TI TMS320F28334

TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
Data Manual
Literature Number: SPRS439
June 2007
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Contents
1
TMS320F28335, TMS320F28334, TMS320F28332 DSCs ............................................................. 7
1.1
1.2
2
Introduction......................................................................................................................... 9
2.1
2.2
3
3.3
3.4
3.5
3.6
3.7
Memory Maps ..............................................................................................................
Brief Descriptions...........................................................................................................
3.2.1
C28x CPU .......................................................................................................
3.2.2
Memory Bus (Harvard Bus Architecture) ....................................................................
3.2.3
Peripheral Bus ..................................................................................................
3.2.4
Real-Time JTAG and Analysis ................................................................................
3.2.5
External Interface (XINTF) .....................................................................................
3.2.6
Flash ..............................................................................................................
3.2.7
M0, M1 SARAMs ...............................................................................................
3.2.8
L0, L1, L2, L3, L4, L5, L6, L7 SARAMs .....................................................................
3.2.9
Boot ROM ........................................................................................................
3.2.10 Security ..........................................................................................................
3.2.11 Peripheral Interrupt Expansion (PIE) Block ..................................................................
3.2.12 External Interrupts (XINT1-XINT7, XNMI) ....................................................................
3.2.13 Oscillator and PLL ..............................................................................................
3.2.14 Watchdog ........................................................................................................
3.2.15 Peripheral Clocking .............................................................................................
3.2.16 Low-Power Modes ..............................................................................................
3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn) ...........................................................................
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer .........................................................
3.2.19 32-Bit CPU-Timers (0, 1, 2) ...................................................................................
3.2.20 Control Peripherals .............................................................................................
3.2.21 Serial Port Peripherals .........................................................................................
Register Map ................................................................................................................
Device Emulation Registers...............................................................................................
Interrupts ....................................................................................................................
3.5.1
External Interrupts ..............................................................................................
System Control .............................................................................................................
3.6.1
OSC and PLL Block ............................................................................................
3.6.2
Watchdog Block .................................................................................................
Low-Power Modes Block ..................................................................................................
25
32
32
32
32
32
33
33
33
33
33
35
35
36
36
36
36
36
37
37
37
38
38
39
40
41
45
45
47
50
51
Peripherals ........................................................................................................................ 52
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
2
Pin Assignments ............................................................................................................. 9
Signal Descriptions ......................................................................................................... 15
Functional Overview ........................................................................................................... 24
3.1
3.2
4
Features ....................................................................................................................... 7
Getting Started ............................................................................................................... 8
DMA Overview ..............................................................................................................
32-Bit CPU-Timers 0/1/2 ..................................................................................................
Enhanced PWM Modules (ePWM1/2/3/4/5/6) ..........................................................................
High-Resolution PWM (HRPWM) ........................................................................................
Enhanced CAP Modules (eCAP1/2/3/4/5/6) ............................................................................
Enhanced QEP Modules (eQEP1/2).....................................................................................
Enhanced Analog-to-Digital Converter (ADC) Module ................................................................
4.7.1
ADC Connections if the ADC Is Not Used ...................................................................
4.7.2
ADC Registers ...................................................................................................
Multichannel Buffered Serial Port (McBSP) Module ...................................................................
Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B).....................................
Contents
53
54
56
58
59
61
63
66
66
68
71
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
www.ti.com
Digital Signal Controllers (DSCs)
SPRS439 – JUNE 2007
4.10
4.11
4.12
4.13
5
76
80
83
85
Device Support .................................................................................................................. 91
5.1
5.2
6
Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C) ...........................................
Serial Peripheral Interface (SPI) Module (SPI-A) ......................................................................
Inter-Integrated Circuit (I2C) ..............................................................................................
GPIO MUX ..................................................................................................................
Device and Development Support Tool Nomenclature................................................................ 91
Documentation Support ................................................................................................... 93
Electrical Specifications ...................................................................................................... 96
6.1
6.2
6.3
Absolute Maximum Ratings ............................................................................................... 96
Recommended Operating Conditions ................................................................................... 97
Electrical Characteristics ................................................................................................. 97
Contents
3
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
List of Figures
2-1
F28335, F28334, F28332 176-Pin PGF LQFP (Top View) .................................................................. 10
2-2
F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View) .................... 11
2-3
F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View)
2-4
2-5
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
5-1
4
..................
F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View) ....................
F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Right Quadrant) (Bottom View) ..................
Functional Block Diagram .......................................................................................................
F28335 Memory Map .............................................................................................................
F28334 Memory Map .............................................................................................................
F28332 Memory Map .............................................................................................................
External and PIE Interrupt Sources .............................................................................................
External Interrupts ................................................................................................................
Multiplexing of Interrupts Using the PIE Block ................................................................................
Clock and Reset Domains .......................................................................................................
OSC and PLL Block Diagram ...................................................................................................
Using a 3.3-V External Oscillator ...............................................................................................
Using a 1.8-V External Oscillator ...............................................................................................
Using the Internal Oscillator .....................................................................................................
Watchdog Module .................................................................................................................
DMA Functional Block Diagram .................................................................................................
CPU-Timers ........................................................................................................................
CPU-Timer Interrupt Signals and Output Signal ..............................................................................
Multiple PWM Modules in a 2833x System ....................................................................................
ePWM Sub-Modules Showing Critical Internal Signal Interconnections ...................................................
eCAP Functional Block Diagram ................................................................................................
eQEP Functional Block Diagram ................................................................................................
Block Diagram of the ADC Module .............................................................................................
ADC Pin Connections With Internal Reference ...............................................................................
ADC Pin Connections With External Reference ..............................................................................
McBSP Module ...................................................................................................................
eCAN Block Diagram and Interface Circuit ....................................................................................
eCAN-A Memory Map ............................................................................................................
eCAN-B Memory Map ............................................................................................................
Serial Communications Interface (SCI) Module Block Diagram ............................................................
SPI Module Block Diagram (Slave Mode) .....................................................................................
I2C Peripheral Module Interfaces ...............................................................................................
GPIO MUX Block Diagram .......................................................................................................
Qualification Using Sampling Window..........................................................................................
Example of 2833x Device Nomenclature ......................................................................................
List of Figures
12
13
14
24
26
27
28
41
42
43
46
47
48
48
48
50
53
54
54
56
58
59
61
64
65
65
69
72
73
74
79
82
84
85
90
92
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
List of Tables
2-1
2-2
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
................................................................................................................ 9
Signal Descriptions ............................................................................................................... 15
Addresses of Flash Sectors in F28335......................................................................................... 29
Addresses of Flash Sectors in F28334......................................................................................... 29
Addresses of Flash Sectors in F28332......................................................................................... 29
Handling Security Code Locations .............................................................................................. 30
Wait-states ......................................................................................................................... 31
Boot Mode Selection.............................................................................................................. 34
Peripheral Frame 0 Registers ................................................................................................... 39
Peripheral Frame 1 Registers ................................................................................................... 39
Peripheral Frame 2 Registers ................................................................................................... 40
Peripheral Frame 3 Registers ................................................................................................... 40
Device Emulation Registers ..................................................................................................... 40
PIE Peripheral Interrupts ......................................................................................................... 43
PIE Configuration and Control Registers ...................................................................................... 44
External Interrupt Registers ...................................................................................................... 45
PLL, Clocking, Watchdog, and Low-Power Mode Registers ................................................................ 47
PLLCR Register Bit Definitions .................................................................................................. 49
CLKIN Divide Options ............................................................................................................ 49
Possible PLL Configuration Modes ............................................................................................. 49
Low-Power Modes ................................................................................................................ 51
CPU-Timers 0, 1, 2 Configuration and Control Registers ................................................................... 55
ePWM Control and Status Registers ........................................................................................... 57
eCAP Control and Status Registers ............................................................................................ 60
eQEP Control and Status Registers ............................................................................................ 62
ADC Registers ..................................................................................................................... 66
McBSP Register Summary ...................................................................................................... 70
3.3-V eCAN Transceivers ....................................................................................................... 72
CAN Register Map ................................................................................................................ 75
SCI-A Registers ................................................................................................................... 77
SCI-B Registers ................................................................................................................... 77
SCI-C Registers ................................................................................................................... 78
SPI-A Registers ................................................................................................................... 81
I2C-A Registers.................................................................................................................... 84
GPIO Registers ................................................................................................................... 86
GPIO-A Mux Peripheral Selection Matrix ..................................................................................... 87
GPIO-B Mux Peripheral Selection Matrix ..................................................................................... 88
GPIO-C Mux Peripheral Selection Matrix ..................................................................................... 89
Hardware Features
List of Tables
5
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
6
List of Tables
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
1
TMS320F28335, TMS320F28334, TMS320F28332 DSCs
1.1
Features
•
•
•
•
•
•
•
•
•
•
•
High-Performance Static CMOS Technology
– Up to 150 MHz (6.67-ns Cycle Time)
– 1.9-V Core, 3.3-V I/O Design
High-Performance 32-Bit CPU (TMS320C28x)
– IEEE-754 Single-Precision Floating-Point
Unit (FPU)
– 16 x 16 and 32 x 32 MAC Operations
– 16 x 16 Dual MAC
– Harvard Bus Architecture
– Fast Interrupt Response and Processing
– Unified Memory Programming Model
– Code-Efficient (in C/C++ and Assembly)
Six Channel DMA Controller (for ADC, McBSP,
XINTF, and SARAM)
16-bit or 32-bit External Memory Interface
(XINTF)
On-Chip Memory
– F28335: 256K x 16 Flash, 34K x 16 SARAM
– F28334:128K x 16 Flash, 34K x 16 SARAM
– F28332: 64K x 16 Flash, 26K x 16 SARAM
– 1K x 16 OTP ROM
Boot ROM (8K x 16)
– With Software Boot Modes (via SCI, SPI,
CAN, I2C, McBSP, XINTF, and Parallel I/O)
– Standard Math Tables
Clock and System Control
– Dynamic PLL Ratio Changes Supported
– On-Chip Oscillator
– Watchdog Timer Module
Any GPIO Pin Can Be Connected to One of the
Eight External Core Interrupts
Peripheral Interrupt Expansion (PIE) Block
That Supports All 58 Peripheral Interrupts
128-Bit Security Key/Lock
– Protects Flash/OTP/RAM Blocks
– Prevents Firmware Reverse Engineering
Three 32-Bit CPU Timers
•
•
•
•
•
•
•
•
•
•
(1)
Enhanced Control Peripherals
– Up to 18 PWM Outputs
– Up to 6 HRPWM Outputs With 150 ps MEP
Resolution
– Up to 6 Event Capture Inputs
– Up to 2 Quadrature Encoder Interfaces
– Up to 6 32-bit/Six 16-bit Timers
Serial Port Peripherals
– Up to 2 CAN Modules
– Up to 3 SCI (UART) Modules
– Up to 2 McBSP/SPI Modules
– Dedicated SPI Module
– One Inter-Integrated-Circuit (I2C) Bus
12-Bit ADC, 16 Channels
– 80-ns Conversion Rate
– 2 x 8 Channel Input Multiplexer
– Two Sample-and-Hold
– Single/Simultaneous Conversions
– Internal or External Reference
Up to 88 Individually Programmable,
Multiplexed GPIO Pins With Input Filtering
JTAG Boundary Scan Support (1)
Advanced Emulation Features
– Analysis and Breakpoint Functions
– Real-Time Debug via Hardware
Development Support Includes
– ANSI C/C++ Compiler/Assembler/Linker
– Code Composer Studio™ IDE
– DSP/BIOS™
– Digital Motor Control and Digital Power
Software Libraries
Low-Power Modes and Power Savings
– IDLE, STANDBY, HALT Modes Supported
– Disable Individual Peripheral Clocks
Package Options
– Lead-free Green Packaging
– Thin Quad Flatpack (PGF)
– MicroStar BGA™ (ZHH)
Temperature Options:
– A: -40°C to 85°C
– S: -40°C to 125°C
IEEE Standard 1149.1-1990 Standard Test Access Port and
Boundary Scan Architecture
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
Code Composer Studio, DSP/BIOS, MicroStar BGA, TMS320C28x, C28x, TMS320C2000, TMS320C54x, TMS320C55x are trademarks of
Texas Instruments.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2007, Texas Instruments Incorporated
PRODUCT PREVIEW
SPRS439 – JUNE 2007
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
1.2
Getting Started
This section gives a brief overview of the steps to take when first developing for a C28x device. For more
detail on each of these steps, see the following:
• Getting Started With TMS320C28x™ Digital Signal Controllers (literature number SPRAAM0).
• C2000 Getting Started Website (http://www.ti.com/c2000getstarted)
PRODUCT PREVIEW
8
TMS320F28335, TMS320F28334, TMS320F28332 DSCs
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
2
Introduction
The TMS320F28335, TMS320F28334, and TMS320F28332, devices, members of the TMS320C28x™
DSC generation, are highly integrated, high-performance solutions for demanding control applications.
Throughout this document, TMS320F28335, TMS320F28334, and TMS320F28332, are abbreviated as
F28335, F28334, and F28332, respectively. Table 2-1 provides a summary of features for each device.
FEATURE
Instruction cycle
F28335 (150 MHz)
F28334 (150 MHz)
F28332 (100 MHz)
10 ns
6.67 ns
6.67 ns
Floating-point Unit
Yes
Yes
Yes
3.3-V on-chip flash (16-bit word)
256K
128K
64K
Single-access RAM (SARAM) (16-bit word)
34K
34K
26K
Code security for on-chip flash/SARAM/OTP blocks
Yes
Yes
Yes
Boot ROM (8K X16)
Yes
Yes
Yes
One-time programmable (OTP) ROM
(16-bit word)
1K
1K
1K
6-channel Direct Memory Access (DMA)
PWM outputs
Yes
Yes
Yes
ePWM1/2/3/4/5/6
ePWM1/2/3/4/5/6
ePWM1/2/3/4/5/6
ePWM1A/2A/3A/4A/5A/ ePWM1A/2A/3A/4A/5A/
6A
6A
HRPWM channels
ePWM1A/2A/3A/4A
32-bit Capture inputs or auxiliary PWM outputs
6
6
4
32-bit QEP channels (four inputs/channel)
2
2
2
Yes
Yes
Yes
16
16
16
MSPS
12.5
12.5
12.5
Conversion time
Watchdog timer
No. of channels
12-Bit ADC
80 ns
80 ns
80 ns
32-Bit CPU timers
3
3
3
Multichannel Buffered Serial Port (McBSP)/SPI
2
2
1
Serial Peripheral Interface (SPI)
1
1
1
Serial Communications Interface (SCI)
3
3
2
Enhanced Controller Area Network (eCAN)
2
2
2
Inter-Integrated Circuit (I2C)
1
1
1
Digital I/O pins (shared)
88
88
88
External interrupts
8
8
8
Yes
Yes
Yes
Packaging
Temperature options
100-Pin PGF
100-Ball ZHH
A: -40°C to 85°C
Product status
2.1
PRODUCT PREVIEW
Table 2-1. Hardware Features
Yes
Yes
Yes
(PGF, ZHH)
(PGF, ZHH)
(PGF, ZHH)
TMX
TMX
TMX
Pin Assignments
The 176-pin PZ low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2-1. The 179-ball
ZHH ball grid array (BGA) terminal assignments are shown in Figure 2-2 through Figure 2-5. Table 2-2
describes the function(s) of each pin.
Submit Documentation Feedback
Introduction
9
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
GPIO75/XD4
GPIO74/XD5
GPIO73/XD6
GPIO72/XD7
GPIO71/XD8
GPIO70/XD9
VDD
VSS
GPIO69/XD10
GPIO68/XD11
GPIO67/XD12
VDDIO
VSS
GPIO66/XD13
VSS
VDD
GPIO65/XD14
GPIO64/XD15
GPIO63/SCITXDC/XD16
GPIO62/SCIRXDC/XD17
GPIO61/MFSRB/XD18
GPIO60/MCLKRB/XD19
GPIO59/MFSRA/XD20
VDD
VSS
VDDIO
VSS
XCLKIN
X1
VSS
X2
VDD
GPIO58/MCLKRA/XD21
GPIO57/SPISTEA/XD22
GPIO56/SPICLKA/XD23
GPIO55/SPISOMIA/XD24
GPIO54/SPISIMOA/XD25
GPIO53/EQEP1I/XD26
GPIO52/EQEP1S/XD27
VDDIO
VSS
GPIO51/EQEP1B/XD28
GPIO50/EQEP1A/XD29
GPIO49/ECAP6/XD30
SPRS439 – JUNE 2007
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
GPIO48/ECAP5/XD31
TCK
EMU1
EMU0
VDD3VFL
VSS
TEST2
TEST1
XRS
TMS
TRST
TDO
TDI
GPIO33/SCLA/EPWMSYNCO/ADCSOCBO
GPIO32/SDAA/EPWMSYNCI/ADCSOCAO
GPIO27/ECAP4/EQEP2S/MFSXB
GPIO26/ECAP3/EQEP2I/MCLKXB
VDDIO
VSS
GPIO25/ECAP2/EQEP2B/MDRB
GPIO24/ECAP1/EQEP2A/MDXB
GPIO23/EQEP1I/MFSXA/SCIRXDB
GPIO22/EQEP1S/MCLKXA/SCITXDB
GPIO21/EQEP1B/MDRA/CANRXB
GPIO20/EQEP1A/MDXA/CANTXB
GPIO19/SPISTEA/SCIRXDB/CANTXA
GPIO18/SPICLKA/SCITXDB/CANRXA
VDD
VSS
VDD2A18
VSS2AGND
ADCRESEXT
ADCREFP
ADCREFM
ADCREFIN
ADCINB7
ADCINB6
ADCINB5
ADCINB4
ADCINB3
ADCINB2
ADCINB1
ADCINB0
VDDAIO
GPIO30/CANRXA/XA18
GPIO29/SCITXDA/XA19
VSS
VDD
GPIO0/EPWM1A
GPIO1/EPWM1B/ECAP6/MFSRB
GPIO2/EPWM2A
VSS
VDDIO
GPIO3/EPWM2B/ECAP5/MCLKRB
GPIO4/EPWM3A
GPIO5/EPWM3B/MFSRA/ECAP1
GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO
VSS
VDD
GPIO7/EPWM4B/MCLKRA/ECAP2
GPIO8/EPWM5A/CANTXB/ADCSOCAO
GPIO9/EPWM5B/SCITXDB/ECAP3
GPIO10/EPWM6A/CANRXB/ADCSOCBO
GPIO11/EPWM6B/SCIRXDB/ECAP4
GPIO12/TZ1/CANTXB/MDXB
VSS
VDD
GPIO13/TZ2/CANRXB/MDRB
GPIO14/TZ3/XHOLD/SCITXDB/MCLKXB
GPIO15/TZ4/XHOLDA/SCIRXDB/MFSXB
GPIO16/SPISIMOA/CANTXB/TZ5
GPIO17/SPISOMIA/CANRXB/TZ6
VDD
VSS
VDD1A18
VSS1AGND
VSSA2
VDDA2
ADCINA7
ADCINA6
ADCINA5
ADCINA4
ADCINA3
ADCINA2
ADCINA1
ADCINA0
ADCLO
VSSAIO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
PRODUCT PREVIEW
GPIO76/XD3
GPIO77/XD2
GPIO78/XD1
GPIO79/XD0
GPIO38/XWE0
XCLKOUT
VDD
GPIO28/SCIRXDA/XZCS6
VSS
GPIO28/SCIRXDA/XZCS6
GPIO34/ECAP1/XREADY
VDDIO
VSS
GPIO36/SCIRXDA/XZCS0
VDD
VSS
GPIO35/SCITXDA/XR/W
XRD
GPIO37/ECAP2/XZCS7
GPIO40/XA0/XWE1
GPIO41/XA1
GPIO42/XA2
VDD
VSS
GPIO43/XA3
GPIO44/XA4
GPIO45/XA5
VDDIO
VSS
GPIO46/XA6
GPIO47/XA7
GPIO80/XA8
GPIO81/XA9
GPIO82/XA10
VSS
VDD
GPIO83/XA11
GPIO84/XA12
VDDIO
VSS
GPIO85/XA13
GPIO86/XA14
GPIO87/XA15
GPIO39/XA16
GPIO31/CANTXA/XA17
Figure 2-1. F28335, F28334, F28332 176-Pin PGF LQFP (Top View)
10
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
1
2
3
4
5
6
7
P
VSSAIO
ADCINB0
ADCINB2
ADCINB6
ADCREFP
VSS
GPIO21/
EQEP1B/
MDRA/
CANRXB
P
N
ADCINA1
VDDAIO
ADCINB1
ADCINB5
ADCREFM
VDD
GPIO22/
EQEP1S/
MCLKXA/
SCITXDB
N
M
ADCINA2
ADCLO
ADCINA0
ADCINB4
ADCRESEXT
VDD2A18
GPIO23/
EQEP1I/
MFSXA/
SCIRXDB
M
L
ADCINA5
ADCINA4
ADCINA3
ADCINB3
ADCREFIN
GPIO18/
SPICLKA/
SCITXDB/
CANRXA
GPIO20/
EQEP1A/
MDXA/
CANTXB
L
K
VSS1AGND
VDDA2
VSSA2
ADCINA7
ADCINB7
VSS2AGND
GPIO19/
SPISTEA/
SCIRXDB/
CANTXA
K
6
7
J
GPIO17/
SPISOMIA/
CANRXB/
TZ6
VDD
VSS
VDD1A18
ADCINA6
J
H
VDD
GPIO14/
TZ3/XHOLD/
SCITXDB/
MCLKXB
GPIO13/
TZ2/
CANRXB/
MDRB
GPIO15/
TZ4/XHOLDA/
SCIRXDB/
MFSXB
GPIO16/
SPISIMOA/
CANTXB/
TZ5
H
1
2
3
4
5
PRODUCT PREVIEW
SPRS439 – JUNE 2007
Figure 2-2. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View)
Submit Documentation Feedback
Introduction
11
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
10
13
PRODUCT PREVIEW
8
9
P
VSS
GPIO33/
SCLA/
EPWMSYNCO/
ADCSOCBO
TMS
TEST2
EMU1
GPIO48/
ECAP5/
XD31
GPIO50/
EQEP1A/
XD29
P
N
GPIO25/
ECAP2/
EQEP2B/
MDRB
GPIO32/
SDAA/
EPWMSYNCI/
ADCSOCAO
VSS
VSS
TCK
GPIO49/
ECAP6/
XD30
VDDIO
N
M
GPIO24/
ECAP1/
EQEP2A/
MDXB
TDI
TRST
VDD3VFL
VSS
GPIO51/
EQEP1B/
XD28
GPIO52/
EQEP1S/
XD27
M
L
VDDIO
GPIO27/
ECAP4/
EQEP2S/
MFSXB
XRS
EMU0
GPIO53/
EQEP1I/
XD26
GPIO54/
SPISIMOA/
XD25
GPIO55/
SPISOMIA/
XD24
L
K
GPIO26/
ECAP3/
EQEP2I/
MCLKXB
TDO
TEST1
GPIO56/
SPICLKA/
XD23
GPIO58/
MCLKRA/
XD21
GPIO57/
SPISTEA/
XD22
VDD
K
8
9
J
VSS
X2
VSS
X1
XCLKIN
J
H
VSS
VDDIO
VDD
VSS
GPIO59/
MFSRA/
XD20
H
10
11
12
13
14
11
12
14
Figure 2-3. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View)
12
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
1
2
3
4
5
G
VSS
GPIO11/
EPWM6B/
SCIRXDB/
ECAP4
GPIO12/
TZ1/
CANTXB/
MDXB
GPIO10/
EPWM6A/
CANRXB/
ADCSOCBO
GPIO9/
EPWM5B/
SCITXDB/
ECAP3
G
F
GPIO8/
EPWM5A/
CANTXB/
ADCSOCAO
GPIO7/
EPWM4B/
MCLKRA/
ECAP2
VDD
VSS
VDDIO
F
GPIO6/
EPWM4A/
EPWMSYNCI/
EPWMSYNCO
GPIO4/
EPWM3A
GPIO5/
EPWM3B/
MFSRA/
ECAP1
GPIO3/
EPWM2B/
ECAP5/
MCLKRB
D
VSS
GPIO2/
EPWM2A
GPIO1/
EPWM1B/
ECAP6/
MFSRB
C
GPIO0/
EPWM1A
GPIO29/
SCITXDA/
XA19
B
VDD
E
A
6
7
GPIO84/
XA12
GPIO81/
XA9
VDDIO
E
GPIO86/
XA14
GPIO83/
XA11
VSS
GPIO45/
XA5
D
VSS
GPIO85/
XA13
GPIO82/
XA10
GPIO80/
XA8
VSS
C
GPIO30/
CANRXA/
XA18
GPIO39/
XA16
VSS
VDD
GPIO46/
XA6
GPIO43/
XA3
B
GPIO31/
CANTXA/
XA17
GPIO87/
XA15
VDDIO
VSS
GPIO47/
XA7
GPIO44/
XA4
A
2
3
4
5
6
7
1
PRODUCT PREVIEW
SPRS439 – JUNE 2007
Figure 2-4. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View)
Submit Documentation Feedback
Introduction
13
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
10
11
12
13
14
G
GPIO64/
XD15
GPIO63/
SCITXDC/
XD16
GPIO61/
MFSRB/
XD18
GPIO62/
SCIRXDC
XD17
GPIO60/
MCLKRB/
XD19
G
F
GPIO69/
XD10
GPIO66/
XD13
VSS
VDD
GPIO65/
XD14
F
PRODUCT PREVIEW
8
9
E
VSS
VDD
GPIO28/
SCIRXDA/
XZCS6
GPIO68/
XD11
VDDIO
GPIO67/
XD12
VSS
E
D
GPIO40/
XA0/
XWE1
GPIO37/
ECAP2/
XZCS7
GPIO34/
ECAP1/
XREADY
GPIO38/
XWE0
GPIO70/
XD9
VDD
VSS
D
C
VDD
VSS
GPIO36/
SCIRXDA/
XZCS0
XCLKOUT
GPIO73/
XD6
GPIO74/
XD5
GPIO71/
XD8
C
B
GPIO42/
XA2
XRD
VDDIO
VDD
GPIO78/
XD1
GPIO76/
XD3
GPIO72/
XD7
B
A
GPIO41/
XA1
GPIO35/
SCITXDA/
XR/W
VSS
VSS
GPIO79/
XD0
GPIO77/
XD2
GPIO75/
XD4
A
8
9
10
11
12
13
14
Figure 2-5. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Right Quadrant) (Bottom View)
14
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
2.2
Signal Descriptions
Table 2-2 describes the signals on the 2833x devices. All digital inputs are TTL-compatible. All outputs are
3.3 V with CMOS levels. Inputs are not 5-V tolerant.
Table 2-2. Signal Descriptions
PIN NO.
