TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) Data Manual Literature Number: SPRS439 June 2007 PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Contents 1 TMS320F28335, TMS320F28334, TMS320F28332 DSCs ............................................................. 7 1.1 1.2 2 Introduction......................................................................................................................... 9 2.1 2.2 3 3.3 3.4 3.5 3.6 3.7 Memory Maps .............................................................................................................. Brief Descriptions........................................................................................................... 3.2.1 C28x CPU ....................................................................................................... 3.2.2 Memory Bus (Harvard Bus Architecture) .................................................................... 3.2.3 Peripheral Bus .................................................................................................. 3.2.4 Real-Time JTAG and Analysis ................................................................................ 3.2.5 External Interface (XINTF) ..................................................................................... 3.2.6 Flash .............................................................................................................. 3.2.7 M0, M1 SARAMs ............................................................................................... 3.2.8 L0, L1, L2, L3, L4, L5, L6, L7 SARAMs ..................................................................... 3.2.9 Boot ROM ........................................................................................................ 3.2.10 Security .......................................................................................................... 3.2.11 Peripheral Interrupt Expansion (PIE) Block .................................................................. 3.2.12 External Interrupts (XINT1-XINT7, XNMI) .................................................................... 3.2.13 Oscillator and PLL .............................................................................................. 3.2.14 Watchdog ........................................................................................................ 3.2.15 Peripheral Clocking ............................................................................................. 3.2.16 Low-Power Modes .............................................................................................. 3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn) ........................................................................... 3.2.18 General-Purpose Input/Output (GPIO) Multiplexer ......................................................... 3.2.19 32-Bit CPU-Timers (0, 1, 2) ................................................................................... 3.2.20 Control Peripherals ............................................................................................. 3.2.21 Serial Port Peripherals ......................................................................................... Register Map ................................................................................................................ Device Emulation Registers............................................................................................... Interrupts .................................................................................................................... 3.5.1 External Interrupts .............................................................................................. System Control ............................................................................................................. 3.6.1 OSC and PLL Block ............................................................................................ 3.6.2 Watchdog Block ................................................................................................. Low-Power Modes Block .................................................................................................. 25 32 32 32 32 32 33 33 33 33 33 35 35 36 36 36 36 36 37 37 37 38 38 39 40 41 45 45 47 50 51 Peripherals ........................................................................................................................ 52 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 2 Pin Assignments ............................................................................................................. 9 Signal Descriptions ......................................................................................................... 15 Functional Overview ........................................................................................................... 24 3.1 3.2 4 Features ....................................................................................................................... 7 Getting Started ............................................................................................................... 8 DMA Overview .............................................................................................................. 32-Bit CPU-Timers 0/1/2 .................................................................................................. Enhanced PWM Modules (ePWM1/2/3/4/5/6) .......................................................................... High-Resolution PWM (HRPWM) ........................................................................................ Enhanced CAP Modules (eCAP1/2/3/4/5/6) ............................................................................ Enhanced QEP Modules (eQEP1/2)..................................................................................... Enhanced Analog-to-Digital Converter (ADC) Module ................................................................ 4.7.1 ADC Connections if the ADC Is Not Used ................................................................... 4.7.2 ADC Registers ................................................................................................... Multichannel Buffered Serial Port (McBSP) Module ................................................................... Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)..................................... Contents 53 54 56 58 59 61 63 66 66 68 71 Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 www.ti.com Digital Signal Controllers (DSCs) SPRS439 – JUNE 2007 4.10 4.11 4.12 4.13 5 76 80 83 85 Device Support .................................................................................................................. 91 5.1 5.2 6 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C) ........................................... Serial Peripheral Interface (SPI) Module (SPI-A) ...................................................................... Inter-Integrated Circuit (I2C) .............................................................................................. GPIO MUX .................................................................................................................. Device and Development Support Tool Nomenclature................................................................ 91 Documentation Support ................................................................................................... 93 Electrical Specifications ...................................................................................................... 96 6.1 6.2 6.3 Absolute Maximum Ratings ............................................................................................... 96 Recommended Operating Conditions ................................................................................... 97 Electrical Characteristics ................................................................................................. 97 Contents 3 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 List of Figures 2-1 F28335, F28334, F28332 176-Pin PGF LQFP (Top View) .................................................................. 10 2-2 F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View) .................... 11 2-3 F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View) 2-4 2-5 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 4-18 4-19 5-1 4 .................. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View) .................... F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Right Quadrant) (Bottom View) .................. Functional Block Diagram ....................................................................................................... F28335 Memory Map ............................................................................................................. F28334 Memory Map ............................................................................................................. F28332 Memory Map ............................................................................................................. External and PIE Interrupt Sources ............................................................................................. External Interrupts ................................................................................................................ Multiplexing of Interrupts Using the PIE Block ................................................................................ Clock and Reset Domains ....................................................................................................... OSC and PLL Block Diagram ................................................................................................... Using a 3.3-V External Oscillator ............................................................................................... Using a 1.8-V External Oscillator ............................................................................................... Using the Internal Oscillator ..................................................................................................... Watchdog Module ................................................................................................................. DMA Functional Block Diagram ................................................................................................. CPU-Timers ........................................................................................................................ CPU-Timer Interrupt Signals and Output Signal .............................................................................. Multiple PWM Modules in a 2833x System .................................................................................... ePWM Sub-Modules Showing Critical Internal Signal Interconnections ................................................... eCAP Functional Block Diagram ................................................................................................ eQEP Functional Block Diagram ................................................................................................ Block Diagram of the ADC Module ............................................................................................. ADC Pin Connections With Internal Reference ............................................................................... ADC Pin Connections With External Reference .............................................................................. McBSP Module ................................................................................................................... eCAN Block Diagram and Interface Circuit .................................................................................... eCAN-A Memory Map ............................................................................................................ eCAN-B Memory Map ............................................................................................................ Serial Communications Interface (SCI) Module Block Diagram ............................................................ SPI Module Block Diagram (Slave Mode) ..................................................................................... I2C Peripheral Module Interfaces ............................................................................................... GPIO MUX Block Diagram ....................................................................................................... Qualification Using Sampling Window.......................................................................................... Example of 2833x Device Nomenclature ...................................................................................... List of Figures 12 13 14 24 26 27 28 41 42 43 46 47 48 48 48 50 53 54 54 56 58 59 61 64 65 65 69 72 73 74 79 82 84 85 90 92 Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 List of Tables 2-1 2-2 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-19 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 4-11 4-12 4-13 4-14 4-15 4-16 4-17 ................................................................................................................ 9 Signal Descriptions ............................................................................................................... 15 Addresses of Flash Sectors in F28335......................................................................................... 29 Addresses of Flash Sectors in F28334......................................................................................... 29 Addresses of Flash Sectors in F28332......................................................................................... 29 Handling Security Code Locations .............................................................................................. 30 Wait-states ......................................................................................................................... 31 Boot Mode Selection.............................................................................................................. 34 Peripheral Frame 0 Registers ................................................................................................... 39 Peripheral Frame 1 Registers ................................................................................................... 39 Peripheral Frame 2 Registers ................................................................................................... 40 Peripheral Frame 3 Registers ................................................................................................... 40 Device Emulation Registers ..................................................................................................... 40 PIE Peripheral Interrupts ......................................................................................................... 43 PIE Configuration and Control Registers ...................................................................................... 44 External Interrupt Registers ...................................................................................................... 45 PLL, Clocking, Watchdog, and Low-Power Mode Registers ................................................................ 47 PLLCR Register Bit Definitions .................................................................................................. 49 CLKIN Divide Options ............................................................................................................ 49 Possible PLL Configuration Modes ............................................................................................. 49 Low-Power Modes ................................................................................................................ 51 CPU-Timers 0, 1, 2 Configuration and Control Registers ................................................................... 55 ePWM Control and Status Registers ........................................................................................... 57 eCAP Control and Status Registers ............................................................................................ 60 eQEP Control and Status Registers ............................................................................................ 62 ADC Registers ..................................................................................................................... 66 McBSP Register Summary ...................................................................................................... 70 3.3-V eCAN Transceivers ....................................................................................................... 72 CAN Register Map ................................................................................................................ 75 SCI-A Registers ................................................................................................................... 77 SCI-B Registers ................................................................................................................... 77 SCI-C Registers ................................................................................................................... 78 SPI-A Registers ................................................................................................................... 81 I2C-A Registers.................................................................................................................... 84 GPIO Registers ................................................................................................................... 86 GPIO-A Mux Peripheral Selection Matrix ..................................................................................... 87 GPIO-B Mux Peripheral Selection Matrix ..................................................................................... 88 GPIO-C Mux Peripheral Selection Matrix ..................................................................................... 89 Hardware Features List of Tables 5 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 6 List of Tables Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com 1 TMS320F28335, TMS320F28334, TMS320F28332 DSCs 1.1 Features • • • • • • • • • • • High-Performance Static CMOS Technology – Up to 150 MHz (6.67-ns Cycle Time) – 1.9-V Core, 3.3-V I/O Design High-Performance 32-Bit CPU (TMS320C28x) – IEEE-754 Single-Precision Floating-Point Unit (FPU) – 16 x 16 and 32 x 32 MAC Operations – 16 x 16 Dual MAC – Harvard Bus Architecture – Fast Interrupt Response and Processing – Unified Memory Programming Model – Code-Efficient (in C/C++ and Assembly) Six Channel DMA Controller (for ADC, McBSP, XINTF, and SARAM) 16-bit or 32-bit External Memory Interface (XINTF) On-Chip Memory – F28335: 256K x 16 Flash, 34K x 16 SARAM – F28334:128K x 16 Flash, 34K x 16 SARAM – F28332: 64K x 16 Flash, 26K x 16 SARAM – 1K x 16 OTP ROM Boot ROM (8K x 16) – With Software Boot Modes (via SCI, SPI, CAN, I2C, McBSP, XINTF, and Parallel I/O) – Standard Math Tables Clock and System Control – Dynamic PLL Ratio Changes Supported – On-Chip Oscillator – Watchdog Timer Module Any GPIO Pin Can Be Connected to One of the Eight External Core Interrupts Peripheral Interrupt Expansion (PIE) Block That Supports All 58 Peripheral Interrupts 128-Bit Security Key/Lock – Protects Flash/OTP/RAM Blocks – Prevents Firmware Reverse Engineering Three 32-Bit CPU Timers • • • • • • • • • • (1) Enhanced Control Peripherals – Up to 18 PWM Outputs – Up to 6 HRPWM Outputs With 150 ps MEP Resolution – Up to 6 Event Capture Inputs – Up to 2 Quadrature Encoder Interfaces – Up to 6 32-bit/Six 16-bit Timers Serial Port Peripherals – Up to 2 CAN Modules – Up to 3 SCI (UART) Modules – Up to 2 McBSP/SPI Modules – Dedicated SPI Module – One Inter-Integrated-Circuit (I2C) Bus 12-Bit ADC, 16 Channels – 80-ns Conversion Rate – 2 x 8 Channel Input Multiplexer – Two Sample-and-Hold – Single/Simultaneous Conversions – Internal or External Reference Up to 88 Individually Programmable, Multiplexed GPIO Pins With Input Filtering JTAG Boundary Scan Support (1) Advanced Emulation Features – Analysis and Breakpoint Functions – Real-Time Debug via Hardware Development Support Includes – ANSI C/C++ Compiler/Assembler/Linker – Code Composer Studio™ IDE – DSP/BIOS™ – Digital Motor Control and Digital Power Software Libraries Low-Power Modes and Power Savings – IDLE, STANDBY, HALT Modes Supported – Disable Individual Peripheral Clocks Package Options – Lead-free Green Packaging – Thin Quad Flatpack (PGF) – MicroStar BGA™ (ZHH) Temperature Options: – A: -40°C to 85°C – S: -40°C to 125°C IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document. Code Composer Studio, DSP/BIOS, MicroStar BGA, TMS320C28x, C28x, TMS320C2000, TMS320C54x, TMS320C55x are trademarks of Texas Instruments. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright © 2007, Texas Instruments Incorporated PRODUCT PREVIEW SPRS439 – JUNE 2007 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 1.2 Getting Started This section gives a brief overview of the steps to take when first developing for a C28x device. For more detail on each of these steps, see the following: • Getting Started With TMS320C28x™ Digital Signal Controllers (literature number SPRAAM0). • C2000 Getting Started Website (http://www.ti.com/c2000getstarted) PRODUCT PREVIEW 8 TMS320F28335, TMS320F28334, TMS320F28332 DSCs Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 2 Introduction The TMS320F28335, TMS320F28334, and TMS320F28332, devices, members of the TMS320C28x™ DSC generation, are highly integrated, high-performance solutions for demanding control applications. Throughout this document, TMS320F28335, TMS320F28334, and TMS320F28332, are abbreviated as F28335, F28334, and F28332, respectively. Table 2-1 provides a summary of features for each device. FEATURE Instruction cycle F28335 (150 MHz) F28334 (150 MHz) F28332 (100 MHz) 10 ns 6.67 ns 6.67 ns Floating-point Unit Yes Yes Yes 3.3-V on-chip flash (16-bit word) 256K 128K 64K Single-access RAM (SARAM) (16-bit word) 34K 34K 26K Code security for on-chip flash/SARAM/OTP blocks Yes Yes Yes Boot ROM (8K X16) Yes Yes Yes One-time programmable (OTP) ROM (16-bit word) 1K 1K 1K 6-channel Direct Memory Access (DMA) PWM outputs Yes Yes Yes ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 ePWM1/2/3/4/5/6 ePWM1A/2A/3A/4A/5A/ ePWM1A/2A/3A/4A/5A/ 6A 6A HRPWM channels ePWM1A/2A/3A/4A 32-bit Capture inputs or auxiliary PWM outputs 6 6 4 32-bit QEP channels (four inputs/channel) 2 2 2 Yes Yes Yes 16 16 16 MSPS 12.5 12.5 12.5 Conversion time Watchdog timer No. of channels 12-Bit ADC 80 ns 80 ns 80 ns 32-Bit CPU timers 3 3 3 Multichannel Buffered Serial Port (McBSP)/SPI 2 2 1 Serial Peripheral Interface (SPI) 1 1 1 Serial Communications Interface (SCI) 3 3 2 Enhanced Controller Area Network (eCAN) 2 2 2 Inter-Integrated Circuit (I2C) 1 1 1 Digital I/O pins (shared) 88 88 88 External interrupts 8 8 8 Yes Yes Yes Packaging Temperature options 100-Pin PGF 100-Ball ZHH A: -40°C to 85°C Product status 2.1 PRODUCT PREVIEW Table 2-1. Hardware Features Yes Yes Yes (PGF, ZHH) (PGF, ZHH) (PGF, ZHH) TMX TMX TMX Pin Assignments The 176-pin PZ low-profile quad flatpack (LQFP) pin assignments are shown in Figure 2-1. The 179-ball ZHH ball grid array (BGA) terminal assignments are shown in Figure 2-2 through Figure 2-5. Table 2-2 describes the function(s) of each pin. Submit Documentation Feedback Introduction 9 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 GPIO75/XD4 GPIO74/XD5 GPIO73/XD6 GPIO72/XD7 GPIO71/XD8 GPIO70/XD9 VDD VSS GPIO69/XD10 GPIO68/XD11 GPIO67/XD12 VDDIO VSS GPIO66/XD13 VSS VDD GPIO65/XD14 GPIO64/XD15 GPIO63/SCITXDC/XD16 GPIO62/SCIRXDC/XD17 GPIO61/MFSRB/XD18 GPIO60/MCLKRB/XD19 GPIO59/MFSRA/XD20 VDD VSS VDDIO VSS XCLKIN X1 VSS X2 VDD GPIO58/MCLKRA/XD21 GPIO57/SPISTEA/XD22 GPIO56/SPICLKA/XD23 GPIO55/SPISOMIA/XD24 GPIO54/SPISIMOA/XD25 GPIO53/EQEP1I/XD26 GPIO52/EQEP1S/XD27 VDDIO VSS GPIO51/EQEP1B/XD28 GPIO50/EQEP1A/XD29 GPIO49/ECAP6/XD30 SPRS439 – JUNE 2007 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 GPIO48/ECAP5/XD31 TCK EMU1 EMU0 VDD3VFL VSS TEST2 TEST1 XRS TMS TRST TDO TDI GPIO33/SCLA/EPWMSYNCO/ADCSOCBO GPIO32/SDAA/EPWMSYNCI/ADCSOCAO GPIO27/ECAP4/EQEP2S/MFSXB GPIO26/ECAP3/EQEP2I/MCLKXB VDDIO VSS GPIO25/ECAP2/EQEP2B/MDRB GPIO24/ECAP1/EQEP2A/MDXB GPIO23/EQEP1I/MFSXA/SCIRXDB GPIO22/EQEP1S/MCLKXA/SCITXDB GPIO21/EQEP1B/MDRA/CANRXB GPIO20/EQEP1A/MDXA/CANTXB GPIO19/SPISTEA/SCIRXDB/CANTXA GPIO18/SPICLKA/SCITXDB/CANRXA VDD VSS VDD2A18 VSS2AGND ADCRESEXT ADCREFP ADCREFM ADCREFIN ADCINB7 ADCINB6 ADCINB5 ADCINB4 ADCINB3 ADCINB2 ADCINB1 ADCINB0 VDDAIO GPIO30/CANRXA/XA18 GPIO29/SCITXDA/XA19 VSS VDD GPIO0/EPWM1A GPIO1/EPWM1B/ECAP6/MFSRB GPIO2/EPWM2A VSS VDDIO GPIO3/EPWM2B/ECAP5/MCLKRB GPIO4/EPWM3A GPIO5/EPWM3B/MFSRA/ECAP1 GPIO6/EPWM4A/EPWMSYNCI/EPWMSYNCO VSS VDD GPIO7/EPWM4B/MCLKRA/ECAP2 GPIO8/EPWM5A/CANTXB/ADCSOCAO GPIO9/EPWM5B/SCITXDB/ECAP3 GPIO10/EPWM6A/CANRXB/ADCSOCBO GPIO11/EPWM6B/SCIRXDB/ECAP4 GPIO12/TZ1/CANTXB/MDXB VSS VDD GPIO13/TZ2/CANRXB/MDRB GPIO14/TZ3/XHOLD/SCITXDB/MCLKXB GPIO15/TZ4/XHOLDA/SCIRXDB/MFSXB GPIO16/SPISIMOA/CANTXB/TZ5 GPIO17/SPISOMIA/CANRXB/TZ6 VDD VSS VDD1A18 VSS1AGND VSSA2 VDDA2 ADCINA7 ADCINA6 ADCINA5 ADCINA4 ADCINA3 ADCINA2 ADCINA1 ADCINA0 ADCLO VSSAIO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 PRODUCT PREVIEW GPIO76/XD3 GPIO77/XD2 GPIO78/XD1 GPIO79/XD0 GPIO38/XWE0 XCLKOUT VDD GPIO28/SCIRXDA/XZCS6 VSS GPIO28/SCIRXDA/XZCS6 GPIO34/ECAP1/XREADY VDDIO VSS GPIO36/SCIRXDA/XZCS0 VDD VSS GPIO35/SCITXDA/XR/W XRD GPIO37/ECAP2/XZCS7 GPIO40/XA0/XWE1 GPIO41/XA1 GPIO42/XA2 VDD VSS GPIO43/XA3 GPIO44/XA4 GPIO45/XA5 VDDIO VSS GPIO46/XA6 GPIO47/XA7 GPIO80/XA8 GPIO81/XA9 GPIO82/XA10 VSS VDD GPIO83/XA11 GPIO84/XA12 VDDIO VSS GPIO85/XA13 GPIO86/XA14 GPIO87/XA15 GPIO39/XA16 GPIO31/CANTXA/XA17 Figure 2-1. F28335, F28334, F28332 176-Pin PGF LQFP (Top View) 10 Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com 1 2 3 4 5 6 7 P VSSAIO ADCINB0 ADCINB2 ADCINB6 ADCREFP VSS GPIO21/ EQEP1B/ MDRA/ CANRXB P N ADCINA1 VDDAIO ADCINB1 ADCINB5 ADCREFM VDD GPIO22/ EQEP1S/ MCLKXA/ SCITXDB N M ADCINA2 ADCLO ADCINA0 ADCINB4 ADCRESEXT VDD2A18 GPIO23/ EQEP1I/ MFSXA/ SCIRXDB M L ADCINA5 ADCINA4 ADCINA3 ADCINB3 ADCREFIN GPIO18/ SPICLKA/ SCITXDB/ CANRXA GPIO20/ EQEP1A/ MDXA/ CANTXB L K VSS1AGND VDDA2 VSSA2 ADCINA7 ADCINB7 VSS2AGND GPIO19/ SPISTEA/ SCIRXDB/ CANTXA K 6 7 J GPIO17/ SPISOMIA/ CANRXB/ TZ6 VDD VSS VDD1A18 ADCINA6 J H VDD GPIO14/ TZ3/XHOLD/ SCITXDB/ MCLKXB GPIO13/ TZ2/ CANRXB/ MDRB GPIO15/ TZ4/XHOLDA/ SCIRXDB/ MFSXB GPIO16/ SPISIMOA/ CANTXB/ TZ5 H 1 2 3 4 5 PRODUCT PREVIEW SPRS439 – JUNE 2007 Figure 2-2. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Left Quadrant) (Bottom View) Submit Documentation Feedback Introduction 11 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 10 13 PRODUCT PREVIEW 8 9 P VSS GPIO33/ SCLA/ EPWMSYNCO/ ADCSOCBO TMS TEST2 EMU1 GPIO48/ ECAP5/ XD31 GPIO50/ EQEP1A/ XD29 P N GPIO25/ ECAP2/ EQEP2B/ MDRB GPIO32/ SDAA/ EPWMSYNCI/ ADCSOCAO VSS VSS TCK GPIO49/ ECAP6/ XD30 VDDIO N M GPIO24/ ECAP1/ EQEP2A/ MDXB TDI TRST VDD3VFL VSS GPIO51/ EQEP1B/ XD28 GPIO52/ EQEP1S/ XD27 M L VDDIO GPIO27/ ECAP4/ EQEP2S/ MFSXB XRS EMU0 GPIO53/ EQEP1I/ XD26 GPIO54/ SPISIMOA/ XD25 GPIO55/ SPISOMIA/ XD24 L K GPIO26/ ECAP3/ EQEP2I/ MCLKXB TDO TEST1 GPIO56/ SPICLKA/ XD23 GPIO58/ MCLKRA/ XD21 GPIO57/ SPISTEA/ XD22 VDD K 8 9 J VSS X2 VSS X1 XCLKIN J H VSS VDDIO VDD VSS GPIO59/ MFSRA/ XD20 H 10 11 12 13 14 11 12 14 Figure 2-3. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Upper Right Quadrant) (Bottom View) 12 Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com 1 2 3 4 5 G VSS GPIO11/ EPWM6B/ SCIRXDB/ ECAP4 GPIO12/ TZ1/ CANTXB/ MDXB GPIO10/ EPWM6A/ CANRXB/ ADCSOCBO GPIO9/ EPWM5B/ SCITXDB/ ECAP3 G F GPIO8/ EPWM5A/ CANTXB/ ADCSOCAO GPIO7/ EPWM4B/ MCLKRA/ ECAP2 VDD VSS VDDIO F GPIO6/ EPWM4A/ EPWMSYNCI/ EPWMSYNCO GPIO4/ EPWM3A GPIO5/ EPWM3B/ MFSRA/ ECAP1 GPIO3/ EPWM2B/ ECAP5/ MCLKRB D VSS GPIO2/ EPWM2A GPIO1/ EPWM1B/ ECAP6/ MFSRB C GPIO0/ EPWM1A GPIO29/ SCITXDA/ XA19 B VDD E A 6 7 GPIO84/ XA12 GPIO81/ XA9 VDDIO E GPIO86/ XA14 GPIO83/ XA11 VSS GPIO45/ XA5 D VSS GPIO85/ XA13 GPIO82/ XA10 GPIO80/ XA8 VSS C GPIO30/ CANRXA/ XA18 GPIO39/ XA16 VSS VDD GPIO46/ XA6 GPIO43/ XA3 B GPIO31/ CANTXA/ XA17 GPIO87/ XA15 VDDIO VSS GPIO47/ XA7 GPIO44/ XA4 A 2 3 4 5 6 7 1 PRODUCT PREVIEW SPRS439 – JUNE 2007 Figure 2-4. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Left Quadrant) (Bottom View) Submit Documentation Feedback Introduction 13 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 10 11 12 13 14 G GPIO64/ XD15 GPIO63/ SCITXDC/ XD16 GPIO61/ MFSRB/ XD18 GPIO62/ SCIRXDC XD17 GPIO60/ MCLKRB/ XD19 G F GPIO69/ XD10 GPIO66/ XD13 VSS VDD GPIO65/ XD14 F PRODUCT PREVIEW 8 9 E VSS VDD GPIO28/ SCIRXDA/ XZCS6 GPIO68/ XD11 VDDIO GPIO67/ XD12 VSS E D GPIO40/ XA0/ XWE1 GPIO37/ ECAP2/ XZCS7 GPIO34/ ECAP1/ XREADY GPIO38/ XWE0 GPIO70/ XD9 VDD VSS D C VDD VSS GPIO36/ SCIRXDA/ XZCS0 XCLKOUT GPIO73/ XD6 GPIO74/ XD5 GPIO71/ XD8 C B GPIO42/ XA2 XRD VDDIO VDD GPIO78/ XD1 GPIO76/ XD3 GPIO72/ XD7 B A GPIO41/ XA1 GPIO35/ SCITXDA/ XR/W VSS VSS GPIO79/ XD0 GPIO77/ XD2 GPIO75/ XD4 A 8 9 10 11 12 13 14 Figure 2-5. F28335, F28334, F28332 179-Ball ZHH MicroStar BGA™ (Lower Right Quadrant) (Bottom View) 14 Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 2.2 Signal Descriptions Table 2-2 describes the signals on the 2833x devices. All digital inputs are TTL-compatible. All outputs are 3.3 V with CMOS levels. Inputs are not 5-V tolerant. Table 2-2. Signal Descriptions PIN NO. NAME PGF PIN # DESCRIPTION ZHH BALL # (1) TRST 78 M10 TCK 87 N12 JTAG test clock with internal pullup (I, ↑) TMS 79 P10 JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. (I, ↑) TDI 76 M9 JTAG test data input (TDI) with internal pullup. TDI is clocked into the selected register (instruction or data) on a rising edge of TCK. (I, ↑) TDO 77 K9 JTAG scan out, test data output (TDO). The contents of the selected register (instruction or data) are shifted out of TDO on the falling edge of TCK. (O/Z 8 mA drive) L11 Emulator pin 0. When TRST is driven high, this pin is used as an interrupt to or from the emulator system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA drive ↑) NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ resistor is generally adequate. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application. EMU0 85 EMU1 86 P12 Emulator pin 1. When TRST is driven high, this pin is used as an interrupt to or from the emulator system and is defined as input/output through the JTAG scan. This pin is also used to put the device into boundary-scan mode. With the EMU0 pin at a logic-high state and the EMU1 pin at a logic-low state, a rising edge on the TRST pin would latch the device into boundary-scan mode. (I/O/Z, 8 mA drive ↑) NOTE: An external pullup resistor is recommended on this pin. The value of this resistor should be based on the drive strength of the debugger pods applicable to the design. A 2.2-kΩ to 4.7-kΩ resistor is generally adequate. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application. VDD3VFL 84 M11 3.3-V Flash Core Power Pin. This pin should be connected to 3.3 V at all times. TEST1 81 K10 Test Pin. Reserved for TI. Must be left unconnected. (I/O) TEST2 82 P11 Test Pin. Reserved for TI. Must be left unconnected. (I/O) FLASH CLOCK XCLKOUT 138 C11 Output clock derived from SYSCLKOUT. XCLKOUT is either the same frequency, one-half the frequency, or one-fourth the frequency of SYSCLKOUT. This is controlled by the bits 1, 0 (XCLKOUTDIV) in the XCLK register. At reset, XCLKOUT = SYSCLKOUT/4. The XCLKOUT signal can be turned off by setting XCLKOUTDIV to 3. Unlike other GPIO pins, the XCLKOUT pin is not placed in high-impedance state during a reset. (O/Z, 8 mA drive). XCLKIN 105 J14 External Oscillator Input. This pin is to feed a clock from an external 3.3-V oscillator. In this case, the X1 pin must be tied to GND. If a crystal/resonator is used (or if an external 1.8-V oscillator is used to feed clock to X1 pin), this pin must be tied to GND. (I) (1) I = Input, O = Output, Z = High impedance, OD = Open drain, ↑ = Pullup, ↓ = Pulldown Submit Documentation Feedback Introduction 15 PRODUCT PREVIEW JTAG JTAG test reset with internal pulldown. TRST, when driven high, gives the scan system control of the operations of the device. If this signal is not connected or driven low, the device operates in its functional mode, and the test reset signals are ignored. NOTE: Do not use pullup resistors on TRST; it has an internal pull-down device. TRST is an active high test pin and must be maintained low at all times during normal device operation. In a low-noise environment, TRST may be left floating. In other instances, an external pulldown resistor is highly recommended. The value of this resistor should be based on drive strength of the debugger pods applicable to the design. A 2.2-kΩ resistor generally offers adequate protection. Since this is application-specific, it is recommended that each target board be validated for proper operation of the debugger and the application. (I, ↓) TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. NAME PGF PIN # DESCRIPTION ZHH BALL # (1) X1 104 J13 Internal/External Oscillator Input. To use the internal oscillator, a quartz crystal or a ceramic resonator may be connected across X1 and X2. The X1 pin is referenced to the 1.8-V core digital power supply. A 1.8-V external oscillator may be connected to the X1 pin. In this case, the XCLKIN pin must be connected to ground. If a 3.3-V external oscillator is used with the XCLKIN pin, X1 must be tied to GND. (I) X2 102 J11 Internal Oscillator Output. A quartz crystal or a ceramic resonator may be connected across X1 and X2. If X2 is not used it must be left unconnected. (O) RESET PRODUCT PREVIEW XRS 80 L10 Device Reset (in) and Watchdog Reset (out). Device reset. XRS causes the device to terminate execution. The PC will point to the address contained at the location 0x3FFFC0. When XRS is brought to a high level, execution begins at the location pointed to by the PC. This pin is driven low by the DSC when a watchdog reset occurs. During watchdog reset, the XRS pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. (I/OD, ↑) The output buffer of this pin is an open-drain with an internal pullup. It is recommended that this pin be driven by an open-drain device. ADCINA7 35 K4 ADC Group A, Channel 7 input (I) ADCINA6 36 J5 ADC Group A, Channel 6 input (I) ADCINA5 37 L1 ADC Group A, Channel 5 input (I) ADCINA4 38 L2 ADC Group A, Channel 4 input (I) ADCINA3 39 L3 ADC Group A, Channel 3 input (I) ADCINA2 40 M1 ADC Group A, Channel 2 input (I) ADCINA1 41 N1 ADC Group A, Channel 1 input (I) ADCINA0 42 M3 ADC Group A, Channel 0 input (I) ADCINB7 53 K5 ADC Group B, Channel 7 input (I) ADCINB6 52 P4 ADC Group B, Channel 6 input (I) ADCINB5 51 N4 ADC Group B, Channel 5 input (I) ADCINB4 50 M4 ADC Group B, Channel 4 input (I) ADCINB3 49 L4 ADC Group B, Channel 3 input (I) ADCINB2 48 P3 ADC Group B, Channel 2 input (I) ADCINB1 47 N3 ADC Group B, Channel 1 input (I) ADCINB0 46 P2 ADC Group B, Channel 0 input (I) ADCLO 43 M2 Low Reference (connect to analog ground) (I) ADCRESEXT 57 M5 ADC External Current Bias Resistor. Connect a 22-kΩ resistor to analog ground. ADCREFIN 54 L5 External reference input (I) ADCREFP 56 P5 Internal Reference Positive Output. Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor of 2.2 µF to analog ground. (O) ADCREFM 55 N5 Internal Reference Medium Output. Requires a low ESR (50 mΩ - 1.5 Ω) ceramic bypass capacitor of 2.2 µF to analog ground. (O) VDDA2 34 K2 ADC Analog Power Pin VSSA2 33 K3 ADC Analog Ground Pin VDDAIO 45 N2 ADC Analog I/O Power Pin VSSAIO 44 P1 ADC Analog I/O Ground Pin VDD1A18 31 J4 ADC Analog Power Pin VSS1AGND 32 K1 ADC Analog Ground Pin VDD2A18 59 M6 ADC Analog Power Pin VSS2AGND 58 K6 ADC Analog Ground Pin ADC SIGNALS CPU AND I/O POWER PINS 16 Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. PGF PIN # ZHH BALL # VDD 4 B1 VDD 15 B5 VDD 23 B11 VDD 29 C8 VDD 61 D13 VDD 101 E9 VDD 109 F3 VDD 117 F13 VDD 126 H1 VDD 139 H12 VDD 146 J2 VDD 154 K14 VDD 167 N6 VDDIO 9 A4 VDDIO 71 B10 VDDIO 93 E7 VDDIO 107 E12 VDDIO 121 F5 VDDIO 143 L8 VDDIO 159 H11 VDDIO 170 N14 VSS 3 A5 VSS 8 A10 VSS 14 A11 VSS 22 B4 VSS 30 C3 VSS 60 C7 VSS 70 C9 VSS 83 D1 VSS 92 D6 VSS 103 D14 VSS 106 E8 VSS 108 E14 VSS 118 F4 VSS 120 F12 VSS 125 G1 VSS 140 H10 VSS 144 H13 VSS 147 J3 VSS 155 J10 VSS 160 J12 VSS 166 M12 VSS 171 N10 VSS N11 VSS P6 Submit Documentation Feedback DESCRIPTION (1) CPU and Logic Digital Power Pins PRODUCT PREVIEW NAME Digital I/O Power Pin Digital Ground Pins Introduction 17 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. NAME PGF PIN # VSS DESCRIPTION ZHH BALL # P8 (1) Digital Ground Pins GPIOA AND PERIPHERAL SIGNALS (2) (3) GPIO0 EPWM1A GPIO1 EPWM1B ECAP6 MFSRB PRODUCT PREVIEW GPIO2 EPWM2A GPIO3 EPWM2B ECAP5 MCLKRB GPIO4 EPWM3A GPIO5 EPWM3B MFSRA ECAP1 GPIO6 EPWM4A EPWMSYNCI EPWMSYNCO GPIO7 EPWM4B MCLKRA ECAP2 GPIO8 EPWM5A CANTXB ADCSOCAO GPIO9 EPWM5B SCITXDB ECAP3 GPIO10 EPWM6A CANRXB ADCSOCBO GPIO11 EPWM6B SCIRXDB ECAP4 (2) (3) (4) 18 5 6 7 10 11 12 13 16 17 18 19 20 C1 General purpose input/output 0 (I/O/Z) (4) Enhanced PWM1 Output A and HRPWM channel (O) - D3 General purpose input/output 1 (I/O/Z) (4) Enhanced PWM1 Output B (O) Enhanced Capture 6 input/output (I/O) McBSP-B receive frame synch (I/O) D2 General purpose input/output 2 (I/O/Z) (4) Enhanced PWM2 Output A and HRPWM channel (O) - E4 General purpose input/output 3 (I/O/Z) (4) Enhanced PWM2 Output B (O) Enhanced Capture 5 input/output (I/O) McBSP-B clock receive (I/O) E2 General purpose input/output 4 (I/O/Z) (4) Enhanced PWM3 output A and HRPWM channel (O) - E3 General purpose input/output 5 (I/O/Z) (4) Enhanced PWM3 output B (O) McBSP-A receive frame synch (I/O) Enhanced Capture input/output 1 (I/O) E1 General purpose input/output 6 (I/O/Z) (4) Enhanced PWM4 output A and HRPWM channel (O) External ePWM sync pulse input (I) External ePWM sync pulse output (O) F2 General purpose input/output 7 (I/O/Z) (4) Enhanced PWM4 output B (O) McBSP-A Clock Receive (I/O) Enhanced capture input/output 2 (I/O) F1 General Purpose Input/Output 8 (I/O/Z) (4) Enhanced PWM5 output A (O) Enhanced CAN-B transmit (O) ADC start-of-conversion A (O) G5 General purpose input/output 9 (I/O/Z) (4) Enhanced PWM5 output B (O) SCI-B transmit data(O) Enhanced capture input/output 3 (I/O) G4 General purpose input/output 10 (I/O/Z) (4) Enhanced PWM6 output A (O) Enhanced CAN-B receive (I) ADC start-of-conversion B (O) G2 General purpose input/output 11 (I/O/Z) (4) Enhanced PWM6 output B (O) SCI-B receive data (I) Enhanced CAP Input/Output 4 (I/O) Some peripheral functions may not be available in all devices. See Table 2-1 for details. All GPIO pins are I/O/Z, 4-mA drive typical (unless otherwise indicated), and have an internal pullup, which can be selectively enabled/disabled on a per-pin basis. This feature only applies to the GPIO pins. The GPIO function (shown in Italics) is the default at reset. The peripheral signals that are listed under them are alternate functions. The pullups on GPIO0-GPIO11 pins are not enabled at reset. Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. GPIO12 TZ1 CANTXB MDXB GPIO13 TZ2 CANRXB MDRB PGF PIN # 21 24 DESCRIPTION ZHH BALL # G3 General purpose input/output 12 (I/O/Z) (5) Trip Zone input 1 (I) Enhanced CAN-B transmit (O) McBSP-B transmit serial data (O) H3 General purpose input/output 13 (I/O/Z) (5) Trip Zone input 2 (I) Enhanced CAN-B receive (I) McBSP-B receive serial data (I) (1) GPIO14 General purpose input/output 14 (I/O/Z) (5) TZ3/XHOLD Trip Zone input 3/External Hold Request. XHOLD, when active (low), requests the external memory interface (XINTF) to release the external bus and place all buses and strobes into a high-impedance state. The XINTF will release the bus when any current access is complete and there are no pending accesses on the XINTF. (I) 25 H2 SCITXDB MCLKXB SCI-B Transmit (I) McBSP-B clock transmit (I/O) GPIO15 General purpose input/output 15 (I/O/Z) (5) TZ4/XHOLDA Trip Zone input 4/External Hold Acknowledge. XHOLDA is driven active (low) when the XINTF has granted an XHOLD request. All XINTF buses and strobe signals will be in a high-impedance state. XHOLDA is released when the XHOLD signal is released. External devices should only drive the external bus when XHOLDA is active (low). (I) 26 H4 SCIRXDB MFSXB SCI-B receive (I) McBSP-B transmit frame synch (I/O) GPIO16 SPISIMOA CANTXB TZ5 H5 General purpose input/output 16 (I/O/Z) (5) SPI slave in, master out (I/O) Enhanced CAN-B transmit (O) Trip Zone input 5 (I) J1 General purpose input/output 17 (I/O/Z) (5) SPI-A slave out, master in (I/O) Enhanced CAN-B receive (I) Trip zone input 6 (I) L6 General purpose input/output 18 (I/O/Z) (5) SPI-A clock input/output (I/O) SCI-B transmit (O) Enhanced CAN-A receive (I) K7 General purpose input/output 19 (I/O/Z) (5) SPI-A slave transmit enable input/output (I/O) SCI-B receive (I) Enhanced CAN-A transmit (O) L7 General purpose input/output 20 (I/O/Z) (5) Enhanced QEP1 input A (I) McBSP-A transmit serial data (O) Enhanced CAN-B transmit (O) P7 General purpose input/output 21 (I/O/Z) (5) Enhanced QEP1 input B (I) McBSP-A receive serial data (I) Enhanced CAN-B receive (I) N7 General purpose input/output 22 (I/O/Z) (5) Enhanced QEP1 strobe (I/O) McBSP-A clock transmit (I/O) SCI-B transmit (O) M7 General purpose input/output 23 (I/O/Z) (5) Enhanced QEP1 index (I/O) McBSP-A transmit frame synch (I/O) SCI-B receive (I) GPIO17 SPISOMIA CANRXB TZ6 GPIO18 SPICLKA SCITXDB CANRXA GPIO19 SPISTEA SCIRXDB CANTXA GPIO20 EQEP1A MDXA CANTXB GPIO21 EQEP1B MDRA CANRXB GPIO22 EQEP1S MCLKXA SCITXDB GPIO23 EQEP1I MFSXA SCIRXDB (5) 27 28 62 63 64 65 66 67 The pullups on GPIO12-GPIO34 are enabled upon reset. Submit Documentation Feedback Introduction 19 PRODUCT PREVIEW NAME TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. NAME GPIO24 ECAP1 EQEP2A MDXB GPIO25 ECAP2 EQEP2B MDRB PRODUCT PREVIEW GPIO26 ECAP3 EQEP2I MCLKXB PGF PIN # 68 69 72 ZHH BALL # DESCRIPTION M8 General purpose input/output 24 (I/O/Z) (5) Enhanced capture 1 (I/O) Enhanced QEP2 input A (I) McBSP-B transmit serial data (O) N8 General purpose input/output 25 (I/O/Z) (5) Enhanced capture 2 (I/O) Enhanced QEP2 input B (I) McBSP-B receive serial data (I) K8 General purpose input/output 26 (I/O/Z) (5) Enhanced capture 3 (I/O) Enhanced QEP2 index (I/O) McBSP-B clock transmit (O) General purpose input/output 27 (I/O/Z) (5) Enhanced capture 4 (I/O) Enhanced QEP2 strobe (I/O) McBSP-B transmit frame synch (I/O) GPIO27 ECAP4 EQEP2S MFSXB 73 L9 GPIO28 SCIRXDA XZCS6 141 E10 General purpose input/output 28 (I/O/Z) (5) SCI receive data (I) External memory interface zone 6 chip select (O) GPIO29 SCITXDA XA19 2 C2 General purpose input/output 29. (I/O/Z) (5) SCI transmit data (O) External Memory Interface Address Line 19 (O) GPIO30 CANRXA XA18 1 B2 General purpose input/output 30 (I/O/Z) (5) Enhanced CAN-A receive (I) External Memory Interface Address Line 18 (O) GPIO31 CANTXA XA17 176 A2 General purpose input/output 31 (I/O/Z) (5) Enhanced CAN-A transmit (O) External Memory Interface Address Line 17 (O) N9 General purpose input/output 32 (I/O/Z) (5) I2C data open-drain bidirectional port (I/OD) Enhanced PWM external sync pulse input (I) ADC start-of-conversion A (O) GPIO32 SDAA EPWMSYNCI ADCSOCAO 74 (1) GPIO33 SCLA EPWMSYNCO ADCSOCBO 75 P9 General-Purpose Input/Output 33 (I/O/Z) (5) I2C clock open-drain bidirectional port (I/OD) Enhanced PWM external synch pulse output (O) ADC start-of-conversion B (O) GPIO34 ECAP1 XREADY 142 D10 General-Purpose Input/Output 34 (I/O/Z) (5) Enhanced Capture input/output 1 (I/O) External memory interface Ready signal GPIO35 SCITXDA XR/W 148 A9 General-Purpose Input/Output 35 (I/O/Z) SCI-A transmit data (O) External memory interface read, not write strobe GPIO36 SCIRXDA XZCS0 145 C10 General-Purpose Input/Output 36 (I/O/Z) SCI receive data (I) External memory interface zone 0 chip select (O) GPIO37 ECAP2 XZCS7 150 D9 General-Purpose Input/Output 37 (I/O/Z) Enhanced Capture input/output 2 (I/O) External memory interface zone 7 chip select (O) GPIO38 XWE0 137 D11 General-Purpose Input/Output 38 (I/O/Z) External memory interface Write Enable 0 (O) GPIO39 XA016 175 B3 General-Purpose Input/Output 39 (I/O/Z) External Memory Interface Address Line 16 (O) GPIO40 XA0/XWE1 151 D8 General-Purpose