RF2488 Preliminary 8 MULTI-MODE DUAL-BAND LNA MIXER Typical Applications • TDMA/EDGE Handsets • TDMA/GSM Dual-Band Handsets • TDMA IS-136 Handsets • GSM/DCS/EDGE Handsets • GAIT Handsets Product Description Optimum Technology Matching® Applied Si BJT GaAs HBT 4.00 sq. .45 .20 .60 typ .24 4 PLCS 2.25 sq. 1.95 .55 .30 12° max .05 .01 2 .40 .28 .23 .13 .50 NOTES: 1 Shaded Pin is Lead 1. 2 Dimension applies to plated terminal: to be measured between 0.02 mm and 0.25 mm from terminal end. 3 Pin 1 identifier must exist on top surface of package by identification mark or feature on the package body. Exact shape and size is optional. 4 Package Warpage: 0.05 mm max. 5 Die Thickness Allowable: 0.305 mm max. Package Style: LCC, 24-Pin, 4x4 Low LNA VCC Low LNA OUT VCC BIAS Low MIX IN TX/RX Low LO IN Si CMOS 24 23 22 21 20 19 Features • Complete Dual-Band Front-End • Switchable LNA Gain • Low Noise and High Intercept Point Low LNA GND 1 18 GAIN SEL 2 17 IF1+ • Low Current Consumption Low LNA IN 3 16 IF1- • Single 2.7V to 3.3V Power Supply High LNA IN 4 15 MXR VCC • Supports Dual IF Bandwidths High LNA GND 5 14 IF2+ High LNA VCC 6 BAND SEL 8 9 10 11 12 High LNA OUT GND IF OUT SEL High MIX IN NC High LO IN 13 IF27 Functional Block Diagram Rev A0 010905 8 4 PLCS GaAs MESFET üSiGe HBT Si Bi-CMOS 1.00 0.85 FRONT-ENDS The RF2488 is a dual-band LNA/Mixer designed to support dual-band, multi-mode handset applications. The unique dual IF outputs provide interface to two independent IF SAW filters supporting applications that combine IS136 with GSM, DCS or EDGE air interfaces. The device includes four mixers, providing the ability to use two independent IF bandwidths accessible from either the low or high band LNAs. Each LNA has a gain bypass mode controlled by the GAIN SEL pin. An image reject filter is required between each LNA and its mixer. Power management is implemented based on a three-pin logic level interface. Power consumption is minimized by shutting down all but the active sections of the device. .80 .65 Ordering Information RF2488 RF2488 PCBA Multi-Mode Dual-Band LNA Mixer Fully Assembled Evaluation Board RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com 8-123 RF2488 Preliminary Absolute Maximum Ratings Parameter Supply Voltage Input LO and RF Levels Operating Ambient Temperature Storage Temperature Parameter Rating Unit -0.5 to +3.6 10 -40 to +85 -40 to +125 V dBm °C °C Specification Min. Typ. Max. Caution! ESD sensitive device. RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s). Unit Condition Operating Range Supply Voltage Supply Current RF Frequency Range LO Frequency Range IF Frequency Range Temperature Range 2.7 3 22 800 1800 885 1885 85 -40 3.3 24 1000 2000 1400 2400 400 +85 V mA MHz MHz MHz MHz MHz °C Low Noise Amplifier Low Band Gain FRONT-ENDS 8 TAMB =25°C, VCC =3V Frequency=869MHz to 894MHz 17 -11 Gain Variations versus Temperature Noise Figure Input 3rd Order Intercept Return Loss 0 22 10 10 10 18 -9 19 -8 ±0.75 dB dB dB 1.25 10 3 25 1.35 12 dB dB dBm dBm dB dB dB 10 Supply Current dB 4 0.3 5 0.5 mA mA 10 -6 10 7 11 0 12 dB dBm dB dBm dB dB Ω Mixer Low Band Conversion Gain LO Input Level Noise Figure (SSB) Input 3rd Order Intercept Return Loss Terminating Impedance, IF Output Mixer Supply Current 8-124 @ 3V in any mode. T=25°C Low Band High Band Low Band High Band 9 -9 6 10 10 500 12 13 High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low -40°C to +85°C High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low LNA Input-External Match, GAIN SEL=High LNA Input-External Match, GAIN SEL=Low LNA Output-External Match, GAIN SEL=High LNA Output-External Match, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low TAMB =25°C, VCC =3V, IF=135MHz; Mixer RF Input Frequency=869MHz to 894MHz; LO Input Frequency=1004MHz to 1029MHz Mixer RF Input LO Input Mixer “ON” mA Rev A0 010905 RF2488 Preliminary Specification Min. Typ. Max. Unit Low Band Cascaded Electrical Specification Gain TAMB =25°C, VCC =3V, IF=135MHz. Assumes 3dB loss for image filter. 