NAME
PGF
PIN #
DESCRIPTION
ZHH
BALL #
(1)
TRST
78
M10
TCK
87
N12
JTAG test clock with internal pullup (I, ↑)
TMS
79
P10
JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP
controller on the rising edge of TCK. (I, ↑)
TDI
76
M9
JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction
or data) on a rising edge of TCK. (I, ↑)
TDO
77
K9
JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data)
are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive)
L11
Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator
system and is defined as input/output through the JTAG scan. This pin is also used to put the device
into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low
state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA
drive ↑)
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be
based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ
resistor is generally adequate. Since this is application-specific, it is recommended that each target
board be validated for proper operation of the debugger and the application.
EMU0
85
EMU1
86
P12
Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the emulator
system and is defined as input/output through the JTAG scan. This pin is also used to put the device
into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low
state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA
drive ↑)
NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be
based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ
resistor is generally adequate. Since this is application-specific, it is recommended that each target
board be validated for proper operation of the debugger and the application.
VDD3VFL
84
M11
3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times.
TEST1
81
K10
Test Pin. Reserved for TI. Must be left unconnected. (I/O)
TEST2
82
P11
Test Pin. Reserved for TI. Must be left unconnected. (I/O)
FLASH
CLOCK
XCLKOUT
138
C11
Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the
frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by the bits 1, 0
(XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal
can be turned off by setting XCLKOUTDIV to 3. Unlike other GPIO pins, the XCLKOUT pin is not
placed in high-impedance state during a reset. (O/Z, 8 mA drive).
XCLKIN
105
J14
External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this case, the
X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.8-V oscillator is used to
feed clock to X1 pin), this pin must be tied to GND. (I)
(1)
I = Input, O = Output, Z = High impedance, OD = Open drain, ↑ = Pullup, ↓ = Pulldown
Submit Documentation Feedback
Introduction
15
PRODUCT PREVIEW
JTAG
JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of
the operations of the device. If this signal is not connected or driven low, the device operates in its
functional mode, and the test reset signals are ignored.
NOTE: Do not use pullup resistors on TRST; it has an internal pull-down device. TRST is an active
high test pin and must be maintained low at all times during normal device operation. In a low-noise
environment, TRST may be left floating. In other instances, an external pulldown resistor is highly
recommended. The value of this resistor should be based on drive strength of the debugger pods
applicable to the design. A 2.2-kΩ resistor generally offers adequate protection. Since this is
application-specific, it is recommended that each target board be validated for proper operation of
the debugger and the application. (I, ↓)
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
NAME
PGF
PIN #
DESCRIPTION
ZHH
BALL #
(1)
X1
104
J13
Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic
resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.8-V core digital
power supply. A 1.8-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN
pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1 must
be tied to GND. (I)
X2
102
J11
Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and
X2. If X2 is not used it must be left unconnected. (O)
RESET
PRODUCT PREVIEW
XRS
80
L10
Device Reset (in) and Watchdog Reset (out).
Device reset. XRS causes the device to terminate execution. The PC will point to the address
contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the
location pointed to by the PC. This pin is driven low by the DSC when a watchdog reset occurs.
During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK
cycles. (I/OD, ↑)
The output buffer of this pin is an open-drain with an internal pullup. It is recommended that this pin
be driven by an open-drain device.
ADCINA7
35
K4
ADC Group A, Channel 7 input (I)
ADCINA6
36
J5
ADC Group A, Channel 6 input (I)
ADCINA5
37
L1
ADC Group A, Channel 5 input (I)
ADCINA4
38
L2
ADC Group A, Channel 4 input (I)
ADCINA3
39
L3
ADC Group A, Channel 3 input (I)
ADCINA2
40
M1
ADC Group A, Channel 2 input (I)
ADCINA1
41
N1
ADC Group A, Channel 1 input (I)
ADCINA0
42
M3
ADC Group A, Channel 0 input (I)
ADCINB7
53
K5
ADC Group B, Channel 7 input (I)
ADCINB6
52
P4
ADC Group B, Channel 6 input (I)
ADCINB5
51
N4
ADC Group B, Channel 5 input (I)
ADCINB4
50
M4
ADC Group B, Channel 4 input (I)
ADCINB3
49
L4
ADC Group B, Channel 3 input (I)
ADCINB2
48
P3
ADC Group B, Channel 2 input (I)
ADCINB1
47
N3
ADC Group B, Channel 1 input (I)
ADCINB0
46
P2
ADC Group B, Channel 0 input (I)
ADCLO
43
M2
Low Reference (connect to analog ground) (I)
ADCRESEXT
57
M5
ADC External Current Bias Resistor. Connect a 22-kΩ resistor to analog ground.
ADCREFIN
54
L5
External reference input (I)
ADCREFP
56
P5
Internal Reference Positive Output. Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor
of 2.2 µF to analog ground. (O)
ADCREFM
55
N5
Internal Reference Medium Output. Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor
of 2.2 µF to analog ground. (O)
VDDA2
34
K2
ADC Analog Power Pin
VSSA2
33
K3
ADC Analog Ground Pin
VDDAIO
45
N2
ADC Analog I/O Power Pin
VSSAIO
44
P1
ADC Analog I/O Ground Pin
VDD1A18
31
J4
ADC Analog Power Pin
VSS1AGND
32
K1
ADC Analog Ground Pin
VDD2A18
59
M6
ADC Analog Power Pin
VSS2AGND
58
K6
ADC Analog Ground Pin
ADC SIGNALS
CPU AND I/O POWER PINS
16
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
PGF
PIN #
ZHH
BALL #
VDD
4
B1
VDD
15
B5
VDD
23
B11
VDD
29
C8
VDD
61
D13
VDD
101
E9
VDD
109
F3
VDD
117
F13
VDD
126
H1
VDD
139
H12
VDD
146
J2
VDD
154
K14
VDD
167
N6
VDDIO
9
A4
VDDIO
71
B10
VDDIO
93
E7
VDDIO
107
E12
VDDIO
121
F5
VDDIO
143
L8
VDDIO
159
H11
VDDIO
170
N14
VSS
3
A5
VSS
8
A10
VSS
14
A11
VSS
22
B4
VSS
30
C3
VSS
60
C7
VSS
70
C9
VSS
83
D1
VSS
92
D6
VSS
103
D14
VSS
106
E8
VSS
108
E14
VSS
118
F4
VSS
120
F12
VSS
125
G1
VSS
140
H10
VSS
144
H13
VSS
147
J3
VSS
155
J10
VSS
160
J12
VSS
166
M12
VSS
171
N10
VSS
N11
VSS
P6
Submit Documentation Feedback
DESCRIPTION
(1)
CPU and Logic Digital Power Pins
PRODUCT PREVIEW
NAME
Digital I/O Power Pin
Digital Ground Pins
Introduction
17
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
NAME
PGF
PIN #
VSS
DESCRIPTION
ZHH
BALL #
P8
(1)
Digital Ground Pins
GPIOA AND PERIPHERAL SIGNALS (2) (3)
GPIO0
EPWM1A
GPIO1
EPWM1B
ECAP6
MFSRB
PRODUCT PREVIEW
GPIO2
EPWM2A
GPIO3
EPWM2B
ECAP5
MCLKRB
GPIO4
EPWM3A
GPIO5
EPWM3B
MFSRA
ECAP1
GPIO6
EPWM4A
EPWMSYNCI
EPWMSYNCO
GPIO7
EPWM4B
MCLKRA
ECAP2
GPIO8
EPWM5A
CANTXB
ADCSOCAO
GPIO9
EPWM5B
SCITXDB
ECAP3
GPIO10
EPWM6A
CANRXB
ADCSOCBO
GPIO11
EPWM6B
SCIRXDB
ECAP4
(2)
(3)
(4)
18
5
6
7
10
11
12
13
16
17
18
19
20
C1
General purpose input/output 0 (I/O/Z) (4)
Enhanced PWM1 Output A and HRPWM channel (O)
-
D3
General purpose input/output 1 (I/O/Z) (4)
Enhanced PWM1 Output B (O)
Enhanced Capture 6 input/output (I/O)
McBSP-B receive frame synch (I/O)
D2
General purpose input/output 2 (I/O/Z) (4)
Enhanced PWM2 Output A and HRPWM channel (O)
-
E4
General purpose input/output 3 (I/O/Z) (4)
Enhanced PWM2 Output B (O)
Enhanced Capture 5 input/output (I/O)
McBSP-B clock receive (I/O)
E2
General purpose input/output 4 (I/O/Z) (4)
Enhanced PWM3 output A and HRPWM channel (O)
-
E3
General purpose input/output 5 (I/O/Z) (4)
Enhanced PWM3 output B (O)
McBSP-A receive frame synch (I/O)
Enhanced Capture input/output 1 (I/O)
E1
General purpose input/output 6 (I/O/Z) (4)
Enhanced PWM4 output A and HRPWM channel (O)
External ePWM sync pulse input (I)
External ePWM sync pulse output (O)
F2
General purpose input/output 7 (I/O/Z) (4)
Enhanced PWM4 output B (O)
McBSP-A Clock Receive (I/O)
Enhanced capture input/output 2 (I/O)
F1
General Purpose Input/Output 8 (I/O/Z) (4)
Enhanced PWM5 output A (O)
Enhanced CAN-B transmit (O)
ADC start-of-conversion A (O)
G5
General purpose input/output 9 (I/O/Z) (4)
Enhanced PWM5 output B (O)
SCI-B transmit data(O)
Enhanced capture input/output 3 (I/O)
G4
General purpose input/output 10 (I/O/Z) (4)
Enhanced PWM6 output A (O)
Enhanced CAN-B receive (I)
ADC start-of-conversion B (O)
G2
General purpose input/output 11 (I/O/Z) (4)
Enhanced PWM6 output B (O)
SCI-B receive data (I)
Enhanced CAP Input/Output 4 (I/O)
Some peripheral functions may not be available in all devices. See Table 2-1 for details.
All GPIO pins are I/O/Z, 4-mA drive typical (unless otherwise indicated), and have an internal pullup, which can be selectively
enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The GPIO function (shown in Italics) is the default at
reset. The peripheral signals that are listed under them are alternate functions.
The pullups on GPIO0-GPIO11 pins are not enabled at reset.
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
GPIO12
TZ1
CANTXB
MDXB
GPIO13
TZ2
CANRXB
MDRB
PGF
PIN #
21
24
DESCRIPTION
ZHH
BALL #
G3
General purpose input/output 12 (I/O/Z) (5)
Trip Zone input 1 (I)
Enhanced CAN-B transmit (O)
McBSP-B transmit serial data (O)
H3
General purpose input/output 13 (I/O/Z) (5)
Trip Zone input 2 (I)
Enhanced CAN-B receive (I)
McBSP-B receive serial data (I)
(1)
GPIO14
General purpose input/output 14 (I/O/Z) (5)
TZ3/XHOLD
Trip Zone input 3/External Hold Request. XHOLD, when active (low), requests the external memory
interface (XINTF) to release the external bus and place all buses and strobes into a high-impedance
state. The XINTF will release the bus when any current access is complete and there are no
pending accesses on the XINTF. (I)
25
H2
SCITXDB
MCLKXB
SCI-B Transmit (I)
McBSP-B clock transmit (I/O)
GPIO15
General purpose input/output 15 (I/O/Z) (5)
TZ4/XHOLDA
Trip Zone input 4/External Hold Acknowledge. XHOLDA is driven active (low) when the XINTF has
granted an XHOLD request. All XINTF buses and strobe signals will be in a high-impedance state.
XHOLDA is released when the XHOLD signal is released. External devices should only drive the
external bus when XHOLDA is active (low). (I)
26
H4
SCIRXDB
MFSXB
SCI-B receive (I)
McBSP-B transmit frame synch (I/O)
GPIO16
SPISIMOA
CANTXB
TZ5
H5
General purpose input/output 16 (I/O/Z) (5)
SPI slave in, master out (I/O)
Enhanced CAN-B transmit (O)
Trip Zone input 5 (I)
J1
General purpose input/output 17 (I/O/Z) (5)
SPI-A slave out, master in (I/O)
Enhanced CAN-B receive (I)
Trip zone input 6 (I)
L6
General purpose input/output 18 (I/O/Z) (5)
SPI-A clock input/output (I/O)
SCI-B transmit (O)
Enhanced CAN-A receive (I)
K7
General purpose input/output 19 (I/O/Z) (5)
SPI-A slave transmit enable input/output (I/O)
SCI-B receive (I)
Enhanced CAN-A transmit (O)
L7
General purpose input/output 20 (I/O/Z) (5)
Enhanced QEP1 input A (I)
McBSP-A transmit serial data (O)
Enhanced CAN-B transmit (O)
P7
General purpose input/output 21 (I/O/Z) (5)
Enhanced QEP1 input B (I)
McBSP-A receive serial data (I)
Enhanced CAN-B receive (I)
N7
General purpose input/output 22 (I/O/Z) (5)
Enhanced QEP1 strobe (I/O)
McBSP-A clock transmit (I/O)
SCI-B transmit (O)
M7
General purpose input/output 23 (I/O/Z) (5)
Enhanced QEP1 index (I/O)
McBSP-A transmit frame synch (I/O)
SCI-B receive (I)
GPIO17
SPISOMIA
CANRXB
TZ6
GPIO18
SPICLKA
SCITXDB
CANRXA
GPIO19
SPISTEA
SCIRXDB
CANTXA
GPIO20
EQEP1A
MDXA
CANTXB
GPIO21
EQEP1B
MDRA
CANRXB
GPIO22
EQEP1S
MCLKXA
SCITXDB
GPIO23
EQEP1I
MFSXA
SCIRXDB
(5)
27
28
62
63
64
65
66
67
The pullups on GPIO12-GPIO34 are enabled upon reset.
Submit Documentation Feedback
Introduction
19
PRODUCT PREVIEW
NAME
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
NAME
GPIO24
ECAP1
EQEP2A
MDXB
GPIO25
ECAP2
EQEP2B
MDRB
PRODUCT PREVIEW
GPIO26
ECAP3
EQEP2I
MCLKXB
PGF
PIN #
68
69
72
ZHH
BALL #
DESCRIPTION
M8
General purpose input/output 24 (I/O/Z) (5)
Enhanced capture 1 (I/O)
Enhanced QEP2 input A (I)
McBSP-B transmit serial data (O)
N8
General purpose input/output 25 (I/O/Z) (5)
Enhanced capture 2 (I/O)
Enhanced QEP2 input B (I)
McBSP-B receive serial data (I)
K8
General purpose input/output 26 (I/O/Z) (5)
Enhanced capture 3 (I/O)
Enhanced QEP2 index (I/O)
McBSP-B clock transmit (O)
General purpose input/output 27 (I/O/Z) (5)
Enhanced capture 4 (I/O)
Enhanced QEP2 strobe (I/O)
McBSP-B transmit frame synch (I/O)
GPIO27
ECAP4
EQEP2S
MFSXB
73
L9
GPIO28
SCIRXDA
XZCS6
141
E10
General purpose input/output 28 (I/O/Z) (5)
SCI receive data (I)
External memory interface zone 6 chip select (O)
GPIO29
SCITXDA
XA19
2
C2
General purpose input/output 29. (I/O/Z) (5)
SCI transmit data (O)
External Memory Interface Address Line 19 (O)
GPIO30
CANRXA
XA18
1
B2
General purpose input/output 30 (I/O/Z) (5)
Enhanced CAN-A receive (I)
External Memory Interface Address Line 18 (O)
GPIO31
CANTXA
XA17
176
A2
General purpose input/output 31 (I/O/Z) (5)
Enhanced CAN-A transmit (O)
External Memory Interface Address Line 17 (O)
N9
General purpose input/output 32 (I/O/Z) (5)
I2C data open-drain bidirectional port (I/OD)
Enhanced PWM external sync pulse input (I)
ADC start-of-conversion A (O)
GPIO32
SDAA
EPWMSYNCI
ADCSOCAO
74
(1)
GPIO33
SCLA
EPWMSYNCO
ADCSOCBO
75
P9
General-Purpose Input/Output 33 (I/O/Z) (5)
I2C clock open-drain bidirectional port (I/OD)
Enhanced PWM external synch pulse output (O)
ADC start-of-conversion B (O)
GPIO34
ECAP1
XREADY
142
D10
General-Purpose Input/Output 34 (I/O/Z) (5)
Enhanced Capture input/output 1 (I/O)
External memory interface Ready signal
GPIO35
SCITXDA
XR/W
148
A9
General-Purpose Input/Output 35 (I/O/Z)
SCI-A transmit data (O)
External memory interface read, not write strobe
GPIO36
SCIRXDA
XZCS0
145
C10
General-Purpose Input/Output 36 (I/O/Z)
SCI receive data (I)
External memory interface zone 0 chip select (O)
GPIO37
ECAP2
XZCS7
150
D9
General-Purpose Input/Output 37 (I/O/Z)
Enhanced Capture input/output 2 (I/O)
External memory interface zone 7 chip select (O)
GPIO38
XWE0
137
D11
General-Purpose Input/Output 38 (I/O/Z)
External memory interface Write Enable 0 (O)
GPIO39
XA016
175
B3
General-Purpose Input/Output 39 (I/O/Z)
External Memory Interface Address Line 16 (O)
GPIO40
XA0/XWE1
151
D8
General-Purpose Input/Output 40 (I/O/Z)
External Memory Interface Address Line 0/External memory interface Write Enable 1 (O)
20
Introduction
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
DESCRIPTION
PGF
PIN #
ZHH
BALL #
GPIO41
XA1
152
A8
General-Purpose Input/Output 41 (I/O/Z)
External Memory Interface Address Line 1 (O)
GPIO42
XA2
153
B8
General-Purpose Input/Output 42 (I/O/Z)
External Memory Interface Address Line 2 (O)
GPIO43
XA3
156
B7
General-Purpose Input/Output 43 (I/O/Z)
External Memory Interface Address Line 3 (O)
GPIO44
XA4
157
A7
General-Purpose Input/Output 44 (I/O/Z)
External Memory Interface Address Line 4 (O)
GPIO45
XA5
158
D7
General-Purpose Input/Output 45 (I/O/Z)
External Memory Interface Address Line 5 (O)
GPIO46
XA6
161
B6
General-Purpose Input/Output 46 (I/O/Z)
External Memory Interface Address Line 6 (O)
GPIO47
XA7
162
A6
General-Purpose Input/Output 47 (I/O/Z)
External Memory Interface Address Line 7 (O)
GPIO48
ECAP5
XD31
88
P13
General-Purpose Input/Output 48 (I/O/Z)
Enhanced Capture input/output 5 (I/O)
External Memory Interface Data Line 31 (O)
GPIO49
ECAP6
XD30
89
N13
General-Purpose Input/Output 49 (I/O/Z)
Enhanced Capture input/output 6 (I/O)
External Memory Interface Data Line 30 (O)
GPIO50
EQEP1A
XD29
90
P14
General-Purpose Input/Output 50 (I/O/Z)
Enhanced QEP 1input A (I)
External Memory Interface Data Line 29 (O)
GPIO51
EQEP1B
XD28
91
M13
General-Purpose Input/Output 51 (I/O/Z)
Enhanced QEP 1input B (I)
External Memory Interface Data Line 28 (O)
GPIO52
EQEP1S
XD27
94
M14
General-Purpose Input/Output 52 (I/O/Z)
Enhanced QEP 1Strobe (I/O)
External Memory Interface Data Line 27 (O)
GPIO53
EQEP1I
XD26
95
L12
General-Purpose Input/Output 53 (I/O/Z)
Enhanced CAP1 lndex (I/O)
External Memory Interface Data Line 26 (O)
GPIO54
SPISIMOA
XD25
96
L13
General-Purpose Input/Output 54 (I/O/Z)
SPI-A slave in, master out (I/O)
External Memory Interface Data Line 25 (O)
GPIO55
SPISOMIA
XD24
97
L14
General-Purpose Input/Output 55 (I/O/Z)
SPI-A slave out, master in (I/O)
External Memory Interface Data Line 24 (O)
GPIO56
SPICLKA
XD23
98
K11
General-Purpose Input/Output 56 (I/O/Z)
SPI-A clock (I/O)
External Memory Interface Data Line 23 (O)
GPIO57
SPISTEA
XD22
99
K13
General-Purpose Input/Output 57 (I/O/Z)
SPI-A slave transmit enable (I/O)
External Memory Interface Data Line 22 (O)
GPIO58
MCLKRA
XD21
100
K12
General-Purpose Input/Output 58 (I/O/Z)
McBSP-A receive clock (I/O)
External Memory Interface Data Line 21 (O)
GPIO59
MFSRA
XD20
110
H14
General-Purpose Input/Output 59 (I/O/Z)
McBSP-A receive frame synch (I/O)
External Memory Interface Data Line 20 (O)
Submit Documentation Feedback
(1)
PRODUCT PREVIEW
NAME
Introduction
21
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
NAME
DESCRIPTION
PRODUCT PREVIEW
PGF
PIN #
ZHH
BALL #
GPIO60
MCLKRB
XD19
111
G14
General-Purpose Input/Output 60 (I/O/Z)
McBSP-B receive clock (I/O)
External Memory Interface Data Line 19 (O)
GPIO61
MFSRB
XD18
112
G12
General-Purpose Input/Output 61 (I/O/Z)
McBSP-B receive frame synch (I/O)
External Memory Interface Data Line 18 (O)
GPIO62
SCIRXDC
XD17
113
G13
General-Purpose Input/Output 62 (I/O/Z)
SCI-C receive data (I)
External Memory Interface Data Line 17 (O)
GPIO63
SCITXDC
XD16
114
G11
General-Purpose Input/Output 63 (I/O/Z)
SCI-C transmit data (O)
External Memory Interface Data Line 16 (O)
GPIO64
XD15
115
G10
General-Purpose Input/Output 64 (I/O/Z)
External Memory Interface Data Line 15 (O)
GPIO65
XD14
116
F14
General-Purpose Input/Output 65 (I/O/Z)
External Memory Interface Data Line 14 (O)
GPIO66
XD13
119
F11
General-Purpose Input/Output 66 (I/O/Z)
External Memory Interface Data Line 13 (O)
GPIO67
XD12
122
E13
General-Purpose Input/Output 67 (I/O/Z)
External Memory Interface Data Line 12 (O)
GPIO68
XD11
123
E11
General-Purpose Input/Output 68 (I/O/Z)
External Memory Interface Data Line 11 (O)
GPIO69
XD10
124
F10
General-Purpose Input/Output 69 (I/O/Z)
External Memory Interface Data Line 10 (O)
GPIO70
XD9
127
D12
General-Purpose Input/Output 70 (I/O/Z)
External Memory Interface Data Line 9 (O)
GPIO71
XD8
128
C14
General-Purpose Input/Output 71 (I/O/Z)
External Memory Interface Data Line 8 (O)
GPIO72
XD7
129
B14
General-Purpose Input/Output 72 (I/O/Z)
External Memory Interface Data Line 7 (O)
GPIO73
XD6
130
C12
General-Purpose Input/Output 73 (I/O/Z)
External Memory Interface Data Line 6 (O)
GPIO74
XD5
131
C13
General-Purpose Input/Output 74 (I/O/Z)
External Memory Interface Data Line 5 (O)
GPIO75
XD4
132
A14
General-Purpose Input/Output 75 (I/O/Z)
External Memory Interface Data Line 4 (O)
GPIO76
XD3
133
B13
General-Purpose Input/Output 76 (I/O/Z)
External Memory Interface Data Line 3 (O)
GPIO77
XD2
134
A13
General-Purpose Input/Output 77 (I/O/Z)
External Memory Interface Data Line 2 (O)
GPIO78
XD1
135
B12
General-Purpose Input/Output 78 (I/O/Z)
External Memory Interface Data Line 1 (O)
22
Introduction
(1)
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 2-2. Signal Descriptions (continued)
PIN NO.