Input/Output 40 (I/O/Z) External Memory Interface Address Line 0/External memory interface Write Enable 1 (O) 20 Introduction Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. DESCRIPTION PGF PIN # ZHH BALL # GPIO41 XA1 152 A8 General-Purpose Input/Output 41 (I/O/Z) External Memory Interface Address Line 1 (O) GPIO42 XA2 153 B8 General-Purpose Input/Output 42 (I/O/Z) External Memory Interface Address Line 2 (O) GPIO43 XA3 156 B7 General-Purpose Input/Output 43 (I/O/Z) External Memory Interface Address Line 3 (O) GPIO44 XA4 157 A7 General-Purpose Input/Output 44 (I/O/Z) External Memory Interface Address Line 4 (O) GPIO45 XA5 158 D7 General-Purpose Input/Output 45 (I/O/Z) External Memory Interface Address Line 5 (O) GPIO46 XA6 161 B6 General-Purpose Input/Output 46 (I/O/Z) External Memory Interface Address Line 6 (O) GPIO47 XA7 162 A6 General-Purpose Input/Output 47 (I/O/Z) External Memory Interface Address Line 7 (O) GPIO48 ECAP5 XD31 88 P13 General-Purpose Input/Output 48 (I/O/Z) Enhanced Capture input/output 5 (I/O) External Memory Interface Data Line 31 (O) GPIO49 ECAP6 XD30 89 N13 General-Purpose Input/Output 49 (I/O/Z) Enhanced Capture input/output 6 (I/O) External Memory Interface Data Line 30 (O) GPIO50 EQEP1A XD29 90 P14 General-Purpose Input/Output 50 (I/O/Z) Enhanced QEP 1input A (I) External Memory Interface Data Line 29 (O) GPIO51 EQEP1B XD28 91 M13 General-Purpose Input/Output 51 (I/O/Z) Enhanced QEP 1input B (I) External Memory Interface Data Line 28 (O) GPIO52 EQEP1S XD27 94 M14 General-Purpose Input/Output 52 (I/O/Z) Enhanced QEP 1Strobe (I/O) External Memory Interface Data Line 27 (O) GPIO53 EQEP1I XD26 95 L12 General-Purpose Input/Output 53 (I/O/Z) Enhanced CAP1 lndex (I/O) External Memory Interface Data Line 26 (O) GPIO54 SPISIMOA XD25 96 L13 General-Purpose Input/Output 54 (I/O/Z) SPI-A slave in, master out (I/O) External Memory Interface Data Line 25 (O) GPIO55 SPISOMIA XD24 97 L14 General-Purpose Input/Output 55 (I/O/Z) SPI-A slave out, master in (I/O) External Memory Interface Data Line 24 (O) GPIO56 SPICLKA XD23 98 K11 General-Purpose Input/Output 56 (I/O/Z) SPI-A clock (I/O) External Memory Interface Data Line 23 (O) GPIO57 SPISTEA XD22 99 K13 General-Purpose Input/Output 57 (I/O/Z) SPI-A slave transmit enable (I/O) External Memory Interface Data Line 22 (O) GPIO58 MCLKRA XD21 100 K12 General-Purpose Input/Output 58 (I/O/Z) McBSP-A receive clock (I/O) External Memory Interface Data Line 21 (O) GPIO59 MFSRA XD20 110 H14 General-Purpose Input/Output 59 (I/O/Z) McBSP-A receive frame synch (I/O) External Memory Interface Data Line 20 (O) Submit Documentation Feedback (1) PRODUCT PREVIEW NAME Introduction 21 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. NAME DESCRIPTION PRODUCT PREVIEW PGF PIN # ZHH BALL # GPIO60 MCLKRB XD19 111 G14 General-Purpose Input/Output 60 (I/O/Z) McBSP-B receive clock (I/O) External Memory Interface Data Line 19 (O) GPIO61 MFSRB XD18 112 G12 General-Purpose Input/Output 61 (I/O/Z) McBSP-B receive frame synch (I/O) External Memory Interface Data Line 18 (O) GPIO62 SCIRXDC XD17 113 G13 General-Purpose Input/Output 62 (I/O/Z) SCI-C receive data (I) External Memory Interface Data Line 17 (O) GPIO63 SCITXDC XD16 114 G11 General-Purpose Input/Output 63 (I/O/Z) SCI-C transmit data (O) External Memory Interface Data Line 16 (O) GPIO64 XD15 115 G10 General-Purpose Input/Output 64 (I/O/Z) External Memory Interface Data Line 15 (O) GPIO65 XD14 116 F14 General-Purpose Input/Output 65 (I/O/Z) External Memory Interface Data Line 14 (O) GPIO66 XD13 119 F11 General-Purpose Input/Output 66 (I/O/Z) External Memory Interface Data Line 13 (O) GPIO67 XD12 122 E13 General-Purpose Input/Output 67 (I/O/Z) External Memory Interface Data Line 12 (O) GPIO68 XD11 123 E11 General-Purpose Input/Output 68 (I/O/Z) External Memory Interface Data Line 11 (O) GPIO69 XD10 124 F10 General-Purpose Input/Output 69 (I/O/Z) External Memory Interface Data Line 10 (O) GPIO70 XD9 127 D12 General-Purpose Input/Output 70 (I/O/Z) External Memory Interface Data Line 9 (O) GPIO71 XD8 128 C14 General-Purpose Input/Output 71 (I/O/Z) External Memory Interface Data Line 8 (O) GPIO72 XD7 129 B14 General-Purpose Input/Output 72 (I/O/Z) External Memory Interface Data Line 7 (O) GPIO73 XD6 130 C12 General-Purpose Input/Output 73 (I/O/Z) External Memory Interface Data Line 6 (O) GPIO74 XD5 131 C13 General-Purpose Input/Output 74 (I/O/Z) External Memory Interface Data Line 5 (O) GPIO75 XD4 132 A14 General-Purpose Input/Output 75 (I/O/Z) External Memory Interface Data Line 4 (O) GPIO76 XD3 133 B13 General-Purpose Input/Output 76 (I/O/Z) External Memory Interface Data Line 3 (O) GPIO77 XD2 134 A13 General-Purpose Input/Output 77 (I/O/Z) External Memory Interface Data Line 2 (O) GPIO78 XD1 135 B12 General-Purpose Input/Output 78 (I/O/Z) External Memory Interface Data Line 1 (O) 22 Introduction (1) Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 2-2. Signal Descriptions (continued) PIN NO. DESCRIPTION PGF PIN # ZHH BALL # GPIO79 XD0 136 A12 General-Purpose Input/Output 79 (I/O/Z) External Memory Interface Data Line 0 (O) GPIO80 XA8 163 C6 General-Purpose Input/Output 80 (I/O/Z) External Memory Interface Address Line 8 (O) GPIO81 XA9 164 E6 General-Purpose Input/Output 81 (I/O/Z) External Memory Interface Address Line 9 (O) GPIO82 XA10 165 C5 General-Purpose Input/Output 82 (I/O/Z) External Memory Interface Address Line 10 (O) GPIO83 XA11 168 D5 General-Purpose Input/Output 83 (I/O/Z) External Memory Interface Address Line 11 (O) GPIO84 XA12 169 E5 General-Purpose Input/Output 84 (I/O/Z) External Memory Interface Address Line 12 (O) GPIO85 XA13 172 C4 General-Purpose Input/Output 85 (I/O/Z) External Memory Interface Address Line 13 (O) GPIO86 XA14 173 D4 General-Purpose Input/Output 86 (I/O/Z) External Memory Interface Address Line 14 (O) GPIO87 XA15 174 A3 General-Purpose Input/Output 87 (I/O/Z) External Memory Interface Address Line 15 (O) XRD 149 B9 External memory interface Read Enable Submit Documentation Feedback (1) PRODUCT PREVIEW NAME Introduction 23 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3 Functional Overview M0 SARAM 1Kx16 (0-Wait) L0 SARAM 4Kx16 (0-Wait, Dual Map) M1 SARAM 1Kx16 (0-Wait) L1 SARAM 4Kx16 (0-Wait, Dual Map) OTP 2Kx16 Memory Bus L2 SARAM 4Kx16 (0-Wait, Dual Map) Flash 256Kx16 8 Sectors Code Security Module L3 SARAM 4Kx16 (0-Wait, Dual Map) TEST2 L4 SARAM 4Kx16 (0-W Data, 1-W Prog) Pump Boot ROM 8Kx16 TEST1 PSWD L5 SARAM 4Kx16 (0-W Data, 1-W Prog) Flash Wrapper L6 SARAM 4Kx16 (0-W Data, 1-W Prog) PRODUCT PREVIEW L7 SARAM 4Kx16 (0-W Data, 1-W Prog) Memory Bus XD31:0 FPU TCK XHOLDA TDI XHOLD TMS XREADY CPU (150 MHZ @ 1.9 V) XINTF XR/W GPIO MUX 88 GPIOs XZCS0 TDO TRST EMU0 XZCS7 EMU1 XWE0 XA0/XWE1 XA19:1 DMA Bus Memory Bus XZCS6 XCLKIN CPU Timer 0 DMA 6 Ch CPU Timer 1 X1 X2 XRS CPU Timer 2 XCLKOUT PIE (Interrupts) XRD 88 GPIOs OSC, PLL, LPM, WD 8 External Interrupts GPIO MUX A7:0 Memory Bus 12-Bit ADC 2-S/H B7:0 DMA Bus REFIN 32-bit peripheral bus (DMA accessible) 16-bit peripheral bus FIFO (16 Levels) EPWM-1/../6 McBSP-A/B ECAP-1/../6 EQEP-1/2 CAN-A/B (32-mbox) CANTXx CANRXx EQEPxI EQEPxS EQEPxB EQEPxA ESYNCI ESYNCO EPWMxB TZxn EPWMxA MFSXx MFSRx MCLKRx MRXx MCLKXx HRPWM-1/../6 MDXx SCLx SDAx I2C SPISTEx SPISOMIx SPISIMOx SCIRXDx SCITXDx SPICLKx SPI-A SCI-A/B/C ECAPx FIFO (16 Levels) FIFO (16 Levels) 32-bit peripheral bus GPIO MUX 88 GPIOs Figure 3-1. Functional Block Diagram 24 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 www.ti.com Digital Signal Controllers (DSCs) SPRS439 – JUNE 2007 3.1 Memory Maps PRODUCT PREVIEW In Figure 3-2 through Figure 3-4, the following apply: • Memory blocks are not to scale. • Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are restricted to data memory only. A user program cannot access these memory maps in program space. • Protected means the order of Write followed by Read operations is preserved rather than the pipeline order. • Certain memory ranges are EALLOW protected against spurious writes after configuration. Submit Documentation Feedback Functional Overview 25 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Block Start Address On-Chip Memory External Memory XINTF Prog Space Data Space 0x00 0000 M0 Vector - RAM (32 x 32) (Enable if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 0x00 0D00 PIE Vector - RAM (256 x16) (Enabled if VMAP = 1, ENPIE =1) 0x00 0E00 PRODUCT PREVIEW Low 64K (24x/240x Equivalent Data Space) Prog Space Data Space Reserved Reserved Peripheral Frame 0 0x00 2000 Reserved 0x00 5000 XINTF Zone 0 (4K x 16,XZCS0) (Protected, DMA Accessible) 0x00 5000 Peripheral Frame 3 (Protected, DMA Accessable) 0x00 6000 0x00 4000 Peripheral Frame 1 (Protected) Reserved 0x00 7000 Peripheral Frame 2 (Protected) 0x00 8000 L0 SARAM (4K x16, Secure Zone Dual Mapped) 0x00 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x0000-A000 L2 SARAM (4Kx16, Secure Zone, Dual Mapped) 0x0000-B000 L3 SARAM (4Kx16, Secure Zone, Dual Mapped) 0x0000-C000 Reserved L4 SARAM (4Kx16, DMA Accessilbe) 0x0000-D000 L5 SARAM (4Kx16, DMA Accessible) 0x0000-E000 L6 SARAM (4Kx16, DMA Accessible) 0x0000-F000 L7 SARAM (4Kx16, DMA Accessiible) 0x0001-0000 Reserved 0x30 0000 FLASH (256 K x 16, Secure Zone) 0x33 FFF8 128-bit Password 0x34 0000 Reserved OTP (IK x 16, Secure Zone) High 64K (24x/240x Equivalent Program Space) 0x38 0400 0x3F 8000 L0 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F A000 L2 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F B000 L3 SARAM (4K x 16, Secure Zone Dual Mapped) XINTF Zone 6 (1 M x 16, XZCS6) 0x10 0000 0x20 0000 XINTF Zone 7 (1 M x 16, XZCS7) 0x3F C000 0x30 0000 Reserved Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enable if VMAP = 1, ENPIE = 0) XINTF Vector - RAM (32 x32) (Enable if VMAP = 1, ENPIR = 0) LEGEND: Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time. Figure 3-2. F28335 Memory Map 26 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Block Start Address On-Chip Memory External Memory XINTF Prog Space Data Space 0x00 0000 Prog Space Data Space M0 Vector - RAM (32 x 32) (Enable if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 0x00 0D00 Peripheral Frame 0 0x00 0E00 Reserved Peripheral Frame 0 0x00 2000 Reserved 0x00 4000 XINTF Zone 0 (4K x 16,XZCS0) (Protected, DMA Accessible) 0x00 5000 PRODUCT PREVIEW Low 64K (24x/240x Equivalent Data Space) Reserved PIE Vector - RAM (256 x16) (Enabled if VMAP = 1, ENPIE =1) 0x00 5000 Peripheral Frame 3 (Protected, DMA Accessable) 0x00 6000 Peripheral Frame 1 (Protected) Reserved 0x00 7000 Peripheral Frame 2 (Protected) 0x00 8000 L0 SARAM (4K x16, Secure Zone Dual Mapped) 0x00 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x0000-A000 L2 SARAM (4Kx16, Secure Zone, Dual Mapped) 0x0000-B000 L3 SARAM (4Kx16, Secure Zone, Dual Mapped) 0x0000-C000 L4 SARAM (4Kx16, DMA Accessilbe) 0x0000-D000 Reserved L5 SARAM (4Kx16, DMA Accessible) 0x0000-E000 L6 SARAM (4Kx16, DMA Accessible) 0x0000-F000 L7 SARAM (4Kx16, DMA Accessiible) 0x0001-0000 Reserved 0x32 0000 FLASH (128 K x 16, Secure Zone) 0x33 FFF8 128-bit Password 0x34 0000 High 64K (24x/240x Equivalent Program Space) Reserved 0x38 0400 OTP (IK x 16, Secure Zone) 0x3F 8000 L0 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F A000 L2 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F B000 L3 SARAM (4K x 16, Secure Zone Dual Mapped) 0x10 0000 XINTF Zone 6 (1 M x 16, XZCS6) 0x20 0000 XINTF Zone 7 (1 M x 16, XZCS7) 0x30 0000 Reserved 0x3F C000 Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enable if VMAP = 1, ENPIE = 0) XINTF Zone 7 (16K x 15, XZCS6AND7) (Enable if MP/MC = 1) XINTF Vector - RAM (32 x32) (Enable if VMAP = 1, ENPIR = 0) LEGEND: Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time. Figure 3-3. F28334 Memory Map Submit Documentation Feedback Functional Overview 27 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Block Start Address On-Chip Memory External Memory XINTF Prog Space Data Space 0x00 0000 Prog Space Data Space M0 Vector - RAM (32 x 32) (Enable if VMAP = 0) 0x00 0040 M0 SARAM (1K x 16) 0x00 0400 M1 SARAM (1K x 16) 0x00 0800 Peripheral Frame 0 Reserved PIE Vector - RAM (256 x16) (Enabled if VMAP = 1, ENPIE =1) PRODUCT PREVIEW Low 64K (24x/240x Equivalent Data Space) 0x00 0D00 0x00 0E00 0x00 2000 Reserved Peripheral Frame 0 XINTF Zone 0 (4K x 16,XZCS0) (Protected, DMA Accessible) Reserved 0x00 5000 0x00 4000 0x00 5000 Peripheral Frame 3 (Protected, DMA Accessable) 0x00 6000 Peripheral Frame 1 (Protected) Reserved 0x00 7000 Peripheral Frame 2 (Protected) 0x00 8000 L0 SARAM (4K x16, Secure Zone Dual Mapped) 0x00 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x0000-A000 L2 SARAM (4Kx16, Secure Zone, Dual Mapped) 0x0000-B000 L3 SARAM (4Kx16, Secure Zone, Dual Mapped) Reserved 0x0000-C000 L4 SARAM (4Kx16, DMA Accessilbe) 0x0000-D000 L5 SARAM (4Kx16, DMA Accessible) 0x0000-E000 Reserved 0x33 0000 FLASH (64 K x 16, Secure Zone) 0x33 FFF8 128-bit Password 0x34 0000 High 64K (24x/240x Equivalent Program Space) Reserved 0x38 0400 OTP (IK x 16, Secure Zone) 0x3F 8000 L0 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F 9000 L1 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F A000 L2 SARAM (4K x 16, Secure Zone Dual Mapped) 0x3F B000 L3 SARAM (4K x 16, Secure Zone Dual Mapped) XINTF Zone 6 (1 M x 16, XZCS6) 0x10 0000 0x20 0000 XINTF Zone 7 (1 M x 16, XZCS7) 0x30 0000 Reserved 0x3F C000 Reserved 0x3F E000 Boot ROM (8K x 16) 0x3F FFC0 BROM Vector - ROM (32 x 32) (Enable if VMAP = 1, ENPIE = 0) XINTF Zone 7 (16K x 15, XZCS6AND7) (Enable if MP/MC = 1) XINTF Vector - RAM (32 x32) (Enable if VMAP = 1, ENPIR = 0) LEGEND: Only one of these vector maps*M0 vector, PIE vector, BROM vector, XINTF vector*should be enabled at a time. Figure 3-4. F28332 Memory Map 28 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-1. Addresses of Flash Sectors in F28335 PROGRAM AND DATA SPACE Sector H (32K x 16) 0x30 8000 - 0x30 FFFF Sector G (32K x 16) 0x31 0000 - 0x31 7FFF Sector F (32K x 16) 0x31 8000 - 0x31 FFFF Sector E (32K x 16) 0x32 0000 - 0x32 7FFF Sector D (32K x 16) 0x32 8000 - 0x32 FFFF Sector C (32K x 16) 0x33 0000 - 0x33 7FFF Sector B (32K x 16) 0x33 8000 - 0x33 FFFF Sector A (32K x 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) PRODUCT PREVIEW ADDRESS RANGE 0x30 0000 - 0x30 7FFF Table 3-2. Addresses of Flash Sectors in F28334 ADDRESS RANGE PROGRAM AND DATA SPACE 0x32 0000 - 0x32 3FFF Sector H (16K x 16) 0x32 4000 - 0x32 7FFF Sector G (16K x 16) 0x32 8000 - 0x32 BFFF Sector F (16K x 16) 0x32 C000 - 0x32 FFFF Sector E (16K x 16) 0x33 0000 - 0x33 3FFF Sector D (16K x 16) 0x33 4000 - 0x33 7FFFF Sector C (16K x 16) 0x33 8000 - 0x33 BFFF Sector B (16K x 16) 0x33 C000 - 0x33 FFFF Sector A (16K x 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) Table 3-3. Addresses of Flash Sectors in F28332 Submit Documentation Feedback ADDRESS RANGE PROGRAM AND DATA SPACE 0x33 0000 - 0x33 3FFF Sector D (16K x 16) 0x33 4000 - 0x33 7FFFF Sector C (16K x 16) 0x33 8000 - 0x33 BFFF Sector B (16K x 16) 0x33 C000 - 0x33 FFFF Sector A (16K x 16) 0x33 FF80 - 0x33 FFF5 Program to 0x0000 when using the Code Security Module 0x33 FFF6 - 0x33 FFF7 Boot-to-Flash Entry Point (program branch instruction here) 0x33 FFF8 - 0x33 FFFF Security Password (128-Bit) (Do Not Program to all zeros) Functional Overview 29 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 NOTE When the code-security passwords are programmed, all addresses between 0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations must be programmed to 0x0000. • If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and should not contain program code. . Table 3-4 shows how to handle these memory locations. • Table 3-4. Handling Security Code Locations ADDRESS FLASH Code security enabled PRODUCT PREVIEW 0x33FF80 - 0x33FFEF 0x33FFF0 - 0x33FFF5 Fill with 0x0000 Code security disabled Application code and data Reserved for data only Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to be write/read peripheral block protected. The protected mode ensures that all accesses to these blocks happen as written. Because of the C28x pipeline, a write immediately followed by a read, to different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where the user expected the write to occur first (as written). The C28x CPU supports a block protection mode where a region of memory can be protected so as to make sure that operations occur as written (the penalty is extra cycles are added to align the operations). This mode is programmable and by default, it will protect the selected zones. The wait-states for the various spaces in the memory map area are listed in Table 3-5. 30 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-5. Wait-states Wait-States CPU 0-wait Peripheral Frame 0 1-wait (reads) 0-wait (writes) Peripheral Frame 3 0-wait (writes) 2-wait (reads) Peripheral Frame 1 Peripheral Frame 2 Fixed This applies to all PF0 peripherals except the floating-point unit (FPU) (0-wait reads) Assumes no conflicts between CPU and DMA. 0-wait (writes) Cycles can be extended by peripheral generated ready. 2-wait (reads) Consecutive writes to the CAN will experience a 1-cycle pipeline hit. 0-wait (writes) Fixed. Cycles cannot be extended by the peripheral. 2-wait (reads) L0 SARAM Comments 0-wait data and prog PRODUCT PREVIEW Area M0 and M1 SARAMs Assumes no CPU conflicts L1 SARAM L2 SARAM L3 SARAM L4 SARAM 0-wait data (read) L5 SARAM 0-wait data (write) Assumes no conflicts between CPU and DMA. L6 SARAM 1-wait prog (read) L7 SARAM 1-wait prog (write) XINTF Programmable Programmed via the XTIMING registers or extendable via external XREADY signal. 1-wait minimum 1-wait is minimum wait states allowed on external waveforms for both reads and writes on XINTF. 0-wait minimum writes with write buffer enabled 0-wait minimum for writes assumes write buffer enabled and not full. Assumes no conflicts between CPU and DMA. When DMA and CPU attempt simultaneous conflict, 1-cycle delay is added for arbitration. OTP FLASH Programmable Programmed via the Flash registers. 1-wait minimum 1-wait is minimum number of wait states allowed. 1-wait-state operation is possible at a reduced CPU frequency. Programmable Programmed via the Flash registers. 1-wait Paged min 0-wait minimum for paged access is not allowed 1-wait Random min Random > Paged FLASH Password Programmable, 16-wait fixed Boot-ROM Submit Documentation Feedback 1-wait Wait states of password locations are fixed. 0-wait speed is not possible. Functional Overview 31 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.2 3.2.1 Brief Descriptions C28x CPU PRODUCT PREVIEW The C28x™ DSC generation is the newest member of the TMS320C2000™ DSC platform. The C28x is a very efficient C/C++ engine, hence enabling users to develop not only their system control software in a high-level language, but also enables math algorithms to be developed using C/C++. The C28x is as efficient in DSC math tasks as it is in system control tasks that typically are handled by microcontroller devices. This efficiency removes the need for a second processor in many systems. The 32 x 32-bit MAC capabilities of the C28x and its 64-bit processing capabilities, enable the C28x to efficiently handle higher numerical resolution problems. Add to this the fast interrupt response with automatic context save of critical registers, resulting in a device that is capable of servicing many asynchronous events with minimal latency. The C28x has an 8-level-deep protected pipeline with pipelined memory accesses. This pipelining enables the C28x to execute at high speeds without resorting to expensive high-speed memories. Special branch-look-ahead hardware minimizes the latency for conditional discontinuities. Special store conditional operations further improve performance. 3.2.2 Memory Bus (Harvard Bus Architecture) As with many DSC type devices, multiple busses are used to move data between the memories and peripherals and the CPU. The C28x memory bus architecture contains a program read bus, data read bus and data write bus. The program read bus consists of 22 address lines and 32 data lines. The data read and write busses consist of 32 address lines and 32 data lines each. The 32-bit-wide data busses enable single cycle 32-bit operations. The multiple bus architecture, commonly termed Harvard Bus, enables the C28x to fetch an instruction, read a data value and write a data value in a single cycle. All peripherals and memories attached to the memory bus will prioritize memory accesses. Generally, the priority of memory bus accesses can be summarized as follows: Highest: Data Writes (Simultaneous data and program writes cannot occur on the memory bus.) Program Writes (Simultaneous data and program writes cannot occur on the memory bus.) Data Reads Lowest: 3.2.3 Program Reads (Simultaneous program reads and fetches cannot occur on the memory bus.) Fetches (Simultaneous program reads and fetches cannot occur on the memory bus.) Peripheral Bus To enable migration of peripherals between various Texas Instruments (TI) DSC family of devices, the 2833x devices adopt a peripheral bus standard for peripheral interconnect. The peripheral bus bridge multiplexes the various busses that make up the processor Memory Bus into a single bus consisting of 16 address lines and 16 or 32 data lines and associated control signals. Three versions of the peripheral bus are supported on the 2833x. One version supports only 16-bit accesses (called peripheral frame 2). Another version supports both 16- and 32-bit accesses (called peripheral frame 1). The third version supports DMA access and both 16- and 32-bit accesses (called peripheral frame 3). 3.2.4 Real-Time JTAG and Analysis The 2833x implements the standard IEEE 1149.1 JTAG interface. Additionally, the 2833x supports real-time mode of operation whereby the contents of memory, peripheral and register locations can be modified while the processor is running and executing code and servicing interrupts. The user can also single step through non-time critical code while enabling time-critical interrupts to be serviced without interference. The 2833x implements the real-time mode in hardware within the CPU. This is a unique feature to the 2833x, no software monitor is required. Additionally, special analysis hardware is provided which allows the user to set hardware breakpoint or data/address watch-points and generate various user-selectable break events when a match occurs. 