24 -4 Gain Variations versus Temperature Noise Figure Input 3rd Order Intercept Return Loss Isolation -10 16 10 10 10 10 50 35 40 IF Output Impedance Supply Current 26 -2 28 0 +1.0 dB dB dB 2.1 22 -8 18 2.5 24 dB dB dBm dBm dB dB dB dB dB dB dB dB dB Ω mA mA 45 >50 >40 500 16 13 18 15 Low Noise Amplifier High Band Gain 16 -8 Gain Variations versus Temperature Noise Figure Input 3rd Order Intercept Return Loss 0 16 10 10 10 17 -6 18 -4 +1.0 dB dB dB 1.6 8 2 18 1.7 11 dB dB dBm dBm dB dB dB 10 Supply Current dB 6 0.3 7 0.5 mA mA 11 -6 10 7 12 0 12 dB dBm dB dBm dB dB Ω Mixer High Band Conversion Gain LO Input Level Noise Figure (SSB) Input 3rd Order Intercept Return Loss, Mixer RF Input LO Input Terminating Impedance IF Output Mixer Supply Current Rev A0 010905 Condition 10 -9 5 10 10 500 16 17 High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low LNA Input-External Match, GAIN SEL=High LNA Input-External Match, GAIN SEL=Low Mixer RF Input Mixer LO Input LO IN to LNA IN, GAIN SEL=High LO IN to LNA IN, GAIN SEL=Low LNA Out to Mixer RF In LO In to IF Out Mixer RF In to IF Out Mixer “ON” High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low TAMB =25°C, VCC =3V Frequency=1930MHz to 1990MHz High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low -40°C to 85°C High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low LNA Input-External Match, GAIN SEL=High LNA Input-External Match, GAIN SEL=Low LNA Output-External Match, GAIN SEL=High LNA Output-External Match, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low TAMB =25°C, VCC =3V, IF=135MHz; Mixer RF Input Frequency =1930MHz to 1990MHz; LO Output Frequency=2065MHz to 2125MHz Mixer “ON” mA 8-125 8 FRONT-ENDS Parameter RF2488 Parameter Preliminary Specification Min. Typ. Max. Unit High Band Cascaded Electrical Specification Gain TAMB =25°C, VCC =3V, IF=135MHz. Assumes 3dB loss for image filter. 22 -2 Gain Variations versus Temperature Noise Figure Input 3rd Order Intercept Return Loss Isolation -10 16 10 10 10 10 50 50 40 Half IF Spur IF Output Impedance Supply Current FRONT-ENDS 8 Condition 24 0 26 2 +1.5 dB dB dB 2.6 20 -8 18 3.0 25 dB dB dBm dBm dB dB dB dB dB dB dB dB dB dBc Ω mA mA 45 >50 >60 -68 500 22 18 -60 24 22 High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low LNA Input-External Match, GAIN SEL=High LNA Input-External Match, GAIN SEL=Low Mixer RF Input Mixer LO Input LO IN to LNA IN, GAIN SEL=High LO IN to LNA IN, GAIN SEL=Low LNA Out to Mixer RF In LO In to IF Out Mixer RF In to IF Out Mixer “ON” High Gain, GAIN SEL=High Low Gain, GAIN SEL=Low Logic Levels Input Low Input High Input Current Input Impedance 8-126 0.5 2.0 2 10 20 100 V V µA kΩ VCC =2.7V to 2.9V VCC =2.7V to 2.9V Rev A0 010905 RF2488 Preliminary Pin 1 2 Function Low LNA GND GAIN SEL 3 Low LNA IN Description Interface Schematic Low band LNA ground connection. As an option, an external inductor to ground may be used to reduce LNA gain. See pin 3. CMOS compatible signal controlling both the low band and high band LNA gain. Logic (0)=Low Gain, Logic (1)=High Gain. Low band LNA input. The maximum VSWR is 2:1 (Cell/GSM RX band) for both the gain and bypass mode. This pin is internally DC-biased and should be DC blocked with a capacitor suitable for the frequency of operation. Low LNA OUT Low LNA IN Low LNA GND 4 High LNA IN High band LNA input. The maximum VSWR is 2:1 (DCS/PCS RX band) for both the gain and bypass mode. This pin is internally DC-biased and should be DC blocked with a capacitor suitable for the frequency of operation. High LNA OUT High LNA IN High LNA GND 8 9 High LNA GND High LNA VCC High LNA OUT GND IF OUT SEL 10 High MIX IN 6 7 11 12 NC