DESCRIPTION
PGF
PIN #
ZHH
BALL #
GPIO79
XD0
136
A12
General-Purpose Input/Output 79 (I/O/Z)
External Memory Interface Data Line 0 (O)
GPIO80
XA8
163
C6
General-Purpose Input/Output 80 (I/O/Z)
External Memory Interface Address Line 8 (O)
GPIO81
XA9
164
E6
General-Purpose Input/Output 81 (I/O/Z)
External Memory Interface Address Line 9 (O)
GPIO82
XA10
165
C5
General-Purpose Input/Output 82 (I/O/Z)
External Memory Interface Address Line 10 (O)
GPIO83
XA11
168
D5
General-Purpose Input/Output 83 (I/O/Z)
External Memory Interface Address Line 11 (O)
GPIO84
XA12
169
E5
General-Purpose Input/Output 84 (I/O/Z)
External Memory Interface Address Line 12 (O)
GPIO85
XA13
172
C4
General-Purpose Input/Output 85 (I/O/Z)
External Memory Interface Address Line 13 (O)
GPIO86
XA14
173
D4
General-Purpose Input/Output 86 (I/O/Z)
External Memory Interface Address Line 14 (O)
GPIO87
XA15
174
A3
General-Purpose Input/Output 87 (I/O/Z)
External Memory Interface Address Line 15 (O)
XRD
149
B9
External memory interface Read Enable
Submit Documentation Feedback
(1)
PRODUCT PREVIEW
NAME
Introduction
23
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3
Functional Overview
M0 SARAM 1Kx16
(0-Wait)
L0 SARAM 4Kx16
(0-Wait, Dual Map)
M1 SARAM 1Kx16
(0-Wait)
L1 SARAM 4Kx16
(0-Wait, Dual Map)
OTP 2Kx16
Memory Bus
L2 SARAM 4Kx16
(0-Wait, Dual Map)
Flash
256Kx16
8 Sectors
Code
Security
Module
L3 SARAM 4Kx16
(0-Wait, Dual Map)
TEST2
L4 SARAM 4Kx16
(0-W Data, 1-W Prog)
Pump
Boot ROM
8Kx16
TEST1
PSWD
L5 SARAM 4Kx16
(0-W Data, 1-W Prog)
Flash
Wrapper
L6 SARAM 4Kx16
(0-W Data, 1-W Prog)
PRODUCT PREVIEW
L7 SARAM 4Kx16
(0-W Data, 1-W Prog)
Memory Bus
XD31:0
FPU
TCK
XHOLDA
TDI
XHOLD
TMS
XREADY
CPU
(150 MHZ @ 1.9 V)
XINTF
XR/W
GPIO
MUX
88 GPIOs
XZCS0
TDO
TRST
EMU0
XZCS7
EMU1
XWE0
XA0/XWE1
XA19:1
DMA Bus
Memory Bus
XZCS6
XCLKIN
CPU Timer 0
DMA
6 Ch
CPU Timer 1
X1
X2
XRS
CPU Timer 2
XCLKOUT
PIE
(Interrupts)
XRD
88 GPIOs
OSC,
PLL,
LPM,
WD
8 External Interrupts
GPIO
MUX
A7:0
Memory Bus
12-Bit
ADC
2-S/H
B7:0
DMA Bus
REFIN
32-bit peripheral bus
(DMA accessible)
16-bit peripheral bus
FIFO
(16 Levels)
EPWM-1/../6
McBSP-A/B
ECAP-1/../6
EQEP-1/2
CAN-A/B
(32-mbox)
CANTXx
CANRXx
EQEPxI
EQEPxS
EQEPxB
EQEPxA
ESYNCI
ESYNCO
EPWMxB
TZxn
EPWMxA
MFSXx
MFSRx
MCLKRx
MRXx
MCLKXx
HRPWM-1/../6
MDXx
SCLx
SDAx
I2C
SPISTEx
SPISOMIx
SPISIMOx
SCIRXDx
SCITXDx
SPICLKx
SPI-A
SCI-A/B/C
ECAPx
FIFO
(16 Levels)
FIFO
(16 Levels)
32-bit peripheral bus
GPIO MUX
88 GPIOs
Figure 3-1. Functional Block Diagram
24
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
www.ti.com
Digital Signal Controllers (DSCs)
SPRS439 – JUNE 2007
3.1
Memory Maps
PRODUCT PREVIEW
In Figure 3-2 through Figure 3-4, the following apply:
• Memory blocks are not to scale.
• Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps
are restricted to data memory only. A user program cannot access these memory maps in program
space.
• Protected means the order of Write followed by Read operations is preserved rather than the pipeline
order.
• Certain memory ranges are EALLOW protected against spurious writes after configuration.
Submit Documentation Feedback
Functional Overview
25
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Block
Start Address
On-Chip Memory
External Memory XINTF
Prog Space
Data Space
0x00 0000
M0 Vector - RAM (32 x 32)
(Enable if VMAP = 0)
0x00 0040
M0 SARAM (1K x 16)
0x00 0400
M1 SARAM (1K x 16)
0x00 0800
Peripheral Frame 0
0x00 0D00
PIE Vector - RAM
(256 x16)
(Enabled if
VMAP = 1,
ENPIE =1)
0x00 0E00
PRODUCT PREVIEW
Low 64K
(24x/240x Equivalent Data Space)
Prog Space
Data Space
Reserved
Reserved
Peripheral Frame 0
0x00 2000
Reserved
0x00 5000
XINTF Zone 0 (4K x 16,XZCS0)
(Protected, DMA Accessible)
0x00 5000
Peripheral Frame 3 (Protected, DMA Accessable)
0x00 6000
0x00 4000
Peripheral Frame 1
(Protected)
Reserved
0x00 7000
Peripheral Frame 2
(Protected)
0x00 8000
L0 SARAM (4K x16, Secure Zone Dual Mapped)
0x00 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x0000-A000
L2 SARAM (4Kx16, Secure Zone, Dual Mapped)
0x0000-B000
L3 SARAM (4Kx16, Secure Zone, Dual Mapped)
0x0000-C000
Reserved
L4 SARAM (4Kx16, DMA Accessilbe)
0x0000-D000
L5 SARAM (4Kx16, DMA Accessible)
0x0000-E000
L6 SARAM (4Kx16, DMA Accessible)
0x0000-F000
L7 SARAM (4Kx16, DMA Accessiible)
0x0001-0000
Reserved
0x30 0000
FLASH (256 K x 16, Secure Zone)
0x33 FFF8
128-bit Password
0x34 0000
Reserved
OTP (IK x 16, Secure Zone)
High 64K
(24x/240x Equivalent
Program Space)
0x38 0400
0x3F 8000
L0 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F A000
L2 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F B000
L3 SARAM (4K x 16, Secure Zone Dual Mapped)
XINTF Zone 6 (1 M x 16, XZCS6)
0x10 0000
0x20 0000
XINTF Zone 7 (1 M x 16, XZCS7)
0x3F C000
0x30 0000
Reserved
Reserved
0x3F E000
Boot ROM (8K x 16)
0x3F FFC0
BROM Vector - ROM (32 x 32)
(Enable if VMAP = 1, ENPIE = 0)
XINTF Vector - RAM (32 x32)
(Enable if VMAP = 1, ENPIR = 0)
LEGEND:
Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time.
Figure 3-2. F28335 Memory Map
26
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Block
Start Address
On-Chip Memory
External Memory XINTF
Prog Space
Data Space
0x00 0000
Prog Space
Data Space
M0 Vector - RAM (32 x 32)
(Enable if VMAP = 0)
0x00 0040
M0 SARAM (1K x 16)
0x00 0400
M1 SARAM (1K x 16)
0x00 0800
Peripheral Frame 0
0x00 0D00
Peripheral Frame 0
0x00 0E00
Reserved
Peripheral Frame 0
0x00 2000
Reserved
0x00 4000
XINTF Zone 0 (4K x 16,XZCS0)
(Protected, DMA Accessible)
0x00 5000
PRODUCT PREVIEW
Low 64K
(24x/240x Equivalent Data Space)
Reserved
PIE Vector - RAM
(256 x16)
(Enabled if
VMAP = 1,
ENPIE =1)
0x00 5000
Peripheral Frame 3 (Protected, DMA Accessable)
0x00 6000
Peripheral Frame 1
(Protected)
Reserved
0x00 7000
Peripheral Frame 2
(Protected)
0x00 8000
L0 SARAM (4K x16, Secure Zone Dual Mapped)
0x00 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x0000-A000
L2 SARAM (4Kx16, Secure Zone, Dual Mapped)
0x0000-B000
L3 SARAM (4Kx16, Secure Zone, Dual Mapped)
0x0000-C000
L4 SARAM (4Kx16, DMA Accessilbe)
0x0000-D000
Reserved
L5 SARAM (4Kx16, DMA Accessible)
0x0000-E000
L6 SARAM (4Kx16, DMA Accessible)
0x0000-F000
L7 SARAM (4Kx16, DMA Accessiible)
0x0001-0000
Reserved
0x32 0000
FLASH (128 K x 16, Secure Zone)
0x33 FFF8
128-bit Password
0x34 0000
High 64K
(24x/240x Equivalent
Program Space)
Reserved
0x38 0400
OTP (IK x 16, Secure Zone)
0x3F 8000
L0 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F A000
L2 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F B000
L3 SARAM (4K x 16, Secure Zone Dual Mapped)
0x10 0000
XINTF Zone 6 (1 M x 16, XZCS6)
0x20 0000
XINTF Zone 7 (1 M x 16, XZCS7)
0x30 0000
Reserved
0x3F C000
Reserved
0x3F E000
Boot ROM (8K x 16)
0x3F FFC0
BROM Vector - ROM (32 x 32)
(Enable if VMAP = 1, ENPIE = 0)
XINTF Zone 7 (16K x 15, XZCS6AND7)
(Enable if MP/MC = 1)
XINTF Vector - RAM (32 x32)
(Enable if VMAP = 1, ENPIR = 0)
LEGEND:
Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time.
Figure 3-3. F28334 Memory Map
Submit Documentation Feedback
Functional Overview
27
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Block
Start Address
On-Chip Memory
External Memory XINTF
Prog Space
Data Space
0x00 0000
Prog Space
Data Space
M0 Vector - RAM (32 x 32)
(Enable if VMAP = 0)
0x00 0040
M0 SARAM (1K x 16)
0x00 0400
M1 SARAM (1K x 16)
0x00 0800
Peripheral Frame 0
Reserved
PIE Vector - RAM
(256 x16)
(Enabled if
VMAP = 1,
ENPIE =1)
PRODUCT PREVIEW
Low 64K
(24x/240x Equivalent Data Space)
0x00 0D00
0x00 0E00
0x00 2000
Reserved
Peripheral Frame 0
XINTF Zone 0 (4K x 16,XZCS0)
(Protected, DMA Accessible)
Reserved
0x00 5000
0x00 4000
0x00 5000
Peripheral Frame 3 (Protected, DMA Accessable)
0x00 6000
Peripheral Frame 1
(Protected)
Reserved
0x00 7000
Peripheral Frame 2
(Protected)
0x00 8000
L0 SARAM (4K x16, Secure Zone Dual Mapped)
0x00 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x0000-A000
L2 SARAM (4Kx16, Secure Zone, Dual Mapped)
0x0000-B000
L3 SARAM (4Kx16, Secure Zone, Dual Mapped)
Reserved
0x0000-C000
L4 SARAM (4Kx16, DMA Accessilbe)
0x0000-D000
L5 SARAM (4Kx16, DMA Accessible)
0x0000-E000
Reserved
0x33 0000
FLASH (64 K x 16, Secure Zone)
0x33 FFF8
128-bit Password
0x34 0000
High 64K
(24x/240x Equivalent
Program Space)
Reserved
0x38 0400
OTP (IK x 16, Secure Zone)
0x3F 8000
L0 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F 9000
L1 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F A000
L2 SARAM (4K x 16, Secure Zone Dual Mapped)
0x3F B000
L3 SARAM (4K x 16, Secure Zone Dual Mapped)
XINTF Zone 6 (1 M x 16, XZCS6)
0x10 0000
0x20 0000
XINTF Zone 7 (1 M x 16, XZCS7)
0x30 0000
Reserved
0x3F C000
Reserved
0x3F E000
Boot ROM (8K x 16)
0x3F FFC0
BROM Vector - ROM (32 x 32)
(Enable if VMAP = 1, ENPIE = 0)
XINTF Zone 7 (16K x 15, XZCS6AND7)
(Enable if MP/MC = 1)
XINTF Vector - RAM (32 x32)
(Enable if VMAP = 1, ENPIR = 0)
LEGEND:
Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time.
Figure 3-4. F28332 Memory Map
28
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-1. Addresses of Flash Sectors in F28335
PROGRAM AND DATA SPACE
Sector H (32K x 16)
0x30 8000 - 0x30 FFFF
Sector G (32K x 16)
0x31 0000 - 0x31 7FFF
Sector F (32K x 16)
0x31 8000 - 0x31 FFFF
Sector E (32K x 16)
0x32 0000 - 0x32 7FFF
Sector D (32K x 16)
0x32 8000 - 0x32 FFFF
Sector C (32K x 16)
0x33 0000 - 0x33 7FFF
Sector B (32K x 16)
0x33 8000 - 0x33 FFFF
Sector A (32K x 16)
0x33 FF80 - 0x33 FFF5
Program to 0x0000 when using the
Code Security Module
0x33 FFF6 - 0x33 FFF7
Boot-to-Flash Entry Point
(program branch instruction here)
0x33 FFF8 - 0x33 FFFF
Security Password
(128-Bit) (Do Not Program to all zeros)
PRODUCT PREVIEW
ADDRESS RANGE
0x30 0000 - 0x30 7FFF
Table 3-2. Addresses of Flash Sectors in F28334
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x32 0000 - 0x32 3FFF
Sector H (16K x 16)
0x32 4000 - 0x32 7FFF
Sector G (16K x 16)
0x32 8000 - 0x32 BFFF
Sector F (16K x 16)
0x32 C000 - 0x32 FFFF
Sector E (16K x 16)
0x33 0000 - 0x33 3FFF
Sector D (16K x 16)
0x33 4000 - 0x33 7FFFF
Sector C (16K x 16)
0x33 8000 - 0x33 BFFF
Sector B (16K x 16)
0x33 C000 - 0x33 FFFF
Sector A (16K x 16)
0x33 FF80 - 0x33 FFF5
Program to 0x0000 when using the
Code Security Module
0x33 FFF6 - 0x33 FFF7
Boot-to-Flash Entry Point
(program branch instruction here)
0x33 FFF8 - 0x33 FFFF
Security Password (128-Bit)
(Do Not Program to all zeros)
Table 3-3. Addresses of Flash Sectors in F28332
Submit Documentation Feedback
ADDRESS RANGE
PROGRAM AND DATA SPACE
0x33 0000 - 0x33 3FFF
Sector D (16K x 16)
0x33 4000 - 0x33 7FFFF
Sector C (16K x 16)
0x33 8000 - 0x33 BFFF
Sector B (16K x 16)
0x33 C000 - 0x33 FFFF
Sector A (16K x 16)
0x33 FF80 - 0x33 FFF5
Program to 0x0000 when using the Code Security
Module
0x33 FFF6 - 0x33 FFF7
Boot-to-Flash Entry Point (program branch
instruction here)
0x33 FFF8 - 0x33 FFFF
Security Password (128-Bit) (Do Not Program to all
zeros)
Functional Overview
29
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
NOTE
When the code-security passwords are programmed, all addresses between
0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations
must be programmed to 0x0000.
• If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may
be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and
should not contain program code. .
Table 3-4 shows how to handle these memory locations.
•
Table 3-4. Handling Security Code Locations
ADDRESS
FLASH
Code security enabled
PRODUCT PREVIEW
0x33FF80 - 0x33FFEF
0x33FFF0 - 0x33FFF5
Fill with 0x0000
Code security disabled
Application code and data
Reserved for data only
Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these
blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these
blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to
different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause
problems in certain peripheral applications where the user expected the write to occur first (as written).
The C28x CPU supports a block protection mode where a region of memory can be protected so as to
make sure that operations occur as written (the penalty is extra cycles are added to align the operations).
This mode is programmable and by default, it will protect the selected zones.
The wait-states for the various spaces in the memory map area are listed in Table 3-5.
30
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-5. Wait-states
Wait-States CPU
0-wait
Peripheral Frame 0
1-wait (reads)
0-wait (writes)
Peripheral Frame 3
0-wait (writes)
2-wait (reads)
Peripheral Frame 1
Peripheral Frame 2
Fixed
This applies to all PF0 peripherals except
the floating-point unit (FPU) (0-wait reads)
Assumes no conflicts between CPU and
DMA.
0-wait (writes)
Cycles can be extended by peripheral
generated ready.
2-wait (reads)
Consecutive writes to the CAN will
experience a 1-cycle pipeline hit.
0-wait (writes)
Fixed. Cycles cannot be extended by the
peripheral.
2-wait (reads)
L0 SARAM
Comments
0-wait data and prog
PRODUCT PREVIEW
Area
M0 and M1 SARAMs
Assumes no CPU conflicts
L1 SARAM
L2 SARAM
L3 SARAM
L4 SARAM
0-wait data (read)
L5 SARAM
0-wait data (write)
Assumes no conflicts between CPU and
DMA.
L6 SARAM
1-wait prog (read)
L7 SARAM
1-wait prog (write)
XINTF
Programmable
Programmed via the XTIMING registers or
extendable via external XREADY signal.
1-wait minimum
1-wait is minimum wait states allowed on
external waveforms for both reads and
writes on XINTF.
0-wait minimum writes with
write buffer enabled
0-wait minimum for writes assumes write
buffer enabled and not full.
Assumes no conflicts between CPU and
DMA. When DMA and CPU attempt
simultaneous conflict, 1-cycle delay is
added for arbitration.
OTP
FLASH
Programmable
Programmed via the Flash registers.
1-wait minimum
1-wait is minimum number of wait states
allowed. 1-wait-state operation is possible
at a reduced CPU frequency.
Programmable
Programmed via the Flash registers.
1-wait Paged min
0-wait minimum for paged access is not
allowed
1-wait Random min
Random > Paged
FLASH Password
Programmable,
16-wait fixed
Boot-ROM
Submit Documentation Feedback
1-wait
Wait states of password locations are
fixed.
0-wait speed is not possible.
Functional Overview
31
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.2
3.2.1
Brief Descriptions
C28x CPU
PRODUCT PREVIEW
The C28x™ DSC generation is the newest member of the TMS320C2000™ DSC platform. The C28x is a
very efficient C/C++ engine, hence enabling users to develop not only their system control software in a
high-level language, but also enables math algorithms to be developed using C/C++. The C28x is as
efficient in DSC math tasks as it is in system control tasks that typically are handled by microcontroller
devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC
capabilities of the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher
numerical resolution problems. Add to this the fast interrupt response with automatic context save of
critical registers, resulting in a device that is capable of servicing many asynchronous events with minimal
latency. The C28x has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining
enables the C28x to execute at high speeds without resorting to expensive high-speed memories. Special
branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional
operations further improve performance.
3.2.2
Memory Bus (Harvard Bus Architecture)
As with many DSC type devices, multiple busses are used to move data between the memories and
peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus
and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read
and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable
single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the
C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and
memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory
bus accesses can be summarized as follows:
Highest:
Data Writes
(Simultaneous data and program writes cannot occur on the memory bus.)
Program Writes
(Simultaneous data and program writes cannot occur on the memory bus.)
Data Reads
Lowest:
3.2.3
Program Reads
(Simultaneous program reads and fetches cannot occur on the memory bus.)
Fetches
(Simultaneous program reads and fetches cannot occur on the memory bus.)
Peripheral Bus
To enable migration of peripherals between various Texas Instruments (TI) DSC family of devices, the
2833x devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge
multiplexes the various busses that make up the processor Memory Bus into a single bus consisting of 16
address lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus
are supported on the 2833x. One version supports only 16-bit accesses (called peripheral frame 2).
Another version supports both 16- and 32-bit accesses (called peripheral frame 1). The third version
supports DMA access and both 16- and 32-bit accesses (called peripheral frame 3).
3.2.4
Real-Time JTAG and Analysis
The 2833x implements the standard IEEE 1149.1 JTAG interface. Additionally, the 2833x supports
real-time mode of operation whereby the contents of memory, peripheral and register locations can be
modified while the processor is running and executing code and servicing interrupts. The user can also
single step through non-time critical code while enabling time-critical interrupts to be serviced without
interference. The 2833x implements the real-time mode in hardware within the CPU. This is a unique
feature to the 2833x, no software monitor is required. Additionally, special analysis hardware is provided
which allows the user to set hardware breakpoint or data/address watch-points and generate various
user-selectable break events when a match occurs.
32
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.2.5
External Interface (XINTF)
This asynchronous interface consists of 19 address lines, 32 data lines, and three chip-select lines. The
chip-select lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be
programmed with a different number of wait states, strobe signal setup and hold timing and each zone can
be programmed for extending wait states externally or not. The programmable wait-state, chip-select and
programmable strobe timing enables glueless interface to external memories and peripherals.
Flash
The F28335 contains 256K × 16 of embedded flash memory, segregated into eight 32K × 16 sectors. The
F28334 contains 128K × 16 of embedded flash memory, segregated into eight 16K × 16 sectors. The
F28332 device contains 64K ×16 of embedded flash, segregated into four 16K × 16 sectors. All the
devices also contain a single 1K × 16 of OTP memory at address range 0x380400 – 0x3807FF. The user
can individually erase, program, and validate a flash sector while leaving other sectors untouched.
However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that
erase/program other sectors. Special memory pipelining is provided to enable the flash module to achieve
higher performance. The flash/OTP is mapped to both program and data space; therefore, it can be used
to execute code or store data information. Note that addresses 0x33FFF0 – 0x33FFF5 are reserved for
data variables and should not contain program code.
NOTE
The F28335/F28334/F28332 Flash and OTP wait-states can be configured by the
application. This allows applications running at slower frequencies to configure the flash to
use fewer wait-states.
Flash effective performance can be improved by enabling the flash pipeline mode in the
Flash options register. With this mode enabled, effective performance of linear code
execution will be much faster than the raw performance indicated by the wait-state
configuration alone. The exact performance gain when using the Flash pipeline mode is
application-dependent.
For more information on the Flash options, Flash wait-state, and OTP wait-state registers,
see the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide
(literature number SPRU712).
3.2.7
M0, M1 SARAMs
All 2833x devices contain these two blocks of single access memory, each 1K × 16 in size. The stack
pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks
on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to
execute code or for data variables. The partitioning is performed within the linker. The C28x device
presents a unified memory map to the programmer. This makes for easier programming in high-level
languages.
3.2.8
L0, L1, L2, L3, L4, L5, L6, L7 SARAMs
The F28335 and F28334 each contain an additional 32K × 16 of single-access RAM, divided into 8 blocks
(L0-L7 with 4K each). The F28332 contains an additional 24K × 16 of single-access RAM, divided into
6 blocks (L0-L5 with 4K each). Each block can be independently accessed to minimize CPU pipeline
stalls. Each block is mapped to both program and data space. L4, L5, L6, and L7 are DMA accessible
3.2.9
Boot ROM
The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell
the bootloader software what boot mode to use on power up. The user can select to boot normally or to
download new software from an external connection or to select boot software that is programmed in the
internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use
in math related algorithms.