32 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.2.5 External Interface (XINTF) This asynchronous interface consists of 19 address lines, 32 data lines, and three chip-select lines. The chip-select lines are mapped to three external zones, Zones 0, 6, and 7. Each of the three zones can be programmed with a different number of wait states, strobe signal setup and hold timing and each zone can be programmed for extending wait states externally or not. The programmable wait-state, chip-select and programmable strobe timing enables glueless interface to external memories and peripherals. Flash The F28335 contains 256K × 16 of embedded flash memory, segregated into eight 32K × 16 sectors. The F28334 contains 128K × 16 of embedded flash memory, segregated into eight 16K × 16 sectors. The F28332 device contains 64K ×16 of embedded flash, segregated into four 16K × 16 sectors. All the devices also contain a single 1K × 16 of OTP memory at address range 0x380400 – 0x3807FF. The user can individually erase, program, and validate a flash sector while leaving other sectors untouched. However, it is not possible to use one sector of the flash or the OTP to execute flash algorithms that erase/program other sectors. Special memory pipelining is provided to enable the flash module to achieve higher performance. The flash/OTP is mapped to both program and data space; therefore, it can be used to execute code or store data information. Note that addresses 0x33FFF0 – 0x33FFF5 are reserved for data variables and should not contain program code. NOTE The F28335/F28334/F28332 Flash and OTP wait-states can be configured by the application. This allows applications running at slower frequencies to configure the flash to use fewer wait-states. Flash effective performance can be improved by enabling the flash pipeline mode in the Flash options register. With this mode enabled, effective performance of linear code execution will be much faster than the raw performance indicated by the wait-state configuration alone. The exact performance gain when using the Flash pipeline mode is application-dependent. For more information on the Flash options, Flash wait-state, and OTP wait-state registers, see the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712). 3.2.7 M0, M1 SARAMs All 2833x devices contain these two blocks of single access memory, each 1K × 16 in size. The stack pointer points to the beginning of block M1 on reset. The M0 and M1 blocks, like all other memory blocks on C28x devices, are mapped to both program and data space. Hence, the user can use M0 and M1 to execute code or for data variables. The partitioning is performed within the linker. The C28x device presents a unified memory map to the programmer. This makes for easier programming in high-level languages. 3.2.8 L0, L1, L2, L3, L4, L5, L6, L7 SARAMs The F28335 and F28334 each contain an additional 32K × 16 of single-access RAM, divided into 8 blocks (L0-L7 with 4K each). The F28332 contains an additional 24K × 16 of single-access RAM, divided into 6 blocks (L0-L5 with 4K each). Each block can be independently accessed to minimize CPU pipeline stalls. Each block is mapped to both program and data space. L4, L5, L6, and L7 are DMA accessible 3.2.9 Boot ROM The Boot ROM is factory-programmed with boot-loading software. Boot-mode signals are provided to tell the bootloader software what boot mode to use on power up. The user can select to boot normally or to download new software from an external connection or to select boot software that is programmed in the internal Flash/ROM. The Boot ROM also contains standard tables, such as SIN/COS waveforms, for use in math related algorithms. Submit Documentation Feedback Functional Overview 33 PRODUCT PREVIEW 3.2.6 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-6. Boot Mode Selection PRODUCT PREVIEW (1) 34 MODE (1) GPIO87/XA15 GPIO86/XA14 GPIO85/XA13 GPIO84/XA12 1 1 1 1 Jump to Flash 1 1 1 0 SCI-A boot 1 1 0 1 SPI-A boot 1 1 0 0 I2C-A boot 1 0 1 1 eCAN-A boot 1 0 1 0 McBSP-A boot 1 0 0 1 Jump to XINTF x16 1 0 0 0 Jump to XINTF x32 0 1 1 1 Jump to OTP 0 1 1 0 Parallel GPIO I/O boot 0 1 0 1 Parallel XINTF boot 0 1 0 0 Jump to SARAM 0 0 1 1 Branch to check boot mode 0 0 1 0 Branch to Flash, skip ADC CAL 0 0 0 1 Branch to SARAM, skip ADC CAL 0 0 0 0 Branch to SCI, skip ADC CAL All four GPIO pins have an internal pullup. Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.2.10 Security The 2833x devices support high levels of security to protect the user firmware from being reverse engineered. The security features a 128-bit password (hardcoded for 16 wait-states), which the user programs into the flash. One code security module (CSM) is used to protect the flash/OTP and the L0/L1/L2/L3 SARAM blocks. The security feature prevents unauthorized users from examining the memory contents via the JTAG port, executing code from external memory or trying to boot-load some undesirable software that would export the secure memory contents. To enable access to the secure blocks, the user must write the correct 128-bit KEY value, which matches the value stored in the password locations within the Flash. NOTE When the code-security passwords are programmed, all addresses between 0x33FF80 and 0x33FFF5 cannot be used as program code or data. These locations must be programmed to 0x0000. • If the code security feature is not used, addresses 0x33FF80 through 0x33FFEF may be used for code or data. Addresses 0x33FFF0 – 0x33FFF5 are reserved for data and should not contain program code. . The 128-bit password (at 0x33 FFF8 – 0x33 FFFF) must not be programmed to zeros. Doing so would permanently lock the device. PRODUCT PREVIEW • NOTE Code Security Module Disclaimer THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY (EITHER ROM OR FLASH) AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE. TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS. 3.2.11 Peripheral Interrupt Expansion (PIE) Block The PIE block serves to multiplex numerous interrupt sources into a smaller set of interrupt inputs. The PIE block can support up to 96 peripheral interrupts. On the 2833x, 58 of the possible 96 interrupts are used by peripherals. The 96 interrupts are grouped into blocks of 8 and each group is fed into 1 of 12 Submit Documentation Feedback Functional Overview 35 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 CPU interrupt lines (INT1 to INT12). Each of the 96 interrupts is supported by its own vector stored in a dedicated RAM block that can be overwritten by the user. The vector is automatically fetched by the CPU on servicing the interrupt. It takes 8 CPU clock cycles to fetch the vector and save critical CPU registers. Hence the CPU can quickly respond to interrupt events. Prioritization of interrupts is controlled in hardware and software. Each individual interrupt can be enabled/disabled within the PIE block. 3.2.12 External Interrupts (XINT1-XINT7, XNMI) PRODUCT PREVIEW The 2833x supports eight masked external interrupts (XINT1-XINT7, XNMI). XNMI can be connected to the INT13 or NMI interrupt of the CPU. Each of the interrupts can be selected for negative, positive, or both negative and positive edge triggering and can also be enabled/disabled (including the XNMI). The masked interrupts also contain a 16-bit free running up counter, which is reset to zero when a valid interrupt edge is detected. This counter can be used to accurately time stamp the interrupt. Unlike the 281x devices, there are no dedicated pins for the external interrupts. Rather, any Port A GPIO pin can be configured to trigger any external interrupt. 3.2.13 Oscillator and PLL The 2833x can be clocked by an external oscillator or by a crystal attached to the on-chip oscillator circuit. A PLL is provided supporting up to 10 input-clock-scaling ratios. The PLL ratios can be changed on-the-fly in software, enabling the user to scale back on operating frequency if lower power operation is desired. Refer to the Electrical Specification section for timing details. The PLL block can be set in bypass mode. 3.2.14 Watchdog The 2833x devices contain a watchdog timer. The user software must regularly reset the watchdog counter within a certain time frame; otherwise, the watchdog will generate a reset to the processor. The watchdog can be disabled if necessary. 3.2.15 Peripheral Clocking The clocks to each individual peripheral can be enabled/disabled so as to reduce power consumption when a peripheral is not in use. Additionally, the system clock to the serial ports (except I2C and eCAN) and the ADC blocks can be scaled relative to the CPU clock. This enables the timing of peripherals to be decoupled from increasing CPU clock speeds. 3.2.16 Low-Power Modes The 2833x devices are full static CMOS devices. Three low-power modes are provided: 36 IDLE: Place CPU into low-power mode. Peripheral clocks may be turned off selectively and only those peripherals that need to function during IDLE are left operating. An enabled interrupt from an active peripheral or the watchdog timer will wake the processor from IDLE mode. STANDBY: Turns off clock to CPU and peripherals. This mode leaves the oscillator and PLL functional. An external interrupt event will wake the processor and the peripherals. Execution begins on the next valid cycle after detection of the interrupt event HALT: Turns off the internal oscillator. This mode basically shuts down the device and places it in the lowest possible power consumption mode. A reset or external signal can wake the device from this mode. Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.2.17 Peripheral Frames 0, 1, 2, 3 (PFn) PF0: PF1: PF2: PF3: PIE: PIE Interrupt Enable and Control Registers Plus PIE Vector Table Flash: Flash Control, Programming, Erase, Verify Registers XINTF: External Interface Registers DMA DMA Registers FPU: Floating-Point Unit Registers Timers: CPU-Timers 0, 1, 2 Registers CSM: Code Security Module KEY Registers ADC: ADC Result Registers (dual-mapped) eCAN: eCAN Mailbox and Control Registers GPIO: GPIO MUX Configuration and Control Registers ePWM: Enhanced Pulse Width Modulator Module and Registers eCAP: Enhanced Capture Module and Registers eQEP: Enhanced Quadrature Encoder Pulse Module and Registers SYS: System Control Registers SCI: Serial Communications Interface (SCI) Control and RX/TX Registers SPI: Serial Port Interface (SPI) Control and RX/TX Registers ADC: ADC Status, Control, and Result Register I2C: Inter-Integrated Circuit Module and Registers XINTF External Interface Registers McBSP Multichannel Buffered Serial Port Registers PRODUCT PREVIEW The 2833x device segregates peripherals into three sections. The mapping of peripherals is as follows: 3.2.18 General-Purpose Input/Output (GPIO) Multiplexer Most of the peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. This enables the user to use a pin as GPIO if the peripheral signal or function is not used. On reset, GPIO pins are configured as inputs. The user can individually program each pin for GPIO mode or peripheral signal mode. For specific inputs, the user can also select the number of input qualification cycles. This is to filter unwanted noise glitches. The GPIO signals can also be used to bring the device out of specific low-power modes. 3.2.19 32-Bit CPU-Timers (0, 1, 2) CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count down register, which generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 2 is reserved for Real-Time OS (RTOS)/BIOS applications. CPU-Timer 1 is also reserved for TI system functions. CPU-Timer 2 is connected to INT14 of the CPU. CPU-Timer 1 can be connected to INT13 of the CPU. CPU-Timer 0 is for general use and is connected to the PIE block. Submit Documentation Feedback Functional Overview 37 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.2.20 Control Peripherals The 2833x devices support the following peripherals which are used for embedded control and communication: PRODUCT PREVIEW ePWM: The enhanced PWM peripheral supports independent/complementary PWM generation, adjustable dead-band generation for leading/trailing edges, latched/cycle-by-cycle trip mechanism. Some of the PWM pins support HRPWM features. eCAP: The enhanced capture peripheral uses a 32-bit time base and registers up to four programmable events in continuous/one-shot capture modes. This peripheral can also be configured to generate an auxiliary PWM signal. eQEP: The enhanced QEP peripheral uses a 32-bit position counter, supports low-speed measurement using capture unit and high-speed measurement using a 32-bit unit timer. This peripheral has a watchdog timer to detect motor stall and input error detection logic to identify simultaneous edge transition in QEP signals. ADC: The ADC block is a 12-bit converter, single ended, 16-channels. It contains two sample-and-hold units for simultaneous sampling. 3.2.21 Serial Port Peripherals The 2833x devices support the following serial communication peripherals: 38 eCAN: This is the enhanced version of the CAN peripheral. It supports 32 mailboxes, time stamping of messages, and is CAN 2.0B-compliant. McBSP: The multichannel buffered serial port (McBSP) connects to E1/T1 lines, phone-quality codecs for modem applications or high-quality stereo audio DAC devices. The McBSP receive and transmit registers are supported by the DMA to significantly reduce the overhead for servicing this peripheral. SPI: The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the DSC and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multi-device communications are supported by the master/slave operation of the SPI. On the 2833x, the SPI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. SCI: The serial communications interface is a two-wire asynchronous serial port, commonly known as UART. On the 2833x, the SCI contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. I2C: The inter-integrated circuit (I2C) module provides an interface between a DSC and other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus) specification version 2.1 and connected by way of an I2C-bus. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the DSC through the I2C module. On the 2833x, the I2C contains a 16-level receive and transmit FIFO for reducing interrupt servicing overhead. Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.3 Register Map Peripheral Frame 0: These are peripherals that are mapped directly to the CPU memory bus. See Table 3-7 Peripheral Frame 1 These are peripherals that are mapped to the 32-bit peripheral bus. See Table 3-8 Peripheral Frame 2: These are peripherals that are mapped to the 16-bit peripheral bus. See Table 3-9 Peripheral Frame 3: These are peripherals that are mapped to the 32-bit DMA-accessible peripheral bus. See Table 3-10 PRODUCT PREVIEW The 2833x devices contain four peripheral register spaces. The spaces are categorized as follows: Table 3-7. Peripheral Frame 0 Registers (1) ADDRESS RANGE SIZE (×16) ACCESS TYPE (2) Device Emulation Registers 0x00 0880 - 0x00 09FF 384 EALLOW protected FLASH Registers (3) 0x00 0A80 - 0x00 0ADF 96 EALLOW protected Code Security Module Registers 0x00 0AE0 - 0x00 0AEF 16 EALLOW protected ADC registers (dual-mapped) (0 wait, read only) 0x00 0B00 - 0x00 0B1F 32 Not EALLOW protected XINTF Registers 0x00 0B20 - 0x00 0B3F 32 Not EALLOW protected CPU–TIMER0/1/2 Registers 0x00 0C00 - 0x00 0C3F 64 Not EALLOW protected PIE Registers 0x00 0CE0 - 0x00 0CFF 32 Not EALLOW protected PIE Vector Table 0x00 0D00 - 0x00 0DFF 256 EALLOW protected DMA Registers 0x00 1000 - 0x00 11FF 512 EALLOW protected NAME (1) (2) (3) Registers in Frame 0 support 16-bit and 32-bit accesses. If registers are EALLOW protected, then writes cannot be performed until the EALLOW instruction is executed. The EDIS instruction disables writes to prevent stray code or pointers from corrupting register contents. The Flash Registers are also protected by the Code Security Module (CSM). Table 3-8. Peripheral Frame 1 Registers NAME ADDRESS RANGE SIZE (×16) ECAN-A Registers 0x0000 6000 - 0x0000 61FF 512 ECAN-B Registers 0x0000 6200 - 0x0000 63FF 512 EPWM1 + HRPWM1 Registers 0x0000 6800 - 0x0000 683F 64 EPWM2 + HRPWM2 Registers 0x0000 6840 - 0x0000 687F 64 EPWM3 + HRPWM3 Registers 0x0000 6880 - 0x0000 68BF 64 EPWM4 + HRPWM4 Registers 0x0000 68C0 - 0x0000 68FF 64 EPWM5 + HRPWM5 Registers 0x0000 6900 - 0x0000 693F 64 EPWM6 + HRPWM6 Registers 0x0000 6940 - 0x0000 697F 64 ECAP1 Registers 0x0000 6A00 - 0x0000 6A1F 32 ECAP2 Registers 0x0000 6A20 - 0x0000 6A3F 32 ECAP3 Registers 0x0000 6A40 - 0x0000 6A5F 32 ECAP4 Registers 0x0000 6A60 - 0x0000 6A7F 32 ECAP5 Registers 0x0000 6A80 - 0x0000 6A9F 32 ECAP6 Registers 0x0000 6AA0 - 0x0000 6ABF 32 EQEP1 Registers 0x0000 6B00 - 0x0000 6B3F 64 EQEP2 Registers 0x0000 6B40 - 0x0000 6B7F 64 GPIO Registers 0x0000 6F80 - 0x0000 6FFF 128 Submit Documentation Feedback Functional Overview 39 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-9. Peripheral Frame 2 Registers NAME ADDRESS RANGE SIZE (×16) System Control Registers 0x0000 7010 - 0x0000 702F 32 SPI-A Registers 0x0000 7040 - 0x0000 704F 16 SCI-A Registers 0x0000 7050 - 0x0000 705F 16 External Interrupt Registers 0x0000 7070 - 0x0000 707F 16 ADC Registers 0x0000 7100 - 0x0000 711F 32 SCI-B Registers 0x0000 7750 - 0x0000 775F 16 SCI-C Registers 0x0000 7770 - 0x0000 777F 16 I2C-A Registers 0x0000 7900 - 0x0000 793F 64 PRODUCT PREVIEW Table 3-10. Peripheral Frame 3 Registers NAME ADDRESS RANGE SIZE (×16) McBSP-A Registers 0x0000 5000 - 0x0000 503F 64 McBSP-B Registers 0x0000 5040 - 0x0000 507F 64 3.4 Device Emulation Registers These registers are used to control the protection mode of the C28x CPU and to monitor some critical device signals. The registers are defined in Table 3-11. Table 3-11. Device Emulation Registers ADDRESS RANGE SIZE (x16) DEVICECNF 0x0880 0x0881 2 Device Configuration Register PARTID 0x0882 1 Part ID Register 0x00F8 (1) - F28332 0x00F9 - F28334 0x00FA - F28335 REVID 0x0883 1 Revision ID Register 0x0000 - Silicon Rev. 0 - TMX PROTSTART 0x0884 1 Block Protection Start Address Register PROTRANGE 0x0885 1 Block Protection Range Address Register NAME (1) 40 DESCRIPTION The first byte (00) denotes flash devices. FF denotes ROM devices. Other values are reserved for future devices. Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.5 Interrupts Figure 3-5 shows how the various interrupt sources are multiplexed within the 2833x devices. DMA PIE LPMINT Watchdog Low Power Models SYSCLKOUT Interrupt Control XINT1 Latch XINT1CR(15:0) XINT1CTR(15:0) GPIOXINT1SEL(4:0) DMA XINT2 ADC XINT2 XINT2SOC Latch Interrupt Control MUX C28 Core 96 Interrupts XINT1 INT1 to INT12 WDINT Sync PRODUCT PREVIEW WAKEINT Clear MUX DMA Peripherals (SPI, SCI, I2C, CAN, McBSP, EPWM, ECAP, EQEP, ADC) XINT2CR(15:0) XINT2CTR(15:0) GPIOXINT2SEL(4:0) DMA TINT0 CPU Timer 0 DMA CPU Timer 2 NMI CPU Timer 1 TOUT1 Flash Wrapper Interrupt Control MUX INT13 MUX TINT1 XNMI_ XINT13 GPIO0.int Latch MUX INT14 TINT2 XNMICR(15:0) 1 GPIO Mux GPIO31.int XNMICTR(15:0) GPIOXNMISEL(4:0) DMA Figure 3-5. External and PIE Interrupt Sources Submit Documentation Feedback Functional Overview 41 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 XINT3 Interrupt Control Latch Mux DMA XINT3CR(15:0) GPIOXINT3SEL(4:0) XINT4 Interrupt Control Latch Mux DMA XINT4CR(15:0) C28 Core PIE XINT5 Interrupt Control Latch Mux PRODUCT PREVIEW INT1 to INT12 96 Interrupts GPIOXINT4SEL(4:0) DMA XINT5CR(15:0) GPIOXINT5SEL(4:0) XINT6 Interrupt Control Latch Mux DMA XINT6CR(15:0) GPIOXINT6SEL(4:0) DMA Interrupt Control Latch Mux GPIO32.int XINT7 XINT7CR(15:0) GPIO63.int GPIO Mux GPIOXINT7SEL(4:0) Figure 3-6. External Interrupts Eight PIE block interrupts are grouped into one CPU interrupt. In total, 12 CPU interrupt groups, with 8 interrupts per group equals 96 possible interrupts. On the 2833x, 58 of these are used by peripherals as shown in Table 3-12. 42 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 IFR(12:1) IER(12:1) INTM INT1 INT2 1 MUX INT11 INT12 INTx Global Enable (Enable) INTx.1 INTx.2 INTx.3 INTx.4 INTx.5 INTx.6 INTx.7 INTx.8 MUX PIEACKx (Enable/Flag) (Enable) (Flag) PIEIERx(8:1) PIEIFRx(8:1) From Peripherals or External Interrupts PRODUCT PREVIEW (Flag) CPU 0 Figure 3-7. Multiplexing of Interrupts Using the PIE Block Table 3-12. PIE Peripheral Interrupts (1) CPU INTERRUPTS (1) PIE INTERRUPTS INTx.8 INTx.7 INTx.6 INTx.5 INTx.4 INTx.3 INTx.2 INTx.1 INT1 WAKEINT (LPM/WD) TINT0 (TIMER 0) ADCINT (ADC) XINT2 XINT1 reserved SEQ2INT (ADC) SEQ1INT (ADC) INT2 reserved reserved INT3 reserved reserved EPWM6_INT (ePWM6) EPWM5_INT (ePWM5) EPWM4_INT (ePWM4) EPWM3_INT (ePWM3) EPWM2_INT (ePWM2) EPWM1_INT (ePWM1) INT4 reserved reserved ECAP6_INT (ECAP6) ECAP5_INT (ECAP5) ECAP4_INT (eCAP4) ECAP3_INT (eCAP3) ECAP2_INT (eCAP2) ECAP1_INT (eCAP1) INT5 reserved reserved reserved reserved reserved reserved EQEP2_INT (eQEP2) EQEP1_INT (eQEP1) INT6 reserved reserved MXINTA (McBSP-A) MRINTA (McBSP-A) MXINTB (McBSP-B) MRXINTB (McBSP-B) SPITXINTA (SPI-A) SPIRXINTA (SPI-A) INT7 reserved reserved DINTCH6 (DMA) DINTCH5 (DMA) DINTCH4 (DMA) DINTCH3 (DMA) DINTCH2 (DMA) DINTCH1 (DMA) INT8 reserved reserved SCITXINTC (SCI-C) SCIRXINTC (SCI-C) reserved reserved I2CINT2A (I2C-A) I2CINT1A (I2C-A) INT9 ECAN1_INTB (CAN-B) ECAN0_INTB (CAN-B) ECAN1_INTA (CAN-A) ECAN0_INTA (CAN-A) SCITXINTB (SCI-B) SCIRXINTB (SCI-B) SCITXINTA (SCI-A) SCIRXINTA (SCI-A) INT10 reserved reserved reserved reserved reserved reserved reserved reserved INT11 reserved reserved reserved reserved reserved reserved reserved reserved INT12 LUF (FPU) LVF (FPU) reserved XINT7 XINT6 XINT5 XINT4 XINT3 EPWM6_TZINT EPWM5_TZINT EPWM4_TZINT EPWM3_TZINT EPWM2_TZINT EPWM1_TZINT (ePWM6) (ePWM5) (ePWM4) (ePWM3) (ePWM2) (ePWM1) Out of the 96 possible interrupts, 58 interrupts are currently used. The remaining interrupts are reserved for future devices. These interrupts can be used as software interrupts if they are enabled at the PIEIFRx level, provided none of the interrupts within the group is being used by a peripheral. Otherwise, interrupts coming in from peripherals may be lost by accidentally clearing their flag while modifying the PIEIFR. To summarize, there are two safe cases when the reserved interrupts could be used as software interrupts: 1) No peripheral within the group is asserting interrupts. 