High LO IN 13 IF2- High band LNA ground connection. Immediate grounding required adjacent to pin. See pin 4. High band LNA supply voltage. Local bypass capacitor required. High band LNA Output. Bias for the LNA is provided through this pin, hence it should be connected to VCC through an inductor. Direct connection to ground. IF output select state control pin. This CMOS compatible signal controls the selection of the IF mixer output path (see the State Control Truth Table). Local bypass capacitor required. High band RF mixer input. Although the base of the mixer input transistor is AC coupled, this pin serves a dual purpose of providing a DC-bias path via external inductor to GND. The typical input impedance is 8Ω real and requires external matching to 50Ω. High band local oscillator input. This pin is internally AC-coupled and matched to 50Ω. IF output. Open collector output, requires external matching components and DC connection to VCC. High MIX IN See pin 19. IF2+ IF2+ 15 MXR VCC Rev A0 010905 IF output. Open collector output, requires external matching components and DC connection to VCC. IF21 pF 1 pF 14 8 See pin 4. FRONT-ENDS 5 1 pF See pin 13. Mixer supply voltage. Local bypass capacitor required. 8-127 RF2488 Pin 16 Preliminary Function IF1- Description Interface Schematic IF output. Open collector output, requires external matching components and DC connection to VCC. IF1+ 1 pF 17 IF1+ IF output. Open collector output, requires external matching components and DC connection to VCC. 18 BAND SEL 19 Low LO IN This CMOS compatible pin controls the selection of the low or high band signal path (See the State Control Truth Table). Local bypass capacitor required. LO band local oscillator input. This pin is AC-coupled and matched to 50Ω. IF11 pF 1 pF See pin 16. LO IN 500 Ω FRONT-ENDS 8 20 TX/RX 21 Low MIX IN 22 23 VCC BIAS Low LNA OUT Low LNA VCC 24 This CMOS compatible TX/RX mode select Power Control Pin. CMOS compatible signal controlling the functional state of the device (See the State Control Truth Table). Local bypass capacitor required. Low band RF mixer input. Although the base of the mixer input transistor is AC coupled, this pin serves a dual purpose of providing a DC bias path via external inductor to GND. The typical input impedance is 8Ω real and requires external matching to 50Ω. Low MIX IN Bias supply voltage. Local bypass capacitor required. Low band LNA output. Bias for the LNA is provided through this pin, hence it should be connected to VCC through and inductor. See pin 3. Low band LNA RF supply voltage. Local bypass capacitor required. RF2488 State Control Truth Table State TX/RX Band Sel IF Out Sel 0 1 2 3 4 5 6 7 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 8-128 Active Circuits Low Band LNA, IF1 Mixer Low Band LNA, IF2 Mixer High Band LNA, IF1 Mixer High Band LNA, IF2 Mixer All Off All Off All Off All Off Rev A0 010905 RF2488 Preliminary Detailed Description The RF2488 is fabricated on a high performance Silicon Germanium process that allows optimization of key RF parameters (including noise figure, gain and linearity) for very low current consumption. The RF2488 is packaged in a small 24pin, 4mmx4mm, leadless chip carrier. It can be operated on a single supply voltage from 2.7V to 3.3V. To reduce power consumption the RF2488 has a standby mode that draws less than 10uA. The RF2488 has two frequency bands of operation. Each is comprised of an LNA and two downconverting mixers with combined RF inputs, and two separate intermediate frequency outputs. The LNA outputs and mixer RF inputs are typically connected through an image reject SAW filter, which provides image rejection and out-of-band blocking with low inband insertion loss. Either of the two IF outputs can be selected whether operating in low band or high band mode. This feature allows different IF frequencies and SAW filters to be used for different air interfaces in multi-mode phones. The modes are selected using the external BAND SEL and IF SEL pins; these can be switched using standard CMOS logic levels. LNA There are two LNA circuits: one for high band and one for low band. They have two gain conditions: high gain and low gain. The gain state is selected using the external GAIN SEL pin that can be switched with standard CMOS logic levels. In high gain mode, the low band LNA exhibits 18dB of gain combined with a noise figure of <1.4dB and a input IP3 (IIP3) of 3dB. In low gain mode, the device switches to a highly linear state, with IIP3 in excess of 20dBm and a gain of -9dB with a current drain of less than 500uA. In high gain mode, the high band LNA exhibits 17dB of gain combined with a noise figure of <1.7dB and a IIP3 of 2dB. In low gain mode, the device switches to a highly linear state, with IIP3 in excess of 15dBm and a gain of -6dB with a current drain of less than 500uA. Mixers The mixers are all single-balanced mixers, with low noise figure, high linearity and high gain. The RF input match can be tuned for a wide range of RF input frequencies. In low band mode, the match consists of an inductive choke to ground and a 7Ω to 50Ω step up input match. In high band mode, the match consists of a resonant circuit that provides a DC choke to ground and a 7Ω to 50Ω step up input match. The LO input port is internally matched to 50Ω and is internally DC-blocked for easy interface across a wide bandwidth. The LO input can be driven with signals as low as -9dBm with no performance degradation. The matching of the IF outputs is discussed in the applications section. Rev A0 010905 8-129 8 FRONT-ENDS The LNAs require a DC-blocking capacitor at the input and an inductor to ground; the inductor is used to provide additional input linearity and can be removed if the linearity is not required. The LNA output requires an output match, which is determined by the input impedance of the IR SAW filter (typically 50Ω). The match must include an inductor to supply to provide the LNA with a DC path to VCC. RF2488 Preliminary Application Schematic 1.2 pF GND I/O GND I/O GND GND Saw Filters 4.7 nH Bias VCC 15 nH 5 pF LNA1 VCC 100 pF 4.7 nH 100 pF 100 pF TX/RX LO1 IN 2.2 nH Band Select 24 GAIN SEL 100 pF 56 nH LNA1 IN 23 22 21 20 19 100 pF 1 18 2 17 3 16 4 15 5 14 6 13 IF1 OUT C3 L1 C1 L2 R1 33 nF 2.2 nH 33 nF C19 1 nF C2 LNA2 IN 8 DNI DNI FRONT-ENDS LNA2 VCC 7 8 9 10 11 MX VCC 100 pF 12 C18 1 nF C1 10 pF 12 nH 10 nH L1 C2 L2 R1 100 pF 100 pF IF2 OUT IF OUT SELECT C3 2.2 nH LO2 IN 3 pF (HQ) GND I/O GND I/O GND GND 8.2 nH Saw Filter 8-130 Rev A0 010905 RF2488 Preliminary Application Information Calculating the mixer output match The evaluation boards mixer output match is explained below. VCC L2 R1 C3 IF OUT IF+ C1 L1 IF- C2 The match is made up of six components, each of which is discussed below. Inductor L2 This inductor functions as a choke at the IF frequency, and should be made as large as possible, to not interact with the current combiner network. In addition, it provides a DC path from VCC to the mixer core transistors. Capacitors C1 and C2 These capacitors should be equal, and along with L1, define the resonant frequency. Capacitor C3 This capacitor is used to provide a DC-block. Resistor R1 This is primarily used to set the output impedance of the network. The impedance at the resonant frequency can be measured, and R1 can be placed in parallel to reduce the real impedance to the desired value. Alternatively, an approximation can be made using the following equation. 1 1 –1 R 1 = æ ------------- – ------ö è R OUT R Pø This is only an approximation, because it assumes the capacitors have infinite Q, and does not take into account PCB parasitics. The following equation can be used to approximately calculate the resonant frequency of the circuit. 1 f IF = ----------------------------------------------L1 2 π ------ ( C1 + C EQ ) 2 Rev A0 010905 8-131 8 FRONT-ENDS Inductor L1 This inductor, along with capacitors C1 and C2 determine the resonant frequency of the current combining circuit, as well as the output impedance at the resonant point. The output impedance will be dependent on the parasitic resistance of the inductor RP. A high Q inductor will result in a high output impedance. RF2488 Preliminary Where CEQ is the capacitance seen looking into IF+ and IF-, this is made up of an on-chip network that is used for high frequency filtering and any on-chip and PCB stray capacitances. The internal network is shown below. 1 pF IF+ 1 pF Internal Circuitry IF1 pF FRONT-ENDS 8 8-132 Rev A0 010905 RF2488 Preliminary Evaluation Board Schematic IF@135MHz (Download Bill of Materials from www.rfmd.com.) GND GND FL1* Saw Filter 50 Ω µstrip GND R3* 0Ω Bias VCC C10 5 pF C1 1.2 pF C3 100 pF L6 4.7 nH C2 100 pF L1 15 nH Band Select 24 GAIN SEL 23 22 21 20 C6 100 pF 19 1 18 2 17 3 16 4 15 5 14 L13 180 nH TRL L8 56 nH J4 LNA1 IN C13 33 nF 50 Ω µstrip 50 Ω µstrip J5 LNA2 IN C12 33 nF L10 2.2 nH C11* DNI L9* DNI 6 L15 560 nH R9 820 Ω C20 1 nF 50 Ω µstrip J7 IF1 OUT C22 8 pF C19 1 nF C15 10 pF MX VCC 13 7 L4 12 nH L17 10 nH 8 9 C9 100 pF C24 100 pF 10 11 C7 100 pF 12 C16 10 pF L12 180 nH C25 3 pF (HQ) C17 10 pF L16 560 nH R10 820 Ω L5 2.2 nH GND R6* 0Ω R7* 0Ω C23 8 pF C21 1 nF L14 180 nH R8 0Ω 50 Ω µstrip J6 IF2 OUT 50 Ω µstrip J9 LO2 IN 50 Ω µstrip J10 MX2 IN I/O GND I/O IF OUT SELECT 8 C18 1 nF L7 8.2 nH 2488400- GND 50 Ω µstrip J8 LNA2 OUT C14 10 pF GND R5 0Ω L11 180 nH TRL LNA2 VCC C8 10 pF J3 LO1 IN L3 2.2 nH C5 100 pF C4 100 pF TX/RX 50 Ω µstrip LNA1 VCC FL2* Saw Filter NOTE: Parts with * after reference designator should not be populated on evaluation board. JP1 VCC P1 1 2 CON2 GND 1 2 LNA1 VCC 3 4 LNA2 VCC 5 6 MX VCC 7 8 IF Out Select 9 10 Gain Select 11 12 Bias VCC 13 14 Band Select 15 C26 + 1 µF C27 1 nF Rev A0 010905 16 HEADER 8X2 TX/RX C28 1 nF R11 10 kΩ C29 1 nF R12 10 kΩ C30 1 nF C31 1 nF R13 10 kΩ C32 1 nF R14 10 kΩ C33 1 nF C34 1 nF C35 1 nF 8-133 FRONT-ENDS R1 0Ω R4 0Ω L2 4.7 nH 50 Ω µstrip J1 LNA1 OUT J2 MX1 IN I/O GND I/O R2* 0Ω RF2488 Preliminary Evaluation Board Layout Board Size 2.3” x 1.9” Board Thickness 0.062”, Board Material FR-4, Multi-Layer Assembly Top Inner 1 Inner 2 FRONT-ENDS 8 8-134 Rev A0 010905 RF2488 Preliminary Back FRONT-ENDS 8 Rev A0 010905 8-135 RF2488 Preliminary LNA1 Gain versus Frequency Gain Select=High, 880 MHz 20.0 19.0 19.0 18.0 18.0 Gain (dB) Gain (dB) LNA1 Gain versus Supply Voltage Gain Select=High, VCC=3 V 20.0 17.0 17.0 16.0 16.0 +25°C Gain -40°C Gain +85°C Gain 15.0 865.0 +25°C Gain -40°C Gain +85°C Gain 15.0 870.0 875.0 880.0 885.0 890.0 895.0 900.0 2.6 2.7 2.8 Frequency (MHz) LNA1 Noise Figure versus Frequency 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.0 0.8 3.4 1.2 1.0 0.8 0.4 +25°C Noise Figure -40°C Noise Figure 0.2 +25°C Noise Figure -40°C Noise Figure +85°C Noise Figure 0.2 +85°C Noise Figure 0.0 865.0 0.0 870.0 875.0 880.0 885.0 890.0 895.0 900.0 2.6 2.7 2.8 Frequency (MHz) 2.9 3.0 3.1 3.2 3.3 LNA1 Input IP3 versus Frequency LNA1 Input IP3 versus Supply Voltage Gain Select=High, -25 dBm per tone, 1 MHz Separation, VCC=3 V Gain Select=High, 880/881 MHz, -25 dBm per tone 5.0 3.0 3.0 IIP3 (dBm) 4.0 2.0 1.0 2.0 1.0 +25°C IIP3 -40°C IIP3 +85°C IIP3 +25°C IIP3 -40°C IIP3 +85°C IIP3 0.0 865.0 3.4 Supply Voltage (V) 4.0 0.0 870.0 875.0 880.0 885.0 Frequency (MHz) 8-136 3.3 0.6 0.4 5.0 3.2 Gain Select=High, 880 MHz Noise Figure (dB) Noise Figure (dB) 3.1 2.0 0.6 IIP3 (dBm) FRONT-ENDS 8 3.0 LNA1 Noise Figure versus Supply Voltage Gain Select=High, VCC=3 V 2.0 2.9 Supply Voltage (V) 890.0 895.0 900.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) Rev A0 010905 RF2488 Preliminary 11.0 11.0 11.0 10.0 10.0 10.0 10.0 875.0 880.0 885.0 890.0 895.0 8.0 900.0 8.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 8.0 2.6 2.7 2.8 3.0 3.1 3.2 3.3 Supply Voltage (V) Mixer1 Noise Figure versus Frequency Mixer1 Noise Figure versus Supply Voltage 3.4 880 MHz, LO PIN=-6 dBm 13.0 13.0 12.0 12.0 12.0 12.0 11.0 11.0 11.0 11.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 8.0 8.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 7.0 6.0 865.0 870.0 875.0 880.0 885.0 890.0 895.0 IFOUT1 Noise Figure (dB) 13.0 8.0 7.0 7.0 6.0 900.0 6.0 8.0 7.0 6.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) Mixer1 Input IP3 versus Frequency Mixer1 Input IP3 versus Supply Voltage -25 dBm per tone, 1 MHz Separation, VCC=3 V, LO PIN=-6 dBm -25 dBm per tone, 880/881 MHz, LO PIN=-6 dBm 14.0 12.0 12.0 12.0 12.0 10.0 10.0 10.0 10.0 8.0 8.0 8.0 8.0 6.0 6.0 6.0 6.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 4.0 2.0 0.0 865.0 870.0 875.0 880.0 885.0 Frequency (MHz) Rev A0 010905 890.0 895.0 IFOUT1 IIP3 (dBm) 14.0 IFOUT2 IIP3 (dBm) 14.0 13.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 Frequency (MHz) IFOUT1 IIP3 (dBm) 2.9 Frequency (MHz) VCC=3 V, LO PIN=-6 dBm 9.0 4.0 4.0 2.0 2.0 0.0 900.0 0.0 14.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 4.0 2.0 0.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) 8-137 8 FRONT-ENDS 870.0 9.0 IFOUT2 IIP3 (dBm) 8.0 865.0 9.0 12.0 IFOUT2 Noise Figure (dB) +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 IFOUT1 Gain (dB) 11.0 IFOUT2 Gain (dB) 12.0 IFOUT2 Noise Figure (dB) IFOUT1 Gain (dB) 880 MHz, LO PIN=-6 dBm 12.0 9.0 IFOUT1 Noise Figure (dB) Mixer1 Gain versus Supply Voltage VCC=3 V, LO PIN=-6 dBm IFOUT2 Gain (dB) Mixer1 Gain versus Frequency 12.0 RF2488 Preliminary LNA2 Gain versus Frequency Gain Select=High, 1960 MHz 18.0 17.0 17.0 16.0 16.0 Gain (dB) Gain (dB) LNA2 Gain versus Supply Voltage Gain Select=High, VCC=3 V 18.0 15.0 15.0 14.0 14.0 +25°C Gain -40°C Gain +85°C Gain 13.0 1920.0 +25°C Gain -40°C Gain +85°C Gain 13.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 2000.0 2.6 2.7 2.8 Frequency (MHz) LNA2 Noise Figure versus Frequency Noise Figure (dB) Noise Figure (dB) 1.0 3.4 1.5 1.0 0.5 +25°C Noise Figure -40°C Noise Figure +85°C Noise Figure +25°C Noise Figure -40°C Noise Figure +85°C Noise Figure 0.0 1920.0 0.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 2000.0 2.6 2.7 2.8 Frequency (MHz) 2.9 3.0 3.1 3.2 3.3 LNA2 Input IP3 versus Frequency LNA2 Input IP3 versus Supply Voltage Gain Select=High, -25 dBm per tone, 1 MHz Separation, VCC=3 V Gain Select=High, 1960/1961 MHz, -25 dBm per tone 5.0 3.0 3.0 IIP3 (dBm) 4.0 2.0 1.0 2.0 1.0 +25°C IIP3 -40°C IIP3 +25°C IIP3 -40°C IIP3 +85°C IIP3 +85°C IIP3 0.0 1920.0 3.4 Supply Voltage (V) 4.0 0.0 1930.0 1940.0 1950.0 1960.0 1970.0 Frequency (MHz) 8-138 3.3 2.0 1.5 5.0 3.2 Gain Select=High, 1960 MHz 0.5 IIP3 (dBm) FRONT-ENDS 3.1 2.5 2.0 8 3.0 LNA2 Noise Figure versus Supply Voltage Gain Select=High, VCC=3 V 2.5 2.9 Supply Voltage (V) 1980.0 1990.0 2000.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) Rev A0 010905 RF2488 Preliminary 12.0 12.0 12.0 11.0 11.0 11.0 11.0 10.0 10.0 10.0 10.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 8.0 2000.0 8.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 8.0 2.6 2.7 2.8 3.0 3.1 3.2 3.3 Supply Voltage (V) Mixer2 Noise Figure versus Frequency Mixer2 Noise Figure versus Supply Voltage 3.4 1960 MHz, LO PIN=-6 dBm 12.0 12.0 11.0 11.0 11.0 11.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 8.0 8.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 7.0 6.0 1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 IFOUT1 Noise Figure (dB) 12.0 7.0 7.0 6.0 2000.0 6.0 8.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 2.7 2.8 2.9 3.0 3.1 3.2 3.3 Mixer2 Input IP3 versus Frequency Mixer2 Input IP3 versus Supply Voltage -25 dBm per tone, 1960/1961 MHz, LO PIN=-6 dBm 9.0 8.0 8.0 7.0 7.0 6.0 6.0 5.0 5.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 2.0 1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 Frequency (MHz) Rev A0 010905 1980.0 1990.0 4.0 10.0 IFOUT1 IIP3 (dBm) 10.0 9.0 3.0 3.4 Supply Voltage (V) -25 dBm per tone, 1 MHz Separation, VCC=3 V, LO PIN=-6 dBm 4.0 7.0 6.0 2.6 IFOUT2 IIP3 (dBm) 10.0 12.0 8.0 Frequency (MHz) IFOUT1 IIP3 (dBm) 2.9 Frequency (MHz) VCC=3 V, LO PIN=-6 dBm 9.0 8.0 8.0 6.0 6.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 4.0 3.0 2.0 2000.0 10.0 4.0 2.0 2.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) 8-139 8 FRONT-ENDS 1930.0 9.0 IFOUT2 IIP3 (dBm) 8.0 1920.0 9.0 13.0 IFOUT2 Noise Figure (dB) +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 IFOUT1 Gain (dB) 12.0 IFOUT2 Gain (dB) 13.0 IFOUT2 Noise Figure (dB) IFOUT1 Gain (dB) 1960 MHz, LO PIN=-6 dBm 13.0 9.0 IFOUT1 Noise Figure (dB) Mixer2 Gain versus Supply Voltage VCC=3 V, LO PIN=-6 dBm IFOUT2 Gain (dB) Mixer2 Gain versus Frequency 13.0 RF2488 Preliminary 27.0 27.0 26.0 26.0 26.0 26.0 25.0 25.0 25.0 25.0 880.0 885.0 890.0 895.0 23.0 900.0 23.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 24.0 23.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Frequency (MHz) Supply Voltage (V) LNA1+Mixer1 Noise Figure versus Frequency LNA1+Mixer1 Noise Figure versus Supply Voltage Gain Select=High, VCC=3 V, LO PIN=-6 dBm 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 Gain Select=High, 880 MHz, LO PIN=-6 dBm 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 1.0 0.5 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 0.5 0.0 865.0 870.0 875.0 880.0 885.0 890.0 895.0 2.8 2.9 3.0 3.1 3.2 3.3 LNA1+Mixer1 Input IP3 versus Frequency LNA1+Mixer1 Input IP3 versus Supply Voltage -7.0 -7.0 -9.0 -11.0 -11.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 -13.0 -15.0 870.0 875.0 880.0 885.0 Frequency (MHz) 890.0 895.0 IFOUT1 IIP3 (dBm) -5.0 -4.0 -4.0 -6.0 -6.0 -8.0 -8.0 -10.0 -10.0 -12.0 -12.0 -13.0 -15.0 -17.0 900.0 3.4 Gain Select=High, 880/881 MHz, -40 dBm per tone, LO=-6 dBm IFOUT2 IIP3 (dBm) IFOUT1 IIP3 (dBm) 2.7 Supply Voltage (V) -9.0 8-140 0.0 2.6 Frequency (MHz) -5.0 0.5 0.0 Gain Select=High, -40 dBm per tone, 1 MHz Separation, VCC=3 V, LO=-6 dBm -3.0 -3.0 -17.0 865.0 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 0.5 0.0 900.0 IFOUT2 NF (dBm) IFOUT1 NF (dBm) 875.0 24.0 IFOUT1 NF (dBm) 3.5 870.0 24.0 28.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 -14.0 IFOUT2 IIP3 (dBm) +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 IFOUT1 Gain (dB) 27.0 IFOUT2 Gain (dB) 27.0 IFOUT2 NF (dBm) IFOUT1 Gain (dB) 28.0 23.0 865.0 FRONT-ENDS Gain Select=High, 880 MHz, LO PIN=-6dBm 28.0 24.0 8 LNA1+Mixer1 Gain versus Supply Voltage Gain Select=High, VCC=3 V, LO PIN=-6dBm IFOUT2 Gain (dB) LNA1+Mixer1 Gain versus Frequency 28.0 -14.0 -16.0 -16.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) Rev A0 010905 RF2488 Preliminary 28.0 27.0 26.0 26.0 25.0 25.0 IFOUT1 NF (dBm) 27.0 Gain Select=High, 880 MHz, VCC=3 V 3.0 IFOUT2 Gain (dB) IFOUT1 Gain (dB) LNA1+Mixer1 Noise Figure versus LO Amplitude Gain Select=High, 880 MHz, VCC=3.0 V 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 24.0 23.0 -10.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 24.0 0.5 23.0 -9.0 0.0 -10.0 1.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 LO Amplitude (dBm) LNA1+Mixer1 Input IP3 versus LO Amplitude LNA1+Mixer1 Current versus Supply Voltage Gain Select=High, 880/881 MHz, -40 dBm per tone, VCC=3.0 V -3.0 -5.0 -5.0 -7.0 -7.0 -9.0 -9.0 -11.0 -11.0 0.5 0.0 -9.0 LO Amplitude (dBm) -3.0 IFOUT2 NF (dBm) LNA1+Mixer1 Gain versus LO Amplitude 28.0 1.0 Gain Select=High, 880 MHz, LO PIN=-6dBm 20.0 Current (mA) 8 16.0 FRONT-ENDS -13.0 IFOUT2 IIP3 (dBm) 14.0 -13.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 -15.0 -17.0 -10.0 -9.0 -40°C Current +85°C Current -17.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 +25°C Current 12.0 -15.0 10.0 1.0 2.6 2.7 2.8 LO Amplitude (dBm) LNA2+Mixer2 Gain versus Frequency Gain Select=High, VCC=3 V, LO PIN=-6dBm 3.1 3.2 3.3 3.4 Gain Select=High, 1960 MHz, LO PIN=-6dBm 27.0 28.0 27.0 26.0 26.0 25.0 25.0 24.0 24.0 23.0 23.0 26.0 24.0 24.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 22.0 1930.0 1940.0 1950.0 1960.0 1970.0 Frequency (MHz) Rev A0 010905 1980.0 1990.0 IFOUT1 Gain (dB) IFOUT1 Gain (dB) 26.0 20.0 1920.0 3.0 LNA2+Mixer2 Gain versus Supply Voltage IFOUT2 Gain (dB) 28.0 2.9 Supply Voltage (V) 22.0 21.0 20.0 2000.0 22.0 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 22.0 IFOUT2 Gain (dB) IFOUT1 IIP3 (dBm) 18.0 21.0 20.0 20.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) 8-141 RF2488 Preliminary Gain Select=High, 1960 MHz, LO PIN=-6 dBm 3.5 3.0 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.0 2.0 2.0 2.0 1.5 1.5 1.5 1.5 IFOUT1 NF (dBm) 3.5 IFOUT2 NF (dBm) 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 1.0 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 1.0 0.5 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 0.5 0.5 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 0.5 0.0 2000.0 0.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 0.0 2.6 2.7 2.8 Frequency (MHz) 3.1 3.2 3.3 3.4 Supply Voltage (V) LNA2+Mixer2 Input IP3 versus Supply Voltage Gain Select=High, 1960/1961 MHz, -40 dBm per tone, LO=-6 dBm -4.0 -4.0 -6.0 -6.0 -6.0 -6.0 -8.0 -8.0 -8.0 -8.0 -10.0 -10.0 -10.0 -10.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 -12.0 -14.0 1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0 1990.0 IFOUT1 IIP3 (dBm) LNA2+Mixer2 Input IP3 versus Frequency IFOUT2 IIP3 (dBm) IFOUT1 IIP3 (dBm) 3.0 Gain Select=High, -40 dBm per tone, 1 MHz Separation, VCC=3 V, LO=-6 dBm -4.0 -4.0 8 -12.0 -12.0 -14.0 2000.0 -14.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) LNA2+Mixer2 Gain versus LO Amplitude LNA2+Mixer2 Noise Figure versus LO Amplitude Gain Select=High, 1960 MHz, VCC=3.0 V Gain Select=High, 1960 MHz, VCC=3 V 3.5 26.0 26.0 3.0 3.0 25.0 25.0 2.5 2.5 24.0 24.0 2.0 2.0 23.0 23.0 1.5 1.5 +25°C Gain, IFout1 -40°C Gain, IFout1 +85°C Gain, IFout1 +25°C Gain, IFout2 -40°C Gain, IFout2 +85°C Gain, IFout2 22.0 21.0 20.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 LO Amplitude (dBm) 8-142 -2.0 -1.0 0.0 1.0 IFOUT1 NF (dBm) 27.0 IFOUT2 Gain (dB) 27.0 -12.0 -14.0 2.6 Frequency (MHz) IFOUT1 Gain (dB) 2.9 IFOUT2 IIP3 (dBm) 0.0 1920.0 FRONT-ENDS 3.5 3.5 22.0 1.0 +25°C NF, IFout1 -40°C NF, IFout1 +85°C NF, IFout1 1.0 21.0 0.5 +25°C NF, IFout2 -40°C NF, IFout2 +85°C NF, IFout2 0.5 20.0 0.0 -10.0 IFOUT2 NF (dBm) IFOUT1 NF (dBm) LNA2+Mixer2 Noise Figure versus Supply Voltage Gain Select=High, VCC=3 V, LO PIN=-6 dBm IFOUT2 NF (dBm) LNA2+Mixer2 Noise Figure versus Frequency 3.5 0.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 LO Amplitude (dBm) Rev A0 010905 RF2488 Preliminary LNA2+Mixer2 Input IP3 versus LO Amplitude LNA2+Mixer2 Current versus Supply Voltage Gain Select=High, 1960/1961 MHz, -40 dBm per tone, VCC=3.0 V -2.0 -2.0 -4.0 -4.0 -6.0 -6.0 Gain Select=High, 1960 MHz, LO PIN=-6dBm 28.0 26.0 -8.0 -10.0 -10.0 +25°C IIP3, IFout1 -40°C IIP3, IFout1 +85°C IIP3, IFout1 +25°C IIP3, IFout2 -40°C IIP3, IFout2 +85°C IIP3, IFout2 -12.0 -14.0 -10.0 -9.0 -7.0 -6.0 -5.0 -4.0 -3.0 LO Amplitude (dBm) -2.0 -1.0 0.0 22.0 20.0 18.0 16.0 +25°C Current -12.0 -40°C Current 14.0 +85°C Current -14.0 -8.0 Current (mA) -8.0 IFOUT2 IIP3 (dBm) IFOUT1 IIP3 (dBm) 24.0 1.0 12.0 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Supply Voltage (V) FRONT-ENDS 8 Rev A0 010905 8-143 RF2488 Preliminary FRONT-ENDS 8 8-144 Rev A0 010905