Submit Documentation Feedback
Functional Overview
33
PRODUCT PREVIEW
3.2.6
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-6. Boot Mode Selection
PRODUCT PREVIEW
(1)
34
MODE (1)
GPIO87/XA15
GPIO86/XA14
GPIO85/XA13
GPIO84/XA12
1
1
1
1
Jump to Flash
1
1
1
0
SCI-A boot
1
1
0
1
SPI-A boot
1
1
0
0
I2C-A boot
1
0
1
1
eCAN-A boot
1
0
1
0
McBSP-A boot
1
0
0
1
Jump to XINTF x16
1
0
0
0
Jump to XINTF x32
0
1
1
1
Jump to OTP
0
1
1
0
Parallel GPIO I/O boot
0
1
0
1
Parallel XINTF boot
0
1
0
0
Jump to SARAM
0
0
1
1
Branch to check boot mode
0
0
1
0
Branch to Flash, skip ADC CAL
0
0
0
1
Branch to SARAM, skip ADC CAL
0
0
0
0
Branch to SCI, skip ADC CAL
All four GPIO pins have an internal pullup.
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.2.10 Security
The 2833x devices support high levels of security to protect the user firmware from being reverse
engineered. The security features a 128-bit password (hardcoded for 16 wait-states), which the user
programs into the flash. One code security module (CSM) is used to protect the flash/OTP and the
L0/L1/L2/L3 SARAM blocks. The security feature prevents unauthorized users from examining the
memory contents via the JTAG port, executing code from external memory or trying to boot-load some
undesirable software that would export the secure memory contents. To enable access to the secure
blocks, the user must write the correct 128-bit KEY value, which matches the value stored in the password
locations within the Flash.
NOTE
When the code-security passwords are programmed, all addresses between
0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations
must be programmed to 0x0000.
• If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may
be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and
should not contain program code. .
The 128-bit password (at 0x33 FFF8 – 0x33 FFFF) must not be programmed to zeros.
Doing so would permanently lock the device.
PRODUCT PREVIEW
•
NOTE
Code Security Module Disclaimer
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS
DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED
MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS
INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND
CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE
WARRANTY PERIOD APPLICABLE FOR THIS DEVICE.
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED
MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER,
EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR
REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE,
INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL,
INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN
ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT
TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED
DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF
GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER
ECONOMIC LOSS.
3.2.11 Peripheral Interrupt Expansion (PIE) Block
The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The
PIE block can support up to 96 peripheral interrupts. On the 2833x, 58 of the possible 96 interrupts are
used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12
Submit Documentation Feedback
Functional Overview
35
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a
dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU
on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers.
Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in
hardware and software. Each individual interrupt can be enabled/disabled within the PIE block.
3.2.12 External Interrupts (XINT1-XINT7, XNMI)
PRODUCT PREVIEW
The 2833x supports eight masked external interrupts (XINT1-XINT7, XNMI). XNMI can be connected to
the INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or
both negative and positive edge triggering and can also be enabled/disabled (including the XNMI). The
masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid
interrupt edge is detected. This counter can be used to accurately time stamp the interrupt. Unlike the
281x devices, there are no dedicated pins for the external interrupts. Rather, any Port A GPIO pin can be
configured to trigger any external interrupt.
3.2.13 Oscillator and PLL
The 2833x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit.
A PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly
in software, enabling the user to scale back on operating frequency if lower power operation is desired.
Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode.
3.2.14 Watchdog
The 2833x devices contain a watchdog timer. The user software must regularly reset the watchdog
counter within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The
watchdog can be disabled if necessary.
3.2.15 Peripheral Clocking
The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption
when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN)
and the ADC blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be
decoupled from increasing CPU clock speeds.
3.2.16 Low-Power Modes
The 2833x devices are full static CMOS devices. Three low-power modes are provided:
36
IDLE:
Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only
those peripherals that need to function during IDLE are left operating. An enabled interrupt
from an active peripheral or the watchdog timer will wake the processor from IDLE mode.
STANDBY:
Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional.
An external interrupt event will wake the processor and the peripherals. Execution begins
on the next valid cycle after detection of the interrupt event
HALT:
Turns off the internal oscillator. This mode basically shuts down the device and places it in
the lowest possible power consumption mode. A reset or external signal can wake the
device from this mode.
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn)
PF0:
PF1:
PF2:
PF3:
PIE:
PIE Interrupt Enable and Control Registers Plus PIE Vector Table
Flash:
Flash Control, Programming, Erase, Verify Registers
XINTF:
External Interface Registers
DMA
DMA Registers
FPU:
Floating-Point Unit Registers
Timers:
CPU-Timers 0, 1, 2 Registers
CSM:
Code Security Module KEY Registers
ADC:
ADC Result Registers (dual-mapped)
eCAN:
eCAN Mailbox and Control Registers
GPIO:
GPIO MUX Configuration and Control Registers
ePWM:
Enhanced Pulse Width Modulator Module and Registers
eCAP:
Enhanced Capture Module and Registers
eQEP:
Enhanced Quadrature Encoder Pulse Module and Registers
SYS:
System Control Registers
SCI:
Serial Communications Interface (SCI) Control and RX/TX Registers
SPI:
Serial Port Interface (SPI) Control and RX/TX Registers
ADC:
ADC Status, Control, and Result Register
I2C:
Inter-Integrated Circuit Module and Registers
XINTF
External Interface Registers
McBSP
Multichannel Buffered Serial Port Registers
PRODUCT PREVIEW
The 2833x device segregates peripherals into three sections. The mapping of peripherals is as follows:
3.2.18 General-Purpose Input/Output (GPIO) Multiplexer
Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This
enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins
are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal
mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter
unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power
modes.
3.2.19 32-Bit CPU-Timers (0, 1, 2)
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock
prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter
reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting.
When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is
reserved for Real-Time OS (RTOS)/BIOS applications. CPU-Timer 1 is also reserved for TI system
functions. CPU-Timer 2 is connected to INT14 of the CPU. CPU-Timer 1 can be connected to INT13 of
the CPU. CPU-Timer 0 is for general use and is connected to the PIE block.
Submit Documentation Feedback
Functional Overview
37
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.2.20 Control Peripherals
The 2833x devices support the following peripherals which are used for embedded control and
communication:
PRODUCT PREVIEW
ePWM:
The enhanced PWM peripheral supports independent/complementary PWM generation,
adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip
mechanism. Some of the PWM pins support HRPWM features.
eCAP:
The enhanced capture peripheral uses a 32-bit time base and registers up to four
programmable events in continuous/one-shot capture modes.
This peripheral can also be configured to generate an auxiliary PWM signal.
eQEP:
The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed
measurement using capture unit and high-speed measurement using a 32-bit unit timer.
This peripheral has a watchdog timer to detect motor stall and input error detection logic
to identify simultaneous edge transition in QEP signals.
ADC:
The ADC block is a 12-bit converter, single ended, 16-channels. It contains two
sample-and-hold units for simultaneous sampling.
3.2.21 Serial Port Peripherals
The 2833x devices support the following serial communication peripherals:
38
eCAN:
This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time
stamping of messages, and is CAN 2.0B-compliant.
McBSP:
The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality
codecs for modem applications or high-quality stereo audio DAC devices. The McBSP
receive and transmit registers are supported by the DMA to significantly reduce the
overhead for servicing this peripheral.
SPI:
The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a
programmable bit-transfer rate. Normally, the SPI is used for communications between the
DSC and external peripherals or another processor. Typical applications include external
I/O or peripheral expansion through devices such as shift registers, display drivers, and
ADCs. Multi-device communications are supported by the master/slave operation of the
SPI. On the 2833x, the SPI contains a 16-level receive and transmit FIFO for reducing
interrupt servicing overhead.
SCI:
The serial communications interface is a two-wire asynchronous serial port, commonly
known as UART. On the 2833x, the SCI contains a 16-level receive and transmit FIFO for
reducing interrupt servicing overhead.
I2C:
The inter-integrated circuit (I2C) module provides an interface between a DSC and other
devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version
2.1 and connected by way of an I2C-bus. External components attached to this 2-wire
serial bus can transmit/receive up to 8-bit data to/from the DSC through the I2C module.
On the 2833x, the I2C contains a 16-level receive and transmit FIFO for reducing interrupt
servicing overhead.
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.3
Register Map
Peripheral
Frame 0:
These are peripherals that are mapped directly to the CPU memory bus.
See Table 3-7
Peripheral
Frame 1
These are peripherals that are mapped to the 32-bit peripheral bus.
See Table 3-8
Peripheral
Frame 2:
These are peripherals that are mapped to the 16-bit peripheral bus.
See Table 3-9
Peripheral
Frame 3:
These are peripherals that are mapped to the 32-bit DMA-accessible peripheral
bus.
See Table 3-10
PRODUCT PREVIEW
The 2833x devices contain four peripheral register spaces. The spaces are categorized as follows:
Table 3-7. Peripheral Frame 0 Registers (1)
ADDRESS RANGE
SIZE (×16)
ACCESS TYPE (2)
Device Emulation Registers
0x00 0880 - 0x00 09FF
384
EALLOW protected
FLASH Registers (3)
0x00 0A80 - 0x00 0ADF
96
EALLOW protected
Code Security Module Registers
0x00 0AE0 - 0x00 0AEF
16
EALLOW protected
ADC registers (dual-mapped) (0 wait, read only)
0x00 0B00 - 0x00 0B1F
32
Not EALLOW protected
XINTF Registers
0x00 0B20 - 0x00 0B3F
32
Not EALLOW protected
CPU–TIMER0/1/2 Registers
0x00 0C00 - 0x00 0C3F
64
Not EALLOW protected
PIE Registers
0x00 0CE0 - 0x00 0CFF
32
Not EALLOW protected
PIE Vector Table
0x00 0D00 - 0x00 0DFF
256
EALLOW protected
DMA Registers
0x00 1000 - 0x00 11FF
512
EALLOW protected
NAME
(1)
(2)
(3)
Registers in Frame 0 support 16-bit and 32-bit accesses.
If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction
disables writes to prevent stray code or pointers from corrupting register contents.
The Flash Registers are also protected by the Code Security Module (CSM).
Table 3-8. Peripheral Frame 1 Registers
NAME
ADDRESS RANGE
SIZE (×16)
ECAN-A Registers
0x0000 6000 - 0x0000 61FF
512
ECAN-B Registers
0x0000 6200 - 0x0000 63FF
512
EPWM1 + HRPWM1 Registers
0x0000 6800 - 0x0000 683F
64
EPWM2 + HRPWM2 Registers
0x0000 6840 - 0x0000 687F
64
EPWM3 + HRPWM3 Registers
0x0000 6880 - 0x0000 68BF
64
EPWM4 + HRPWM4 Registers
0x0000 68C0 - 0x0000 68FF
64
EPWM5 + HRPWM5 Registers
0x0000 6900 - 0x0000 693F
64
EPWM6 + HRPWM6 Registers
0x0000 6940 - 0x0000 697F
64
ECAP1 Registers
0x0000 6A00 - 0x0000 6A1F
32
ECAP2 Registers
0x0000 6A20 - 0x0000 6A3F
32
ECAP3 Registers
0x0000 6A40 - 0x0000 6A5F
32
ECAP4 Registers
0x0000 6A60 - 0x0000 6A7F
32
ECAP5 Registers
0x0000 6A80 - 0x0000 6A9F
32
ECAP6 Registers
0x0000 6AA0 - 0x0000 6ABF
32
EQEP1 Registers
0x0000 6B00 - 0x0000 6B3F
64
EQEP2 Registers
0x0000 6B40 - 0x0000 6B7F
64
GPIO Registers
0x0000 6F80 - 0x0000 6FFF
128
Submit Documentation Feedback
Functional Overview
39
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-9. Peripheral Frame 2 Registers
NAME
ADDRESS RANGE
SIZE (×16)
System Control Registers
0x0000 7010 - 0x0000 702F
32
SPI-A Registers
0x0000 7040 - 0x0000 704F
16
SCI-A Registers
0x0000 7050 - 0x0000 705F
16
External Interrupt Registers
0x0000 7070 - 0x0000 707F
16
ADC Registers
0x0000 7100 - 0x0000 711F
32
SCI-B Registers
0x0000 7750 - 0x0000 775F
16
SCI-C Registers
0x0000 7770 - 0x0000 777F
16
I2C-A Registers
0x0000 7900 - 0x0000 793F
64
PRODUCT PREVIEW
Table 3-10. Peripheral Frame 3 Registers
NAME
ADDRESS RANGE
SIZE (×16)
McBSP-A Registers
0x0000 5000 - 0x0000 503F
64
McBSP-B Registers
0x0000 5040 - 0x0000 507F
64
3.4
Device Emulation Registers
These registers are used to control the protection mode of the C28x CPU and to monitor some critical
device signals. The registers are defined in Table 3-11.
Table 3-11. Device Emulation Registers
ADDRESS
RANGE
SIZE (x16)
DEVICECNF
0x0880
0x0881
2
Device Configuration Register
PARTID
0x0882
1
Part ID Register
0x00F8 (1) - F28332
0x00F9 - F28334
0x00FA - F28335
REVID
0x0883
1
Revision ID Register
0x0000 - Silicon Rev. 0 - TMX
PROTSTART
0x0884
1
Block Protection Start Address Register
PROTRANGE
0x0885
1
Block Protection Range Address Register
NAME
(1)
40
DESCRIPTION
The first byte (00) denotes flash devices. FF denotes ROM devices. Other values are reserved for future devices.
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.5
Interrupts
Figure 3-5 shows how the various interrupt sources are multiplexed within the 2833x devices.
DMA
PIE
LPMINT
Watchdog
Low Power Models
SYSCLKOUT
Interrupt Control
XINT1
Latch
XINT1CR(15:0)
XINT1CTR(15:0)
GPIOXINT1SEL(4:0)
DMA
XINT2
ADC
XINT2
XINT2SOC
Latch
Interrupt Control
MUX
C28
Core
96 Interrupts
XINT1
INT1
to
INT12
WDINT
Sync
PRODUCT PREVIEW
WAKEINT
Clear
MUX
DMA
Peripherals
(SPI, SCI, I2C, CAN, McBSP,
EPWM, ECAP, EQEP, ADC)
XINT2CR(15:0)
XINT2CTR(15:0)
GPIOXINT2SEL(4:0)
DMA
TINT0
CPU Timer 0
DMA
CPU Timer 2
NMI
CPU Timer 1
TOUT1
Flash Wrapper
Interrupt Control
MUX
INT13
MUX
TINT1
XNMI_
XINT13
GPIO0.int
Latch
MUX
INT14
TINT2
XNMICR(15:0)
1
GPIO
Mux
GPIO31.int
XNMICTR(15:0)
GPIOXNMISEL(4:0)
DMA
Figure 3-5. External and PIE Interrupt Sources
Submit Documentation Feedback
Functional Overview
41
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
XINT3
Interrupt Control
Latch
Mux
DMA
XINT3CR(15:0)
GPIOXINT3SEL(4:0)
XINT4
Interrupt Control
Latch
Mux
DMA
XINT4CR(15:0)
C28
Core
PIE
XINT5
Interrupt Control
Latch
Mux
PRODUCT PREVIEW
INT1
to
INT12
96 Interrupts
GPIOXINT4SEL(4:0)
DMA
XINT5CR(15:0)
GPIOXINT5SEL(4:0)
XINT6
Interrupt Control
Latch
Mux
DMA
XINT6CR(15:0)
GPIOXINT6SEL(4:0)
DMA
Interrupt Control
Latch
Mux
GPIO32.int
XINT7
XINT7CR(15:0)
GPIO63.int
GPIO
Mux
GPIOXINT7SEL(4:0)
Figure 3-6. External Interrupts
Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8
interrupts per group equals 96 possible interrupts. On the 2833x, 58 of these are used by peripherals as
shown in Table 3-12.
42
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
IFR(12:1)
IER(12:1)
INTM
INT1
INT2
1
MUX
INT11
INT12
INTx
Global
Enable
(Enable)
INTx.1
INTx.2
INTx.3
INTx.4
INTx.5
INTx.6
INTx.7
INTx.8
MUX
PIEACKx
(Enable/Flag)
(Enable)
(Flag)
PIEIERx(8:1)
PIEIFRx(8:1)
From
Peripherals or
External
Interrupts
PRODUCT PREVIEW
(Flag)
CPU
0
Figure 3-7. Multiplexing of Interrupts Using the PIE Block
Table 3-12. PIE Peripheral Interrupts (1)
CPU
INTERRUPTS
(1)
PIE INTERRUPTS
INTx.8
INTx.7
INTx.6
INTx.5
INTx.4
INTx.3
INTx.2
INTx.1
INT1
WAKEINT
(LPM/WD)
TINT0
(TIMER 0)
ADCINT
(ADC)
XINT2
XINT1
reserved
SEQ2INT
(ADC)
SEQ1INT
(ADC)
INT2
reserved
reserved
INT3
reserved
reserved
EPWM6_INT
(ePWM6)
EPWM5_INT
(ePWM5)
EPWM4_INT
(ePWM4)
EPWM3_INT
(ePWM3)
EPWM2_INT
(ePWM2)
EPWM1_INT
(ePWM1)
INT4
reserved
reserved
ECAP6_INT
(ECAP6)
ECAP5_INT
(ECAP5)
ECAP4_INT
(eCAP4)
ECAP3_INT
(eCAP3)
ECAP2_INT
(eCAP2)
ECAP1_INT
(eCAP1)
INT5
reserved
reserved
reserved
reserved
reserved
reserved
EQEP2_INT
(eQEP2)
EQEP1_INT
(eQEP1)
INT6
reserved
reserved
MXINTA
(McBSP-A)
MRINTA
(McBSP-A)
MXINTB
(McBSP-B)
MRXINTB
(McBSP-B)
SPITXINTA
(SPI-A)
SPIRXINTA
(SPI-A)
INT7
reserved
reserved
DINTCH6
(DMA)
DINTCH5
(DMA)
DINTCH4
(DMA)
DINTCH3
(DMA)
DINTCH2
(DMA)
DINTCH1
(DMA)
INT8
reserved
reserved
SCITXINTC
(SCI-C)
SCIRXINTC
(SCI-C)
reserved
reserved
I2CINT2A
(I2C-A)
I2CINT1A
(I2C-A)
INT9
ECAN1_INTB
(CAN-B)
ECAN0_INTB
(CAN-B)
ECAN1_INTA
(CAN-A)
ECAN0_INTA
(CAN-A)
SCITXINTB
(SCI-B)
SCIRXINTB
(SCI-B)
SCITXINTA
(SCI-A)
SCIRXINTA
(SCI-A)
INT10
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
INT11
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
INT12
LUF
(FPU)
LVF
(FPU)
reserved
XINT7
XINT6
XINT5
XINT4
XINT3
EPWM6_TZINT EPWM5_TZINT EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT
(ePWM6)
(ePWM5)
(ePWM4)
(ePWM3)
(ePWM2)
(ePWM1)
Out of the 96 possible interrupts, 58 interrupts are currently used. The remaining interrupts are reserved for future devices. These
interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is
being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while
modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts:
1) No peripheral within the group is asserting interrupts.
2) No peripheral interrupts are assigned to the group (example PIE group 11).
Submit Documentation Feedback
Functional Overview
43
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-13. PIE Configuration and Control Registers
NAME
PRODUCT PREVIEW
SIZE (X16)
PIECTRL
0x0CE0
1
PIE, Control Register
PIEACK
0x0CE1
1
PIE, Acknowledge Register
PIEIER1
0x0CE2
1
PIE, INT1 Group Enable Register
PIEIFR1
0x0CE3
1
PIE, INT1 Group Flag Register
PIEIER2
0x0CE4
1
PIE, INT2 Group Enable Register
PIEIFR2
0x0CE5
1
PIE, INT2 Group Flag Register
PIEIER3
0x0CE6
1
PIE, INT3 Group Enable Register
PIEIFR3
0x0CE7
1
PIE, INT3 Group Flag Register
PIEIER4
0x0CE8
1
PIE, INT4 Group Enable Register
PIEIFR4
0x0CE9
1
PIE, INT4 Group Flag Register
PIEIER5
0x0CEA
1
PIE, INT5 Group Enable Register
PIEIFR5
0x0CEB
1
PIE, INT5 Group Flag Register
PIEIER6
0x0CEC
1
PIE, INT6 Group Enable Register
PIEIFR6
0x0CED
1
PIE, INT6 Group Flag Register
PIEIER7
0x0CEE
1
PIE, INT7 Group Enable Register
PIEIFR7
0x0CEF
1
PIE, INT7 Group Flag Register
PIEIER8
0x0CF0
1
PIE, INT8 Group Enable Register
PIEIFR8
0x0CF1
1
PIE, INT8 Group Flag Register
PIEIER9
0x0CF2
1
PIE, INT9 Group Enable Register
PIEIFR9
0x0CF3
1
PIE, INT9 Group Flag Register
PIEIER10
0x0CF4
1
PIE, INT10 Group Enable Register
PIEIFR10
0x0CF5
1
PIE, INT10 Group Flag Register
PIEIER11
0x0CF6
1
PIE, INT11 Group Enable Register
PIEIFR11
0x0CF7
1
PIE, INT11 Group Flag Register
PIEIER12
0x0CF8
1
PIE, INT12 Group Enable Register
PIEIFR12
0x0CF9
1
PIE, INT12 Group Flag Register
Reserved
0x0CFA
0x0CFF
6
Reserved
(1)
44
DESCRIPTION (1)
ADDRESS
The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table
is protected.
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.5.1
External Interrupts
Table 3-14. External Interrupt Registers
Address
Size (x16)
XINT1CR
0x0000 7070
1
XINT1 configuration register
XINT2CR
0x0000 7071
1
XINT2 configuration register
XINT3CR
0x0000 7072
1
XINT3 configuration register
XINT4CR
0x0000 7073
1
XINT4 configuration register
XINT5CR
0x0000 7074
1
XINT5 configuration register
XINT6CR
0x0000 7075
1
XINT6 configuration register
XINT7CR
0x0000 7076
1
XINT7 configuration register
XNMICR
0x0000 7077
1
XNMI configuration register
XINT1CTR
0x0000 7078
1
XINT1 counter register
XINT2CTR
0x0000 7079
1
XINT2 counter register
0x0000 707A - 0x0000
707E
5
0x0000 707F
1
reserved
XNMICTR
Description
XNMI counter register
Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and
negative edge. For more information, see the TMS320x280x, 2801x, 2804x System Control and Interrupts
Reference Guide (literature number SPRU712).
3.6
System Control
This section describes the 2833x oscillator, PLL and clocking mechanisms, the watchdog function and the
low power modes. Figure 3-8 shows the various clock and reset domains in the 2833x devices that will be
discussed.
Submit Documentation Feedback
Functional Overview
45
PRODUCT PREVIEW
Name
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
C28x Core
SYSCLKOUT
LSPCLK
I/O
SPI-A, SCI-A/B/C, I2C-A
System
Control
Register
LOSPCP
Bridge
Peripheral
Registers
Peripheral Bus
Clock Enables
/2
I/O
PRODUCT PREVIEW
eCAN-A/B
Peripheral
Registers
Memory Bus
Clock Enables
Clock Enables
GPIO
Mux
Bridge
I/O
EPWM1/../6, HRPWM1/../6, Peripheral
Registers
ECAP1/../6, EQEP1/2
Clock Enables
LSPCLK
I/O
McBSP-A/B
LOSPCP
Peripheral
Registers
Bridge
Clock Enables
HSPCLK
HISPCP
Bridge
12-Bit ADC
ADC
Registers
Result
Registers
Clock Enables
A.
DMA
Bus
16 Channels
DMA
CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency
as SYSCLKOUT).
Figure 3-8. Clock and Reset Domains
46
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 3-15.
Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers
Address
Size (x16)
XCLK
0x0000-7010
1
XCLKOUT Pin Control and X1/XCLKIN Status Register
PLLSTS
0x0000-7011
1
PLL Status Register
reserved
0x0000-7012 - 0x0000-7018
7
HISPCP
0x0000-701A
1
High-Speed Peripheral Clock Pre-Scaler Register
LOSPCP
0x0000-701B
1
Low-Speed Peripheral Clock Pre-Scaler Register
PCLKCR0
0x0000-701C
1
Peripheral Clock Control Register 0
PCLKCR1
0x0000-701D
1
Peripheral Clock Control Register 1
LPMCR0
0x0000-701E
1
Low Power Mode Control Register 0
reserved
0x0000-701F
1
Low Power Mode Control Register 1
PCLKCR3
0x0000-7020
1
Peripheral Clock Control Register 3
PLLCR
0x0000-7021
1
PLL Control Register
SCSR
0x0000-7022
1
System Control and Status Register
WDCNTR
0x0000-7023
1
Watchdog Counter Register
reserved
0x0000-7024
1
WDKEY
0x0000-7025
1
reserved
0x0000-7026 - 0x0000-7028
3
0x0000-7029
1
0x0000-702A - 0x0000-702F
6
WDCR
reserved
3.6.1
Description
PRODUCT PREVIEW
Name
Watchdog Reset Key Register
Watchdog Control Register
OSC and PLL Block
Figure 3-9 shows the OSC and PLL block on the 2833x.
XCLKIN
(3.3-V clock input)
OSCCLK
OSCCLK
0
xor
PLLSTS[OSCOFF]
PLL
OSCCLK or
VCOCLK
CLKIN
VCOCLK
n
n≠0
/2
PLLSTS[PLLOFF]
PLLSTS[CLKINDIV]
X1
On chip
oscillator
4-bit PLL Select (PLLCR)
X2
Figure 3-9. OSC and PLL Block Diagram
The on-chip oscillator circuit enables a crystal/resonator to be attached to the 2833x devices using the X1
and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the
following configurations:
1. A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left
unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO.
2. A 1.8-V external oscillator can be directly connected to the X1 pin. The X2 pin should be left
unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD.
The three possible input-clock configurations are shown in Figure 3-10 through Figure 3-12
Submit Documentation Feedback
Functional Overview
47
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
XCLKIN
X1
X2
NC
External Clock Signal
(Toggling 0 −VDDIO)
Figure 3-10. Using a 3.3-V External Oscillator
X2
X1
XCLKIN
PRODUCT PREVIEW
External Clock Signal
(Toggling 0 −VDD)
NC
Figure 3-11. Using a 1.8-V External Oscillator
XCLKIN
X1
X2
CL2
CL1
Crystal
Figure 3-12. Using the Internal Oscillator
3.6.1.1 External Reference Oscillator Clock Option
The typical specifications for the external quartz crystal for a frequency of 20 MHz are listed below:
• Fundamental mode, parallel resonant
• CL (load capacitance) = 12 pF
• CL1 = CL2 = 24 pF
• Cshunt = 6 pF
• ESR range = 30 to 60 Ω
TI recommends that customers have the resonator/crystal vendor characterize the operation of their
device with the DSC chip. The resonator/crystal vendor has the equipment and expertise to tune the tank
circuit. The vendor can also advise the customer regarding the proper tank component values that will
produce proper start up and stability over the entire operating range.
3.6.1.2 PLL-Based Clock Module
The 2833x devices have an on-chip, PLL-based clock module. This module provides all the necessary
clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio
control PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before
writing to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which
takes 131072 OSCCLK cycles.
48
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 3-16. PLLCR Register Bit Definitions
(1)
(2)
SYSCLKOUT
(CLKIN) (2)
0000 (PLL bypass)
OSCCLK/n
0001
(OSCCLK*1)/n
0010
(OSCCLK*2)/n
0011
(OSCCLK*3)/n
0100
(OSCCLK*4)/n
0101
(OSCCLK*5)/n
0110
(OSCCLK*6)/n
0111
(OSCCLK*7)/n
1000
(OSCCLK*8)/n
1001
(OSCCLK*9)/n
1010
(OSCCLK*10)/n
1011-1111
reserved
PRODUCT PREVIEW
PLLCR[DIV] (1)
This register is EALLOW protected.
CLKIN is the input clock to the CPU. SYSCLKOUT is the output
clock from the CPU. The frequency of SYSCLKOUT is the same as
CLKIN. If CLKINDIV = 0, n = 2; if CLKINDIV = 1, n = 1.
Table 3-17. CLKIN Divide Options
PLLSTS [DIVSEL]
CLKIN DIVIDE
0
/4
1
/4
2
/2
3
/1
The PLL-based clock module provides two modes of operation:
• Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base
to the device.
• External clock source operation - This mode allows the internal oscillator to be bypassed. The device
clocks are generated from an external clock source input on the X1 or the XCLKIN pin.
Table 3-18. Possible PLL Configuration Modes
REMARKS
PLLSTS[CLKINDIV]
SYSCLKOUT
(CLKIN)
Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block
is disabled in this mode. This can be useful to reduce system noise and for low
power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass)
before entering this mode. The CPU clock (CLKIN) is derived directly from the
input clock on either X1/X2, X1 or XCLKIN.
0
OSCCLK/2
1
OSCCLK
0
OSCCLK/2
1
OSCCLK
0
OSCCLK*n/2
PLL MODE
PLL Off
PLL Bypass is the default PLL configuration upon power-up or after an external
reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or
PLL Bypass
while the PLL locks to a new frequency after the PLLCR register has been
modified. In this mode, the PLL itself is bypassed but the PLL is not turned off.
PLL Enable
Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the
PLLCR the device will switch to PLL Bypass mode until the PLL locks.
Submit Documentation Feedback
Functional Overview
49
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
3.6.1.3 Loss of Input Clock
In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still
issue a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical
frequency of 1-5 MHz. Limp mode is not specified to work from power-up, only after input clocks have
been present initially. In PLL bypass mode, the limp mode clock from the PLL is automatically routed to
the CPU if the input clock is removed or absent.
Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog
reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops
decrementing (i.e., the watchdog counter does not change with the limp-mode clock). In addition to this,
the device will be reset and the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could
be used by the application firmware to detect the input clock failure and initiate necessary shut-down
procedure for the system.
PRODUCT PREVIEW
NOTE
Applications in which the correct CPU operating frequency is absolutely critical should
implement a mechanism by which the DSC will be held in reset, should the input clocks
ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the DSC,
should the capacitor ever get fully charged. An I/O pin may be used to discharge the
capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would
also help in detecting failure of the flash memory and the VDD3VFL rail.
3.6.2
Watchdog Block
The watchdog block on the 2833x is similar to the one used on the 240x and 281x devices. The watchdog
module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up
counter has reached its maximum value. To prevent this, the user disables the counter or the software
must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the
watchdog counter. Figure 3-13 shows the various functional blocks within the watchdog module.
WDCR (WDPS[2:0])
WDCR (WDDIS)
WDCNTR(7:0)
OSCCLK
Watchdog
Prescaler
/512
WDCLK
8-Bit
Watchdog
Counter
CLR
Clear Counter
Internal
Pullup
WDKEY(7:0)
Watchdog
55 + AA
Key Detector
WDRST
Generate
Output Pulse
WDINT
(512 OSCCLKs)
Good Key
XRS
Core-reset
WDCR (WDCHK[2:0])
WDRST(A)
A.
1
0
Bad
WDCHK
Key
SCSR (WDENINT)
1
The WDRST signal is driven low for 512 OSCCLK cycles.
Figure 3-13. Watchdog Module
The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode.
50
Functional Overview
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains
functional is the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the
LPM block so that it can wake the device from STANDBY (if enabled). See Section Section 3.7,
Low-Power Modes Block, for more details.
In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of
IDLE mode.
In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so
is the WATCHDOG.
3.7
Low-Power Modes Block
Table 3-19. Low-Power Modes
EXIT (1)
MODE
LPMCR0(1:0)
OSCCLK
CLKIN
SYSCLKOUT
IDLE
00
On
On
On (2)
XRS, Watchdog interrupt, any enabled
interrupt, XNMI
STANDBY
01
On
(watchdog still running)
Off
Off
XRS, Watchdog interrupt, GPIO Port A
signal, debugger (3), XNMI
HALT
1X
Off
(oscillator and PLL turned off,
watchdog not functional)
Off
Off
XRS, GPIO Port A signal, XNMI,
debugger (3)
(1)
(2)
(3)
The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will
exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the
IDLE mode will not be exited and the device will go back into the indicated low power mode.
The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is
still functional while on the 24x/240x the clock is turned off.
On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off.
The various low-power modes operate as follows:
IDLE Mode:
This mode is exited by any enabled interrupt or an XNMI that is recognized by
the processor. The LPM block performs no tasks during this mode as long as the
LPMCR0(LPM) bits are set to 0,0.
STANDBY Mode:
Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY
mode. The user must select which signal(s) will wake the device in the
GPIOLPMSEL register. The selected signal(s) are also qualified by the OSCCLK
before waking the device. The number of OSCCLKs is specified in the LPMCR0
register.
HALT Mode:
Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device
from HALT mode. The user selects the signal in the GPIOLPMSEL register.
NOTE
The low-power modes do not affect the state of the output pins (PWM pins included).
They will be in whatever state the code left them in when the IDLE instruction was
executed. See the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference
Guide (literature number SPRU712) for more details.
Submit Documentation Feedback
Functional Overview
51
PRODUCT PREVIEW
The low-power modes on the 2833x are similar to the 240x devices. Table 3-19 summarizes the various
modes.
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4
Peripherals
PRODUCT PREVIEW
The integrated peripherals of the 2833x are described in the following subsections:
• Three 32-bit CPU-Timers
• Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6)
• Up to six enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6)
• Up to two enhanced QEP modules (eQEP1, eQEP2)
• Enhanced analog-to-digital converter (ADC) module
• Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B)
• Up to three serial communications interface modules (SCI-A, SCI-B, SCI-C)
• One serial peripheral interface (SPI) module (SPI-A)
• Inter-integrated circuit module (I2C)
• Up to two multichannel buffered serial port (McBSP-A, McBSP-B) modules
• Digital I/O and shared pin functions
52
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.1
DMA Overview
PRODUCT PREVIEW
Features:
• 6 Channels with independent PIE interrupts
• Trigger Sources:
– ADC Sequencer 1 and Sequencer 2
– McBSP-A and McBSP-B transmit and receive logic
– XINT1-7 and XINT13
– CPU Timers
– Software
• Data Sources/Destinations:
– L4-L7 16k x 16 SARAM
– All XINTF zones
– ADC Memory Bus mapped RESULT registers
– McBSP-A and McBSP-B transmit and receive buffers
• Word Size: 16-bit or 32-bit (McBSPs limited to 16-bit)
• Throughput: 4 cycles/word (5 cycles/word for McBSP reads)
L7
SARAM
(4K x 16)
CPU
McBSP-B
McBSP-A
External
Interrupts
CPU Timers
L6
SARAM
(4K x 16)
DMA
Type 0
6-Ch
DINT[CH1:CH6]
L5
SARAM
(4K x 16)
Peripheral Bus
SYSCLKOUT
Dual Ports
L4
SARAM
(4K x 16)
ADC
Control
ADC
0/1-wait
Registers
(16 x 16)
DMA Event Triggers
Dual Port
XINTF
Dual Port
Memory Bus
PIE
DMA Bus
Figure 4-1. DMA Functional Block Diagram
Submit Documentation Feedback
Peripherals
53
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.2
32-Bit CPU-Timers 0/1/2
There are three 32-bit CPU-timers on the 2833x devices (CPU-TIMER0/1/2).
CPU-Timer 1 is reserved for TI system functions and Timer 2 is reserved for DSP/BIOS™. CPU-Timer 0
can be used in user applications. These timers are different from the timers that are present in the ePWM
modules.
NOTE
NOTE: If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the
application.
Reset
PRODUCT PREVIEW
Timer Reload
16-Bit Timer Divide-Down
TDDRH:TDDR
32-Bit Timer Period
PRDH:PRD
16-Bit Prescale Counter
PSCH:PSC
SYSCLKOUT
TCR.4
(Timer Start Status)
32-Bit Counter
TIMH:TIM
Borrow
Borrow
TINT
Figure 4-2. CPU-Timers
In the 2833x devices, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in
Figure 4-3.
INT1
to
INT12
PIE
TINT0
CPU-TIMER 0
C28x
TINT1
INT13
CPU-TIMER 1
(Reserved for TI
system functions)
XINT13
INT14
TINT2
CPU-TIMER 2
(Reserved for
DSP/BIOS)
A.
The timer registers are connected to the memory bus of the C28x processor.
B.
The timing of the timers is synchronized to SYSCLKOUT of the processor clock.
C.
While TIMER1 is reserved, INT13 is not reserved and the user can use XINT13 connected to INT13.
Figure 4-3. CPU-Timer Interrupt Signals and Output Signal
54
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the
value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the
C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The
registers listed in Table 4-1 are used to configure the timers. For more information, see the TMS320x280x,
2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712).
Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers
NAME
SIZE (x16)
0x0C00
1
CPU-Timer 0, Counter Register
TIMER0TIMH
0x0C01
1
CPU-Timer 0, Counter Register High
TIMER0PRD
0x0C02
1
CPU-Timer 0, Period Register
TIMER0PRDH
0x0C03
1
CPU-Timer 0, Period Register High
TIMER0TCR
0x0C04
1
CPU-Timer 0, Control Register
reserved
0x0C05
1
TIMER0TPR
0x0C06
1
CPU-Timer 0, Prescale Register
TIMER0TPRH
0x0C07
1
CPU-Timer 0, Prescale Register High
TIMER1TIM
0x0C08
1
CPU-Timer 1, Counter Register
TIMER1TIMH
0x0C09
1
CPU-Timer 1, Counter Register High
TIMER1PRD
0x0C0A
1
CPU-Timer 1, Period Register
TIMER1PRDH
0x0C0B
1
CPU-Timer 1, Period Register High
TIMER1TCR
0x0C0C
1
CPU-Timer 1, Control Register
reserved
0x0C0D
1
TIMER1TPR
0x0C0E
1
CPU-Timer 1, Prescale Register
TIMER1TPRH
0x0C0F
1
CPU-Timer 1, Prescale Register High
TIMER2TIM
0x0C10
1
CPU-Timer 2, Counter Register
TIMER2TIMH
0x0C11
1
CPU-Timer 2, Counter Register High
TIMER2PRD
0x0C12
1
CPU-Timer 2, Period Register
TIMER2PRDH
0x0C13
1
CPU-Timer 2, Period Register High
TIMER2TCR
0x0C14
1
CPU-Timer 2, Control Register
reserved
0x0C15
1
TIMER2TPR
0x0C16
1
CPU-Timer 2, Prescale Register
TIMER2TPRH
0x0C17
1
CPU-Timer 2, Prescale Register High
reserved
0x0C18
0x0C3F
40
Submit Documentation Feedback
DESCRIPTION
PRODUCT PREVIEW
ADDRESS
TIMER0TIM
Peripherals
55
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.3
Enhanced PWM Modules (ePWM1/2/3/4/5/6)
The 2833x device contains up to six enhanced PWM Modules (ePWM). Figure 4-4 shows a block diagram
of multiple ePWM modules. Figure 4-4 shows the signal interconnections with the ePWM. See the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide (literature number
SPRU791) for more details.
EPWM1SYNCI
EPWM1INT
EPWM1SYNCI
EPWM1A
EPWM1SOC
ePWM1 module
EPWM1B
PRODUCT PREVIEW
TZ1 to TZ6
to eCAP1
module
(sync in)
EPWM1SYNCO
EPWM1SYNCO
.
EPWM2SYNCI
EPWM2INT
EPWM2SOC
PIE
EPWM2A
ePWM2 module
EPWM2B
GPIO
MUX
TZ1 to TZ6
EPWM2SYNCO
EPWMxSYNCI
EPWMxINT
EPWMxSOC
EPWMxA
ePWMx module
EPWMxB
EPWMxSYNCO
TZ1 to TZ6
ADCSOCx0
ADC
Peripheral Bus
Figure 4-4. Multiple PWM Modules in a 2833x System
Table 4-2 shows the complete ePWM register set per module.
56
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-2. ePWM Control and Status Registers
EPWM1
EPWM2
EPWM3
EPWM4
EPWM5
EPWM6
SIZE (x16) /
#SHADOW
TBCTL
0x6800
0x6840
0x6880
0x68C0
0x6900
0x6940
1/0
Time Base Control Register
TBSTS
0x6801
0x6841
0x6881
0x68C1
0x6901
0x6941
1/0
Time Base Status Register
TBPHSHR
0x6802
0x6842
0x6882
0x68C2
N/A
N/A
1/0
Time Base Phase HRPWM Register
TBPHS
0x6803
0x6843
0x6883
0x68C3
0x6903
0x6943
1/0
Time Base Phase Register
TBCTR
0x6804
0x6844
0x6884
0x68C4
0x6904
0x6944
1/0
Time Base Counter Register
TBPRD
0x6805
0x6845
0x6885
0x68C5
0x6905
0x6945
1/1
Time Base Period Register Set
CMPCTL
0x6807
0x6847
0x6887
0x68C7
0x6907
0x6947
1/0
Counter Compare Control Register
CMPAHR
0x6808
0x6848
0x6888
0x68C8
N/A
N/A
1/1
Time Base Compare A HRPWM Register
CMPA
0x6809
0x6849
0x6889
0x68C9
0x6909
0x6949
1/1
Counter Compare A Register Set
CMPB
0x680A
0x684A
0x688A
0x68CA
0x690A
0x694A
1/1
Counter Compare B Register Set
AQCTLA
0x680B
0x684B
0x688B
0x68CB
0x690B
0x694B
1/0
Action Qualifier Control Register For Output A
AQCTLB
0x680C
0x684C
0x688C
0x68CC
0x690C
0x694C
1/0
Action Qualifier Control Register For Output B
AQSFRC
0x680D
0x684D
0x688D
0x68CD
0x690D
0x694D
1/0
Action Qualifier Software Force Register
AQCSFRC
0x680E
0x684E
0x688E
0x68CE
0x690E
0x694E
1/1
Action Qualifier Continuous S/W Force Register Set
DBCTL
0x680F
0x684F
0x688F
0x68CF
0x690F
0x694F
1/1
Dead-Band Generator Control Register
DBRED
0x6810
0x6850
0x6890
0x68D0
0x6910
0x6950
1/0
Dead-Band Generator Rising Edge Delay Count Register
DBFED
0x6811
0x6851
0x6891
0x68D1
0x6911
0x6951
1/0
Dead-Band Generator Falling Edge Delay Count Register
TZSEL
0x6812
0x6852
0x6892
0x68D2
0x6912
0x6952
1/0
Trip Zone Select Register (1)
TZCTL
0x6814
0x6854
0x6894
0x68D4
0x6914
0x6954
1/0
Trip Zone Control Register (1)
TZEINT
0x6815
0x6855
0x6895
0x68D5
0x6915
0x6955
1/0
Trip Zone Enable Interrupt Register (1)
TZFLG
0x6816
0x6856
0x6896
0x68D6
0x6916
0x6956
1/0
Trip Zone Flag Register
TZCLR
0x6817
0x6857
0x6897
0x68D7
0x6917
0x6957
1/0
Trip Zone Clear Register (1)
TZFRC
0x6818
0x6858
0x6898
0x68D8
0x6918
0x6958
1/0
Trip Zone Force Register (1)
ETSEL
0x6819
0x6859
0x6899
0x68D9
0x6919
0x6959
1/0
Event Trigger Selection Register
ETPS
0x681A
0x685A
0x689A
0x68DA
0x691A
0x695A
1/0
Event Trigger Prescale Register
ETFLG
0x681B
0x685B
0x689B
0x68DB
0x691B
0x695B
1/0
Event Trigger Flag Register
ETCLR
0x681C
0x685C
0x689C
0x68DC
0x691C
0x695C
1/0
Event Trigger Clear Register
ETFRC
0x681D
0x685D
0x689D
0x68DD
0x691D
0x695D
1/0
Event Trigger Force Register
PCCTL
0x681E
0x685E
0x689E
0x68DE
0x691E
0x695E
1/0
PWM Chopper Control Register
HRCNFG
0x6820
0x6860
0x68A0
0x68E0
0x6920
0x6960
1/0
HRPWM Configuration Register (1)
NAME
(1)
DESCRIPTION
Registers that are EALLOW protected.
Submit Documentation Feedback
Peripherals
57
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Time−base (TB)
Sync
in/out
select
Mux
CTR=ZERO
CTR=CMPB
Disabled
TBPRD shadow (16)
TBPRD active (16)
CTR=PRD
EPWMxSYNCO
TBCTL[SYNCOSEL]
TBCTL[CNTLDE]
EPWMxSYNCI
Counter
up/down
(16 bit)
CTR=ZERO
CTR_Dir
TBCNT
active (16)
TBPHSHR (8)
16
PRODUCT PREVIEW
8
TBPHS active (24)
Phase
control
Counter compare (CC)
CTR=CMPA
CMPAHR (8)
16
TBCTL[SWFSYNC]
(software forced sync)
Action
qualifier
(AQ)
CTR = PRD
CTR = ZERO
CTR = CMPA
CTR = CMPB
CTR_Dir
8
Event
trigger
and
interrupt
(ET)
EPWMxINT
EPWMxSOCA
EPWMxSOCB
HiRes PWM (HRPWM)
CMPA active (24)
EPWMA
EPWMxAO
CMPA shadow (24)
CTR=CMPB
Dead
band
(DB)
16
PWM
chopper
(PC)
EPWMB
EPWMxBO
CMPB active (16)
CMPB shadow (16)
Trip
zone
(TZ)
EPWMxTZINT
CTR = ZERO
TZ1 to TZ6
Figure 4-5. ePWM Sub-Modules Showing Critical Internal Signal Interconnections
4.4
High-Resolution PWM (HRPWM)
The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can
be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module
are:
• Significantly extends the time resolution capabilities of conventionally derived digital PWM
• Typically used when effective PWM resolution falls below ~ 9-10 bits. This occurs at PWM frequencies
greater than ~200 KHz when using a CPU/System clock of 100 MHz.
• This capability can be utilized in both duty cycle and phase-shift control methods.
• Finer time granularity control or edge positioning is controlled via extensions to the Compare A and
Phase registers of the ePWM module.
• HRPWM capabilities are offered only on the A signal path of an ePWM module (i.e., on the EPWMxA
output). EPWMxB output has conventional PWM capabilities.
58
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.5
Enhanced CAP Modules (eCAP1/2/3/4/5/6)
SYNC
The 2833x device contains up to six enhanced capture (eCAP) modules. Figure 4-6 shows a functional
block diagram of a module. See the TMS320x280x Enhanced Capture (eCAP) Module Reference Guide
(literature number SPRU807) for more details.
SYNCIn
SYNCOut
CTRPHS
(phase register−32 bit)
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PRD [0−31]
PWM
compare
logic
CMP [0−31]
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
LD1
CAP1
(APRD active)
APRD
shadow
32
32
MODE SELECT
PRD [0−31]
Polarity
select
LD
32
CMP [0−31]
CAP2
(ACMP active)
32
LD
LD2
Polarity
select
Event
qualifier
ACMP
shadow
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
eCAPx
Event
Pre-scale
Polarity
select
LD3
LD4
Polarity
select
4
Capture events
4
CEVT[1:4]
to PIE
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Figure 4-6. eCAP Functional Block Diagram
The eCAP modules are clocked at the SYSCLKOUT rate.
Submit Documentation Feedback
Peripherals
59
PRODUCT PREVIEW
32
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
The clock enable bits (ECAP1/2/3/4/5/6ENCLK) in the PCLKCR1 register are used to turn off the eCAP
modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,
ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, and ECAP6ENCLK are set to low, indicating that the
peripheral clock is off.
Table 4-3. eCAP Control and Status Registers
NAME
ECAP1
ECAP2
ECAP3
ECAP4
ECAP5
ECAP6
SIZE
(x16)
DESCRIPTION
TSCTR
0x6A00
0x6A20
0x6A40
0x6A60
0x6A80
0x6AA0
2
Time-Stamp Counter
CTRPHS
0x6A02
0x6A22
0x6A42
0x6A62
0x6A82
0x6AA2
2
Counter Phase Offset Value
Register
CAP1
0x6A04
0x6A24
0x6A44
0x6A64
0x6A84
0x6AA4
2
Capture 1 Register
CAP2
0x6A06
0x6A26
0x6A46
0x6A66
0x6A86
0x6AA6
2
Capture 2 Register
PRODUCT PREVIEW
CAP3
0x6A08
0x6A28
0x6A48
0x6A68
0x6A88
0x6AA8
2
Capture 3 Register
CAP4
0x6A0A
0x6A2A
0x6A4A
0x6A6A
0x6A8A
0x6AAA
2
Capture 4 Register
Reserved
0x6A0C0x6A12
0x6A2C0x6A32
0x6A4C0x6A52
0x6A6C0x6A72
0x6A8C0x6A92
0x6AAC0x6AB2
8
Reserved
ECCTL1
0x6A14
0x6A34
0x6A54
0x6A74
0x6A94
0x6AB4
1
Capture Control Register 1
ECCTL2
0x6A15
0x6A35
0x6A55
0x6A75
0x6A95
0x6AB5
1
Capture Control Register 2
ECEINT
0x6A16
0x6A36
0x6A56
0x6A76
0x6A96
0x6AB6
1
Capture Interrupt Enable Register
ECFLG
0x6A17
0x6A37
0x6A57
0x6A77
0x6A97
0x6AB7
1
Capture Interrupt Flag Register
ECCLR
0x6A18
0x6A38
0x6A58
0x6A78
0x6A98
0x6AB8
1
Capture Interrupt Clear Register
ECFRC
0x6A19
0x6A39
0x6A59
0x6A79
0x6A99
0x6AB9
1
Capture Interrupt Force Register
Reserved
0x6A1A0x6A1F
0x6A3A0x6A3F
0x6A5A0x6A5F
0x6A7A0x6A7F
0x6A9A0x6A9F
0x6ABA0x6ABC
6
Reserved
60
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.6
Enhanced QEP Modules (eQEP1/2)
The 2833x device contains up to two enhanced quadrature encoder (eQEP) modules. See the
TMS320x280x Enhanced Quadrature Encoder (eQEP) Module Reference Guide (literature number
SPRU790) for more details.
System
control registers
To CPU
EQEPxENCLK
PRODUCT PREVIEW
Data bus
SYSCLKOUT
QCPRD
QCTMR
QCAPCTL
16
16
16
Quadrature
capture unit
(QCAP)
QCTMRLAT
QCPRDLAT
Registers
used by
multiple units
QUTMR
QWDTMR
QUPRD
QWDPRD
32
16
QEPCTL
QEPSTS
UTIME
QFLG
UTOUT
QWDOG
QDECCTL
16
WDTOUT
PIE
EQEPxAIN
QCLK
EQEPxINT
16
QI
Position counter/
control unit
(PCCU)
QPOSLAT
QS
PHE
QPOSSLAT
EQEPxIIN
Quadrature
decoder
(QDU)
PCSOUT
QPOSILAT
EQEPxIOUT
EQEPxIOE
EQEPxSIN
EQEPxSOUT
EQEPxSOE
32
32
QPOSCNT
QPOSINIT
QPOSMAX
QPOSCMP
EQEPxA/XCLK
EQEPxBIN
QDIR
EQEPxB/XDIR
GPIO
MUX
EQEPxI
EQEPxS
16
QEINT
QFRC
QCLR
QPOSCTL
Enhanced QEP (eQEP) peripheral
Figure 4-7. eQEP Functional Block Diagram
Submit Documentation Feedback
Peripherals
61
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-4. eQEP Control and Status Registers
EQEP1
ADDRESS
EQEP2
ADDRESS
EQEP1
SIZE(x16)/
#SHADOW
QPOSCNT
0x6B00
0x6B40
2/0
eQEP Position Counter
QPOSINIT
0x6B02
0x6B42
2/0
eQEP Initialization Position Count
QPOSMAX
0x6B04
0x6B44
2/0
eQEP Maximum Position Count
QPOSCMP
0x6B06
0x6B46
2/1
eQEP Position-compare
NAME
REGISTER DESCRIPTION
PRODUCT PREVIEW
QPOSILAT
0x6B08
0x6B48
2/0
eQEP Index Position Latch
QPOSSLAT
0x6B0A
0x6B4A
2/0
eQEP Strobe Position Latch
QPOSLAT
0x6B0C
0x6B4C
2/0
eQEP Position Latch
QUTMR
0x6B0E
0x6B4E
2/0
eQEP Unit Timer
QUPRD
0x6B10
0x6B50
2/0
eQEP Unit Period Register
QWDTMR
0x6B12
0x6B52
1/0
eQEP Watchdog Timer
QWDPRD
0x6B13
0x6B53
1/0
eQEP Watchdog Period Register
QDECCTL
0x6B14
0x6B54
1/0
eQEP Decoder Control Register
QEPCTL
0x6B15
0x6B55
1/0
eQEP Control Register
QCAPCTL
0x6B16
0x6B56
1/0
eQEP Capture Control Register
QPOSCTL
0x6B17
0x6B57
1/0
eQEP Position-compare Control Register
QEINT
0x6B18
0x6B58
1/0
eQEP Interrupt Enable Register
QFLG
0x6B19
0x6B59
1/0
eQEP Interrupt Flag Register
QCLR
0x6B1A
0x6B5A
1/0
eQEP Interrupt Clear Register
QFRC
0x6B1B
0x6B5B
1/0
eQEP Interrupt Force Register
QEPSTS
0x6B1C
0x6B5C
1/0
eQEP Status Register
QCTMR
0x6B1D
0x6B5D
1/0
eQEP Capture Timer
QCPRD
0x6B1E
0x6B5E
1/0
eQEP Capture Period Register
QCTMRLAT
0x6B1F
0x6B5F
1/0
eQEP Capture Timer Latch
QCPRDLAT
0x6B20
0x6B60
1/0
eQEP Capture Period Latch
Reserved
0x6B210x6B3F
0x6B610x6B7F
31/0
62
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Enhanced Analog-to-Digital Converter (ADC) Module
A simplified functional block diagram of the ADC module is shown in Figure 4-8. The ADC module
consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module
include:
• 12-bit ADC core with built-in S/H
• Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.)
• Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS
• 16-channel, MUXed inputs
• Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion
can be programmed to select any 1 of 16 input channels
• Sequencer can be operated as two independent 8-state sequencers or as one large 16-state
sequencer (i.e., two cascaded 8-state sequencers)
• Sixteen result registers (individually addressable) to store conversion values
– The digital value of the input analog voltage is derived by:
when input ≤ 0 V
Digital Value + 0,
Digital Value + 4096
Digital Value + 4095,
A.
•
•
•
•
•
Input Analog Voltage * ADCLO
3
when 0 V < input < 3 V
when input ≥ 3 V
All fractional values are truncated.
Multiple triggers as sources for the start-of-conversion (SOC) sequence
– S/W - software immediate start
– ePWM start of conversion
– XINT2 ADC start of conversion
Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS.
Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to
synchronize conversions.
SOCA and SOCB triggers can operate independently in dual-sequencer mode.
Sample-and-hold (S/H) acquisition time window has separate prescale control.
The ADC module in the 2833x has been enhanced to provide flexible interface to ePWM peripherals. The
ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80 ns at
25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel
modules. The two independent 8-channel modules can be cascaded to form a 16-channel module.
Although there are multiple input channels and two sequencers, there is only one converter in the ADC
module. Figure 4-8 shows the block diagram of the ADC module.
The two 8-channel modules have the capability to autosequence a series of conversions, each module
has the choice of selecting any one of the respective eight channels available through an analog MUX. In
the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer,
once the conversion is complete, the selected channel value is stored in its respective RESULT register.
Autosequencing allows the system to convert the same channel multiple times, allowing the user to
perform oversampling algorithms. This gives increased resolution over traditional single-sampled
conversion results.
Submit Documentation Feedback
Peripherals
63
PRODUCT PREVIEW
4.7
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
System
Control Block
ADCENCLK
SYSCLKOUT
High-Speed
Prescaler
HALT
DSP
HSPCLK
Analog
MUX
Result Registers
Result Reg 0
ADCINA0
70A8h
Result Reg 1
S/H
ADCINA7
PRODUCT PREVIEW
12-Bit
ADC
Module
Result Reg 7
70AFh
Result Reg 8
70B0h
Result Reg 15
70B7h
ADCINB0
S/H
ADCINB7
ADC Control Registers
S/W
EPWMSOCA
GPIO/XINT2
_ADCSOC
SOC
Sequencer 2
Sequencer 1
SOC
S/W
EPWMSOCB
Figure 4-8. Block Diagram of the ADC Module
To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent
possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths.
This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs.
Furthermore, proper isolation techniques must be used to isolate the ADC module power pins ( VDD1A18,
VDD2A18 , VDDA2, VDDAIO ) from the digital supply.Figure 4-9 shows the ADC pin connections for the 2833x
devices.
NOTE
1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the
ADC module is controlled by the high-speed peripheral clock (HSPCLK).
2. The behavior of the ADC module based on the state of the ADCENCLK and HALT
signals is as follows:
–
–
64
Peripherals
ADCENCLK: On reset, this signal will be low. While reset is active-low (XRS) the
clock to the register will still function. This is necessary to make sure all registers
and modes go into their default reset state. The analog module, however, will be
in a low-power inactive state. As soon as reset goes high, then the clock to the
registers will be disabled. When the user sets the ADCENCLK signal high, then
the clocks to the registers will be enabled and the analog module will be enabled.
There will be a certain time delay (ms range) before the ADC is stable and can be
used.
HALT: This mode only affects the analog module. It does not affect the registers.
In this mode, the ADC module goes into low-power mode. This mode also will stop
the clock to the CPU, which will stop the HSPCLK; therefore, the ADC register
logic will be turned off indirectly.
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Figure 4-9 shows the ADC pin-biasing for internal reference and Figure 4-10 shows the ADC pin-biasing
for external reference.
ADC 16-Channel Analog Inputs
ADCINA[7:0]
ADCINB[7:0]
ADCLO
ADCREFIN
Analog input 0−3 V with respect to ADCLO
Connect to analog ground
Float or ground if internal reference is used
22 kW
ADCRESEXT
ADC Reference Positive Output
ADCREFP
ADC Reference Medium Output
ADCREFM
ADC Power
2.2 mF (A)
2.2 mF (A)
VDD1A18
VDD2A18
ADCREFP and ADCREFM should not
be loaded by external circuitry
VSS1AGND
VSS2AGND
ADC Analog Power Pin (1.8 V)
ADC Analog Power Pin (1.8 V)
ADC Analog Ground Pin
ADC Analog Ground Pin
VDDA2
VSSA2
ADC Analog Power Pin (3.3 V)
ADC Analog Ground Pin
VDDAIO
VSSAIO
ADC Analog Power Pin (3.3 V)
ADC Analog I/O Ground Pin
PRODUCT PREVIEW
ADC External Current Bias Resistor
ADC Analog and Reference I/O Power
A.
TAIYO YUDEN LMK212BJ225MG-T or equivalent
B.
External decoupling capacitors are recommended on all power pins.
C.
Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.
Figure 4-9. ADC Pin Connections With Internal Reference
ADC 16-Channel Analog Inputs
ADCINA[7:0]
ADCINB[7:0]
ADCLO
ADCREFIN
Analog input 0−3 V with respect to ADCLO
Connect to Analog Ground
Connect to 1.500, 1.024, or 2.048-V precision source (D)
22 kW
ADC External Current Bias Resistor
ADCRESEXT
ADC Reference Positive Output
ADCREFP
ADC Reference Medium Output
ADCREFM
ADC Analog Power
VDD1A18
VDD2A18
VSS1AGND
VSS2AGND
ADC Analog Power Pin (1.8 V)
ADC Analog Power Pin (1.8 V)
ADC Analog Ground Pin
ADC Analog Ground Pin
VDDA2
VSSA2
ADC Analog Power Pin (3.3 V)
ADC Analog Ground Pin
VDDAIO
VSSAIO
ADC Analog Power Pin (3.3 V)
ADC Analog and Reference I/O Power
2.2 mF (A)
2.2 mF (A)
ADCREFP and ADCREFM should not
be loaded by external circuitry
ADC Analog I/O Ground Pin
A.
TAIYO YUDEN LMK212BJ225MG-T or equivalent
B.
External decoupling capacitors are recommended on all power pins.
C.
Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance.
D.
External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on
the voltage used on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain
accuracy will be determined by accuracy of this voltage source.
Figure 4-10. ADC Pin Connections With External Reference
Submit Documentation Feedback
Peripherals
65
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
NOTE
The temperature rating of any recommended component must match the rating of the end
product.
4.7.1
ADC Connections if the ADC Is Not Used
PRODUCT PREVIEW
It is recommended to keep the connections for the analog power pins, even if the ADC is not used.
Following is a summary of how the ADC pins should be connected, if the ADC is not used in an
application:
• VDD1A18/VDD2A18 – Connect to VDD
• VDDA2, VDDAIO – Connect to VDDIO
• VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS
• ADCLO – Connect to VSS
• ADCREFIN – Connect to VSS
• ADCREFP/ADCREFM – Connect a 100-nF cap to VSS
• ADCRESEXT – Connect a 20-kΩ resistor (very loose tolerance) to VSS.
• ADCINAn, ADCINBn - Connect to VSS
When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power
savings.
When the ADC module is used in an application, unused ADC input pins should be connected to analog
ground (VSS1AGND/VSS2AGND)
4.7.2
ADC Registers
The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-5.
Table 4-5. ADC Registers (1)
NAME
ADDRESS (1)
ADDRESS (2)
ADCTRL1
0x7100
1
ADC Control Register 1
SIZE (x16)
DESCRIPTION
ADCTRL2
0x7101
1
ADC Control Register 2
ADCMAXCONV
0x7102
1
ADC Maximum Conversion Channels Register
ADCCHSELSEQ1
0x7103
1
ADC Channel Select Sequencing Control Register 1
ADCCHSELSEQ2
0x7104
1
ADC Channel Select Sequencing Control Register 2
ADCCHSELSEQ3
0x7105
1
ADC Channel Select Sequencing Control Register 3
ADCCHSELSEQ4
0x7106
1
ADC Channel Select Sequencing Control Register 4
ADCASEQSR
0x7107
1
ADC Auto-Sequence Status Register
ADCRESULT0
0x7108
0x0B00
1
ADC Conversion Result Buffer Register 0
ADCRESULT1
0x7109
0x0B01
1
ADC Conversion Result Buffer Register 1
ADCRESULT2
0x710A
0x0B02
1
ADC Conversion Result Buffer Register 2
ADCRESULT3
0x710B
0x0B03
1
ADC Conversion Result Buffer Register 3
ADCRESULT4
0x710C
0x0B04
1
ADC Conversion Result Buffer Register 4
ADCRESULT5
0x710D
0x0B05
1
ADC Conversion Result Buffer Register 5
ADCRESULT6
0x710E
0x0B06
1
ADC Conversion Result Buffer Register 6
ADCRESULT7
0x710F
0x0B07
1
ADC Conversion Result Buffer Register 7
ADCRESULT8
0x7110
0x0B08
1
ADC Conversion Result Buffer Register 8
ADCRESULT9
0x7111
0x0B09
1
ADC Conversion Result Buffer Register 9
(1)
(2)
66
The registers in this column are Peripheral Frame 2 Registers.
The ADC result registers are dual mapped in the 2833x DSC. Locations in Peripheral Frame 2 (0x7108-0x7117) are 2 wait-states and
left justified. Locations in Peripheral frame 0 space (0x0B00-0x0B0F) are 0 wait sates and right justified. During high speed/continuous
conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user memory.
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-5. ADC Registers (continued)
NAME
ADDRESS (1)
ADDRESS (2)
SIZE (x16)
ADCRESULT10
0x7112
0x0B0A
1
ADC Conversion Result Buffer Register 10
ADCRESULT11
0x7113
0x0B0B
1
ADC Conversion Result Buffer Register 11
ADCRESULT12
0x7114
0x0B0C
1
ADC Conversion Result Buffer Register 12
ADCRESULT13
0x7115
0x0B0D
1
ADC Conversion Result Buffer Register 13
ADCRESULT14
0x7116
0x0B0E
1
ADC Conversion Result Buffer Register 14
ADCRESULT15
0x7117
0x0B0F
1
ADC Conversion Result Buffer Register 15
ADCTRL3
0x7118
1
ADC Control Register 3
ADCST
0x7119
1
ADC Status Register
Reserved
0x711A
0x711B
2
ADCREFSEL
0x711C
1
ADC Reference Select Register
ADCOFFTRIM
0x711D
1
ADC Offset Trim Register
Reserved
0x711E
0x711F
2
ADC Status Register
Submit Documentation Feedback
PRODUCT PREVIEW
DESCRIPTION
Peripherals
67
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.8
Multichannel Buffered Serial Port (McBSP) Module
PRODUCT PREVIEW
The McBSP module has the following features:
• Compatible to McBSP in TMS320C54x™ /TMS320C55x™ DSC devices, except the DMA features
• Full–duplex communication
• Double–buffered data registers that allow a continuous data stream
• Independent framing and clocking for receive and transmit
• External shift clock generation or an internal programmable frequency shift clock
• A wide selection of data sizes including 8–, 12–, 16–, 20–, 24–, or 32–bits
• 8–bit data transfers with LSB or MSB first
• Programmable polarity for both frame synchronization and data clocks
• HIghly programmable internal clock and frame generation
• Support A–bis mode
• Direct interface to industry–standard CODECs, Analog Interface Chips (AICs), and other serially
connected A/D and D/A devices
• Works with SPI–compatible devices
The following application interfaces can be supported on the McBSP:
• T1/E1 framers
• MVIP switching–compatible and ST–BUS–compliant devices including:
– MVIP framers
– H.100 framers
– SCSA framers
– IOM–2 compliant devices
– AC97–compliant devices (the necessary multiphase frame synchronization capability is provided.)
– IIS–compliant devices
•
CLKG =
CLKSRG
(1 + CLKGDIV ) where CLKSRG source could be LSPCLK, CLKX, or CLKR.
McBSP clock rate =
Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted
such that the peripheral speed is less than the I/O buffer speed limit—20–MHz maximum.
Figure 4-11 shows the block diagram of the McBSP module.
68
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
TX
Interrupt
To CPU
Peripheral Write Bus
TX Interrupt Logic
16
McBSP Transmit
Interrupt Select Logic
16
DXR2 Transmit Buffer
LSPCLK
McBSP Registers
and Control Logic
DXR1 Transmit Buffer
16
16
FSX
Compand Logic
CLKX
XSR2
XSR1
DX
RSR2
RSR1
DR
16
CLKR
16
PRODUCT PREVIEW
MXINT
Expand Logic
FSR
McBSP
RX Interrupt Logic
RBR1 Register
16
16
DRR2 Receive Buffer
McBSP Receive
Interrupt Select Logic
MRINT
RBR2 Register
16
RX
Interrupt
DRR1 Receive Buffer
16
Peripheral Read Bus
To CPU
Figure 4-11. McBSP Module
Table 4-6 provides a summary of the McBSP registers.
Submit Documentation Feedback
Peripherals
69
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-6. McBSP Register Summary
NAME
McBSP-A
ADDRESS
McBSP-B
ADDRESS
TYPE
RESET VALUE DESCRIPTION
DATA REGISTERS, RECEIVE, TRANSMIT
DRR2
0x5000
0x5040
R
0x0000
McBSP Data Receive Register 2
DRR1
0x5001
DXR2
0x5002
0x5041
R
0x0000
McBSP Data Receive Register 1
0x5042
W
0x0000
DXR1
0x5003
McBSP Data Transmit Register 2
0x5043
W
0x0000
McBSP Data Transmit Register 1
McBSP CONTROL REGISTERS
PRODUCT PREVIEW
SPCR2
0x5004
0x5044
R/W
0x0000
McBSP Serial Port Control Register 2
SPCR1
0x5005
0x5045
R/W
0x0000
McBSP Serial Port Control Register 1
RCR2
0x5006
0x5046
R/W
0x0000
McBSP Receive Control Register 2
RCR1
0x5007
0x5047
R/W
0x0000
McBSP Receive Control Register 1
XCR2
0x5008
0x5048
R/W
0x0000
McBSP Transmit Control Register 2
XCR1
0x5009
0x5049
R/W
0x0000
McBSP Transmit Control Register 1
SRGR2
0x500A
0x504A
R/W
0x0000
McBSP Sample Rate Generator Register 2
SRGR1
0x500B
0x504B
R/W
0x0000
McBSP Sample Rate Generator Register 1
MULTICHANNEL CONTROL REGISTERS
MCR2
0x500C
0x504C
R/W
0x0000
McBSP Multichannel Register 2
MCR1
0x500D
0x504D
R/W
0x0000
McBSP Multichannel Register 1
RCERA
0x500E
0x504E
R/W
0x0000
McBSP Receive Channel Enable Register Partition A
RCERB
0x500F
0x504F
R/W
0x0000
McBSP Receive Channel Enable Register Partition B
XCERA
0x5010
0x5050
R/W
0x0000
McBSP Transmit Channel Enable Register Partition A
XCERB
0x5011
0x5051
R/W
0x0000
McBSP Transmit Channel Enable Register Partition B
PCR
0x5012
0x5052
R/W
0x0000
McBSP Pin Control Register
RCERC
0x5013
0x5053
R/W
0x0000
McBSP Receive Channel Enable Register Partition C
RCERD
0x5014
0x5054
R/W
0x0000
McBSP Receive Channel Enable Register Partition D
XCERC
0x5015
0x5055
R/W
0x0000
McBSP Transmit Channel Enable Register Partition C
XCERD
0x5016
0x5056
R/W
0x0000
McBSP Transmit Channel Enable Register Partition D
RCERE
0x5017
0x5057
R/W
0x0000
McBSP Receive Channel Enable Register Partition E
RCERF
0x5018
0x5058
R/W
0x0000
McBSP Receive Channel Enable Register Partition F
XCERE
0x5019
0x5059
R/W
0x0000
McBSP Transmit Channel Enable Register Partition E
XCERF
0x501A
0x505A
R/W
0x0000
McBSP Transmit Channel Enable Register Partition F
RCERG
0x501B
0x505B
R/W
0x0000
McBSP Receive Channel Enable Register Partition G
RCERH
0x501C
0x505C
R/W
0x0000
McBSP Receive Channel Enable Register Partition H
XCERG
0x501D
0x505D
R/W
0x0000
McBSP Transmit Channel Enable Register Partition G
XCERH
0x501E
0x505E
R/W
0x0000
McBSP Transmit Channel Enable Register Partition H
MFFINT
0x5023
0x5063
R/W
0x0000
McBSP Interrupt Enable Register
MFFST
0x5024
0x5064
R/W
0x0000
McBSP Pin Status Register
70
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.9
Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)
PRODUCT PREVIEW
The CAN module has the following features:
• Fully compliant with CAN protocol, version 2.0B
• Supports data rates up to 1 Mbps
• Thirty-two mailboxes, each with the following properties:
– Configurable as receive or transmit
– Configurable with standard or extended identifier
– Has a programmable receive mask
– Supports data and remote frame
– Composed of 0 to 8 bytes of data
– Uses a 32-bit time stamp on receive and transmit message
– Protects against reception of new message
– Holds the dynamically programmable priority of transmit message
– Employs a programmable interrupt scheme with two interrupt levels
– Employs a programmable alarm on transmission or reception time-out
• Low-power mode
• Programmable wake-up on bus activity
• Automatic reply to a remote request message
• Automatic retransmission of a frame in case of loss of arbitration or error
• 32-bit local network time counter synchronized by a specific message (communication in conjunction
with mailbox 16)
• Self-test mode
– Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided,
thereby eliminating the need for another node to provide the acknowledge bit.
NOTE
For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 15.625 kbps.
For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps.
Submit Documentation Feedback
Peripherals
71
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
eCAN0INT
Controls Address
eCAN1INT
Data
Enhanced CAN Controller
32
Message Controller
Mailbox RAM
(512 Bytes)
32-Message Mailbox
of 4 × 32-Bit Words
Memory Management
Unit
32
CPU Interface,
Receive Control Unit,
Timer Management Unit
eCAN Memory
(512 Bytes)
Registers and Message
Objects Control
32
PRODUCT PREVIEW
32
Receive Buffer
eCAN Protocol Kernel
Transmit Buffer
Control Buffer
Status Buffer
SN65HVD23x
3.3-V CAN Transceiver
CAN Bus
Figure 4-12. eCAN Block Diagram and Interface Circuit
Table 4-7. 3.3-V eCAN Transceivers
72
PART NUMBER
SUPPLY
VOLTAGE
LOW-POWER
MODE
SLOPE
CONTROL
VREF
OTHER
TA
SN65HVD230
3.3 V
Standby
Adjustable
Yes
–
-40°C to 85°C
SN65HVD230Q
3.3 V
Standby
Adjustable
Yes
–
-40°C to 125°C
SN65HVD231
3.3 V
Sleep
Adjustable
Yes
–
-40°C to 85°C
SN65HVD231Q
3.3 V
Sleep
Adjustable
Yes
–
-40°C to 125°C
SN65HVD232
3.3 V
None
None
None
–
-40°C to 85°C
SN65HVD232Q
3.3 V
None
None
None
–
-40°C to 125°C
SN65HVD233
3.3 V
Standby
Adjustable
None
Diagnostic
Loopback
-40°C to 125°C
SN65HVD234
3.3 V
Standby and Sleep
Adjustable
None
–
-40°C to 125°C
SN65HVD235
3.3 V
Standby
Adjustable
None
Autobaud
Loopback
-40°C to 125°C
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
eCAN-A Control and Status Registers
Mailbox Enable − CANME
Mailbox Direction − CANMD
Transmission Request Set − CANTRS
Transmission Request Reset − CANTRR
Transmission Acknowledge − CANTA
eCAN-A Memory (512 Bytes)
Received Message Pending − CANRMP
Control and Status Registers
Received Message Lost − CANRML
603Fh
6040h
607Fh
6080h
60BFh
60C0h
60FFh
Remote Frame Pending − CANRFP
Local Acceptance Masks (LAM)
(32 × 32-Bit RAM)
Global Acceptance Mask − CANGAM
Message Object Time Stamps (MOTS)
(32 × 32-Bit RAM)
Bit-Timing Configuration − CANBTC
Message Object Time-Out (MOTO)
(32 × 32-Bit RAM)
Transmit Error Counter − CANTEC
Master Control − CANMC
PRODUCT PREVIEW
6000h
Abort Acknowledge − CANAA
Error and Status − CANES
Receive Error Counter − CANREC
Global Interrupt Flag 0 − CANGIF0
Global Interrupt Mask − CANGIM
Global Interrupt Flag 1 − CANGIF1
eCAN-A Memory RAM (512 Bytes)
6100h−6107h
Mailbox 0
6108h−610Fh
Mailbox 1
6110h−6117h
Mailbox 2
6118h−611Fh
Mailbox 3
6120h−6127h
Mailbox 4
Mailbox Interrupt Mask − CANMIM
Mailbox Interrupt Level − CANMIL
Overwrite Protection Control − CANOPC
TX I/O Control − CANTIOC
RX I/O Control − CANRIOC
Time Stamp Counter − CANTSC
Time-Out Control − CANTOC
Time-Out Status − CANTOS
61E0h−61E7h
Mailbox 28
61E8h−61EFh
Mailbox 29
61F0h−61F7h
Mailbox 30
61F8h−61FFh
Mailbox 31
Reserved
Message Mailbox (16 Bytes)
61E8h−61E9h
Message Identifier − MSGID
61EAh−61EBh
Message Control − MSGCTRL
61ECh−61EDh
Message Data Low − MDL
61EEh−61EFh
Message Data High − MDH
Figure 4-13. eCAN-A Memory Map
Submit Documentation Feedback
Peripherals
73
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
eCAN-B Control and Status Registers
Mailbox Enable − CANME
Mailbox Direction − CANMD
Transmission Request Set − CANTRS
Transmission Request Reset − CANTRR
Transmission Acknowledge − CANTA
eCAN-B Memory (512 Bytes)
6200h
Abort Acknowledge − CANAA
Received Message Pending − CANRMP
Control and Status Registers
Received Message Lost − CANRML
623Fh
6240h
627Fh
6280h
PRODUCT PREVIEW
62BFh
62C0h
62FFh
Remote Frame Pending − CANRFP
Local Acceptance Masks (LAM)
(32 × 32-Bit RAM)
Global Acceptance Mask − CANGAM
Message Object Time Stamps (MOTS)
(32 × 32-Bit RAM)
Bit-Timing Configuration − CANBTC
Message Object Time-Out (MOTO)
(32 × 32-Bit RAM)
Transmit Error Counter − CANTEC
Master Control − CANMC
Error and Status − CANES
Receive Error Counter − CANREC
Global Interrupt Flag 0 − CANGIF0
Global Interrupt Mask − CANGIM
Global Interrupt Flag 1 − CANGIF1
eCAN-B Memory RAM (512 Bytes)
6300h−6307h
Mailbox 0
6308h−630Fh
Mailbox 1
6310h−6317h
Mailbox 2
6318h−631Fh
Mailbox 3
6320h−6327h
Mailbox 4
Mailbox Interrupt Mask − CANMIM
Mailbox Interrupt Level − CANMIL
Overwrite Protection Control − CANOPC
TX I/O Control − CANTIOC
RX I/O Control − CANRIOC
Time Stamp Counter − CANTSC
Time-Out Control − CANTOC
Time-Out Status − CANTOS
63E0h−63E7h
Mailbox 28
63E8h−63EFh
Mailbox 29
63F0h−63F7h
Mailbox 30
63F8h−63FFh
Mailbox 31
Reserved
Message Mailbox (16 Bytes)
63E8h−63E9h
Message Identifier − MSGID
63EAh−63EBh
Message Control − MSGCTRL
63ECh−63EDh
Message Data Low − MDL
63EEh−63EFh
Message Data High − MDH
Figure 4-14. eCAN-B Memory Map
The CAN registers listed in Table 4-8 are used by the CPU to configure and control the CAN controller
and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM
can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary.
74
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-8. CAN Register Map (1)
ECAN-A
ADDRESS
ECAN-B
ADDRESS
SIZE
(x32)
(1)
DESCRIPTION
CANME
0x6000
0x6200
1
Mailbox enable
CANMD
0x6002
0x6202
1
Mailbox direction
CANTRS
0x6004
0x6204
1
Transmit request set
CANTRR
0x6006
0x6206
1
Transmit request reset
CANTA
0x6008
0x6208
1
Transmission acknowledge
CANAA
0x600A
0x620A
1
Abort acknowledge
CANRMP
0x600C
0x620C
1
Receive message pending
CANRML
0x600E
0x620E
1
Receive message lost
CANRFP
0x6010
0x6210
1
Remote frame pending
CANGAM
0x6012
0x6212
1
Global acceptance mask
CANMC
0x6014
0x6214
1
Master control
CANBTC
0x6016
0x6216
1
Bit-timing configuration
CANES
0x6018
0x6218
1
Error and status
CANTEC
0x601A
0x621A
1
Transmit error counter
CANREC
0x601C
0x621C
1
Receive error counter
CANGIF0
0x601E
0x621E
1
Global interrupt flag 0
CANGIM
0x6020
0x6220
1
Global interrupt mask
CANGIF1
0x6022
0x6222
1
Global interrupt flag 1
CANMIM
0x6024
0x6224
1
Mailbox interrupt mask
PRODUCT PREVIEW
REGISTER NAME
CANMIL
0x6026
0x6226
1
Mailbox interrupt level
CANOPC
0x6028
0x6228
1
Overwrite protection control
CANTIOC
0x602A
0x622A
1
TX I/O control
CANRIOC
0x602C
0x622C
1
RX I/O control
CANTSC
0x602E
0x622E
1
Time stamp counter (Reserved in SCC mode)
CANTOC
0x6030
0x6230
1
Time-out control (Reserved in SCC mode)
CANTOS
0x6032
0x6232
1
Time-out status (Reserved in SCC mode)
These registers are mapped to Peripheral Frame 1.
Submit Documentation Feedback
Peripherals
75
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C)
The 2833x devices include three serial communications interface (SCI) modules. The SCI modules
support digital communications between the CPU and other asynchronous peripherals that use the
standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each
has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in
the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity,
overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit
baud-select register.
PRODUCT PREVIEW
Features of each SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
NOTE: Both pins can be used as GPIO if not used for SCI.
– Baud rate programmable to 64K different rates:
•
•
•
•
•
•
•
•
•
•
•
Baud rate =
LSPCLK
(BRR ) 1) * 8
when BRR ≠ 0
Baud rate =
LSPCLK
16
when BRR = 0
Data-word format
– One start bit
– Data-word length programmable from one to eight bits
– Optional even/odd/no parity bit
– One or two stop bits
Four error-detection flags: parity, overrun, framing, and break detection
Two wake-up multiprocessor modes: idle-line and address bit
Half- or full-duplex operation
Double-buffered receive and transmit functions
Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms
with status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX
EMPTY flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag
(break condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
Separate enable bits for transmitter and receiver interrupts (except BRKDT)
Max bit rate + 150 MHz + 9.375 106 bńs
16
(for 150-MHz devices)
100
MHz
6
Max bit rate +
+ 6.25 10 bńs
16
(for 100-MHz devices)
NRZ (non-return-to-zero) format
Ten SCI module control registers located in the control register frame beginning at address 7050h
NOTE
All registers in this module are 8-bit registers that are connected to Peripheral Frame 2.
When a register is accessed, the register data is in the lower byte (7-0), and the upper
byte (15-8) is read as zeros. Writing to the upper byte has no effect.
Enhanced features:
• Auto baud-detect hardware logic
76
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
•
16-level transmit/receive FIFO
The SCI port operation is configured and controlled by the registers listed in Table 4-9, Table 4-10, and
Table 4-11.
Table 4-9. SCI-A Registers (1)
(2)
ADDRESS
SIZE (x16)
0x7050
1
SCI-A Communications Control Register
DESCRIPTION
SCICTL1A
0x7051
1
SCI-A Control Register 1
SCIHBAUDA
0x7052
1
SCI-A Baud Register, High Bits
SCILBAUDA
0x7053
1
SCI-A Baud Register, Low Bits
SCICTL2A
0x7054
1
SCI-A Control Register 2
SCIRXSTA
0x7055
1
SCI-A Receive Status Register
SCIRXEMUA
0x7056
1
SCI-A Receive Emulation Data Buffer Register
SCIRXBUFA
0x7057
1
SCI-A Receive Data Buffer Register
SCITXBUFA
0x7059
1
SCI-A Transmit Data Buffer Register
SCIFFTXA (2)
0x705A
1
SCI-A FIFO Transmit Register
SCIFFRXA (2)
0x705B
1
SCI-A FIFO Receive Register
SCIFFCTA (2)
0x705C
1
SCI-A FIFO Control Register
SCIPRIA
0x705F
1
SCI-A Priority Control Register
PRODUCT PREVIEW
(1)
NAME
SCICCRA
Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce
undefined results.
These registers are new registers for the FIFO mode.
Table 4-10. SCI-B Registers (1) (2)
(1)
(2)
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
SCICCRB
0x7750
1
SCI-B Communications Control Register
SCICTL1B
0x7751
1
SCI-B Control Register 1
SCIHBAUDB
0x7752
1
SCI-B Baud Register, High Bits
SCILBAUDB
0x7753
1
SCI-B Baud Register, Low Bits
SCICTL2B
0x7754
1
SCI-B Control Register 2
SCIRXSTB
0x7755
1
SCI-B Receive Status Register
SCIRXEMUB
0x7756
1
SCI-B Receive Emulation Data Buffer Register
SCIRXBUFB
0x7757
1
SCI-B Receive Data Buffer Register
SCITXBUFB
0x7759
1
SCI-B Transmit Data Buffer Register
SCIFFTXB (2)
0x775A
1
SCI-B FIFO Transmit Register
SCIFFRXB (2)
0x775B
1
SCI-B FIFO Receive Register
SCIFFCTB (2)
0x775C
1
SCI-B FIFO Control Register
SCIPRIB
0x775F
1
SCI-B Priority Control Register
Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce
undefined results.
These registers are new registers for the FIFO mode.
Submit Documentation Feedback
Peripherals
77
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-11. SCI-C Registers (1) (2)
PRODUCT PREVIEW
(1)
(2)
78
NAME
ADDRESS
SIZE (x16)
SCICCRC
0x7770
1
SCI-C Communications Control Register
DESCRIPTION
SCICTL1C
0x7771
1
SCI-C Control Register 1
SCIHBAUDC
0x7772
1
SCI-C Baud Register, High Bits
SCILBAUDC
0x7773
1
SCI-C Baud Register, Low Bits
SCICTL2C
0x7774
1
SCI-C Control Register 2
SCIRXSTC
0x7775
1
SCI-C Receive Status Register
SCIRXEMUC
0x7776
1
SCI-C Receive Emulation Data Buffer Register
SCIRXBUFC
0x7777
1
SCI-C Receive Data Buffer Register
SCITXBUFC
0x7779
1
SCI-C Transmit Data Buffer Register
SCIFFTXC (2)
0x777A
1
SCI-C FIFO Transmit Register
SCIFFRXC (2)
0x777B
1
SCI-C FIFO Receive Register
SCIFFCTC (2)
0x777C
1
SCI-C FIFO Control Register
SCIPRC
0x777F
1
SCI-C Priority Control Register
Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce
undefined results.
These registers are new registers for the FIFO mode.
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Figure 4-15 shows the SCI module block diagram.
SCICTL1.1
SCITXD
Frame Format and Mode
Parity
Even/Odd Enable
TXSHF
Register
TXENA
8
SCICCR.6 SCICCR.5
TX EMPTY
SCICTL2.6
TXRDY
TXWAKE
SCICTL1.3
1
Transmitter-Data
Buffer Register
8
TX INT ENA
SCICTL2.7
SCICTL2.0
TX FIFO
Interrupts
TX FIFO _0
TX FIFO _1
SCITXD
TXINT
TX Interrupt
Logic
-----
To CPU
TX FIFO _15
WUT
SCI TX Interrupt select logic
SCITXBUF.7-0
SCIFFENA
PRODUCT PREVIEW
TX FIFO registers
AutoBaud Detect logic
SCIFFTX.14
SCIHBAUD. 15 - 8
Baud Rate
MSbyte
Register
SCIRXD
RXSHF
Register
SCIRXD
RXWAKE
LSPCLK
SCIRXST.1
SCILBAUD. 7 - 0
Baud Rate
LSbyte
Register
RXENA
8
SCICTL1.0
SCICTL2.1
Receive Data
Buffer register
SCIRXBUF.7-0
RXRDY
8
BRKDT
RX FIFO _15
----RX FIFO_1
RX FIFO _0
SCIRXBUF.7-0
RX/BK INT ENA
SCIRXST.6
SCIRXST.5
RX FIFO
Interrupts
RX Interrupt
Logic
To CPU
RX FIFO registers
SCIRXST.7
SCIRXST.4 - 2
RX Error
FE OE PE
RXINT
RXFFOVF
SCIFFRX.15
RX Error
RX ERR INT ENA
SCICTL1.6
SCI RX Interrupt select logic
Figure 4-15. Serial Communications Interface (SCI) Module Block Diagram
Submit Documentation Feedback
Peripherals
79
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.11 Serial Peripheral Interface (SPI) Module (SPI-A)
The 2833x devices include the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A)
is available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable
bit-transfer rate. Normally, the SPI is used for communications between the DSC controller and external
peripherals or another processor. Typical applications include external I/O or peripheral expansion through
devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by
the master/slave operation of the SPI.
PRODUCT PREVIEW
The SPI module features include:
• Four external pins:
– SPISOMI: SPI slave-output/master-input pin
– SPISIMO: SPI slave-input/master-output pin
– SPISTE: SPI slave transmit-enable pin
– SPICLK: SPI serial-clock pin
NOTE: All four pins can be used as GPIO, if the SPI module is not used.
• Two operational modes: master and slave
Baud rate: 125 different programmable rates.
•
•
•
•
•
Baud rate =
LSPCLK
(SPIBRR ) 1)
Baud rate =
LSPCLK
4
when SPIBRR = 3 to 127
when SPIBRR = 0,1, 2
Data word length: one to sixteen data bits
Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the
falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
Simultaneous receive and transmit operation (transmit function can be disabled in software)
Transmitter and receiver operations are accomplished through either interrupt-driven or polled
algorithms.
Nine SPI module control registers: Located in control register frame beginning at address 7040h.
NOTE
All registers in this module are 16-bit registers that are connected to Peripheral Frame 2.
When a register is accessed, the register data is in the lower byte (7-0), and the upper
byte (15-8) is read as zeros. Writing to the upper byte has no effect.
Enhanced feature:
• 16-level transmit/receive FIFO
• Delayed transmit control
The SPI port operation is configured and controlled by the registers listed in Table 4-12.
80
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-12. SPI-A Registers
ADDRESS
SIZE (X16)
SPICCR
0x7040
1
SPI-A Configuration Control Register
SPICTL
0x7041
1
SPI-A Operation Control Register
SPISTS
0x7042
1
SPI-A Status Register
SPIBRR
0x7044
1
SPI-A Baud Rate Register
SPIRXEMU
0x7046
1
SPI-A Receive Emulation Buffer Register
SPIRXBUF
0x7047
1
SPI-A Serial Input Buffer Register
SPITXBUF
0x7048
1
SPI-A Serial Output Buffer Register
SPIDAT
0x7049
1
SPI-A Serial Data Register
SPIFFTX
0x704A
1
SPI-A FIFO Transmit Register
SPIFFRX
0x704B
1
SPI-A FIFO Receive Register
SPIFFCT
0x704C
1
SPI-A FIFO Control Register
SPIPRI
0x704F
1
SPI-A Priority Control Register
PRODUCT PREVIEW
(1)
DESCRIPTION (1)
NAME
Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined
results.
Submit Documentation Feedback
Peripherals
81
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Figure 4-16 is a block diagram of the SPI in slave mode.
SPIFFENA
Overrun
INT ENA
Receiver
Overrun Flag
SPIFFTX.14
RX FIFO registers
SPISTS.7
SPICTL.4
SPIRXBUF
RX FIFO _0
RX FIFO _1
−−−−−
SPIINT/SPIRXINT
RX FIFO Interrupt
RX Interrupt
Logic
RX FIFO _15
16
SPIRXBUF
Buffer Register
SPIFFOVF FLAG
PRODUCT PREVIEW
SPIFFRX.15
To CPU
TX FIFO registers
SPITXBUF
TX FIFO _15
−−−−−
TX Interrupt
Logic
TX FIFO Interrupt
TX FIFO _1
TX FIFO _0
SPITXINT
16
SPI INT FLAG
SPITXBUF
Buffer Register
16
SPI INT
ENA
SPISTS.6
SPICTL.0
16
M
M
SPIDAT
Data Register
S
S
SW1
SPISIMO
M
M
SPIDAT.15 − 0
S
S
SW2
SPISOMI
Talk
SPICTL.1
SPISTE(A)
State Control
Master/Slave
SPI Char
SPICCR.3 − 0
3
2
1
SW3
M
SPI Bit Rate
LSPCLK
S
SPIBRR.6 − 0
6
A.
SPICTL.2
S
0
5
4
3
2
1
0
Clock
Polarity
Clock
Phase
SPICCR.6
SPICTL.3
SPICLK
M
SPISTE is driven low by the master for a slave device.
Figure 4-16. SPI Module Block Diagram (Slave Mode)
82
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
www.ti.com
Digital Signal Controllers (DSCs)
SPRS439 – JUNE 2007
4.12 Inter-Integrated Circuit (I2C)
The I2C module has the following features:
• Compliance with the Philips Semiconductors I2C-bus specification (version 2.1):
– Support for 1-bit to 8-bit format transfers
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers
– Support for multiple slave-transmitters and master-receivers
– Combined master transmit/receive and receive/transmit mode
– Data transfer rate of from 10 kbps up to 400 kbps (Philips Fast-mode rate)
• One 16-bit receive FIFO and one 16-bit transmit FIFO
• One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the
following conditions:
– Transmit-data ready
– Receive-data ready
– Register-access ready
– No-acknowledgment received
– Arbitration lost
– Stop condition detected
– Addressed as slave
• An additional interrupt that can be used by the CPU when in FIFO mode
• Module enable/disable capability
• Free data format mode
Submit Documentation Feedback
Peripherals
83
PRODUCT PREVIEW
The 2833x device contains one I2C Serial Port. Figure 4-15 shows how the I2C peripheral module
interfaces within the 2833x device.
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
System Control
Block
C28X CPU
I2CAENCLK
Peripheral Bus
SYSCLKOUT
SYSRS
Control
Data[16]
SDAA
Data[16]
PRODUCT PREVIEW
GPIO
MUX
I2C−A
Addr[16]
SCLA
I2CINT1A
PIE
Block
I2CINT2A
A.
The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are
also at the SYSCLKOUT rate.
B.
The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power
operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off.
Figure 4-17. I2C Peripheral Module Interfaces
The registers in Table 4-13 configure and control the I2C port operation.
Table 4-13. I2C-A Registers
84
NAME
ADDRESS
I2COAR
0x7900
I2C own address register
DESCRIPTION
I2CIER
0x7901
I2C interrupt enable register
I2CSTR
0x7902
I2C status register
I2CCLKL
0x7903
I2C clock low-time divider register
I2CCLKH
0x7904
I2C clock high-time divider register
I2CCNT
0x7905
I2C data count register
I2CDRR
0x7906
I2C data receive register
I2CSAR
0x7907
I2C slave address register
I2CDXR
0x7908
I2C data transmit register
I2CMDR
0x7909
I2C mode register
I2CISRC
0x790A
I2C interrupt source register
I2CPSC
0x790C
I2C prescaler register
I2CFFTX
0x7920
I2C FIFO transmit register
I2CFFRX
0x7921
I2C FIFO receive register
I2CRSR
-
I2C receive shift register (not accessible to the CPU)
I2CXSR
-
I2C transmit shift register (not accessible to the CPU)
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
4.13 GPIO MUX
On the 2833x devices, the GPIO MUX can multiplex up to three independent peripheral signals on a
single GPIO pin in addition to providing individual pin bit-banging IO capability. The GPIO MUX block
diagram per pin is shown in Figure 4-18. Because of the open drain capabilities of the I2C pins, the GPIO
MUX block diagram for these pins differ. See the TMS320x280x, 2801x, 2804x System Control and
Interrupts Reference Guide (literature number SPRU712) for details.
GPIOXINT1SEL
GPIOXINT2SEL
LPMCR0
GPIOXNMISEL
External Interrupt
MUX
Low Power
Modes Block
Asynchronous
path
GPxDAT (read)
GPxQSEL1/2
GPxCTRL
GPxPUD
00
Input
Qualification
Internal
Pullup
PIE
PRODUCT PREVIEW
GPIOLMPSEL
N/C
01
Peripheral 1 Input
10
Peripheral 2 Input
11
Peripheral 3 Input
GPxTOGGLE
Asynchronous path
GPIOx pin
GPxCLEAR
GPxSET
00
GPxDAT (latch)
01
Peripheral 1 Output
10
Peripheral 2 Output
11
Peripheral 3 Output
00
GPxDIR (latch)
High Impedance
Output Control
01
Peripheral 1 Output Enable
10
Peripheral 2 Output Enable
11
Peripheral 3 Output Enable
0 = Input, 1 = Output
XRS
= Default at Reset
GPxMUX1/2
A.
x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register
depending on the particular GPIO pin selected.
B.
GPxDAT latch/read are accessed at the same memory location.
Figure 4-18. GPIO MUX Block Diagram
Submit Documentation Feedback
Peripherals
85
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
The 2833x supports 88 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame
1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 4-14 shows the GPIO
register mapping.
Table 4-14. GPIO Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
GPIO CONTROL REGISTERS (EALLOW PROTECTED)
GPACTRL
0x6F80
2
GPIO A Control Register (GPIO0 to 31)
GPAQSEL1
0x6F82
2
GPIO A Qualifier Select 1 Register (GPIO0 to 15)
GPAQSEL2
0x6F84
2
GPIO A Qualifier Select 2 Register (GPIO16 to 31)
GPAMUX1
0x6F86
2
GPIO A MUX 1 Register (GPIO0 to 15)
GPAMUX2
0x6F88
2
GPIO A MUX 2 Register (GPIO16 to 31)
PRODUCT PREVIEW
GPADIR
0x6F8A
2
GPIO A Direction Register (GPIO0 to 31)
GPAPUD
0x6F8C
2
GPIO A Pull Up Disable Register (GPIO0 to 31)
reserved
0x6F8E
0x6F8F
2
GPBCTRL
0x6F90
2
GPIO B Control Register (GPIO32 to 35)
GPBQSEL1
0x6F92
2
GPIO B Qualifier Select 1 Register (GPIO32 to 35)
GPBQSEL2
0x6F94
2
reserved
GPBMUX1
0x6F96
2
GPIO B MUX 1 Register (GPIO32 to 35)
GPBMUX2
0x6F98
2
reserved
GPBDIR
0x6F9A
2
GPIO B Direction Register (GPIO32 to 35)
GPBPUD
0x6F9C
2
GPIO B Pull Up Disable Register (GPIO32 to 35)
reserved
0x6F9E
0x6F9F
2
reserved
reserved
0x6FA0
0x6FBF
32
GPADAT
0x6FC0
2
GPIO Data Register (GPIO0 to 31)
GPIO DATA REGISTERS (NOT EALLOW PROTECTED)
GPASET
0x6FC2
2
GPIO Data Set Register (GPIO0 to 31)
GPACLEAR
0x6FC4
2
GPIO Data Clear Register (GPIO0 to 31)
GPATOGGLE
0x6FC6
2
GPIO Data Toggle Register (GPIO0 to 31)
GPBDAT
0x6FC8
2
GPIO Data Register (GPIO32 to 35)
GPBSET
0x6FCA
2
GPIO Data Set Register (GPIO32 to 35)
GPBCLEAR
0x6FCC
2
GPIO Data Clear Register (GPIO32 to 35)
GPBTOGGLE
0x6FCE
2
GPIO Data Toggle Register (GPIO32 to 35)
reserved
0x6FD0
0x6FDF
16
GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED)
86
GPIOXINT1SEL
0x6FE0
1
XINT1 GPIO Input Select Register (GPIO0 to 31)
GPIOXINT2SEL
0x6FE1
1
XINT2 GPIO Input Select Register (GPIO0 to 31)
GPIOXNMISEL
0x6FE2
1
XNMI GPIO Input Select Register (GPIO0 to 31)
reserved
0x6FE3
0x6FE7
5
GPIOLPMSEL
0x6FE8
2
reserved
0x6FEA
0x6FFF
22
Peripherals
LPM GPIO Select Register (GPIO0 to 31)
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-15. GPIO-A Mux Peripheral Selection Matrix
PERIPHERAL SELECTION
GPAMUX1
GPAQSEL1
GPIOx
GPAMUX1=0,0
PER1
GPAMUX1 = 0, 1
PER2
GPAMUX1 = 1, 0
PER3
GPAMUX1 = 1, 1
ECAP6 (I/O)
MFSRB (I/O)
ECAP5 (I/O)
MCLKRB (I/O)
Q
0
1, 0
GPIO0 (I/O)
EPWM1A (O)
U
1
3, 2
GPIO1 (I/O)
EPWM1B (O)
A
2
5, 4
GPIO2 (I/O)
EPWM2A (O)
L
3
7, 6
GPIO3 (I/O)
EPWM2B (O)
P
4
9, 8
GPIO4 (I/O)
EPWM3A (O)
R
5
11, 10
GPIO5 (I/O)
EPWM3B (O)
MFSRA (I/O)
ECAP1 (I/O)
D
6
13, 12
GPIO6 (I/O)
EPWM4A (O)
EPWMSYNCI (I)
EPWMSYNCO (O)
0
7
15, 14
GPIO7 (I/O)
EPWM4B (O)
MCLKRA (I/O)
ECAP2 (I/O)
Q
8
17, 16
GPIO8 (I/O)
EPWM5A (O)
CANTXB (O)
ADCSOCAO (O)
U
9
19, 18
GPIO9 (I/O)
EPWM5B (O)
SCITXDB (O)
ECAP3 (I/O)
A
10
21, 20
GPIO10 (I/O)
EPWM6A (O)
CANRXB (I)
ADCSOCBO (O)
L
11
23, 22
GPIO11 (I/O)
EPWM6B (O)
SCIRXDB (I)
ECAP4 (I/O)
MDXB (O)
P
12
25, 24
GPIO12 (I/O)
TZ1 (I)
CANTXB (O)
R
13
27, 26
GPIO13 (I/O)
TZ2 (I)
CANRXB (I)
MDRB (I)
D
14
29, 28
GPIO14 (I/O)
TZ3 (I)/XHOLD (I)
SCITXDB (O)
MCLKXB (I/O)
1
15
31, 30
GPIO15 (I/O)
TZ4 (I)/XHOLDA (O)
SCIRXDB (I)
MFSXB (I/O)
GPAQSEL2
GPAMUX2 =0, 0
GPAMUX2 = 0, 1
GPAMUX2 = 1, 0
GPAMUX2 = 1, 1
TZ5 (I)
PRODUCT PREVIEW
REGISTER BITS
GPADIR
GPADAT
GPASET
GPACLR
GPATOGGLE
GPAMUX2
Q
16
1, 0
GPIO16 (I/O)
SPISIMOA (I/O)
CANTXB (O)
U
17
3, 2
GPIO17 (I/O)
SPISOMIA (I/O)
CANRXB (I)
TZ6 (I)
A
18
5, 4
GPIO18 (I/O)
SPICLKA (I/O)
SCITXDB (O)
CANRXA (I)
L
19
7, 6
GPIO19 (I/O)
SPISTEA (I/O)
SCIRXDB (I)
CANTXA (O)
CANTXB (O)
P
20
9, 8
GPIO20 (I/O)
EQEP1A (I)
MDXA (O)
R
21
11, 10
GPIO21 (I/O)
EQEP1B (I)
MDRA (I)
CANRXB (I)
D
22
13, 12
GPIO22 (I/O)
EQEP1S (I/O)
MCLKXA (I/O)
SCITXDB (O)
2
23
15, 14
GPIO23 (I/O)
EQEP1I (I/O)
MFSXA (I/O)
SCIRXDB (I)
Q
24
17, 16
GPIO24 (I/O)
ECAP1 (I/O)
EQEP2A (I)
MDXB (O)
U
25
19, 18
GPIO25 (I/O)
ECAP2 (I/O)
EQEP2B (I)
MDRB (I)
A
26
21, 20
GPIO26 (I/O)
ECAP3 (I/O)
EQEP2I (I/O)
MCLKXB (I/O)
L
27
23, 22
GPIO27 (I/O)
ECAP4 (I/O)
EQEP2S (I/O)
MFSXB (I/O)
P
28
25, 24
GPIO28 (I/O)
SCIRXDA (I)
XZCS6 (O)
R
29
27, 26
GPIO29 (I/O)
SCITXDA (O)
XA19 (O)
D
30
29, 28
GPIO30 (I/O)
CANRXA (I)
XA18 (O)
3
31
31, 30
GPIO31 (I/O)
CANTXA (O)
XA17 (O)
Submit Documentation Feedback
Peripherals
87
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-16. GPIO-B Mux Peripheral Selection Matrix
REGISTER BITS
PERIPHERAL SELECTION
GPBDIR
GPBDAT
GPBSET
GPBCLR
GPBTOGGLE
PRODUCT PREVIEW
(1)
88
GPBMUX1
GPBQSEL1
GPIOx
GPBMUX1=0, 0
PER1
GPBMUX1 = 0, 1
PER2
GPBMUX1 = 1, 0
PER3
GPBMUX1 = 1, 1
Q
0
1, 0
GPIO32 (I/O)
SDAA (I/OC) (1)
EPWMSYNCI (I)
ADCSOCAO (O)
U
1
3, 2
GPIO33 (I/O)
SCLA (I/OC) (1)
EPWMSYNCO (O)
ADCSOCBO (O)
A
2
5, 4
GPIO34 (I/O)
ECAP1 (I/O)
XREADY (I)
L
3
7, 6
GPIO35 (I/O)
SCITXDA (O)
XR/W (O)
P
4
9, 8
GPIO36 (I/O)
SCIRXDA (I)
XZCS0 (O)
R
5
11, 10
GPIO37 (I/O)
ECAP2 (I/O)
XZCS7 (O)
D
6
13, 12
GPIO38 (I/O)
XWE0 (O)
0
7
15, 14
GPIO39 (I/O)
XA16 (O)
Q
8
17, 16
GPIO40 (I/O)
XA0/XWE1 (O)
U
9
19, 18
GPIO41 (I/O)
XA1 (O)
A
10
21, 20
GPIO42 (I/O)
XA2 (O)
L
11
23, 22
GPIO43 (I/O)
XA3 (O)
P
12
25, 24
GPIO44 (I/O)
XA4 (O)
R
13
27, 26
GPIO45 (I/O)
XA5 (O)
D
14
29, 28
GPIO46 (I/O)
XA6 (O)
1
15
31, 30
GPIO47 (I/O)
GPBMUX2
GPBQSEL2
GPBMUX2 =0, 0
GPBMUX2 = 0, 1
GPBMUX2 = 1, 0
XA7 (O)
Q
16
1, 0
GPIO48 (I/O)
ECAP5 (I/O)
XD31 (I/O)
U
17
3, 2
GPIO49 (I/O)
ECAP6 (I/O)
XD30 (I/O)
A
18
5, 4
GPIO50 (I/O)
EQEP1A (I)
XD29 (I/O)
L
19
7, 6
GPIO51 (I/O)
EQEP1B (I)
XD28 (I/O)
P
20
9, 8
GPIO52 (I/O)
EQEP1S (I/O)
XD27 (I/O)
R
21
11, 10
GPIO53 (I/O)
EQEP1I (I/O)
XD26 (I/O)
D
22
13, 12
GPIO54 (I/O)
SPISIMOA (I/O)
XD25 (I/O)
2
23
15, 14
GPIO55 (I/O)
SPISOMIA (I/O)
XD24 (I/O)
Q
24
17, 16
GPIO56 (I/O)
SPICLKA (I/O)
XD23 (I/O)
U
25
19, 18
GPIO57 (I/O)
SPISTEA (I/O)
XD22 (I/O)
A
26
21, 20
GPIO58 (I/O)
MCLKRA (I/O)
XD21 (I/O)
L
27
23, 22
GPIO59 (I/O)
MFSRA (I/O)
XD20 (I/O)
P
28
25, 24
GPIO60 (I/O)
MCLKRB (I/O)
XD19 (I/O)
R
29
27, 26
GPIO61 (I/O)
MFSRB (I/O)
XD18 (I/O)
D
30
29, 28
GPIO62 (I/O)
SCIRXDC (I)
XD17 (I/O)
3
31
31, 30
GPIO63 (I/O)
SCITXDC (O)
XD16 (I/O)
GPBMUX2 = 1, 1
Open drain
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Table 4-17. GPIO-C Mux Peripheral Selection Matrix
PERIPHERAL SELECTION
GPCMUX1
GPIOx or PER1
GPCMUX1 = 0, 0 or 0, 1
PER2 or PER3
GPCMUX1 = 1, 0 or 1, 1
0
1, 0
GPIO64 (I/O)
XD15 (I/O)
1
3, 2
GPIO65 (I/O)
XD14 (I/O)
qu
2
5, 4
GPIO66 (I/O)
XD13 (I/O)
a
3
7, 6
GPIO67 (I/O)
XD12 (I/O)
l
4
9, 8
GPIO68 (I/O)
XD11 (I/O)
5
11, 10
GPIO69 (I/O)
XD10 (I/O)
6
13, 12
GPIO70 (I/O)
XD9 (I/O)
7
15, 14
GPIO71 (I/O)
XD8 (I/O)
8
17, 16
GPIO72 (I/O)
XD7 (I/O)
9
19, 18
GPIO73 (I/O)
XD6 (I/O)
qu
10
21, 20
GPIO74 (I/O)
XD5 (I/O)
a
11
23, 22
GPIO75 (I/O)
XD4 (I/O)
l
12
25, 24
GPIO76 (I/O)
XD3 (I/O)
13
27, 26
GPIO77 (I/O)
XD2 (I/O)
14
29, 28
GPIO78 (I/O)
XD1 (I/O)
no
no
15
no
31, 30
GPIO79 (I/O)
XD0 (I/O)
GPCMUX2
GPCMUX2 = 0, 0 or 0, 1
GPCMUX2 = 1, 0 or 1, 1
16
1, 0
GPIO80 (I/O)
XA8 (O)
17
3, 2
GPIO81 (I/O)
XA9 (O)
qu
18
5, 4
GPIO82 (I/O)
XA10 (O)
a
19
7, 6
GPIO83 (I/O)
XA11 (O)
l
20
9, 8
GPIO84 (I/O)
XA12 (O)
21
11, 10
GPIO85 (I/O)
XA13 (O)
22
13, 12
GPIO86 (I/O)
XA14 (O)
23
15, 14
GPIO87 (I/O)
XA15 (O)
PRODUCT PREVIEW
REGISTER BITS
GPCDIR
GPCDAT
GPCSET
GPCCLR
GPCTOGGLE
The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from
four choices:
• Synchronization To SYSCLKOUT Only (GPxQSEL1/2=0, 0): This is the default mode of all GPIO pins
at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT).
• Qualification Using Sampling Window (GPxQSEL1/2=0, 1 and 1, 0): In this mode the input signal, after
synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before
the input is allowed to change.
Submit Documentation Feedback
Peripherals
89
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Time between samples
GPyCTRL Reg
GPIOx
SYNC
Qualification
Input Signal
Qualified By 3
or 6 Samples
GPxQSEL
SYSCLKOUT
PRODUCT PREVIEW
Number of Samples
Figure 4-19. Qualification Using Sampling Window
•
•
The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in
groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The
sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL
samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode).
No Synchronization (GPxQSEL1/2=1,1): This mode is used for peripherals where synchronization is
not required (synchronization is performed within the peripheral).
Due to the multi-level multiplexing that is required on the 2833x device, there may be cases where a
peripheral input signal can be mapped to more then one GPIO pin. Also, when an input signal is not
selected, the input signal will default to either a 0 or 1 state, depending on the peripheral.
90
Peripherals
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
5
Device Support
Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSCs,
including tools to evaluate the performance of the processors, generate code, develop algorithm
implementations, and fully integrate and debug software and hardware modules.
Software Development Tools
• Code Composer Studio™ Integrated Development Environment (IDE)
– C/C++ Compiler
– Code generation tools
– Assembler/Linker
– Cycle Accurate Simulator
• Application algorithms
• Sample applications code
Hardware Development Tools
• 2833x development board
• Evaluation modules
• JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510USB
• Universal 5-V dc power supply
• Documentation and cables
5.1
Device and Development Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
TMS320™ DSC devices and support tools. Each TMS320™ DSP commercial family member has one of
three prefixes: TMX, TMP, or TMS (e.g., TMS320F28335). Texas Instruments recommends two of three
possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary
stages of product development from engineering prototypes (TMX/TMDX) through fully qualified
production devices/tools (TMS/TMDS).
Device development evolutionary flow:
TMX
Experimental device that is not necessarily representative of the final device's electrical
specifications
TMP
Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification
TMS
Fully qualified production device
Support tool development evolutionary flow:
TMDX
Development-support product that has not yet completed Texas Instruments internal qualification
testing
TMDS
Fully qualified development-support product
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Submit Documentation Feedback
Device Support
91
PRODUCT PREVIEW
The following products support development of 2833x-based applications:
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, PBK) and temperature range (for example, A). Figure 5-1 provides a legend
for reading the complete device name for any family member.
TMS 320
F 28335
PGF
A
PREFIX
TMX = experimental device
TMP = prototype device
TMS = qualified device
PRODUCT PREVIEW
DEVICE FAMILY
320 = TMS320 DSP Family
TECHNOLOGY
F = Flash EEPROM (1.8-V/1.9-V Core/3.3-V I/O)
TEMPERATURE RANGE
A
= −40°C to 85°C
PACKAGE TYPE
ZHH = 179-ball MicroStar BGA (lead-free)
PGF = 176-pin LQFP
DEVICE
28335
28334
28332
BGA = Ball Grid Array
LQFP = Low-Profile Quad Flatpack
.ti.com/leadfree
Figure 5-1. Example of 2833x Device Nomenclature
92
Device Support
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
5.2
Documentation Support
Extensive documentation supports all of the TMS320™ DSP family generations of devices from product
announcement through applications development. The types of documentation available include: data
sheets and data manuals, with design specifications; and hardware and software applications. Useful
reference documentation includes:
CPU User's Guides
SPRU430
TMS320C28x DSP CPU and Instruction Set Reference Guide describes the central
processing unit (CPU) and the assembly language instructions of the TMS320C28x
fixed-point digital signal processors (DSPs). It also describes emulation features available on
these DSPs.
TMS320C28x Floating Point Unit and Instruction Set Reference Guide describes the
floating-point unit and includes the instructions for the FPU.
Peripheral Guides
SPRU566
TMS320x28xx, 28xxx Peripheral Reference Guide describes the peripheral reference guides
of the 28x digital signal processors (DSPs).
SPRU716
TMS320x280x, 2801x, 2804x Analog-to-Digital Converter (ADC) Reference Guide describes
how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.
SPRU791
TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide
describes the main areas of the enhanced pulse width modulator that include digital motor
control, switch mode power supply control, UPS (uninterruptible power supplies), and other
forms of power conversion
SPRU924
TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator (HRPWM) describes the
operation of the high-resolution extension to the pulse width modulator (HRPWM)
SPRU807
TMS320x28xx, 28xxx Enhanced Capture (eCAP) Module Reference Guide describes the
enhanced capture module. It includes the module description and registers.
SPRU790
TMS320x28xx, 28xxx Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide
describes the eQEP module, which is used for interfacing with a linear or rotary incremental
encoder to get position, direction, and speed information from a rotating machine in high
performance motion and position control systems. It includes the module description and
registers
SPRU074
TMS320x28xx, 28xxx Enhanced Controller Area Network (eCAN) Reference Guide
describes the eCAN that uses established protocol to communicate serially with other
controllers in electrically noisy environments.
SPRU051
TMS320x28xx, 28xxx Serial Communication Interface (SCI) Reference Guide describes the
SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI
modules support digital communications between the CPU and other asynchronous
peripherals that use the standard non-return-to-zero (NRZ) format.
SPRU059
TMS320x28xx, 28xxx Serial Peripheral Interface (SPI) Reference Guide describes the SPI a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of
programmed length (one to sixteen bits) to be shifted into and out of the device at a
programmed bit-transfer rate.
SPRU721
TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Reference Guide describes the features
and operation of the inter-integrated circuit (I2C) module that is available on the
TMS320x280x digital signal processor (DSP).
Tools Guides
SPRU513
TMS320C28x Assembly Language Tools User's Guide describes the assembly language
tools (assembler and other tools used to develop assembly language code), assembler
Submit Documentation Feedback
Device Support
93
PRODUCT PREVIEW
SPRUEO2
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
directives, macros, common object file format, and symbolic debugging directives for the
TMS320C28x device.
SPRU514
TMS320C28x Optimizing C Compiler User's Guide describes the TMS320C28x™ C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320
DSP assembly language source code for the TMS320C28x device.
SPRU608
The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator,
available within the Code Composer Studio for TMS320C2000 IDE, that simulates the
instruction set of the C28x™ core.
SPRU625
TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide
describes development using DSP/BIOS.
Application Reports
PRODUCT PREVIEW
94
SPRAAM0
Getting Started With TMS320C28x™ Digital Signal Controllers is organized by development
flow and functional areas to make your design effort as seamless as possible. Tips on
getting started with C28x™ DSP software and hardware development are provided to aid in
your initial design and debug efforts. Each section includes pointers to valuable information
including technical documentation, software, and tools for use in each phase of design.
SPRAAD5
Power Line Communication for Lighting Apps using BPSK w/ a Single DSP Controller
presents a complete implementation of a power line modem following CEA-709 protocol
using a single DSP.
SPRAA85
Programming TMS320x28xx and 28xxx Peripherals in C/C++ explores a hardware
abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is
compared to traditional #define macros and topics of code efficiency and special case
registers are also addressed.
SPRA958
Running an Application from Internal Flash Memory on the TMS320F28xx DSP covers the
requirements needed to properly configure application software for execution from on-chip
flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are
presented. Example code projects are included.
SPRAA91
TMS320F280x DSC USB Connectivity Using TUSB3410 USB-to-UART Bridge Chip presents
hardware connections as well as software preparation and operation of the development
system using a simple communication echo program.
SPRAA58
TMS320x281x to TMS320x280x Migration Overview describes differences between the
Texas Instruments TMS320x281x and TMS320x280x DSPs to assist in application migration
from the 281x to the 280x. While the main focus of this document is migration from 281x to
280x, users considering migrating in the reverse direction (280x to 281x) will also find this
document useful.
SPRAAD8
TMS320280x and TMS320F2801x ADC Calibration describes a method for improving the
absolute accuracy of the 12-bit ADC found on the TMS320280x and TMS3202801x devices.
Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods
described in this report can improve the absolute accuracy of the ADC to levels better than
0.5%. This application report has an option to download an example program that executes
from RAM on the F2808 EzDSP.
SPRAAI1
Using Enhanced Pulse Width Modulator (ePWM) Module for 0-100% Duty Cycle Control
provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control
and is applicable to the TMS320x280x family of processors.
SPRAA88
Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x presents a method
for utilizing the on-chip pulse width modulated (PWM) signal generators on the
TMS320F280x family of digital signal controllers as a digital-to-analog converter (DAC).
Device Support
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRAAH1
Using the Enhanced Quadrature Encoder Pulse (eQEP) Module provides a guide for the use
of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x,
28xxx family of processors.
SPRA820
Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for
online stack overflow detection on the TMS320C28x™ DSP. C-source code is provided that
contains functions for implementing the overflow detection on both DSP/BIOS™ and
non-DSP/BIOS applications.
SPRA806
An Easy Way of Creating a C-callable Assembly Function for the TMS320C28x DSP
provides instructions and suggestions to configure the C compiler to assist with
understanding of parameter-passing conventions and environments expected by the C
compiler.
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal
processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is
published quarterly and distributed to update TMS320 DSP customers on product information.
Updated information on the TMS320 DSP controllers can be found on the worldwide web at:
http://www.ti.com.
To send comments regarding this data manual (literature number SPRS230), use the
[email protected] email address, which is a repository for feedback. For questions and support,
contact the Product Information Center listed at the http://www.ti.com/sc/docs/pic/home.htm site.
Submit Documentation Feedback
Device Support
95
PRODUCT PREVIEW
SPRS439 – JUNE 2007
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
6
Electrical Specifications
This section provides the absolute maximum ratings and the recommended operating conditions.
6.1
Absolute Maximum Ratings (1) (2)
Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges.
Supply voltage range, VDDIO, VDD3VFL
with respect to VSS
- 0.3 V to 4.6 V
Supply voltage range, VDDA2, VDDAIO
with respect to VSSA
- 0.3 V to 4.6 V
Supply voltage range, VDD
with respect to VSS
- 0.3 V to 2.5 V
Supply voltage range, VDD1A18, VDD2A18
with respect to VSSA
- 0.3 V to 2.5 V
Supply voltage range, VSSA2, VSSAIO, VSS1AGND, VSS2AGND
with respect to VSS
- 0.3 V to 0.3 V
PRODUCT PREVIEW
Input voltage range, VIN
- 0.3 V to 4.6 V
Output voltage range, VO
- 0.3 V to 4.6 V
± 20 mA
Input clamp current, IIK (VIN < 0 or VIN > VDDIO) (3)
± 20 mA
Output clamp current, IOK (VO < 0 or VO > VDDIO)
Operating ambient temperature ranges,
TA: A version
(4)
- 40°C to 85°C
Junction temperature range, Tj (4)
- 40°C to 150°C
Storage temperature range, Tstg (4)
- 65°C to 150°C
(1)
(2)
(3)
(4)
96
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, unless otherwise noted.
Continuous clamp current per pin is ± 2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the
voltage to a diode drop above VDDA2 or below VSSA2.
Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device
life. For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for
TMS320LF24x and TMS320F281x Devices Application Report (literature number SPRA963)
Electrical Specifications
Submit Documentation Feedback
TMS320F28335, TMS320F28334, TMS320F28332
Digital Signal Controllers (DSCs)
www.ti.com
SPRS439 – JUNE 2007
6.2
Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
NOM
MAX
Device supply voltage, I/O, VDDIO
3.2
3.3
3.4
V
Device supply voltage CPU, VDD
1.84
1.9
1.96
V
0
ADC supply voltage (3.3 V), VDDA2, VDDAIO
ADC supply voltage (1.8 V), VDD1A18, VDD2A18
Flash supply voltage, VDD3VFL
Device clock frequency (system clock), fSYSCLKOUT
V
3.2
3.3
3.4
V
1.84
1.9
1.96
V
3.2
3.3
3.4
V
150-MHz devices
2
150
MHz
100-MHz devices
2
100
MHz
2
VDDIO
High-level input voltage, VIH
Low-level input voltage, VIL
0.8
High-level output source current, VOH = 2.4 V, IOH
Low-level output sink current, VOL = VOL MAX, IOL
Ambient temperature, TA
(1)
6.3
V
All I/Os except Group 2
-4
Group 2 (1)
-8
All I/Os except Group 2
Group
mA
4
2 (1)
mA
8
A version
-40
85
Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, EMU1, XINTF pins, GPIO35-87, XRD.
Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
IIL
IIH
Input current
(low level)
Input current
(high level)
TEST CONDITIONS
MIN
IOH = IOHMAX
TYP
MAX
2.4
IOH = 50 µA
V
VDDIO - 0.2
IOL = IOLMAX
0.4
Pin with pullup
enabled
VDDIO = 3.3 V, VIN = 0 V
Pin with pulldown
enabled
VDDIO = 3.3 V, VIN = 0 V
±2
Pin with pullup
enabled
VDDIO = 3.3 V, VIN = VDDIO
±2
Pin with pulldown
enabled
VDDIO = 3.3 V, VIN = VDDIO
28
50
80
Pin with pulldown
enabled
VDDIO = 3.3 V, VIN = VDDIO
80
140
190
IOZ
Output current, pullup or
pulldown disabled
CI
Input capacitance
Submit Documentation Feedback
All I/Os (including XRS)
-80
UNIT
-140
V
-190
µA
±2
VO = VDDIO or 0 V
2
Electrical Specifications
µA
µA
pF
97
PRODUCT PREVIEW
Supply ground, VSS, VSSIO
UNIT
OCTOBER 1994
PGF (S-PQFP-G176)
PLASTIC QUAD FLATPACK
132
89
88
133
0,27
0,17
0,08 M
0,50
0,13 NOM
176
45
1
44
Gage Plane
21,50 SQ
24,20
SQ
23,80
26,20
SQ
25,80
0,25
0,05 MIN
0°−ā 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040134 / B 03/95
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-136
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated