAI Input resistance RIN Input clipping voltage VCLP Condition GEVR = 0dB, PO = 0.5mW + 0.5mW GEVR = 0dB, PO = 26mW + 26mW Rating Unit min typ max 0.015 0.025 0.035 Vrms 18 23 – kΩ 0.17 0.21 – Vrms Analog output characteristics (LOUT, ROUT) Parameter Residual noise voltage Total harmonic distortion + noise Symbol VNS THD + N Condition Rating min typ max Unit GEVR = 0dB, A-WTD – 26 38 µVrms PO = 0.5mW + 0.5mW – 0.3 1.0 % Reference output power POREF 0.4 0.5 0.6 mW Reference output voltage VOREF 0.08 0.09 0.098 Vrms Maximum output power POMAX GEVR = 0dB, THD + N = 10% 22 26 – mW Maximum output voltage VOMAX GEVR = 0dB, THD + N = 10% 0.516 0.645 – Vrms BBST1 (Note 1) + 5.2 + 7.2 + 9.2 dBr BBST2 (Note 2) + 12.0 + 14.0 + 16.0 dBr AGC detection level VAGC 0.5VDD1 reference voltage output + 0.30 + 0.48 + 0.66 V Step width GSTEP 0.1 1.0 1.6 dB Bass boost response Attenuation error (1kHz) Absolute attenuation (1kHz) Mute factor (1kHz) Channel crosstalk Power supply ripple rejection ratio (Note 1) (Note 2) (Note 3) (Note 4) (Note 5) (Note 6) (Note 7) (Note 8) (Note 9) GERR1 GEVR = 0dB to – 60dB − 2.8 – 0.8 1.2 dB GERR2 GEVR = – 61dB to – 72dB – 2.0 0 2.0 dB GERR3 GEVR = – 73dB to – 80dB – 1.2 0.8 2.8 dB GO1 GO = + 12dB (GEVR = 0dB) + 9.2 + 11.2 + 13.2 dB GO2 GO = – 8dB (GEVR = – 20dB) – 10.6 – 8.6 – 6.6 dB GO3 GO = – 28dB (GEVR = – 40dB) – 30.6 − 28.6 – 26.6 dB GO4 GO = – 48dB (GEVR = – 60dB) – 50.4 − 48.4 – 46.4 dB GO5 GO = – 68dB (GEVR = – 80dB) – 70.5 − 66.0 – 61.5 dB GMUTE (Note 3) – 100.0 − 120.0 – dB CT1 (Note 4) − 69.0 − 75.0 – dB CT2 (Note 5) − 29.0 − 35.0 – dB CT3 (Note 6) − 30.0 − 36.0 – dB PSRR1 (Note 7) 83.0 93.0 – dB PSRR2 (Note 8) 45.0 55.0 – dB PSRR3 (Note 9) 34.0 44.0 – dB Microcontroller data bit D9 = HIGH, D10 = LOW, D11 = LOW, 55Hz frequency, VOREF output Microcontroller data bit D9 = HIGH, D10 = HIGH, D11 = LOW, 55Hz frequency, VOREF output GEVR = 0dB, MDT D0 to D7 are muted, MUTEN = HIGH, VOREF output Microcontroller data bit D9 = LOW, D11 = LOW, GEVR = 0dB, cross-channel leakage signal with VOREF output and standard voltage input on one channel only Microcontroller data bit D9 = HIGH, D10 = LOW, D11 = LOW, GEVR = 0dB, cross-channel leakage signal with VOREF output and standard voltage input on one channel only, Frequency = 10kHz Microcontroller data bit D9 = HIGH, D10 = HIGH, D11 = LOW, GEVR = 0dB, cross-channel leakage signal with VOREF output and standard voltage input on one channel only, Frequency = 10kHz PDN = LOW, MUTEN = HIGH, MDT = muted, ripple frequency = 100Hz and ripple amplitude = 0.1Vrms on AVDD1/AVDD2/AVDD3 PDN = HIGH, MUTEN = LOW, MDT = muted, ripple frequency = 100Hz and ripple amplitude = 0.1Vrms on AVDD1/AVDD2/AVDD3 PDN = HIGH, MUTEN = HIGH, MDT D0 to D12 = LOW, ripple frequency = 100Hz and ripple amplitude = 0.1Vrms on AVDD1/AVDD2/AVDD3 NIPPON PRECISION CIRCUITS INC.—7 SM6453AB Analog output characteristics (BEEPLO, BEEPRO) Rating Parameter Symbol BEEP output voltage Condition Unit 2VP-O amplitude, 50% duty, 400Hz rectangular wave VBO min typ max − 55 − 49.3 − 44 dBv Reference voltage characteristics (VREF1, VREF2, VBIAS) Rating Parameter Symbol Condition Unit min typ max Reference voltage output 1 VREF1 0.45VDD1 0.5VDD1 0.55VDD1 V Reference voltage output 2 VREF2 – VDD1 − 0.815 – V Bias voltage output VBIAS 0.45VDD1 0.5VDD1 0.55VDD1 V Measurement circuit *1 *4 0.1µF 33µF + 0.01µF *3 VDD1 VREF1 VDD1 VREF1 VREF1 VDD1 820kΩ *2 VDD2 2200pF 32 31 30 DVDD1 DVDD2 2 3 6 MCK BEEPLO MDT LOUT RSTN MUTEN PDN 25 24 23 220µF AVDD2 AVDD3 22 AVSS3 ROUT VREF1 VDD1 20 VDD1 19 18 BEEPRO VREF2 LIN1 LIN2 11 12 AVSS1 13 10µF RIN1 RIN2 VBIAS 14 15 16 4.7Ω + 220µF 9 10 220µF 21 220µF BEEPI AVDD1 4.7Ω 0.47µF AVSS2 0.47µF 8 16Ω + + 7 BSTO 16Ω 17 + 1µF 1µF 1µF 10µF 1µF + + VDD2 5 26 BSTN MLEN + VDD2 4 27 BSTC NPC SM6453 VDD2 28 + 1 29 LRMXO AGCTC DVSS 100µF 10µF VDD1 *1 to *4: AGC time constant setting components. Measured with *4 open circuit. NIPPON PRECISION CIRCUITS INC.—8 SM6453AB FUNCTIONAL DESCRIPTION Microcontroller Interface The SM6453AB uses a serial microcontroller interface comprising MDT (data), MCK (clock), MLEN (latch enable). Data format The data transfer format is shown in figure 1. MDT D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 MCK MLEN Figure 1. Microcontroller data input timing The internal shift register shifts data on the rising edge of MCK, and the data is loaded and updated on the rising edge of MLEN (dotted lines also indicate valid data timing). Each cycle is completed by 16 or more MCK input cycles, even if there are unused data bits. NIPPON PRECISION CIRCUITS INC.—9 SM6453AB Microcontroller data description Definition: “L” = VIL1 level, “H” = VIH1 level D7 Input select Don't care D8 Bass boost mode select Bass boost ON/OFF D15 D14 D13 D12 D11 D10 D9 AGC ON/OFF MDT D6 D5 D4 D3 D2 D1 D0 EVR gain setting GEVR: 0dB to -80dB, MUTE Figure 2. Microcontroller data description ■ D15 to D12: Not used (don’t care) bits. Can be either “L” or “H”. ■ D11: AGC bit. OFF when “L”, and ON when “H”. AGC = OFF when system reset (see “Automatic gain control function”). ■ D11 AGC function LOW OFF HIGH ON D10, D9: Bass boost control bits. Bass boost = OFF and bass boost mode = BB1 when system reset (see “Bass boost function”). D9 D10 Bass boost characteristics LOW LOW OFF HIGH LOW BB1 HIGH BB2 HIGH ■ D8: Input select bit. LIN1 and RIN1 when “L”, and LIN2 and RIN2 when “H”. LIN1 and RIN1 input when system reset. D8 Selected inputs LOW LIN1, RIN1 HIGH LIN2, RIN2 Input Input Selector Block Output D8=L/D8=H LIN1 RIN1 Input Selector LIN1/LIN2 RIN1/RIN2 To EVR Block LIN2 RIN2 NIPPON PRECISION CIRCUITS INC.—10 SM6453AB D7 to D0: EVR gain control bits. MUTE when system reset. LIN1 LIN2 Input Selector Block EVR Block 0dB Gain (GEVR) : 0 to −80dB variable, MUTE RIN1 RIN2 Headphone Amplifier Block Gain (GHPA) : +12dB fixed, MUTE LOUT Gain: GEVR + GHPA = GO GO: +12dB to −68dB, MUTE ROUT MCK MLEN Microcontroller Interface MDT ■ Figure 3. Electronic volume gain (GEVR) setting and output voltage gain (GO) EVR gain (GEVR) LOUT, ROUT gain (GO) D7 D6 D5 D4 D3 D2 D1 D0 HEX 0dB + 12dB L L L L L L L L 00 – 1dB + 11dB L L L L L L L H 01 – 2dB + 10dB L L L L L L H L 02 : : : : : : : : : : : − 15dB − 3dB L L L L H H H H 0F − 16dB − 4dB L L L H L L L L 10 − 17dB − 5dB L L L H L L L H 11 : : : : : : : : : : : − 63dB − 51dB L L H H H H H H 3F − 64dB − 52dB L H L L L L L L 40 − 65dB − 53dB L H L L L L L H 41 : : : : : : : : : : : − 79dB − 67dB L H L L H H H H 4F − 80dB − 68dB L H L H L L L L 50 MUTE MUTE L H L H L L L H 51 MUTE MUTE L H L H L L H L 52 : : : : : : : : : : : MUTE MUTE H H H H H H H L FE MUTE MUTE H H H H H H H H FF NIPPON PRECISION CIRCUITS INC.—11 SM6453AB System Reset Function (RSTN) The system is reset using a LOW-level pulse on RSTN. After the system is reset, AGC is OFF, bass boost mode is BB1, input selector is LIN1/RIN1, and LOUT/ROUT output voltage gain is muted. AGC Bass boost mode Bass boost function Input Select EVR gain (GEVR) Output gain (GO) OFF BB1 OFF LIN1, RIN1 MUTE MUTE Bass Boost Function with Automatic Gain Control (AGC) Equivalent circuit 240kΩ VREF1 40kΩ (Equivalent input resistance:23kΩ) C2 Lch 2 VREF1 VREF1 LOUT VREF1 VREF1 16Ω Headphone Amp 0.47µF ROUT C1 BSTC COUT 220µF 60kΩ 4.7Ω (Equivalent input resistance:23kΩ) *2 CINL2 1µF Bass Boost Amp 32kΩ 40kΩ VREF1 LIN2 *1 LRMXO AGCTC *1 33µF VDD AGC Amp AGC Block VREF1 *1 LIN1 2kΩ R1L EVR Block RIN 820kΩ Lch 1 240kΩ 60kΩ *1 CINL1 1µF R3 *4 R2 *2 2200pF BSTN VREF1 0.1µF RIN2 Input Selector Rch 2 10kΩ *2 CINR2 1µF 0.01µF RIN1 Headphone Amp COUT 220µF BSTO Rch 1 *3 R1R EVR Block RIN 4.7Ω R1 *2 CINR1 1µF 32kΩ 60kΩ 16Ω Bass Boost Block 0.47µF ROUT ROUT 60kΩ VREF1 VREF1 *1: From “Measurement circuit”. Adjustment AGC detection level and time constant. *2: CINR1 = CINL1, CINR2 = CINL2 → CIN *3: RIN1 = LIN1 → R1 = (R1R/2 + R1L/2) = 20kΩ *4: BB1 → R3 = 15kΩ, BB2 → R3 = 60kΩ NIPPON PRECISION CIRCUITS INC.—12 SM6453AB Bass boost function (BSTO, BSTN, BSTC) The bass boost characteristic (BB1, BB2) is selected using bit D10. The left-channel and right-channel bass components are mixed and amplified, and then added to the headphone driver amplifier. A capacitor (0.1µF std) connected between BSTC and VREF1 forms a lowpass filter through which the signal from the EVR block passes, boosting the bass component, which is then added to the original signal. Bass boost examples IC internal components are RIN = 23kΩ, R1 = 20kΩ, R2 = 10kΩ, R3 = 15kΩ (BB1) or 60kΩ (BB2). The bass boost characteristic also depends on the external resistor and capacitor components connected between BSTO and BSTN, as indicated below. ■ Example 1 C1 = 0.1µF, C2 = 2200pF, CIN = 1µF, COUT = 220µF, ROUT = 16Ω (Measurement circuit) 15 BB2 10 [dBr] 5 BB1 0 BB OFF -5 -10 -15 ■ 10 100 1000 Frequency [Hz] 10000 Example 2 C1 = 0.1µF, C2 = 0.01µF, CIN = 1µF, COUT = 220µF, ROUT = 16Ω 15 BB2 10 [dBr] 5 BB1 0 BB OFF -5 -10 -15 10 100 1000 Frequency [Hz] 10000 NIPPON PRECISION CIRCUITS INC.—13 SM6453AB ■ Example 3 C1 = 0.1µF, C2 = 0.047µF, CIN = 1µF, COUT = 220µF, ROUT = 16Ω 15 BB2 10 BB1 [dBr] 5 0 BB OFF -5 -10 -15 ■ 10 100 1000 Frequency [Hz] 10000 Example 4 C1 = 0.22µF, C2 = 6800pF, CIN = 0.47µF, COUT = 47µF, ROUT = 16Ω, 2700Ω resistor connected between BSTN and VREF1 Note that when the output coupling capacitance COUT is small, the bass signal component margin available before reaching the bass output saturation level is considerably reduced. 15 [dBr] 10 5 0 –5 –10 –15 –20 –25 –30 –35 10 BB2 BB1 BB OFF 100 1000 10000 Frequency [Hz] Automatic gain control (AGC) function The AGC function is selected using bit D11. When bass boost is on, whenever the magnitude of either the positive or negative output voltage peak value of LOUT or ROUT exceeds VREF1 + 0.48V (typ), half-wave rectification starts. The resulting detected and smoothed DC potential is compared with the VREF1 potential, and the comparator output signal is used to control the reduction in bass boost gain, thereby increasing the headphone amplifier output bass clip margin. NIPPON PRECISION CIRCUITS INC.—14 SM6453AB Power-down Function (PDN) The power-down function is selected when PDN goes LOW. This reduces the power consumption, while LOUT and ROUT become high impedance. A pull-down resistor connected to PDN is recommended. Mute Function Mute function (MUTEN) The mute function is selected when MUTEN goes LOW. At initial startup, it is recommended that a delay of 2.5 seconds (typ) occur before MUTEN goes HIGH to prevent pop-noise output on LOUT and ROUT that can occur when muting is released and after power-down is released (see mute release timing in figures 4 and 5). Note that when muting using the MUTEN pin, outputs LOUT and ROUT do not become high impedance. A pull-down resistor connected to MUTEN is recommended. Reset 2.5 [sec] RSTN PDN MUTEN MDT LOUT/ROUT Current consumption MUTE OFF High Impedance Medium Impedance High Impedance Power Down MUTE Low Impedance (Power ON) MUTE ON MUTE OFF Figure 4. Initial startup recommended mute release timing example 1 2.5 [sec] Reset RSTN PDN MUTEN MDT LOUT/ROUT Current consumption MUTE OFF High Impedance Medium Impedance Power Down MUTE Low Impedance (Power ON) MUTE ON MUTE OFF Figure 5. Initial startup recommended mute release timing example 2 Mute function (Microcontroller Data) Mute is ON when Microcontroller Data D0 to D7 = LOW. Output impedance is HIGH when Microcontroller Data D0 to D7 = LOW, Mute function. Beep Signal Input/Output (BEEPI, BEEPLO, BEEPRO) The beep signal is a constant-current output signal on BEEPLO and BEEPRO in response to an input signal on BBEPI. The beep signal input/output circuit should be used when MUTEN is HIGH, when muting using the attenuation data bits D0 to D7, and during power-down. NIPPON PRECISION CIRCUITS INC.—15 SM6453AB TYPICAL RESPONSE VDD1 = VDD2 = 2.0V, analog input amplitude = 0.025Vrms, input frequency = 1kHz, Ta = 25°C, Measurement circuit, PDN = HIGH, MUTEN = HIGH, MDT D0 to D12 = LOW, unless otherwise noted 10 10 9 0.5mW+0.5mW (16Ω) 7 THD+N [%] supply current [mA] 8 6 5 4 1 0.5mW+0.5mW (16Ω) 3 No signal (16Ω) 2 1 10mW+10mW (16Ω) 0 1.5 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 0.1 1.5 4.0 Figure 6. Current consumption vs. Supply voltage 2.5 3.0 supply voltage:VDD1 [V] 3.5 4.0 Figure 7. THD+N vs. Supply voltage 100 10 10 THD+N [%] 100 THD+N [%] 2.0 1 1 0.1 0.001 0.01 0.1 1 output power [mW] 10 0.1 0.001 100 0.01 0.1 1 input level [V] Figure 8. THD+N vs. Output power Figure 9. THD+N vs. Input voltage 100 100 90 80 output power [mW] output power [mW] 10 1 0.1 0.01 70 60 50 40 30 20 0.001 10 0.0001 0.001 0.01 0.1 input level [V] Figure 10. THD+N vs. Input voltage 1 0 1.5 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 4.0 Figure 11. Maximum output power vs. Supply voltage NIPPON PRECISION CIRCUITS INC.—16 SM6453AB 100 30 cross talk:CT1, CT2, CT3 [dB] GEVR = 0dB noise level:VNS [µV] 25 GEVR = –12dB 20 15 10 5 0 1.5 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 60 50 40 BB2:CT3 30 BB1:CT2 20 10 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 4.0 12 GEVR = 0dB (GO = +12dB) 2 GEVR = –20dB (GO = –8dB) –8 GEVR = –40dB (GO = –28dB) GEVR = –60dB (GO = –48dB) GEVR = –80dB (GO = –68dB) –18 –28 –38 –48 –58 MUTE –68 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 0 4.0 Figure 14. Absolute gain vs. Supply voltage –10 –20 –30 –40 GEVR [dB] –50 –60 –70 –80 Figure 15. Output voltage gain vs. EVR gain setting 15 2.0 BB2 14 1.5 13 1.0 12 0.5 [dBr] gain error:GERR [dB] BB OFF:CT1 70 Figure 13. Channel separation vs. Supply voltage GO [dB] Absolute gain [dB] 30 20 10 0 –10 –20 –30 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 1.5 80 0 1.5 4.0 Figure 12. Noise level vs. Supply voltage 90 0.0 11 10 9 –0.5 8 –1.0 BB1 7 –0.5 6 –2.0 0 –10 –20 –30 –40 GEVR [dB] –50 Figure 16. Gain error –60 –70 –80 5 1.5 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 4.0 Figure 17. Bass boost gain vs. Supply voltage NIPPON PRECISION CIRCUITS INC.—17 SM6453AB 0.70 +20 BB2 +10 0.65 AGC voltage:VAGC [V] +15 BB1 dBr +5 +0 BB OFF –5 –10 0.60 0.55 0.50 0.45 0.40 –15 20 50 100 200 500 1k 2k 5k 10k 0.35 1.5 20k 2.0 2.5 3.0 supply voltage:VDD1 [V] Hz Figure 18. Frequency response vs. Bass boost 3.5 4.0 Figure 19. AGC level vs. Supply voltage –40 0 VDD1 = 1.8V BEEP out level:VBO [dBv] BEEP out level:VBO [dBv] VDD1 = 3.6V –50 –10 –20 –30 –40 BEEPI = 2.0VP-0 –50 –60 1.5 2.0 2.5 3.0 supply voltage:VDD1 [V] 3.5 Figure 20. Beep sound output level vs. Supply voltage 4.0 –60 –70 –80 –90 –100 –110 0 0.5 1.0 1.5 2.0 2.5 BEEPI level [VP-O] 3.0 3.5 4.0 Figure 21. Beep sound output level vs. Beep input level NIPPON PRECISION CIRCUITS INC.—18 SM6453AB NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies. NIPPON PRECISION CIRCUITS INC. 4-3, Fukuzumi 2-chome, Koto-ku, Tokyo 135-8430, Japan Telephone: +81-3-3642-6661 Facsimile: +81-3-3642-6698 http://www.npc.co.jp/ Email: [email protected] NC0024AE 2002.04 NIPPON PRECISION CIRCUITS INC.—19