2) No peripheral interrupts are assigned to the group (example PIE group 11). Submit Documentation Feedback Functional Overview 43 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-13. PIE Configuration and Control Registers NAME PRODUCT PREVIEW SIZE (X16) PIECTRL 0x0CE0 1 PIE, Control Register PIEACK 0x0CE1 1 PIE, Acknowledge Register PIEIER1 0x0CE2 1 PIE, INT1 Group Enable Register PIEIFR1 0x0CE3 1 PIE, INT1 Group Flag Register PIEIER2 0x0CE4 1 PIE, INT2 Group Enable Register PIEIFR2 0x0CE5 1 PIE, INT2 Group Flag Register PIEIER3 0x0CE6 1 PIE, INT3 Group Enable Register PIEIFR3 0x0CE7 1 PIE, INT3 Group Flag Register PIEIER4 0x0CE8 1 PIE, INT4 Group Enable Register PIEIFR4 0x0CE9 1 PIE, INT4 Group Flag Register PIEIER5 0x0CEA 1 PIE, INT5 Group Enable Register PIEIFR5 0x0CEB 1 PIE, INT5 Group Flag Register PIEIER6 0x0CEC 1 PIE, INT6 Group Enable Register PIEIFR6 0x0CED 1 PIE, INT6 Group Flag Register PIEIER7 0x0CEE 1 PIE, INT7 Group Enable Register PIEIFR7 0x0CEF 1 PIE, INT7 Group Flag Register PIEIER8 0x0CF0 1 PIE, INT8 Group Enable Register PIEIFR8 0x0CF1 1 PIE, INT8 Group Flag Register PIEIER9 0x0CF2 1 PIE, INT9 Group Enable Register PIEIFR9 0x0CF3 1 PIE, INT9 Group Flag Register PIEIER10 0x0CF4 1 PIE, INT10 Group Enable Register PIEIFR10 0x0CF5 1 PIE, INT10 Group Flag Register PIEIER11 0x0CF6 1 PIE, INT11 Group Enable Register PIEIFR11 0x0CF7 1 PIE, INT11 Group Flag Register PIEIER12 0x0CF8 1 PIE, INT12 Group Enable Register PIEIFR12 0x0CF9 1 PIE, INT12 Group Flag Register Reserved 0x0CFA 0x0CFF 6 Reserved (1) 44 DESCRIPTION (1) ADDRESS The PIE configuration and control registers are not protected by EALLOW mode. The PIE vector table is protected. Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.5.1 External Interrupts Table 3-14. External Interrupt Registers Address Size (x16) XINT1CR 0x0000 7070 1 XINT1 configuration register XINT2CR 0x0000 7071 1 XINT2 configuration register XINT3CR 0x0000 7072 1 XINT3 configuration register XINT4CR 0x0000 7073 1 XINT4 configuration register XINT5CR 0x0000 7074 1 XINT5 configuration register XINT6CR 0x0000 7075 1 XINT6 configuration register XINT7CR 0x0000 7076 1 XINT7 configuration register XNMICR 0x0000 7077 1 XNMI configuration register XINT1CTR 0x0000 7078 1 XINT1 counter register XINT2CTR 0x0000 7079 1 XINT2 counter register 0x0000 707A - 0x0000 707E 5 0x0000 707F 1 reserved XNMICTR Description XNMI counter register Each external interrupt can be enabled/disabled or qualified using positive, negative, or both positive and negative edge. For more information, see the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712). 3.6 System Control This section describes the 2833x oscillator, PLL and clocking mechanisms, the watchdog function and the low power modes. Figure 3-8 shows the various clock and reset domains in the 2833x devices that will be discussed. Submit Documentation Feedback Functional Overview 45 PRODUCT PREVIEW Name TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 C28x Core SYSCLKOUT LSPCLK I/O SPI-A, SCI-A/B/C, I2C-A System Control Register LOSPCP Bridge Peripheral Registers Peripheral Bus Clock Enables /2 I/O PRODUCT PREVIEW eCAN-A/B Peripheral Registers Memory Bus Clock Enables Clock Enables GPIO Mux Bridge I/O EPWM1/../6, HRPWM1/../6, Peripheral Registers ECAP1/../6, EQEP1/2 Clock Enables LSPCLK I/O McBSP-A/B LOSPCP Peripheral Registers Bridge Clock Enables HSPCLK HISPCP Bridge 12-Bit ADC ADC Registers Result Registers Clock Enables A. DMA Bus 16 Channels DMA CLKIN is the clock into the CPU. It is passed out of the CPU as SYSCLKOUT (that is, CLKIN is the same frequency as SYSCLKOUT). Figure 3-8. Clock and Reset Domains 46 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 The PLL, clocking, watchdog and low-power modes, are controlled by the registers listed in Table 3-15. Table 3-15. PLL, Clocking, Watchdog, and Low-Power Mode Registers Address Size (x16) XCLK 0x0000-7010 1 XCLKOUT Pin Control and X1/XCLKIN Status Register PLLSTS 0x0000-7011 1 PLL Status Register reserved 0x0000-7012 - 0x0000-7018 7 HISPCP 0x0000-701A 1 High-Speed Peripheral Clock Pre-Scaler Register LOSPCP 0x0000-701B 1 Low-Speed Peripheral Clock Pre-Scaler Register PCLKCR0 0x0000-701C 1 Peripheral Clock Control Register 0 PCLKCR1 0x0000-701D 1 Peripheral Clock Control Register 1 LPMCR0 0x0000-701E 1 Low Power Mode Control Register 0 reserved 0x0000-701F 1 Low Power Mode Control Register 1 PCLKCR3 0x0000-7020 1 Peripheral Clock Control Register 3 PLLCR 0x0000-7021 1 PLL Control Register SCSR 0x0000-7022 1 System Control and Status Register WDCNTR 0x0000-7023 1 Watchdog Counter Register reserved 0x0000-7024 1 WDKEY 0x0000-7025 1 reserved 0x0000-7026 - 0x0000-7028 3 0x0000-7029 1 0x0000-702A - 0x0000-702F 6 WDCR reserved 3.6.1 Description PRODUCT PREVIEW Name Watchdog Reset Key Register Watchdog Control Register OSC and PLL Block Figure 3-9 shows the OSC and PLL block on the 2833x. XCLKIN (3.3-V clock input) OSCCLK OSCCLK 0 xor PLLSTS[OSCOFF] PLL OSCCLK or VCOCLK CLKIN VCOCLK n n≠0 /2 PLLSTS[PLLOFF] PLLSTS[CLKINDIV] X1 On chip oscillator 4-bit PLL Select (PLLCR) X2 Figure 3-9. OSC and PLL Block Diagram The on-chip oscillator circuit enables a crystal/resonator to be attached to the 2833x devices using the X1 and X2 pins. If the on-chip oscillator is not used, an external oscillator can be used in either one of the following configurations: 1. A 3.3-V external oscillator can be directly connected to the XCLKIN pin. The X2 pin should be left unconnected and the X1 pin tied low. The logic-high level in this case should not exceed VDDIO. 2. A 1.8-V external oscillator can be directly connected to the X1 pin. The X2 pin should be left unconnected and the XCLKIN pin tied low. The logic-high level in this case should not exceed VDD. The three possible input-clock configurations are shown in Figure 3-10 through Figure 3-12 Submit Documentation Feedback Functional Overview 47 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 XCLKIN X1 X2 NC External Clock Signal (Toggling 0 −VDDIO) Figure 3-10. Using a 3.3-V External Oscillator X2 X1 XCLKIN PRODUCT PREVIEW External Clock Signal (Toggling 0 −VDD) NC Figure 3-11. Using a 1.8-V External Oscillator XCLKIN X1 X2 CL2 CL1 Crystal Figure 3-12. Using the Internal Oscillator 3.6.1.1 External Reference Oscillator Clock Option The typical specifications for the external quartz crystal for a frequency of 20 MHz are listed below: • Fundamental mode, parallel resonant • CL (load capacitance) = 12 pF • CL1 = CL2 = 24 pF • Cshunt = 6 pF • ESR range = 30 to 60 Ω TI recommends that customers have the resonator/crystal vendor characterize the operation of their device with the DSC chip. The resonator/crystal vendor has the equipment and expertise to tune the tank circuit. The vendor can also advise the customer regarding the proper tank component values that will produce proper start up and stability over the entire operating range. 3.6.1.2 PLL-Based Clock Module The 2833x devices have an on-chip, PLL-based clock module. This module provides all the necessary clocking signals for the device, as well as control for low-power mode entry. The PLL has a 4-bit ratio control PLLCR[DIV] to select different CPU clock rates. The watchdog module should be disabled before writing to the PLLCR register. It can be re-enabled (if need be) after the PLL module has stabilized, which takes 131072 OSCCLK cycles. 48 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 3-16. PLLCR Register Bit Definitions (1) (2) SYSCLKOUT (CLKIN) (2) 0000 (PLL bypass) OSCCLK/n 0001 (OSCCLK*1)/n 0010 (OSCCLK*2)/n 0011 (OSCCLK*3)/n 0100 (OSCCLK*4)/n 0101 (OSCCLK*5)/n 0110 (OSCCLK*6)/n 0111 (OSCCLK*7)/n 1000 (OSCCLK*8)/n 1001 (OSCCLK*9)/n 1010 (OSCCLK*10)/n 1011-1111 reserved PRODUCT PREVIEW PLLCR[DIV] (1) This register is EALLOW protected. CLKIN is the input clock to the CPU. SYSCLKOUT is the output clock from the CPU. The frequency of SYSCLKOUT is the same as CLKIN. If CLKINDIV = 0, n = 2; if CLKINDIV = 1, n = 1. Table 3-17. CLKIN Divide Options PLLSTS [DIVSEL] CLKIN DIVIDE 0 /4 1 /4 2 /2 3 /1 The PLL-based clock module provides two modes of operation: • Crystal-operation - This mode allows the use of an external crystal/resonator to provide the time base to the device. • External clock source operation - This mode allows the internal oscillator to be bypassed. The device clocks are generated from an external clock source input on the X1 or the XCLKIN pin. Table 3-18. Possible PLL Configuration Modes REMARKS PLLSTS[CLKINDIV] SYSCLKOUT (CLKIN) Invoked by the user setting the PLLOFF bit in the PLLSTS register. The PLL block is disabled in this mode. This can be useful to reduce system noise and for low power operation. The PLLCR register must first be set to 0x0000 (PLL Bypass) before entering this mode. The CPU clock (CLKIN) is derived directly from the input clock on either X1/X2, X1 or XCLKIN. 0 OSCCLK/2 1 OSCCLK 0 OSCCLK/2 1 OSCCLK 0 OSCCLK*n/2 PLL MODE PLL Off PLL Bypass is the default PLL configuration upon power-up or after an external reset (XRS). This mode is selected when the PLLCR register is set to 0x0000 or PLL Bypass while the PLL locks to a new frequency after the PLLCR register has been modified. In this mode, the PLL itself is bypassed but the PLL is not turned off. PLL Enable Achieved by writing a non-zero value n into the PLLCR register. Upon writing to the PLLCR the device will switch to PLL Bypass mode until the PLL locks. Submit Documentation Feedback Functional Overview 49 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 3.6.1.3 Loss of Input Clock In PLL-enabled and PLL-bypass mode, if the input clock OSCCLK is removed or absent, the PLL will still issue a limp-mode clock. The limp-mode clock continues to clock the CPU and peripherals at a typical frequency of 1-5 MHz. Limp mode is not specified to work from power-up, only after input clocks have been present initially. In PLL bypass mode, the limp mode clock from the PLL is automatically routed to the CPU if the input clock is removed or absent. Normally, when the input clocks are present, the watchdog counter decrements to initiate a watchdog reset or WDINT interrupt. However, when the external input clock fails, the watchdog counter stops decrementing (i.e., the watchdog counter does not change with the limp-mode clock). In addition to this, the device will be reset and the “Missing Clock Status” (MCLKSTS) bit will be set. These conditions could be used by the application firmware to detect the input clock failure and initiate necessary shut-down procedure for the system. PRODUCT PREVIEW NOTE Applications in which the correct CPU operating frequency is absolutely critical should implement a mechanism by which the DSC will be held in reset, should the input clocks ever fail. For example, an R-C circuit may be used to trigger the XRS pin of the DSC, should the capacitor ever get fully charged. An I/O pin may be used to discharge the capacitor on a periodic basis to prevent it from getting fully charged. Such a circuit would also help in detecting failure of the flash memory and the VDD3VFL rail. 3.6.2 Watchdog Block The watchdog block on the 2833x is similar to the one used on the 240x and 281x devices. The watchdog module generates an output pulse, 512 oscillator clocks wide (OSCCLK), whenever the 8-bit watchdog up counter has reached its maximum value. To prevent this, the user disables the counter or the software must periodically write a 0x55 + 0xAA sequence into the watchdog key register which will reset the watchdog counter. Figure 3-13 shows the various functional blocks within the watchdog module. WDCR (WDPS[2:0]) WDCR (WDDIS) WDCNTR(7:0) OSCCLK Watchdog Prescaler /512 WDCLK 8-Bit Watchdog Counter CLR Clear Counter Internal Pullup WDKEY(7:0) Watchdog 55 + AA Key Detector WDRST Generate Output Pulse WDINT (512 OSCCLKs) Good Key XRS Core-reset WDCR (WDCHK[2:0]) WDRST(A) A. 1 0 Bad WDCHK Key SCSR (WDENINT) 1 The WDRST signal is driven low for 512 OSCCLK cycles. Figure 3-13. Watchdog Module The WDINT signal enables the watchdog to be used as a wakeup from IDLE/STANDBY mode. 50 Functional Overview Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 In STANDBY mode, all peripherals are turned off on the device. The only peripheral that remains functional is the watchdog. The WATCHDOG module will run off OSCCLK. The WDINT signal is fed to the LPM block so that it can wake the device from STANDBY (if enabled). See Section Section 3.7, Low-Power Modes Block, for more details. In IDLE mode, the WDINT signal can generate an interrupt to the CPU, via the PIE, to take the CPU out of IDLE mode. In HALT mode, this feature cannot be used because the oscillator (and PLL) are turned off and hence so is the WATCHDOG. 3.7 Low-Power Modes Block Table 3-19. Low-Power Modes EXIT (1) MODE LPMCR0(1:0) OSCCLK CLKIN SYSCLKOUT IDLE 00 On On On (2) XRS, Watchdog interrupt, any enabled interrupt, XNMI STANDBY 01 On (watchdog still running) Off Off XRS, Watchdog interrupt, GPIO Port A signal, debugger (3), XNMI HALT 1X Off (oscillator and PLL turned off, watchdog not functional) Off Off XRS, GPIO Port A signal, XNMI, debugger (3) (1) (2) (3) The Exit column lists which signals or under what conditions the low power mode will be exited. A low signal, on any of the signals, will exit the low power condition. This signal must be kept low long enough for an interrupt to be recognized by the device. Otherwise the IDLE mode will not be exited and the device will go back into the indicated low power mode. The IDLE mode on the C28x behaves differently than on the 24x/240x. On the C28x, the clock output from the CPU (SYSCLKOUT) is still functional while on the 24x/240x the clock is turned off. On the C28x, the JTAG port can still function even if the CPU clock (CLKIN) is turned off. The various low-power modes operate as follows: IDLE Mode: This mode is exited by any enabled interrupt or an XNMI that is recognized by the processor. The LPM block performs no tasks during this mode as long as the LPMCR0(LPM) bits are set to 0,0. STANDBY Mode: Any GPIO port A signal (GPIO[31:0]) can wake the device from STANDBY mode. The user must select which signal(s) will wake the device in the GPIOLPMSEL register. The selected signal(s) are also qualified by the OSCCLK before waking the device. The number of OSCCLKs is specified in the LPMCR0 register. HALT Mode: Only the XRS and any GPIO port A signal (GPIO[31:0]) can wake the device from HALT mode. The user selects the signal in the GPIOLPMSEL register. NOTE The low-power modes do not affect the state of the output pins (PWM pins included). They will be in whatever state the code left them in when the IDLE instruction was executed. See the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712) for more details. Submit Documentation Feedback Functional Overview 51 PRODUCT PREVIEW The low-power modes on the 2833x are similar to the 240x devices. Table 3-19 summarizes the various modes. TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4 Peripherals PRODUCT PREVIEW The integrated peripherals of the 2833x are described in the following subsections: • Three 32-bit CPU-Timers • Up to six enhanced PWM modules (ePWM1, ePWM2, ePWM3, ePWM4, ePWM5, ePWM6) • Up to six enhanced capture modules (eCAP1, eCAP2, eCAP3, eCAP4, eCAP5, eCAP6) • Up to two enhanced QEP modules (eQEP1, eQEP2) • Enhanced analog-to-digital converter (ADC) module • Up to two enhanced controller area network (eCAN) modules (eCAN-A, eCAN-B) • Up to three serial communications interface modules (SCI-A, SCI-B, SCI-C) • One serial peripheral interface (SPI) module (SPI-A) • Inter-integrated circuit module (I2C) • Up to two multichannel buffered serial port (McBSP-A, McBSP-B) modules • Digital I/O and shared pin functions 52 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.1 DMA Overview PRODUCT PREVIEW Features: • 6 Channels with independent PIE interrupts • Trigger Sources: – ADC Sequencer 1 and Sequencer 2 – McBSP-A and McBSP-B transmit and receive logic – XINT1-7 and XINT13 – CPU Timers – Software • Data Sources/Destinations: – L4-L7 16k x 16 SARAM – All XINTF zones – ADC Memory Bus mapped RESULT registers – McBSP-A and McBSP-B transmit and receive buffers • Word Size: 16-bit or 32-bit (McBSPs limited to 16-bit) • Throughput: 4 cycles/word (5 cycles/word for McBSP reads) L7 SARAM (4K x 16) CPU McBSP-B McBSP-A External Interrupts CPU Timers L6 SARAM (4K x 16) DMA Type 0 6-Ch DINT[CH1:CH6] L5 SARAM (4K x 16) Peripheral Bus SYSCLKOUT Dual Ports L4 SARAM (4K x 16) ADC Control ADC 0/1-wait Registers (16 x 16) DMA Event Triggers Dual Port XINTF Dual Port Memory Bus PIE DMA Bus Figure 4-1. DMA Functional Block Diagram Submit Documentation Feedback Peripherals 53 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.2 32-Bit CPU-Timers 0/1/2 There are three 32-bit CPU-timers on the 2833x devices (CPU-TIMER0/1/2). CPU-Timer 1 is reserved for TI system functions and Timer 2 is reserved for DSP/BIOS™. CPU-Timer 0 can be used in user applications. These timers are different from the timers that are present in the ePWM modules. NOTE NOTE: If the application is not using DSP/BIOS, then CPU-Timer 2 can be used in the application. Reset PRODUCT PREVIEW Timer Reload 16-Bit Timer Divide-Down TDDRH:TDDR 32-Bit Timer Period PRDH:PRD 16-Bit Prescale Counter PSCH:PSC SYSCLKOUT TCR.4 (Timer Start Status) 32-Bit Counter TIMH:TIM Borrow Borrow TINT Figure 4-2. CPU-Timers In the 2833x devices, the timer interrupt signals (TINT0, TINT1, TINT2) are connected as shown in Figure 4-3. INT1 to INT12 PIE TINT0 CPU-TIMER 0 C28x TINT1 INT13 CPU-TIMER 1 (Reserved for TI system functions) XINT13 INT14 TINT2 CPU-TIMER 2 (Reserved for DSP/BIOS) A. The timer registers are connected to the memory bus of the C28x processor. B. The timing of the timers is synchronized to SYSCLKOUT of the processor clock. C. While TIMER1 is reserved, INT13 is not reserved and the user can use XINT13 connected to INT13. Figure 4-3. CPU-Timer Interrupt Signals and Output Signal 54 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 The general operation of the timer is as follows: The 32-bit counter register "TIMH:TIM" is loaded with the value in the period register "PRDH:PRD". The counter register decrements at the SYSCLKOUT rate of the C28x. When the counter reaches 0, a timer interrupt output signal generates an interrupt pulse. The registers listed in Table 4-1 are used to configure the timers. For more information, see the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712). Table 4-1. CPU-Timers 0, 1, 2 Configuration and Control Registers NAME SIZE (x16) 0x0C00 1 CPU-Timer 0, Counter Register TIMER0TIMH 0x0C01 1 CPU-Timer 0, Counter Register High TIMER0PRD 0x0C02 1 CPU-Timer 0, Period Register TIMER0PRDH 0x0C03 1 CPU-Timer 0, Period Register High TIMER0TCR 0x0C04 1 CPU-Timer 0, Control Register reserved 0x0C05 1 TIMER0TPR 0x0C06 1 CPU-Timer 0, Prescale Register TIMER0TPRH 0x0C07 1 CPU-Timer 0, Prescale Register High TIMER1TIM 0x0C08 1 CPU-Timer 1, Counter Register TIMER1TIMH 0x0C09 1 CPU-Timer 1, Counter Register High TIMER1PRD 0x0C0A 1 CPU-Timer 1, Period Register TIMER1PRDH 0x0C0B 1 CPU-Timer 1, Period Register High TIMER1TCR 0x0C0C 1 CPU-Timer 1, Control Register reserved 0x0C0D 1 TIMER1TPR 0x0C0E 1 CPU-Timer 1, Prescale Register TIMER1TPRH 0x0C0F 1 CPU-Timer 1, Prescale Register High TIMER2TIM 0x0C10 1 CPU-Timer 2, Counter Register TIMER2TIMH 0x0C11 1 CPU-Timer 2, Counter Register High TIMER2PRD 0x0C12 1 CPU-Timer 2, Period Register TIMER2PRDH 0x0C13 1 CPU-Timer 2, Period Register High TIMER2TCR 0x0C14 1 CPU-Timer 2, Control Register reserved 0x0C15 1 TIMER2TPR 0x0C16 1 CPU-Timer 2, Prescale Register TIMER2TPRH 0x0C17 1 CPU-Timer 2, Prescale Register High reserved 0x0C18 0x0C3F 40 Submit Documentation Feedback DESCRIPTION PRODUCT PREVIEW ADDRESS TIMER0TIM Peripherals 55 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.3 Enhanced PWM Modules (ePWM1/2/3/4/5/6) The 2833x device contains up to six enhanced PWM Modules (ePWM). Figure 4-4 shows a block diagram of multiple ePWM modules. Figure 4-4 shows the signal interconnections with the ePWM. See the TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module Reference Guide (literature number SPRU791) for more details. EPWM1SYNCI EPWM1INT EPWM1SYNCI EPWM1A EPWM1SOC ePWM1 module EPWM1B PRODUCT PREVIEW TZ1 to TZ6 to eCAP1 module (sync in) EPWM1SYNCO EPWM1SYNCO . EPWM2SYNCI EPWM2INT EPWM2SOC PIE EPWM2A ePWM2 module EPWM2B GPIO MUX TZ1 to TZ6 EPWM2SYNCO EPWMxSYNCI EPWMxINT EPWMxSOC EPWMxA ePWMx module EPWMxB EPWMxSYNCO TZ1 to TZ6 ADCSOCx0 ADC Peripheral Bus Figure 4-4. Multiple PWM Modules in a 2833x System Table 4-2 shows the complete ePWM register set per module. 56 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-2. ePWM Control and Status Registers EPWM1 EPWM2 EPWM3 EPWM4 EPWM5 EPWM6 SIZE (x16) / #SHADOW TBCTL 0x6800 0x6840 0x6880 0x68C0 0x6900 0x6940 1/0 Time Base Control Register TBSTS 0x6801 0x6841 0x6881 0x68C1 0x6901 0x6941 1/0 Time Base Status Register TBPHSHR 0x6802 0x6842 0x6882 0x68C2 N/A N/A 1/0 Time Base Phase HRPWM Register TBPHS 0x6803 0x6843 0x6883 0x68C3 0x6903 0x6943 1/0 Time Base Phase Register TBCTR 0x6804 0x6844 0x6884 0x68C4 0x6904 0x6944 1/0 Time Base Counter Register TBPRD 0x6805 0x6845 0x6885 0x68C5 0x6905 0x6945 1/1 Time Base Period Register Set CMPCTL 0x6807 0x6847 0x6887 0x68C7 0x6907 0x6947 1/0 Counter Compare Control Register CMPAHR 0x6808 0x6848 0x6888 0x68C8 N/A N/A 1/1 Time Base Compare A HRPWM Register CMPA 0x6809 0x6849 0x6889 0x68C9 0x6909 0x6949 1/1 Counter Compare A Register Set CMPB 0x680A 0x684A 0x688A 0x68CA 0x690A 0x694A 1/1 Counter Compare B Register Set AQCTLA 0x680B 0x684B 0x688B 0x68CB 0x690B 0x694B 1/0 Action Qualifier Control Register For Output A AQCTLB 0x680C 0x684C 0x688C 0x68CC 0x690C 0x694C 1/0 Action Qualifier Control Register For Output B AQSFRC 0x680D 0x684D 0x688D 0x68CD 0x690D 0x694D 1/0 Action Qualifier Software Force Register AQCSFRC 0x680E 0x684E 0x688E 0x68CE 0x690E 0x694E 1/1 Action Qualifier Continuous S/W Force Register Set DBCTL 0x680F 0x684F 0x688F 0x68CF 0x690F 0x694F 1/1 Dead-Band Generator Control Register DBRED 0x6810 0x6850 0x6890 0x68D0 0x6910 0x6950 1/0 Dead-Band Generator Rising Edge Delay Count Register DBFED 0x6811 0x6851 0x6891 0x68D1 0x6911 0x6951 1/0 Dead-Band Generator Falling Edge Delay Count Register TZSEL 0x6812 0x6852 0x6892 0x68D2 0x6912 0x6952 1/0 Trip Zone Select Register (1) TZCTL 0x6814 0x6854 0x6894 0x68D4 0x6914 0x6954 1/0 Trip Zone Control Register (1) TZEINT 0x6815 0x6855 0x6895 0x68D5 0x6915 0x6955 1/0 Trip Zone Enable Interrupt Register (1) TZFLG 0x6816 0x6856 0x6896 0x68D6 0x6916 0x6956 1/0 Trip Zone Flag Register TZCLR 0x6817 0x6857 0x6897 0x68D7 0x6917 0x6957 1/0 Trip Zone Clear Register (1) TZFRC 0x6818 0x6858 0x6898 0x68D8 0x6918 0x6958 1/0 Trip Zone Force Register (1) ETSEL 0x6819 0x6859 0x6899 0x68D9 0x6919 0x6959 1/0 Event Trigger Selection Register ETPS 0x681A 0x685A 0x689A 0x68DA 0x691A 0x695A 1/0 Event Trigger Prescale Register ETFLG 0x681B 0x685B 0x689B 0x68DB 0x691B 0x695B 1/0 Event Trigger Flag Register ETCLR 0x681C 0x685C 0x689C 0x68DC 0x691C 0x695C 1/0 Event Trigger Clear Register ETFRC 0x681D 0x685D 0x689D 0x68DD 0x691D 0x695D 1/0 Event Trigger Force Register PCCTL 0x681E 0x685E 0x689E 0x68DE 0x691E 0x695E 1/0 PWM Chopper Control Register HRCNFG 0x6820 0x6860 0x68A0 0x68E0 0x6920 0x6960 1/0 HRPWM Configuration Register (1) NAME (1) DESCRIPTION Registers that are EALLOW protected. Submit Documentation Feedback Peripherals 57 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Time−base (TB) Sync in/out select Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMxSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMxSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCNT active (16) TBPHSHR (8) 16 PRODUCT PREVIEW 8 TBPHS active (24) Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir 8 Event trigger and interrupt (ET) EPWMxINT EPWMxSOCA EPWMxSOCB HiRes PWM (HRPWM) CMPA active (24) EPWMA EPWMxAO CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) EPWMB EPWMxBO CMPB active (16) CMPB shadow (16) Trip zone (TZ) EPWMxTZINT CTR = ZERO TZ1 to TZ6 Figure 4-5. ePWM Sub-Modules Showing Critical Internal Signal Interconnections 4.4 High-Resolution PWM (HRPWM) The HRPWM module offers PWM resolution (time granularity) which is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • Typically used when effective PWM resolution falls below ~ 9-10 bits. This occurs at PWM frequencies greater than ~200 KHz when using a CPU/System clock of 100 MHz. • This capability can be utilized in both duty cycle and phase-shift control methods. • Finer time granularity control or edge positioning is controlled via extensions to the Compare A and Phase registers of the ePWM module. • HRPWM capabilities are offered only on the A signal path of an ePWM module (i.e., on the EPWMxA output). EPWMxB output has conventional PWM capabilities. 58 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.5 Enhanced CAP Modules (eCAP1/2/3/4/5/6) SYNC The 2833x device contains up to six enhanced capture (eCAP) modules. Figure 4-6 shows a functional block diagram of a module. See the TMS320x280x Enhanced Capture (eCAP) Module Reference Guide (literature number SPRU807) for more details. SYNCIn SYNCOut CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF Delta−mode CTR [0−31] PRD [0−31] PWM compare logic CMP [0−31] CTR=PRD CTR [0−31] CTR=CMP 32 32 LD1 CAP1 (APRD active) APRD shadow 32 32 MODE SELECT PRD [0−31] Polarity select LD 32 CMP [0−31] CAP2 (ACMP active) 32 LD LD2 Polarity select Event qualifier ACMP shadow 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD eCAPx Event Pre-scale Polarity select LD3 LD4 Polarity select 4 Capture events 4 CEVT[1:4] to PIE Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 4-6. eCAP Functional Block Diagram The eCAP modules are clocked at the SYSCLKOUT rate. Submit Documentation Feedback Peripherals 59 PRODUCT PREVIEW 32 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 The clock enable bits (ECAP1/2/3/4/5/6ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, ECAP4ENCLK, ECAP5ENCLK, and ECAP6ENCLK are set to low, indicating that the peripheral clock is off. Table 4-3. eCAP Control and Status Registers NAME ECAP1 ECAP2 ECAP3 ECAP4 ECAP5 ECAP6 SIZE (x16) DESCRIPTION TSCTR 0x6A00 0x6A20 0x6A40 0x6A60 0x6A80 0x6AA0 2 Time-Stamp Counter CTRPHS 0x6A02 0x6A22 0x6A42 0x6A62 0x6A82 0x6AA2 2 Counter Phase Offset Value Register CAP1 0x6A04 0x6A24 0x6A44 0x6A64 0x6A84 0x6AA4 2 Capture 1 Register CAP2 0x6A06 0x6A26 0x6A46 0x6A66 0x6A86 0x6AA6 2 Capture 2 Register PRODUCT PREVIEW CAP3 0x6A08 0x6A28 0x6A48 0x6A68 0x6A88 0x6AA8 2 Capture 3 Register CAP4 0x6A0A 0x6A2A 0x6A4A 0x6A6A 0x6A8A 0x6AAA 2 Capture 4 Register Reserved 0x6A0C0x6A12 0x6A2C0x6A32 0x6A4C0x6A52 0x6A6C0x6A72 0x6A8C0x6A92 0x6AAC0x6AB2 8 Reserved ECCTL1 0x6A14 0x6A34 0x6A54 0x6A74 0x6A94 0x6AB4 1 Capture Control Register 1 ECCTL2 0x6A15 0x6A35 0x6A55 0x6A75 0x6A95 0x6AB5 1 Capture Control Register 2 ECEINT 0x6A16 0x6A36 0x6A56 0x6A76 0x6A96 0x6AB6 1 Capture Interrupt Enable Register ECFLG 0x6A17 0x6A37 0x6A57 0x6A77 0x6A97 0x6AB7 1 Capture Interrupt Flag Register ECCLR 0x6A18 0x6A38 0x6A58 0x6A78 0x6A98 0x6AB8 1 Capture Interrupt Clear Register ECFRC 0x6A19 0x6A39 0x6A59 0x6A79 0x6A99 0x6AB9 1 Capture Interrupt Force Register Reserved 0x6A1A0x6A1F 0x6A3A0x6A3F 0x6A5A0x6A5F 0x6A7A0x6A7F 0x6A9A0x6A9F 0x6ABA0x6ABC 6 Reserved 60 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.6 Enhanced QEP Modules (eQEP1/2) The 2833x device contains up to two enhanced quadrature encoder (eQEP) modules. See the TMS320x280x Enhanced Quadrature Encoder (eQEP) Module Reference Guide (literature number SPRU790) for more details. System control registers To CPU EQEPxENCLK PRODUCT PREVIEW Data bus SYSCLKOUT QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME QFLG UTOUT QWDOG QDECCTL 16 WDTOUT PIE EQEPxAIN QCLK EQEPxINT 16 QI Position counter/ control unit (PCCU) QPOSLAT QS PHE QPOSSLAT EQEPxIIN Quadrature decoder (QDU) PCSOUT QPOSILAT EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE 32 32 QPOSCNT QPOSINIT QPOSMAX QPOSCMP EQEPxA/XCLK EQEPxBIN QDIR EQEPxB/XDIR GPIO MUX EQEPxI EQEPxS 16 QEINT QFRC QCLR QPOSCTL Enhanced QEP (eQEP) peripheral Figure 4-7. eQEP Functional Block Diagram Submit Documentation Feedback Peripherals 61 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-4. eQEP Control and Status Registers EQEP1 ADDRESS EQEP2 ADDRESS EQEP1 SIZE(x16)/ #SHADOW QPOSCNT 0x6B00 0x6B40 2/0 eQEP Position Counter QPOSINIT 0x6B02 0x6B42 2/0 eQEP Initialization Position Count QPOSMAX 0x6B04 0x6B44 2/0 eQEP Maximum Position Count QPOSCMP 0x6B06 0x6B46 2/1 eQEP Position-compare NAME REGISTER DESCRIPTION PRODUCT PREVIEW QPOSILAT 0x6B08 0x6B48 2/0 eQEP Index Position Latch QPOSSLAT 0x6B0A 0x6B4A 2/0 eQEP Strobe Position Latch QPOSLAT 0x6B0C 0x6B4C 2/0 eQEP Position Latch QUTMR 0x6B0E 0x6B4E 2/0 eQEP Unit Timer QUPRD 0x6B10 0x6B50 2/0 eQEP Unit Period Register QWDTMR 0x6B12 0x6B52 1/0 eQEP Watchdog Timer QWDPRD 0x6B13 0x6B53 1/0 eQEP Watchdog Period Register QDECCTL 0x6B14 0x6B54 1/0 eQEP Decoder Control Register QEPCTL 0x6B15 0x6B55 1/0 eQEP Control Register QCAPCTL 0x6B16 0x6B56 1/0 eQEP Capture Control Register QPOSCTL 0x6B17 0x6B57 1/0 eQEP Position-compare Control Register QEINT 0x6B18 0x6B58 1/0 eQEP Interrupt Enable Register QFLG 0x6B19 0x6B59 1/0 eQEP Interrupt Flag Register QCLR 0x6B1A 0x6B5A 1/0 eQEP Interrupt Clear Register QFRC 0x6B1B 0x6B5B 1/0 eQEP Interrupt Force Register QEPSTS 0x6B1C 0x6B5C 1/0 eQEP Status Register QCTMR 0x6B1D 0x6B5D 1/0 eQEP Capture Timer QCPRD 0x6B1E 0x6B5E 1/0 eQEP Capture Period Register QCTMRLAT 0x6B1F 0x6B5F 1/0 eQEP Capture Timer Latch QCPRDLAT 0x6B20 0x6B60 1/0 eQEP Capture Period Latch Reserved 0x6B210x6B3F 0x6B610x6B7F 31/0 62 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Enhanced Analog-to-Digital Converter (ADC) Module A simplified functional block diagram of the ADC module is shown in Figure 4-8. The ADC module consists of a 12-bit ADC with a built-in sample-and-hold (S/H) circuit. Functions of the ADC module include: • 12-bit ADC core with built-in S/H • Analog input: 0.0 V to 3.0 V (Voltages above 3.0 V produce full-scale conversion results.) • Fast conversion rate: Up to 80 ns at 25-MHz ADC clock, 12.5 MSPS • 16-channel, MUXed inputs • Autosequencing capability provides up to 16 "autoconversions" in a single session. Each conversion can be programmed to select any 1 of 16 input channels • Sequencer can be operated as two independent 8-state sequencers or as one large 16-state sequencer (i.e., two cascaded 8-state sequencers) • Sixteen result registers (individually addressable) to store conversion values – The digital value of the input analog voltage is derived by: when input ≤ 0 V Digital Value + 0, Digital Value + 4096 Digital Value + 4095, A. • • • • • Input Analog Voltage * ADCLO 3 when 0 V < input < 3 V when input ≥ 3 V All fractional values are truncated. Multiple triggers as sources for the start-of-conversion (SOC) sequence – S/W - software immediate start – ePWM start of conversion – XINT2 ADC start of conversion Flexible interrupt control allows interrupt request on every end-of-sequence (EOS) or every other EOS. Sequencer can operate in "start/stop" mode, allowing multiple "time-sequenced triggers" to synchronize conversions. SOCA and SOCB triggers can operate independently in dual-sequencer mode. Sample-and-hold (S/H) acquisition time window has separate prescale control. The ADC module in the 2833x has been enhanced to provide flexible interface to ePWM peripherals. The ADC interface is built around a fast, 12-bit ADC module with a fast conversion rate of up to 80 ns at 25-MHz ADC clock. The ADC module has 16 channels, configurable as two independent 8-channel modules. The two independent 8-channel modules can be cascaded to form a 16-channel module. Although there are multiple input channels and two sequencers, there is only one converter in the ADC module. Figure 4-8 shows the block diagram of the ADC module. The two 8-channel modules have the capability to autosequence a series of conversions, each module has the choice of selecting any one of the respective eight channels available through an analog MUX. In the cascaded mode, the autosequencer functions as a single 16-channel sequencer. On each sequencer, once the conversion is complete, the selected channel value is stored in its respective RESULT register. Autosequencing allows the system to convert the same channel multiple times, allowing the user to perform oversampling algorithms. This gives increased resolution over traditional single-sampled conversion results. Submit Documentation Feedback Peripherals 63 PRODUCT PREVIEW 4.7 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 System Control Block ADCENCLK SYSCLKOUT High-Speed Prescaler HALT DSP HSPCLK Analog MUX Result Registers Result Reg 0 ADCINA0 70A8h Result Reg 1 S/H ADCINA7 PRODUCT PREVIEW 12-Bit ADC Module Result Reg 7 70AFh Result Reg 8 70B0h Result Reg 15 70B7h ADCINB0 S/H ADCINB7 ADC Control Registers S/W EPWMSOCA GPIO/XINT2 _ADCSOC SOC Sequencer 2 Sequencer 1 SOC S/W EPWMSOCB Figure 4-8. Block Diagram of the ADC Module To obtain the specified accuracy of the ADC, proper board layout is very critical. To the best extent possible, traces leading to the ADCIN pins should not run in close proximity to the digital signal paths. This is to minimize switching noise on the digital lines from getting coupled to the ADC inputs. Furthermore, proper isolation techniques must be used to isolate the ADC module power pins ( VDD1A18, VDD2A18 , VDDA2, VDDAIO ) from the digital supply.Figure 4-9 shows the ADC pin connections for the 2833x devices. NOTE 1. The ADC registers are accessed at the SYSCLKOUT rate. The internal timing of the ADC module is controlled by the high-speed peripheral clock (HSPCLK). 2. The behavior of the ADC module based on the state of the ADCENCLK and HALT signals is as follows: – – 64 Peripherals ADCENCLK: On reset, this signal will be low. While reset is active-low (XRS) the clock to the register will still function. This is necessary to make sure all registers and modes go into their default reset state. The analog module, however, will be in a low-power inactive state. As soon as reset goes high, then the clock to the registers will be disabled. When the user sets the ADCENCLK signal high, then the clocks to the registers will be enabled and the analog module will be enabled. There will be a certain time delay (ms range) before the ADC is stable and can be used. HALT: This mode only affects the analog module. It does not affect the registers. In this mode, the ADC module goes into low-power mode. This mode also will stop the clock to the CPU, which will stop the HSPCLK; therefore, the ADC register logic will be turned off indirectly. Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Figure 4-9 shows the ADC pin-biasing for internal reference and Figure 4-10 shows the ADC pin-biasing for external reference. ADC 16-Channel Analog Inputs ADCINA[7:0] ADCINB[7:0] ADCLO ADCREFIN Analog input 0−3 V with respect to ADCLO Connect to analog ground Float or ground if internal reference is used 22 kW ADCRESEXT ADC Reference Positive Output ADCREFP ADC Reference Medium Output ADCREFM ADC Power 2.2 mF (A) 2.2 mF (A) VDD1A18 VDD2A18 ADCREFP and ADCREFM should not be loaded by external circuitry VSS1AGND VSS2AGND ADC Analog Power Pin (1.8 V) ADC Analog Power Pin (1.8 V) ADC Analog Ground Pin ADC Analog Ground Pin VDDA2 VSSA2 ADC Analog Power Pin (3.3 V) ADC Analog Ground Pin VDDAIO VSSAIO ADC Analog Power Pin (3.3 V) ADC Analog I/O Ground Pin PRODUCT PREVIEW ADC External Current Bias Resistor ADC Analog and Reference I/O Power A. TAIYO YUDEN LMK212BJ225MG-T or equivalent B. External decoupling capacitors are recommended on all power pins. C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance. Figure 4-9. ADC Pin Connections With Internal Reference ADC 16-Channel Analog Inputs ADCINA[7:0] ADCINB[7:0] ADCLO ADCREFIN Analog input 0−3 V with respect to ADCLO Connect to Analog Ground Connect to 1.500, 1.024, or 2.048-V precision source (D) 22 kW ADC External Current Bias Resistor ADCRESEXT ADC Reference Positive Output ADCREFP ADC Reference Medium Output ADCREFM ADC Analog Power VDD1A18 VDD2A18 VSS1AGND VSS2AGND ADC Analog Power Pin (1.8 V) ADC Analog Power Pin (1.8 V) ADC Analog Ground Pin ADC Analog Ground Pin VDDA2 VSSA2 ADC Analog Power Pin (3.3 V) ADC Analog Ground Pin VDDAIO VSSAIO ADC Analog Power Pin (3.3 V) ADC Analog and Reference I/O Power 2.2 mF (A) 2.2 mF (A) ADCREFP and ADCREFM should not be loaded by external circuitry ADC Analog I/O Ground Pin A. TAIYO YUDEN LMK212BJ225MG-T or equivalent B. External decoupling capacitors are recommended on all power pins. C. Analog inputs must be driven from an operational amplifier that does not degrade the ADC performance. D. External voltage on ADCREFIN is enabled by changing bits 15:14 in the ADC Reference Select register depending on the voltage used on this pin. TI recommends TI part REF3020 or equivalent for 2.048-V generation. Overall gain accuracy will be determined by accuracy of this voltage source. Figure 4-10. ADC Pin Connections With External Reference Submit Documentation Feedback Peripherals 65 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 NOTE The temperature rating of any recommended component must match the rating of the end product. 4.7.1 ADC Connections if the ADC Is Not Used PRODUCT PREVIEW It is recommended to keep the connections for the analog power pins, even if the ADC is not used. Following is a summary of how the ADC pins should be connected, if the ADC is not used in an application: • VDD1A18/VDD2A18 – Connect to VDD • VDDA2, VDDAIO – Connect to VDDIO • VSS1AGND/VSS2AGND, VSSA2, VSSAIO – Connect to VSS • ADCLO – Connect to VSS • ADCREFIN – Connect to VSS • ADCREFP/ADCREFM – Connect a 100-nF cap to VSS • ADCRESEXT – Connect a 20-kΩ resistor (very loose tolerance) to VSS. • ADCINAn, ADCINBn - Connect to VSS When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings. When the ADC module is used in an application, unused ADC input pins should be connected to analog ground (VSS1AGND/VSS2AGND) 4.7.2 ADC Registers The ADC operation is configured, controlled, and monitored by the registers listed in Table 4-5. Table 4-5. ADC Registers (1) NAME ADDRESS (1) ADDRESS (2) ADCTRL1 0x7100 1 ADC Control Register 1 SIZE (x16) DESCRIPTION ADCTRL2 0x7101 1 ADC Control Register 2 ADCMAXCONV 0x7102 1 ADC Maximum Conversion Channels Register ADCCHSELSEQ1 0x7103 1 ADC Channel Select Sequencing Control Register 1 ADCCHSELSEQ2 0x7104 1 ADC Channel Select Sequencing Control Register 2 ADCCHSELSEQ3 0x7105 1 ADC Channel Select Sequencing Control Register 3 ADCCHSELSEQ4 0x7106 1 ADC Channel Select Sequencing Control Register 4 ADCASEQSR 0x7107 1 ADC Auto-Sequence Status Register ADCRESULT0 0x7108 0x0B00 1 ADC Conversion Result Buffer Register 0 ADCRESULT1 0x7109 0x0B01 1 ADC Conversion Result Buffer Register 1 ADCRESULT2 0x710A 0x0B02 1 ADC Conversion Result Buffer Register 2 ADCRESULT3 0x710B 0x0B03 1 ADC Conversion Result Buffer Register 3 ADCRESULT4 0x710C 0x0B04 1 ADC Conversion Result Buffer Register 4 ADCRESULT5 0x710D 0x0B05 1 ADC Conversion Result Buffer Register 5 ADCRESULT6 0x710E 0x0B06 1 ADC Conversion Result Buffer Register 6 ADCRESULT7 0x710F 0x0B07 1 ADC Conversion Result Buffer Register 7 ADCRESULT8 0x7110 0x0B08 1 ADC Conversion Result Buffer Register 8 ADCRESULT9 0x7111 0x0B09 1 ADC Conversion Result Buffer Register 9 (1) (2) 66 The registers in this column are Peripheral Frame 2 Registers. The ADC result registers are dual mapped in the 2833x DSC. Locations in Peripheral Frame 2 (0x7108-0x7117) are 2 wait-states and left justified. Locations in Peripheral frame 0 space (0x0B00-0x0B0F) are 0 wait sates and right justified. During high speed/continuous conversion use of the ADC, use the 0 wait-state locations for fast transfer of ADC results to user memory. Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-5. ADC Registers (continued) NAME ADDRESS (1) ADDRESS (2) SIZE (x16) ADCRESULT10 0x7112 0x0B0A 1 ADC Conversion Result Buffer Register 10 ADCRESULT11 0x7113 0x0B0B 1 ADC Conversion Result Buffer Register 11 ADCRESULT12 0x7114 0x0B0C 1 ADC Conversion Result Buffer Register 12 ADCRESULT13 0x7115 0x0B0D 1 ADC Conversion Result Buffer Register 13 ADCRESULT14 0x7116 0x0B0E 1 ADC Conversion Result Buffer Register 14 ADCRESULT15 0x7117 0x0B0F 1 ADC Conversion Result Buffer Register 15 ADCTRL3 0x7118 1 ADC Control Register 3 ADCST 0x7119 1 ADC Status Register Reserved 0x711A 0x711B 2 ADCREFSEL 0x711C 1 ADC Reference Select Register ADCOFFTRIM 0x711D 1 ADC Offset Trim Register Reserved 0x711E 0x711F 2 ADC Status Register Submit Documentation Feedback PRODUCT PREVIEW DESCRIPTION Peripherals 67 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.8 Multichannel Buffered Serial Port (McBSP) Module PRODUCT PREVIEW The McBSP module has the following features: • Compatible to McBSP in TMS320C54x™ /TMS320C55x™ DSC devices, except the DMA features • Full–duplex communication • Double–buffered data registers that allow a continuous data stream • Independent framing and clocking for receive and transmit • External shift clock generation or an internal programmable frequency shift clock • A wide selection of data sizes including 8–, 12–, 16–, 20–, 24–, or 32–bits • 8–bit data transfers with LSB or MSB first • Programmable polarity for both frame synchronization and data clocks • HIghly programmable internal clock and frame generation • Support A–bis mode • Direct interface to industry–standard CODECs, Analog Interface Chips (AICs), and other serially connected A/D and D/A devices • Works with SPI–compatible devices The following application interfaces can be supported on the McBSP: • T1/E1 framers • MVIP switching–compatible and ST–BUS–compliant devices including: – MVIP framers – H.100 framers – SCSA framers – IOM–2 compliant devices – AC97–compliant devices (the necessary multiphase frame synchronization capability is provided.) – IIS–compliant devices • CLKG = CLKSRG (1 + CLKGDIV ) where CLKSRG source could be LSPCLK, CLKX, or CLKR. McBSP clock rate = Serial port performance is limited by I/O buffer switching speed. Internal prescalers must be adjusted such that the peripheral speed is less than the I/O buffer speed limit—20–MHz maximum. Figure 4-11 shows the block diagram of the McBSP module. 68 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 TX Interrupt To CPU Peripheral Write Bus TX Interrupt Logic 16 McBSP Transmit Interrupt Select Logic 16 DXR2 Transmit Buffer LSPCLK McBSP Registers and Control Logic DXR1 Transmit Buffer 16 16 FSX Compand Logic CLKX XSR2 XSR1 DX RSR2 RSR1 DR 16 CLKR 16 PRODUCT PREVIEW MXINT Expand Logic FSR McBSP RX Interrupt Logic RBR1 Register 16 16 DRR2 Receive Buffer McBSP Receive Interrupt Select Logic MRINT RBR2 Register 16 RX Interrupt DRR1 Receive Buffer 16 Peripheral Read Bus To CPU Figure 4-11. McBSP Module Table 4-6 provides a summary of the McBSP registers. Submit Documentation Feedback Peripherals 69 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-6. McBSP Register Summary NAME McBSP-A ADDRESS McBSP-B ADDRESS TYPE RESET VALUE DESCRIPTION DATA REGISTERS, RECEIVE, TRANSMIT DRR2 0x5000 0x5040 R 0x0000 McBSP Data Receive Register 2 DRR1 0x5001 DXR2 0x5002 0x5041 R 0x0000 McBSP Data Receive Register 1 0x5042 W 0x0000 DXR1 0x5003 McBSP Data Transmit Register 2 0x5043 W 0x0000 McBSP Data Transmit Register 1 McBSP CONTROL REGISTERS PRODUCT PREVIEW SPCR2 0x5004 0x5044 R/W 0x0000 McBSP Serial Port Control Register 2 SPCR1 0x5005 0x5045 R/W 0x0000 McBSP Serial Port Control Register 1 RCR2 0x5006 0x5046 R/W 0x0000 McBSP Receive Control Register 2 RCR1 0x5007 0x5047 R/W 0x0000 McBSP Receive Control Register 1 XCR2 0x5008 0x5048 R/W 0x0000 McBSP Transmit Control Register 2 XCR1 0x5009 0x5049 R/W 0x0000 McBSP Transmit Control Register 1 SRGR2 0x500A 0x504A R/W 0x0000 McBSP Sample Rate Generator Register 2 SRGR1 0x500B 0x504B R/W 0x0000 McBSP Sample Rate Generator Register 1 MULTICHANNEL CONTROL REGISTERS MCR2 0x500C 0x504C R/W 0x0000 McBSP Multichannel Register 2 MCR1 0x500D 0x504D R/W 0x0000 McBSP Multichannel Register 1 RCERA 0x500E 0x504E R/W 0x0000 McBSP Receive Channel Enable Register Partition A RCERB 0x500F 0x504F R/W 0x0000 McBSP Receive Channel Enable Register Partition B XCERA 0x5010 0x5050 R/W 0x0000 McBSP Transmit Channel Enable Register Partition A XCERB 0x5011 0x5051 R/W 0x0000 McBSP Transmit Channel Enable Register Partition B PCR 0x5012 0x5052 R/W 0x0000 McBSP Pin Control Register RCERC 0x5013 0x5053 R/W 0x0000 McBSP Receive Channel Enable Register Partition C RCERD 0x5014 0x5054 R/W 0x0000 McBSP Receive Channel Enable Register Partition D XCERC 0x5015 0x5055 R/W 0x0000 McBSP Transmit Channel Enable Register Partition C XCERD 0x5016 0x5056 R/W 0x0000 McBSP Transmit Channel Enable Register Partition D RCERE 0x5017 0x5057 R/W 0x0000 McBSP Receive Channel Enable Register Partition E RCERF 0x5018 0x5058 R/W 0x0000 McBSP Receive Channel Enable Register Partition F XCERE 0x5019 0x5059 R/W 0x0000 McBSP Transmit Channel Enable Register Partition E XCERF 0x501A 0x505A R/W 0x0000 McBSP Transmit Channel Enable Register Partition F RCERG 0x501B 0x505B R/W 0x0000 McBSP Receive Channel Enable Register Partition G RCERH 0x501C 0x505C R/W 0x0000 McBSP Receive Channel Enable Register Partition H XCERG 0x501D 0x505D R/W 0x0000 McBSP Transmit Channel Enable Register Partition G XCERH 0x501E 0x505E R/W 0x0000 McBSP Transmit Channel Enable Register Partition H MFFINT 0x5023 0x5063 R/W 0x0000 McBSP Interrupt Enable Register MFFST 0x5024 0x5064 R/W 0x0000 McBSP Pin Status Register 70 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.9 Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B) PRODUCT PREVIEW The CAN module has the following features: • Fully compliant with CAN protocol, version 2.0B • Supports data rates up to 1 Mbps • Thirty-two mailboxes, each with the following properties: – Configurable as receive or transmit – Configurable with standard or extended identifier – Has a programmable receive mask – Supports data and remote frame – Composed of 0 to 8 bytes of data – Uses a 32-bit time stamp on receive and transmit message – Protects against reception of new message – Holds the dynamically programmable priority of transmit message – Employs a programmable interrupt scheme with two interrupt levels – Employs a programmable alarm on transmission or reception time-out • Low-power mode • Programmable wake-up on bus activity • Automatic reply to a remote request message • Automatic retransmission of a frame in case of loss of arbitration or error • 32-bit local network time counter synchronized by a specific message (communication in conjunction with mailbox 16) • Self-test mode – Operates in a loopback mode receiving its own message. A "dummy" acknowledge is provided, thereby eliminating the need for another node to provide the acknowledge bit. NOTE For a SYSCLKOUT of 100 MHz, the smallest bit rate possible is 15.625 kbps. For a SYSCLKOUT of 150 MHz, the smallest bit rate possible is 23.4 kbps. Submit Documentation Feedback Peripherals 71 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 eCAN0INT Controls Address eCAN1INT Data Enhanced CAN Controller 32 Message Controller Mailbox RAM (512 Bytes) 32-Message Mailbox of 4 × 32-Bit Words Memory Management Unit 32 CPU Interface, Receive Control Unit, Timer Management Unit eCAN Memory (512 Bytes) Registers and Message Objects Control 32 PRODUCT PREVIEW 32 Receive Buffer eCAN Protocol Kernel Transmit Buffer Control Buffer Status Buffer SN65HVD23x 3.3-V CAN Transceiver CAN Bus Figure 4-12. eCAN Block Diagram and Interface Circuit Table 4-7. 3.3-V eCAN Transceivers 72 PART NUMBER SUPPLY VOLTAGE LOW-POWER MODE SLOPE CONTROL VREF OTHER TA SN65HVD230 3.3 V Standby Adjustable Yes – -40°C to 85°C SN65HVD230Q 3.3 V Standby Adjustable Yes – -40°C to 125°C SN65HVD231 3.3 V Sleep Adjustable Yes – -40°C to 85°C SN65HVD231Q 3.3 V Sleep Adjustable Yes – -40°C to 125°C SN65HVD232 3.3 V None None None – -40°C to 85°C SN65HVD232Q 3.3 V None None None – -40°C to 125°C SN65HVD233 3.3 V Standby Adjustable None Diagnostic Loopback -40°C to 125°C SN65HVD234 3.3 V Standby and Sleep Adjustable None – -40°C to 125°C SN65HVD235 3.3 V Standby Adjustable None Autobaud Loopback -40°C to 125°C Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 eCAN-A Control and Status Registers Mailbox Enable − CANME Mailbox Direction − CANMD Transmission Request Set − CANTRS Transmission Request Reset − CANTRR Transmission Acknowledge − CANTA eCAN-A Memory (512 Bytes) Received Message Pending − CANRMP Control and Status Registers Received Message Lost − CANRML 603Fh 6040h 607Fh 6080h 60BFh 60C0h 60FFh Remote Frame Pending − CANRFP Local Acceptance Masks (LAM) (32 × 32-Bit RAM) Global Acceptance Mask − CANGAM Message Object Time Stamps (MOTS) (32 × 32-Bit RAM) Bit-Timing Configuration − CANBTC Message Object Time-Out (MOTO) (32 × 32-Bit RAM) Transmit Error Counter − CANTEC Master Control − CANMC PRODUCT PREVIEW 6000h Abort Acknowledge − CANAA Error and Status − CANES Receive Error Counter − CANREC Global Interrupt Flag 0 − CANGIF0 Global Interrupt Mask − CANGIM Global Interrupt Flag 1 − CANGIF1 eCAN-A Memory RAM (512 Bytes) 6100h−6107h Mailbox 0 6108h−610Fh Mailbox 1 6110h−6117h Mailbox 2 6118h−611Fh Mailbox 3 6120h−6127h Mailbox 4 Mailbox Interrupt Mask − CANMIM Mailbox Interrupt Level − CANMIL Overwrite Protection Control − CANOPC TX I/O Control − CANTIOC RX I/O Control − CANRIOC Time Stamp Counter − CANTSC Time-Out Control − CANTOC Time-Out Status − CANTOS 61E0h−61E7h Mailbox 28 61E8h−61EFh Mailbox 29 61F0h−61F7h Mailbox 30 61F8h−61FFh Mailbox 31 Reserved Message Mailbox (16 Bytes) 61E8h−61E9h Message Identifier − MSGID 61EAh−61EBh Message Control − MSGCTRL 61ECh−61EDh Message Data Low − MDL 61EEh−61EFh Message Data High − MDH Figure 4-13. eCAN-A Memory Map Submit Documentation Feedback Peripherals 73 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 eCAN-B Control and Status Registers Mailbox Enable − CANME Mailbox Direction − CANMD Transmission Request Set − CANTRS Transmission Request Reset − CANTRR Transmission Acknowledge − CANTA eCAN-B Memory (512 Bytes) 6200h Abort Acknowledge − CANAA Received Message Pending − CANRMP Control and Status Registers Received Message Lost − CANRML 623Fh 6240h 627Fh 6280h PRODUCT PREVIEW 62BFh 62C0h 62FFh Remote Frame Pending − CANRFP Local Acceptance Masks (LAM) (32 × 32-Bit RAM) Global Acceptance Mask − CANGAM Message Object Time Stamps (MOTS) (32 × 32-Bit RAM) Bit-Timing Configuration − CANBTC Message Object Time-Out (MOTO) (32 × 32-Bit RAM) Transmit Error Counter − CANTEC Master Control − CANMC Error and Status − CANES Receive Error Counter − CANREC Global Interrupt Flag 0 − CANGIF0 Global Interrupt Mask − CANGIM Global Interrupt Flag 1 − CANGIF1 eCAN-B Memory RAM (512 Bytes) 6300h−6307h Mailbox 0 6308h−630Fh Mailbox 1 6310h−6317h Mailbox 2 6318h−631Fh Mailbox 3 6320h−6327h Mailbox 4 Mailbox Interrupt Mask − CANMIM Mailbox Interrupt Level − CANMIL Overwrite Protection Control − CANOPC TX I/O Control − CANTIOC RX I/O Control − CANRIOC Time Stamp Counter − CANTSC Time-Out Control − CANTOC Time-Out Status − CANTOS 63E0h−63E7h Mailbox 28 63E8h−63EFh Mailbox 29 63F0h−63F7h Mailbox 30 63F8h−63FFh Mailbox 31 Reserved Message Mailbox (16 Bytes) 63E8h−63E9h Message Identifier − MSGID 63EAh−63EBh Message Control − MSGCTRL 63ECh−63EDh Message Data Low − MDL 63EEh−63EFh Message Data High − MDH Figure 4-14. eCAN-B Memory Map The CAN registers listed in Table 4-8 are used by the CPU to configure and control the CAN controller and the message objects. eCAN control registers only support 32-bit read/write operations. Mailbox RAM can be accessed as 16 bits or 32 bits. 32-bit accesses are aligned to an even boundary. 74 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-8. CAN Register Map (1) ECAN-A ADDRESS ECAN-B ADDRESS SIZE (x32) (1) DESCRIPTION CANME 0x6000 0x6200 1 Mailbox enable CANMD 0x6002 0x6202 1 Mailbox direction CANTRS 0x6004 0x6204 1 Transmit request set CANTRR 0x6006 0x6206 1 Transmit request reset CANTA 0x6008 0x6208 1 Transmission acknowledge CANAA 0x600A 0x620A 1 Abort acknowledge CANRMP 0x600C 0x620C 1 Receive message pending CANRML 0x600E 0x620E 1 Receive message lost CANRFP 0x6010 0x6210 1 Remote frame pending CANGAM 0x6012 0x6212 1 Global acceptance mask CANMC 0x6014 0x6214 1 Master control CANBTC 0x6016 0x6216 1 Bit-timing configuration CANES 0x6018 0x6218 1 Error and status CANTEC 0x601A 0x621A 1 Transmit error counter CANREC 0x601C 0x621C 1 Receive error counter CANGIF0 0x601E 0x621E 1 Global interrupt flag 0 CANGIM 0x6020 0x6220 1 Global interrupt mask CANGIF1 0x6022 0x6222 1 Global interrupt flag 1 CANMIM 0x6024 0x6224 1 Mailbox interrupt mask PRODUCT PREVIEW REGISTER NAME CANMIL 0x6026 0x6226 1 Mailbox interrupt level CANOPC 0x6028 0x6228 1 Overwrite protection control CANTIOC 0x602A 0x622A 1 TX I/O control CANRIOC 0x602C 0x622C 1 RX I/O control CANTSC 0x602E 0x622E 1 Time stamp counter (Reserved in SCC mode) CANTOC 0x6030 0x6230 1 Time-out control (Reserved in SCC mode) CANTOS 0x6032 0x6232 1 Time-out status (Reserved in SCC mode) These registers are mapped to Peripheral Frame 1. Submit Documentation Feedback Peripherals 75 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C) The 2833x devices include three serial communications interface (SCI) modules. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in the full-duplex mode. To ensure data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to over 65000 different speeds through a 16-bit baud-select register. PRODUCT PREVIEW Features of each SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin NOTE: Both pins can be used as GPIO if not used for SCI. – Baud rate programmable to 64K different rates: • • • • • • • • • • • Baud rate = LSPCLK (BRR ) 1) * 8 when BRR ≠ 0 Baud rate = LSPCLK 16 when BRR = 0 Data-word format – One start bit – Data-word length programmable from one to eight bits – Optional even/odd/no parity bit – One or two stop bits Four error-detection flags: parity, overrun, framing, and break detection Two wake-up multiprocessor modes: idle-line and address bit Half- or full-duplex operation Double-buffered receive and transmit functions Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) Separate enable bits for transmitter and receiver interrupts (except BRKDT) Max bit rate + 150 MHz + 9.375 106 bńs 16 (for 150-MHz devices) 100 MHz 6 Max bit rate + + 6.25 10 bńs 16 (for 100-MHz devices) NRZ (non-return-to-zero) format Ten SCI module control registers located in the control register frame beginning at address 7050h NOTE All registers in this module are 8-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7-0), and the upper byte (15-8) is read as zeros. Writing to the upper byte has no effect. Enhanced features: • Auto baud-detect hardware logic 76 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 • 16-level transmit/receive FIFO The SCI port operation is configured and controlled by the registers listed in Table 4-9, Table 4-10, and Table 4-11. Table 4-9. SCI-A Registers (1) (2) ADDRESS SIZE (x16) 0x7050 1 SCI-A Communications Control Register DESCRIPTION SCICTL1A 0x7051 1 SCI-A Control Register 1 SCIHBAUDA 0x7052 1 SCI-A Baud Register, High Bits SCILBAUDA 0x7053 1 SCI-A Baud Register, Low Bits SCICTL2A 0x7054 1 SCI-A Control Register 2 SCIRXSTA 0x7055 1 SCI-A Receive Status Register SCIRXEMUA 0x7056 1 SCI-A Receive Emulation Data Buffer Register SCIRXBUFA 0x7057 1 SCI-A Receive Data Buffer Register SCITXBUFA 0x7059 1 SCI-A Transmit Data Buffer Register SCIFFTXA (2) 0x705A 1 SCI-A FIFO Transmit Register SCIFFRXA (2) 0x705B 1 SCI-A FIFO Receive Register SCIFFCTA (2) 0x705C 1 SCI-A FIFO Control Register SCIPRIA 0x705F 1 SCI-A Priority Control Register PRODUCT PREVIEW (1) NAME SCICCRA Registers in this table are mapped to Peripheral Frame 2 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Table 4-10. SCI-B Registers (1) (2) (1) (2) NAME ADDRESS SIZE (x16) DESCRIPTION SCICCRB 0x7750 1 SCI-B Communications Control Register SCICTL1B 0x7751 1 SCI-B Control Register 1 SCIHBAUDB 0x7752 1 SCI-B Baud Register, High Bits SCILBAUDB 0x7753 1 SCI-B Baud Register, Low Bits SCICTL2B 0x7754 1 SCI-B Control Register 2 SCIRXSTB 0x7755 1 SCI-B Receive Status Register SCIRXEMUB 0x7756 1 SCI-B Receive Emulation Data Buffer Register SCIRXBUFB 0x7757 1 SCI-B Receive Data Buffer Register SCITXBUFB 0x7759 1 SCI-B Transmit Data Buffer Register SCIFFTXB (2) 0x775A 1 SCI-B FIFO Transmit Register SCIFFRXB (2) 0x775B 1 SCI-B FIFO Receive Register SCIFFCTB (2) 0x775C 1 SCI-B FIFO Control Register SCIPRIB 0x775F 1 SCI-B Priority Control Register Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Submit Documentation Feedback Peripherals 77 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-11. SCI-C Registers (1) (2) PRODUCT PREVIEW (1) (2) 78 NAME ADDRESS SIZE (x16) SCICCRC 0x7770 1 SCI-C Communications Control Register DESCRIPTION SCICTL1C 0x7771 1 SCI-C Control Register 1 SCIHBAUDC 0x7772 1 SCI-C Baud Register, High Bits SCILBAUDC 0x7773 1 SCI-C Baud Register, Low Bits SCICTL2C 0x7774 1 SCI-C Control Register 2 SCIRXSTC 0x7775 1 SCI-C Receive Status Register SCIRXEMUC 0x7776 1 SCI-C Receive Emulation Data Buffer Register SCIRXBUFC 0x7777 1 SCI-C Receive Data Buffer Register SCITXBUFC 0x7779 1 SCI-C Transmit Data Buffer Register SCIFFTXC (2) 0x777A 1 SCI-C FIFO Transmit Register SCIFFRXC (2) 0x777B 1 SCI-C FIFO Receive Register SCIFFCTC (2) 0x777C 1 SCI-C FIFO Control Register SCIPRC 0x777F 1 SCI-C Priority Control Register Registers in this table are mapped to peripheral bus 16 space. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. These registers are new registers for the FIFO mode. Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Figure 4-15 shows the SCI module block diagram. SCICTL1.1 SCITXD Frame Format and Mode Parity Even/Odd Enable TXSHF Register TXENA 8 SCICCR.6 SCICCR.5 TX EMPTY SCICTL2.6 TXRDY TXWAKE SCICTL1.3 1 Transmitter-Data Buffer Register 8 TX INT ENA SCICTL2.7 SCICTL2.0 TX FIFO Interrupts TX FIFO _0 TX FIFO _1 SCITXD TXINT TX Interrupt Logic ----- To CPU TX FIFO _15 WUT SCI TX Interrupt select logic SCITXBUF.7-0 SCIFFENA PRODUCT PREVIEW TX FIFO registers AutoBaud Detect logic SCIFFTX.14 SCIHBAUD. 15 - 8 Baud Rate MSbyte Register SCIRXD RXSHF Register SCIRXD RXWAKE LSPCLK SCIRXST.1 SCILBAUD. 7 - 0 Baud Rate LSbyte Register RXENA 8 SCICTL1.0 SCICTL2.1 Receive Data Buffer register SCIRXBUF.7-0 RXRDY 8 BRKDT RX FIFO _15 ----RX FIFO_1 RX FIFO _0 SCIRXBUF.7-0 RX/BK INT ENA SCIRXST.6 SCIRXST.5 RX FIFO Interrupts RX Interrupt Logic To CPU RX FIFO registers SCIRXST.7 SCIRXST.4 - 2 RX Error FE OE PE RXINT RXFFOVF SCIFFRX.15 RX Error RX ERR INT ENA SCICTL1.6 SCI RX Interrupt select logic Figure 4-15. Serial Communications Interface (SCI) Module Block Diagram Submit Documentation Feedback Peripherals 79 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.11 Serial Peripheral Interface (SPI) Module (SPI-A) The 2833x devices include the four-pin serial peripheral interface (SPI) module. One SPI module (SPI-A) is available. The SPI is a high-speed, synchronous serial I/O port that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmable bit-transfer rate. Normally, the SPI is used for communications between the DSC controller and external peripherals or another processor. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and ADCs. Multidevice communications are supported by the master/slave operation of the SPI. PRODUCT PREVIEW The SPI module features include: • Four external pins: – SPISOMI: SPI slave-output/master-input pin – SPISIMO: SPI slave-input/master-output pin – SPISTE: SPI slave transmit-enable pin – SPICLK: SPI serial-clock pin NOTE: All four pins can be used as GPIO, if the SPI module is not used. • Two operational modes: master and slave Baud rate: 125 different programmable rates. • • • • • Baud rate = LSPCLK (SPIBRR ) 1) Baud rate = LSPCLK 4 when SPIBRR = 3 to 127 when SPIBRR = 0,1, 2 Data word length: one to sixteen data bits Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. Simultaneous receive and transmit operation (transmit function can be disabled in software) Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms. Nine SPI module control registers: Located in control register frame beginning at address 7040h. NOTE All registers in this module are 16-bit registers that are connected to Peripheral Frame 2. When a register is accessed, the register data is in the lower byte (7-0), and the upper byte (15-8) is read as zeros. Writing to the upper byte has no effect. Enhanced feature: • 16-level transmit/receive FIFO • Delayed transmit control The SPI port operation is configured and controlled by the registers listed in Table 4-12. 80 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-12. SPI-A Registers ADDRESS SIZE (X16) SPICCR 0x7040 1 SPI-A Configuration Control Register SPICTL 0x7041 1 SPI-A Operation Control Register SPISTS 0x7042 1 SPI-A Status Register SPIBRR 0x7044 1 SPI-A Baud Rate Register SPIRXEMU 0x7046 1 SPI-A Receive Emulation Buffer Register SPIRXBUF 0x7047 1 SPI-A Serial Input Buffer Register SPITXBUF 0x7048 1 SPI-A Serial Output Buffer Register SPIDAT 0x7049 1 SPI-A Serial Data Register SPIFFTX 0x704A 1 SPI-A FIFO Transmit Register SPIFFRX 0x704B 1 SPI-A FIFO Receive Register SPIFFCT 0x704C 1 SPI-A FIFO Control Register SPIPRI 0x704F 1 SPI-A Priority Control Register PRODUCT PREVIEW (1) DESCRIPTION (1) NAME Registers in this table are mapped to Peripheral Frame 2. This space only allows 16-bit accesses. 32-bit accesses produce undefined results. Submit Documentation Feedback Peripherals 81 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Figure 4-16 is a block diagram of the SPI in slave mode. SPIFFENA Overrun INT ENA Receiver Overrun Flag SPIFFTX.14 RX FIFO registers SPISTS.7 SPICTL.4 SPIRXBUF RX FIFO _0 RX FIFO _1 −−−−− SPIINT/SPIRXINT RX FIFO Interrupt RX Interrupt Logic RX FIFO _15 16 SPIRXBUF Buffer Register SPIFFOVF FLAG PRODUCT PREVIEW SPIFFRX.15 To CPU TX FIFO registers SPITXBUF TX FIFO _15 −−−−− TX Interrupt Logic TX FIFO Interrupt TX FIFO _1 TX FIFO _0 SPITXINT 16 SPI INT FLAG SPITXBUF Buffer Register 16 SPI INT ENA SPISTS.6 SPICTL.0 16 M M SPIDAT Data Register S S SW1 SPISIMO M M SPIDAT.15 − 0 S S SW2 SPISOMI Talk SPICTL.1 SPISTE(A) State Control Master/Slave SPI Char SPICCR.3 − 0 3 2 1 SW3 M SPI Bit Rate LSPCLK S SPIBRR.6 − 0 6 A. SPICTL.2 S 0 5 4 3 2 1 0 Clock Polarity Clock Phase SPICCR.6 SPICTL.3 SPICLK M SPISTE is driven low by the master for a slave device. Figure 4-16. SPI Module Block Diagram (Slave Mode) 82 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 www.ti.com Digital Signal Controllers (DSCs) SPRS439 – JUNE 2007 4.12 Inter-Integrated Circuit (I2C) The I2C module has the following features: • Compliance with the Philips Semiconductors I2C-bus specification (version 2.1): – Support for 1-bit to 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate of from 10 kbps up to 400 kbps (Philips Fast-mode rate) • One 16-bit receive FIFO and one 16-bit transmit FIFO • One interrupt that can be used by the CPU. This interrupt can be generated as a result of one of the following conditions: – Transmit-data ready – Receive-data ready – Register-access ready – No-acknowledgment received – Arbitration lost – Stop condition detected – Addressed as slave • An additional interrupt that can be used by the CPU when in FIFO mode • Module enable/disable capability • Free data format mode Submit Documentation Feedback Peripherals 83 PRODUCT PREVIEW The 2833x device contains one I2C Serial Port. Figure 4-15 shows how the I2C peripheral module interfaces within the 2833x device. TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 System Control Block C28X CPU I2CAENCLK Peripheral Bus SYSCLKOUT SYSRS Control Data[16] SDAA Data[16] PRODUCT PREVIEW GPIO MUX I2C−A Addr[16] SCLA I2CINT1A PIE Block I2CINT2A A. The I2C registers are accessed at the SYSCLKOUT rate. The internal timing and signal waveforms of the I2C port are also at the SYSCLKOUT rate. B. The clock enable bit (I2CAENCLK) in the PCLKCRO register turns off the clock to the I2C port for low power operation. Upon reset, I2CAENCLK is clear, which indicates the peripheral internal clocks are off. Figure 4-17. I2C Peripheral Module Interfaces The registers in Table 4-13 configure and control the I2C port operation. Table 4-13. I2C-A Registers 84 NAME ADDRESS I2COAR 0x7900 I2C own address register DESCRIPTION I2CIER 0x7901 I2C interrupt enable register I2CSTR 0x7902 I2C status register I2CCLKL 0x7903 I2C clock low-time divider register I2CCLKH 0x7904 I2C clock high-time divider register I2CCNT 0x7905 I2C data count register I2CDRR 0x7906 I2C data receive register I2CSAR 0x7907 I2C slave address register I2CDXR 0x7908 I2C data transmit register I2CMDR 0x7909 I2C mode register I2CISRC 0x790A I2C interrupt source register I2CPSC 0x790C I2C prescaler register I2CFFTX 0x7920 I2C FIFO transmit register I2CFFRX 0x7921 I2C FIFO receive register I2CRSR - I2C receive shift register (not accessible to the CPU) I2CXSR - I2C transmit shift register (not accessible to the CPU) Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 4.13 GPIO MUX On the 2833x devices, the GPIO MUX can multiplex up to three independent peripheral signals on a single GPIO pin in addition to providing individual pin bit-banging IO capability. The GPIO MUX block diagram per pin is shown in Figure 4-18. Because of the open drain capabilities of the I2C pins, the GPIO MUX block diagram for these pins differ. See the TMS320x280x, 2801x, 2804x System Control and Interrupts Reference Guide (literature number SPRU712) for details. GPIOXINT1SEL GPIOXINT2SEL LPMCR0 GPIOXNMISEL External Interrupt MUX Low Power Modes Block Asynchronous path GPxDAT (read) GPxQSEL1/2 GPxCTRL GPxPUD 00 Input Qualification Internal Pullup PIE PRODUCT PREVIEW GPIOLMPSEL N/C 01 Peripheral 1 Input 10 Peripheral 2 Input 11 Peripheral 3 Input GPxTOGGLE Asynchronous path GPIOx pin GPxCLEAR GPxSET 00 GPxDAT (latch) 01 Peripheral 1 Output 10 Peripheral 2 Output 11 Peripheral 3 Output 00 GPxDIR (latch) High Impedance Output Control 01 Peripheral 1 Output Enable 10 Peripheral 2 Output Enable 11 Peripheral 3 Output Enable 0 = Input, 1 = Output XRS = Default at Reset GPxMUX1/2 A. x stands for the port, either A or B. For example, GPxDIR refers to either the GPADIR and GPBDIR register depending on the particular GPIO pin selected. B. GPxDAT latch/read are accessed at the same memory location. Figure 4-18. GPIO MUX Block Diagram Submit Documentation Feedback Peripherals 85 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 The 2833x supports 88 GPIO pins. The GPIO control and data registers are mapped to Peripheral Frame 1 to enable 32-bit operations on the registers (along with 16-bit operations). Table 4-14 shows the GPIO register mapping. Table 4-14. GPIO Registers NAME ADDRESS SIZE (x16) DESCRIPTION GPIO CONTROL REGISTERS (EALLOW PROTECTED) GPACTRL 0x6F80 2 GPIO A Control Register (GPIO0 to 31) GPAQSEL1 0x6F82 2 GPIO A Qualifier Select 1 Register (GPIO0 to 15) GPAQSEL2 0x6F84 2 GPIO A Qualifier Select 2 Register (GPIO16 to 31) GPAMUX1 0x6F86 2 GPIO A MUX 1 Register (GPIO0 to 15) GPAMUX2 0x6F88 2 GPIO A MUX 2 Register (GPIO16 to 31) PRODUCT PREVIEW GPADIR 0x6F8A 2 GPIO A Direction Register (GPIO0 to 31) GPAPUD 0x6F8C 2 GPIO A Pull Up Disable Register (GPIO0 to 31) reserved 0x6F8E 0x6F8F 2 GPBCTRL 0x6F90 2 GPIO B Control Register (GPIO32 to 35) GPBQSEL1 0x6F92 2 GPIO B Qualifier Select 1 Register (GPIO32 to 35) GPBQSEL2 0x6F94 2 reserved GPBMUX1 0x6F96 2 GPIO B MUX 1 Register (GPIO32 to 35) GPBMUX2 0x6F98 2 reserved GPBDIR 0x6F9A 2 GPIO B Direction Register (GPIO32 to 35) GPBPUD 0x6F9C 2 GPIO B Pull Up Disable Register (GPIO32 to 35) reserved 0x6F9E 0x6F9F 2 reserved reserved 0x6FA0 0x6FBF 32 GPADAT 0x6FC0 2 GPIO Data Register (GPIO0 to 31) GPIO DATA REGISTERS (NOT EALLOW PROTECTED) GPASET 0x6FC2 2 GPIO Data Set Register (GPIO0 to 31) GPACLEAR 0x6FC4 2 GPIO Data Clear Register (GPIO0 to 31) GPATOGGLE 0x6FC6 2 GPIO Data Toggle Register (GPIO0 to 31) GPBDAT 0x6FC8 2 GPIO Data Register (GPIO32 to 35) GPBSET 0x6FCA 2 GPIO Data Set Register (GPIO32 to 35) GPBCLEAR 0x6FCC 2 GPIO Data Clear Register (GPIO32 to 35) GPBTOGGLE 0x6FCE 2 GPIO Data Toggle Register (GPIO32 to 35) reserved 0x6FD0 0x6FDF 16 GPIO INTERRUPT AND LOW POWER MODES SELECT REGISTERS (EALLOW PROTECTED) 86 GPIOXINT1SEL 0x6FE0 1 XINT1 GPIO Input Select Register (GPIO0 to 31) GPIOXINT2SEL 0x6FE1 1 XINT2 GPIO Input Select Register (GPIO0 to 31) GPIOXNMISEL 0x6FE2 1 XNMI GPIO Input Select Register (GPIO0 to 31) reserved 0x6FE3 0x6FE7 5 GPIOLPMSEL 0x6FE8 2 reserved 0x6FEA 0x6FFF 22 Peripherals LPM GPIO Select Register (GPIO0 to 31) Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-15. GPIO-A Mux Peripheral Selection Matrix PERIPHERAL SELECTION GPAMUX1 GPAQSEL1 GPIOx GPAMUX1=0,0 PER1 GPAMUX1 = 0, 1 PER2 GPAMUX1 = 1, 0 PER3 GPAMUX1 = 1, 1 ECAP6 (I/O) MFSRB (I/O) ECAP5 (I/O) MCLKRB (I/O) Q 0 1, 0 GPIO0 (I/O) EPWM1A (O) U 1 3, 2 GPIO1 (I/O) EPWM1B (O) A 2 5, 4 GPIO2 (I/O) EPWM2A (O) L 3 7, 6 GPIO3 (I/O) EPWM2B (O) P 4 9, 8 GPIO4 (I/O) EPWM3A (O) R 5 11, 10 GPIO5 (I/O) EPWM3B (O) MFSRA (I/O) ECAP1 (I/O) D 6 13, 12 GPIO6 (I/O) EPWM4A (O) EPWMSYNCI (I) EPWMSYNCO (O) 0 7 15, 14 GPIO7 (I/O) EPWM4B (O) MCLKRA (I/O) ECAP2 (I/O) Q 8 17, 16 GPIO8 (I/O) EPWM5A (O) CANTXB (O) ADCSOCAO (O) U 9 19, 18 GPIO9 (I/O) EPWM5B (O) SCITXDB (O) ECAP3 (I/O) A 10 21, 20 GPIO10 (I/O) EPWM6A (O) CANRXB (I) ADCSOCBO (O) L 11 23, 22 GPIO11 (I/O) EPWM6B (O) SCIRXDB (I) ECAP4 (I/O) MDXB (O) P 12 25, 24 GPIO12 (I/O) TZ1 (I) CANTXB (O) R 13 27, 26 GPIO13 (I/O) TZ2 (I) CANRXB (I) MDRB (I) D 14 29, 28 GPIO14 (I/O) TZ3 (I)/XHOLD (I) SCITXDB (O) MCLKXB (I/O) 1 15 31, 30 GPIO15 (I/O) TZ4 (I)/XHOLDA (O) SCIRXDB (I) MFSXB (I/O) GPAQSEL2 GPAMUX2 =0, 0 GPAMUX2 = 0, 1 GPAMUX2 = 1, 0 GPAMUX2 = 1, 1 TZ5 (I) PRODUCT PREVIEW REGISTER BITS GPADIR GPADAT GPASET GPACLR GPATOGGLE GPAMUX2 Q 16 1, 0 GPIO16 (I/O) SPISIMOA (I/O) CANTXB (O) U 17 3, 2 GPIO17 (I/O) SPISOMIA (I/O) CANRXB (I) TZ6 (I) A 18 5, 4 GPIO18 (I/O) SPICLKA (I/O) SCITXDB (O) CANRXA (I) L 19 7, 6 GPIO19 (I/O) SPISTEA (I/O) SCIRXDB (I) CANTXA (O) CANTXB (O) P 20 9, 8 GPIO20 (I/O) EQEP1A (I) MDXA (O) R 21 11, 10 GPIO21 (I/O) EQEP1B (I) MDRA (I) CANRXB (I) D 22 13, 12 GPIO22 (I/O) EQEP1S (I/O) MCLKXA (I/O) SCITXDB (O) 2 23 15, 14 GPIO23 (I/O) EQEP1I (I/O) MFSXA (I/O) SCIRXDB (I) Q 24 17, 16 GPIO24 (I/O) ECAP1 (I/O) EQEP2A (I) MDXB (O) U 25 19, 18 GPIO25 (I/O) ECAP2 (I/O) EQEP2B (I) MDRB (I) A 26 21, 20 GPIO26 (I/O) ECAP3 (I/O) EQEP2I (I/O) MCLKXB (I/O) L 27 23, 22 GPIO27 (I/O) ECAP4 (I/O) EQEP2S (I/O) MFSXB (I/O) P 28 25, 24 GPIO28 (I/O) SCIRXDA (I) XZCS6 (O) R 29 27, 26 GPIO29 (I/O) SCITXDA (O) XA19 (O) D 30 29, 28 GPIO30 (I/O) CANRXA (I) XA18 (O) 3 31 31, 30 GPIO31 (I/O) CANTXA (O) XA17 (O) Submit Documentation Feedback Peripherals 87 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-16. GPIO-B Mux Peripheral Selection Matrix REGISTER BITS PERIPHERAL SELECTION GPBDIR GPBDAT GPBSET GPBCLR GPBTOGGLE PRODUCT PREVIEW (1) 88 GPBMUX1 GPBQSEL1 GPIOx GPBMUX1=0, 0 PER1 GPBMUX1 = 0, 1 PER2 GPBMUX1 = 1, 0 PER3 GPBMUX1 = 1, 1 Q 0 1, 0 GPIO32 (I/O) SDAA (I/OC) (1) EPWMSYNCI (I) ADCSOCAO (O) U 1 3, 2 GPIO33 (I/O) SCLA (I/OC) (1) EPWMSYNCO (O) ADCSOCBO (O) A 2 5, 4 GPIO34 (I/O) ECAP1 (I/O) XREADY (I) L 3 7, 6 GPIO35 (I/O) SCITXDA (O) XR/W (O) P 4 9, 8 GPIO36 (I/O) SCIRXDA (I) XZCS0 (O) R 5 11, 10 GPIO37 (I/O) ECAP2 (I/O) XZCS7 (O) D 6 13, 12 GPIO38 (I/O) XWE0 (O) 0 7 15, 14 GPIO39 (I/O) XA16 (O) Q 8 17, 16 GPIO40 (I/O) XA0/XWE1 (O) U 9 19, 18 GPIO41 (I/O) XA1 (O) A 10 21, 20 GPIO42 (I/O) XA2 (O) L 11 23, 22 GPIO43 (I/O) XA3 (O) P 12 25, 24 GPIO44 (I/O) XA4 (O) R 13 27, 26 GPIO45 (I/O) XA5 (O) D 14 29, 28 GPIO46 (I/O) XA6 (O) 1 15 31, 30 GPIO47 (I/O) GPBMUX2 GPBQSEL2 GPBMUX2 =0, 0 GPBMUX2 = 0, 1 GPBMUX2 = 1, 0 XA7 (O) Q 16 1, 0 GPIO48 (I/O) ECAP5 (I/O) XD31 (I/O) U 17 3, 2 GPIO49 (I/O) ECAP6 (I/O) XD30 (I/O) A 18 5, 4 GPIO50 (I/O) EQEP1A (I) XD29 (I/O) L 19 7, 6 GPIO51 (I/O) EQEP1B (I) XD28 (I/O) P 20 9, 8 GPIO52 (I/O) EQEP1S (I/O) XD27 (I/O) R 21 11, 10 GPIO53 (I/O) EQEP1I (I/O) XD26 (I/O) D 22 13, 12 GPIO54 (I/O) SPISIMOA (I/O) XD25 (I/O) 2 23 15, 14 GPIO55 (I/O) SPISOMIA (I/O) XD24 (I/O) Q 24 17, 16 GPIO56 (I/O) SPICLKA (I/O) XD23 (I/O) U 25 19, 18 GPIO57 (I/O) SPISTEA (I/O) XD22 (I/O) A 26 21, 20 GPIO58 (I/O) MCLKRA (I/O) XD21 (I/O) L 27 23, 22 GPIO59 (I/O) MFSRA (I/O) XD20 (I/O) P 28 25, 24 GPIO60 (I/O) MCLKRB (I/O) XD19 (I/O) R 29 27, 26 GPIO61 (I/O) MFSRB (I/O) XD18 (I/O) D 30 29, 28 GPIO62 (I/O) SCIRXDC (I) XD17 (I/O) 3 31 31, 30 GPIO63 (I/O) SCITXDC (O) XD16 (I/O) GPBMUX2 = 1, 1 Open drain Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Table 4-17. GPIO-C Mux Peripheral Selection Matrix PERIPHERAL SELECTION GPCMUX1 GPIOx or PER1 GPCMUX1 = 0, 0 or 0, 1 PER2 or PER3 GPCMUX1 = 1, 0 or 1, 1 0 1, 0 GPIO64 (I/O) XD15 (I/O) 1 3, 2 GPIO65 (I/O) XD14 (I/O) qu 2 5, 4 GPIO66 (I/O) XD13 (I/O) a 3 7, 6 GPIO67 (I/O) XD12 (I/O) l 4 9, 8 GPIO68 (I/O) XD11 (I/O) 5 11, 10 GPIO69 (I/O) XD10 (I/O) 6 13, 12 GPIO70 (I/O) XD9 (I/O) 7 15, 14 GPIO71 (I/O) XD8 (I/O) 8 17, 16 GPIO72 (I/O) XD7 (I/O) 9 19, 18 GPIO73 (I/O) XD6 (I/O) qu 10 21, 20 GPIO74 (I/O) XD5 (I/O) a 11 23, 22 GPIO75 (I/O) XD4 (I/O) l 12 25, 24 GPIO76 (I/O) XD3 (I/O) 13 27, 26 GPIO77 (I/O) XD2 (I/O) 14 29, 28 GPIO78 (I/O) XD1 (I/O) no no 15 no 31, 30 GPIO79 (I/O) XD0 (I/O) GPCMUX2 GPCMUX2 = 0, 0 or 0, 1 GPCMUX2 = 1, 0 or 1, 1 16 1, 0 GPIO80 (I/O) XA8 (O) 17 3, 2 GPIO81 (I/O) XA9 (O) qu 18 5, 4 GPIO82 (I/O) XA10 (O) a 19 7, 6 GPIO83 (I/O) XA11 (O) l 20 9, 8 GPIO84 (I/O) XA12 (O) 21 11, 10 GPIO85 (I/O) XA13 (O) 22 13, 12 GPIO86 (I/O) XA14 (O) 23 15, 14 GPIO87 (I/O) XA15 (O) PRODUCT PREVIEW REGISTER BITS GPCDIR GPCDAT GPCSET GPCCLR GPCTOGGLE The user can select the type of input qualification for each GPIO pin via the GPxQSEL1/2 registers from four choices: • Synchronization To SYSCLKOUT Only (GPxQSEL1/2=0, 0): This is the default mode of all GPIO pins at reset and it simply synchronizes the input signal to the system clock (SYSCLKOUT). • Qualification Using Sampling Window (GPxQSEL1/2=0, 1 and 1, 0): In this mode the input signal, after synchronization to the system clock (SYSCLKOUT), is qualified by a specified number of cycles before the input is allowed to change. Submit Documentation Feedback Peripherals 89 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Time between samples GPyCTRL Reg GPIOx SYNC Qualification Input Signal Qualified By 3 or 6 Samples GPxQSEL SYSCLKOUT PRODUCT PREVIEW Number of Samples Figure 4-19. Qualification Using Sampling Window • • The sampling period is specified by the QUALPRD bits in the GPxCTRL register and is configurable in groups of 8 signals. It specifies a multiple of SYSCLKOUT cycles for sampling the input signal. The sampling window is either 3-samples or 6-samples wide and the output is only changed when ALL samples are the same (all 0s or all 1s) as shown in Figure 4-18 (for 6 sample mode). No Synchronization (GPxQSEL1/2=1,1): This mode is used for peripherals where synchronization is not required (synchronization is performed within the peripheral). Due to the multi-level multiplexing that is required on the 2833x device, there may be cases where a peripheral input signal can be mapped to more then one GPIO pin. Also, when an input signal is not selected, the input signal will default to either a 0 or 1 state, depending on the peripheral. 90 Peripherals Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 5 Device Support Texas Instruments (TI) offers an extensive line of development tools for the C28x™ generation of DSCs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. Software Development Tools • Code Composer Studio™ Integrated Development Environment (IDE) – C/C++ Compiler – Code generation tools – Assembler/Linker – Cycle Accurate Simulator • Application algorithms • Sample applications code Hardware Development Tools • 2833x development board • Evaluation modules • JTAG-based emulators - SPI515, XDS510PP, XDS510PP Plus, XDS510USB • Universal 5-V dc power supply • Documentation and cables 5.1 Device and Development Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320™ DSC devices and support tools. Each TMS320™ DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320F28335). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications TMP Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification TMS Fully qualified production device Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing TMDS Fully qualified development-support product TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Submit Documentation Feedback Device Support 91 PRODUCT PREVIEW The following products support development of 2833x-based applications: TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PBK) and temperature range (for example, A). Figure 5-1 provides a legend for reading the complete device name for any family member. TMS 320 F 28335 PGF A PREFIX TMX = experimental device TMP = prototype device TMS = qualified device PRODUCT PREVIEW DEVICE FAMILY 320 = TMS320 DSP Family TECHNOLOGY F = Flash EEPROM (1.8-V/1.9-V Core/3.3-V I/O) TEMPERATURE RANGE A = −40°C to 85°C PACKAGE TYPE ZHH = 179-ball MicroStar BGA (lead-free) PGF = 176-pin LQFP DEVICE 28335 28334 28332 BGA = Ball Grid Array LQFP = Low-Profile Quad Flatpack .ti.com/leadfree Figure 5-1. Example of 2833x Device Nomenclature 92 Device Support Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 5.2 Documentation Support Extensive documentation supports all of the TMS320™ DSP family generations of devices from product announcement through applications development. The types of documentation available include: data sheets and data manuals, with design specifications; and hardware and software applications. Useful reference documentation includes: CPU User's Guides SPRU430 TMS320C28x DSP CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs. TMS320C28x Floating Point Unit and Instruction Set Reference Guide describes the floating-point unit and includes the instructions for the FPU. Peripheral Guides SPRU566 TMS320x28xx, 28xxx Peripheral Reference Guide describes the peripheral reference guides of the 28x digital signal processors (DSPs). SPRU716 TMS320x280x, 2801x, 2804x Analog-to-Digital Converter (ADC) Reference Guide describes how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC. SPRU791 TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide describes the main areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power conversion SPRU924 TMS320x28xx, 28xxx High-Resolution Pulse Width Modulator (HRPWM) describes the operation of the high-resolution extension to the pulse width modulator (HRPWM) SPRU807 TMS320x28xx, 28xxx Enhanced Capture (eCAP) Module Reference Guide describes the enhanced capture module. It includes the module description and registers. SPRU790 TMS320x28xx, 28xxx Enhanced Quadrature Encoder Pulse (eQEP) Reference Guide describes the eQEP module, which is used for interfacing with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine in high performance motion and position control systems. It includes the module description and registers SPRU074 TMS320x28xx, 28xxx Enhanced Controller Area Network (eCAN) Reference Guide describes the eCAN that uses established protocol to communicate serially with other controllers in electrically noisy environments. SPRU051 TMS320x28xx, 28xxx Serial Communication Interface (SCI) Reference Guide describes the SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format. SPRU059 TMS320x28xx, 28xxx Serial Peripheral Interface (SPI) Reference Guide describes the SPI a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed bit-transfer rate. SPRU721 TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Reference Guide describes the features and operation of the inter-integrated circuit (I2C) module that is available on the TMS320x280x digital signal processor (DSP). Tools Guides SPRU513 TMS320C28x Assembly Language Tools User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler Submit Documentation Feedback Device Support 93 PRODUCT PREVIEW SPRUEO2 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. SPRU514 TMS320C28x Optimizing C Compiler User's Guide describes the TMS320C28x™ C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. SPRU608 The TMS320C28x Instruction Set Simulator Technical Overview describes the simulator, available within the Code Composer Studio for TMS320C2000 IDE, that simulates the instruction set of the C28x™ core. SPRU625 TMS320C28x DSP/BIOS Application Programming Interface (API) Reference Guide describes development using DSP/BIOS. Application Reports PRODUCT PREVIEW 94 SPRAAM0 Getting Started With TMS320C28x™ Digital Signal Controllers is organized by development flow and functional areas to make your design effort as seamless as possible. Tips on getting started with C28x™ DSP software and hardware development are provided to aid in your initial design and debug efforts. Each section includes pointers to valuable information including technical documentation, software, and tools for use in each phase of design. SPRAAD5 Power Line Communication for Lighting Apps using BPSK w/ a Single DSP Controller presents a complete implementation of a power line modem following CEA-709 protocol using a single DSP. SPRAA85 Programming TMS320x28xx and 28xxx Peripherals in C/C++ explores a hardware abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is compared to traditional #define macros and topics of code efficiency and special case registers are also addressed. SPRA958 Running an Application from Internal Flash Memory on the TMS320F28xx DSP covers the requirements needed to properly configure application software for execution from on-chip flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are presented. Example code projects are included. SPRAA91 TMS320F280x DSC USB Connectivity Using TUSB3410 USB-to-UART Bridge Chip presents hardware connections as well as software preparation and operation of the development system using a simple communication echo program. SPRAA58 TMS320x281x to TMS320x280x Migration Overview describes differences between the Texas Instruments TMS320x281x and TMS320x280x DSPs to assist in application migration from the 281x to the 280x. While the main focus of this document is migration from 281x to 280x, users considering migrating in the reverse direction (280x to 281x) will also find this document useful. SPRAAD8 TMS320280x and TMS320F2801x ADC Calibration describes a method for improving the absolute accuracy of the 12-bit ADC found on the TMS320280x and TMS3202801x devices. Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods described in this report can improve the absolute accuracy of the ADC to levels better than 0.5%. This application report has an option to download an example program that executes from RAM on the F2808 EzDSP. SPRAAI1 Using Enhanced Pulse Width Modulator (ePWM) Module for 0-100% Duty Cycle Control provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control and is applicable to the TMS320x280x family of processors. SPRAA88 Using PWM Output as a Digital-to-Analog Converter on a TMS320F280x presents a method for utilizing the on-chip pulse width modulated (PWM) signal generators on the TMS320F280x family of digital signal controllers as a digital-to-analog converter (DAC). Device Support Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRAAH1 Using the Enhanced Quadrature Encoder Pulse (eQEP) Module provides a guide for the use of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x, 28xxx family of processors. SPRA820 Online Stack Overflow Detection on the TMS320C28x DSP presents the methodology for online stack overflow detection on the TMS320C28x™ DSP. C-source code is provided that contains functions for implementing the overflow detection on both DSP/BIOS™ and non-DSP/BIOS applications. SPRA806 An Easy Way of Creating a C-callable Assembly Function for the TMS320C28x DSP provides instructions and suggestions to configure the C compiler to assist with understanding of parameter-passing conventions and environments expected by the C compiler. A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is published quarterly and distributed to update TMS320 DSP customers on product information. Updated information on the TMS320 DSP controllers can be found on the worldwide web at: http://www.ti.com. To send comments regarding this data manual (literature number SPRS230), use the [email protected] email address, which is a repository for feedback. For questions and support, contact the Product Information Center listed at the http://www.ti.com/sc/docs/pic/home.htm site. Submit Documentation Feedback Device Support 95 PRODUCT PREVIEW SPRS439 – JUNE 2007 TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 6 Electrical Specifications This section provides the absolute maximum ratings and the recommended operating conditions. 6.1 Absolute Maximum Ratings (1) (2) Unless otherwise noted, the list of absolute maximum ratings are specified over operating temperature ranges. Supply voltage range, VDDIO, VDD3VFL with respect to VSS - 0.3 V to 4.6 V Supply voltage range, VDDA2, VDDAIO with respect to VSSA - 0.3 V to 4.6 V Supply voltage range, VDD with respect to VSS - 0.3 V to 2.5 V Supply voltage range, VDD1A18, VDD2A18 with respect to VSSA - 0.3 V to 2.5 V Supply voltage range, VSSA2, VSSAIO, VSS1AGND, VSS2AGND with respect to VSS - 0.3 V to 0.3 V PRODUCT PREVIEW Input voltage range, VIN - 0.3 V to 4.6 V Output voltage range, VO - 0.3 V to 4.6 V ± 20 mA Input clamp current, IIK (VIN < 0 or VIN > VDDIO) (3) ± 20 mA Output clamp current, IOK (VO < 0 or VO > VDDIO) Operating ambient temperature ranges, TA: A version (4) - 40°C to 85°C Junction temperature range, Tj (4) - 40°C to 150°C Storage temperature range, Tstg (4) - 65°C to 150°C (1) (2) (3) (4) 96 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. Continuous clamp current per pin is ± 2 mA. This includes the analog inputs which have an internal clamping circuit that clamps the voltage to a diode drop above VDDA2 or below VSSA2. Long-term high-temperature storage and/or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see IC Package Thermal Metrics Application Report (literature number SPRA953) and Reliability Data for TMS320LF24x and TMS320F281x Devices Application Report (literature number SPRA963) Electrical Specifications Submit Documentation Feedback TMS320F28335, TMS320F28334, TMS320F28332 Digital Signal Controllers (DSCs) www.ti.com SPRS439 – JUNE 2007 6.2 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX Device supply voltage, I/O, VDDIO 3.2 3.3 3.4 V Device supply voltage CPU, VDD 1.84 1.9 1.96 V 0 ADC supply voltage (3.3 V), VDDA2, VDDAIO ADC supply voltage (1.8 V), VDD1A18, VDD2A18 Flash supply voltage, VDD3VFL Device clock frequency (system clock), fSYSCLKOUT V 3.2 3.3 3.4 V 1.84 1.9 1.96 V 3.2 3.3 3.4 V 150-MHz devices 2 150 MHz 100-MHz devices 2 100 MHz 2 VDDIO High-level input voltage, VIH Low-level input voltage, VIL 0.8 High-level output source current, VOH = 2.4 V, IOH Low-level output sink current, VOL = VOL MAX, IOL Ambient temperature, TA (1) 6.3 V All I/Os except Group 2 -4 Group 2 (1) -8 All I/Os except Group 2 Group mA 4 2 (1) mA 8 A version -40 85 Group 2 pins are as follows: GPIO28, GPIO29, GPIO30, GPIO31, TDO, XCLKOUT, EMU0, EMU1, XINTF pins, GPIO35-87, XRD. Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VOH High-level output voltage VOL Low-level output voltage IIL IIH Input current (low level) Input current (high level) TEST CONDITIONS MIN IOH = IOHMAX TYP MAX 2.4 IOH = 50 µA V VDDIO - 0.2 IOL = IOLMAX 0.4 Pin with pullup enabled VDDIO = 3.3 V, VIN = 0 V Pin with pulldown enabled VDDIO = 3.3 V, VIN = 0 V ±2 Pin with pullup enabled VDDIO = 3.3 V, VIN = VDDIO ±2 Pin with pulldown enabled VDDIO = 3.3 V, VIN = VDDIO 28 50 80 Pin with pulldown enabled VDDIO = 3.3 V, VIN = VDDIO 80 140 190 IOZ Output current, pullup or pulldown disabled CI Input capacitance Submit Documentation Feedback All I/Os (including XRS) -80 UNIT -140 V -190 µA ±2 VO = VDDIO or 0 V 2 Electrical Specifications µA µA pF 97 PRODUCT PREVIEW Supply ground, VSS, VSSIO UNIT OCTOBER 1994 PGF (S-PQFP-G176) PLASTIC QUAD FLATPACK 132 89 88 133 0,27 0,17 0,08 M 0,50 0,13 NOM 176 45 1 44 Gage Plane 21,50 SQ 24,20 SQ 23,80 26,20 SQ 25,80 0,25 0,05 MIN 0°−ā 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040134 / B 03/95 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MO-136 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated