RFMD RF2488

RF2488
Preliminary
8
MULTI-MODE DUAL-BAND LNA MIXER
Typical Applications
• TDMA/EDGE Handsets
• TDMA/GSM Dual-Band Handsets
• TDMA IS-136 Handsets
• GSM/DCS/EDGE Handsets
• GAIT Handsets
Product Description
Optimum Technology Matching® Applied
Si BJT
GaAs HBT
4.00
sq.
.45
.20
.60
typ
.24
4 PLCS
2.25
sq.
1.95
.55
.30
12°
max
.05
.01
2
.40
.28
.23
.13
.50
NOTES:
1 Shaded Pin is Lead 1.
2 Dimension applies to plated terminal: to be measured between 0.02 mm
and 0.25 mm from terminal end.
3 Pin 1 identifier must exist on top surface of package by identification
mark or feature on the package body. Exact shape and size is optional.
4 Package Warpage: 0.05 mm max.
5 Die Thickness Allowable: 0.305 mm max.
Package Style: LCC, 24-Pin, 4x4
Low
LNA VCC
Low
LNA OUT
VCC BIAS
Low
MIX IN
TX/RX
Low
LO IN
Si CMOS
24
23
22
21
20
19
Features
• Complete Dual-Band Front-End
• Switchable LNA Gain
• Low Noise and High Intercept Point
Low
LNA GND
1
18
GAIN SEL
2
17 IF1+
• Low Current Consumption
Low
LNA IN
3
16 IF1-
• Single 2.7V to 3.3V Power Supply
High
LNA IN
4
15 MXR VCC
• Supports Dual IF Bandwidths
High
LNA GND
5
14 IF2+
High
LNA VCC
6
BAND SEL
8
9
10
11
12
High
LNA OUT
GND
IF OUT SEL
High
MIX IN
NC
High
LO IN
13 IF27
Functional Block Diagram
Rev A0 010905
8
4 PLCS
GaAs MESFET
üSiGe HBT
Si Bi-CMOS
1.00
0.85
FRONT-ENDS
The RF2488 is a dual-band LNA/Mixer designed to support dual-band, multi-mode handset applications. The
unique dual IF outputs provide interface to two independent IF SAW filters supporting applications that combine
IS136 with GSM, DCS or EDGE air interfaces. The device
includes four mixers, providing the ability to use two independent IF bandwidths accessible from either the low or
high band LNAs. Each LNA has a gain bypass mode controlled by the GAIN SEL pin. An image reject filter is
required between each LNA and its mixer. Power management is implemented based on a three-pin logic level
interface. Power consumption is minimized by shutting
down all but the active sections of the device.
.80
.65
Ordering Information
RF2488
RF2488 PCBA
Multi-Mode Dual-Band LNA Mixer
Fully Assembled Evaluation Board
RF Micro Devices, Inc.
7625 Thorndike Road
Greensboro, NC 27409, USA
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
8-123
RF2488
Preliminary
Absolute Maximum Ratings
Parameter
Supply Voltage
Input LO and RF Levels
Operating Ambient Temperature
Storage Temperature
Parameter
Rating
Unit
-0.5 to +3.6
10
-40 to +85
-40 to +125
V
dBm
°C
°C
Specification
Min.
Typ.
Max.
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate
at the time of this printing. However, RF Micro Devices reserves the right to
make changes to its products without notice. RF Micro Devices does not
assume responsibility for the use of the described product(s).
Unit
Condition
Operating Range
Supply Voltage
Supply Current
RF Frequency Range
LO Frequency Range
IF Frequency Range
Temperature Range
2.7
3
22
800
1800
885
1885
85
-40
3.3
24
1000
2000
1400
2400
400
+85
V
mA
MHz
MHz
MHz
MHz
MHz
°C
Low Noise Amplifier
Low Band
Gain
FRONT-ENDS
8
TAMB =25°C, VCC =3V
Frequency=869MHz to 894MHz
17
-11
Gain Variations versus
Temperature
Noise Figure
Input 3rd Order Intercept
Return Loss
0
22
10
10
10
18
-9
19
-8
±0.75
dB
dB
dB
1.25
10
3
25
1.35
12
dB
dB
dBm
dBm
dB
dB
dB
10
Supply Current
dB
4
0.3
5
0.5
mA
mA
10
-6
10
7
11
0
12
dB
dBm
dB
dBm
dB
dB
Ω
Mixer Low Band
Conversion Gain
LO Input Level
Noise Figure (SSB)
Input 3rd Order Intercept
Return Loss
Terminating Impedance,
IF Output
Mixer Supply Current
8-124
@ 3V in any mode. T=25°C
Low Band
High Band
Low Band
High Band
9
-9
6
10
10
500
12
13
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
-40°C to +85°C
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
LNA Input-External Match, GAIN SEL=High
LNA Input-External Match, GAIN SEL=Low
LNA Output-External Match,
GAIN SEL=High
LNA Output-External Match,
GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
TAMB =25°C, VCC =3V, IF=135MHz;
Mixer RF Input Frequency=869MHz to
894MHz; LO Input Frequency=1004MHz to
1029MHz
Mixer RF Input
LO Input
Mixer “ON”
mA
Rev A0 010905
RF2488
Preliminary
Specification
Min.
Typ.
Max.
Unit
Low Band Cascaded
Electrical Specification
Gain
TAMB =25°C, VCC =3V, IF=135MHz.
Assumes 3dB loss for image filter.
24
-4
Gain Variations versus
Temperature
Noise Figure
Input 3rd Order Intercept
Return Loss
Isolation
-10
16
10
10
10
10
50
35
40
IF Output Impedance
Supply Current
26
-2
28
0
+1.0
dB
dB
dB
2.1
22
-8
18
2.5
24
dB
dB
dBm
dBm
dB
dB
dB
dB
dB
dB
dB
dB
dB
Ω
mA
mA
45
>50
>40
500
16
13
18
15
Low Noise Amplifier
High Band
Gain
16
-8
Gain Variations versus
Temperature
Noise Figure
Input 3rd Order Intercept
Return Loss
0
16
10
10
10
17
-6
18
-4
+1.0
dB
dB
dB
1.6
8
2
18
1.7
11
dB
dB
dBm
dBm
dB
dB
dB
10
Supply Current
dB
6
0.3
7
0.5
mA
mA
11
-6
10
7
12
0
12
dB
dBm
dB
dBm
dB
dB
Ω
Mixer High Band
Conversion Gain
LO Input Level
Noise Figure (SSB)
Input 3rd Order Intercept
Return Loss, Mixer RF Input
LO Input
Terminating Impedance
IF Output
Mixer Supply Current
Rev A0 010905
Condition
10
-9
5
10
10
500
16
17
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
LNA Input-External Match, GAIN SEL=High
LNA Input-External Match, GAIN SEL=Low
Mixer RF Input
Mixer LO Input
LO IN to LNA IN, GAIN SEL=High
LO IN to LNA IN, GAIN SEL=Low
LNA Out to Mixer RF In
LO In to IF Out
Mixer RF In to IF Out
Mixer “ON”
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
TAMB =25°C, VCC =3V
Frequency=1930MHz to 1990MHz
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
-40°C to 85°C
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
LNA Input-External Match, GAIN SEL=High
LNA Input-External Match, GAIN SEL=Low
LNA Output-External Match,
GAIN SEL=High
LNA Output-External Match,
GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
TAMB =25°C, VCC =3V, IF=135MHz;
Mixer RF Input Frequency =1930MHz to
1990MHz; LO Output Frequency=2065MHz
to 2125MHz
Mixer “ON”
mA
8-125
8
FRONT-ENDS
Parameter
RF2488
Parameter
Preliminary
Specification
Min.
Typ.
Max.
Unit
High Band Cascaded
Electrical Specification
Gain
TAMB =25°C, VCC =3V, IF=135MHz.
Assumes 3dB loss for image filter.
22
-2
Gain Variations versus
Temperature
Noise Figure
Input 3rd Order Intercept
Return Loss
Isolation
-10
16
10
10
10
10
50
50
40
Half IF Spur
IF Output Impedance
Supply Current
FRONT-ENDS
8
Condition
24
0
26
2
+1.5
dB
dB
dB
2.6
20
-8
18
3.0
25
dB
dB
dBm
dBm
dB
dB
dB
dB
dB
dB
dB
dB
dB
dBc
Ω
mA
mA
45
>50
>60
-68
500
22
18
-60
24
22
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
LNA Input-External Match, GAIN SEL=High
LNA Input-External Match, GAIN SEL=Low
Mixer RF Input
Mixer LO Input
LO IN to LNA IN, GAIN SEL=High
LO IN to LNA IN, GAIN SEL=Low
LNA Out to Mixer RF In
LO In to IF Out
Mixer RF In to IF Out
Mixer “ON”
High Gain, GAIN SEL=High
Low Gain, GAIN SEL=Low
Logic Levels
Input Low
Input High
Input Current
Input Impedance
8-126
0.5
2.0
2
10
20
100
V
V
µA
kΩ
VCC =2.7V to 2.9V
VCC =2.7V to 2.9V
Rev A0 010905
RF2488
Preliminary
Pin
1
2
Function
Low LNA
GND
GAIN SEL
3
Low LNA IN
Description
Interface Schematic
Low band LNA ground connection. As an option, an external inductor to
ground may be used to reduce LNA gain.
See pin 3.
CMOS compatible signal controlling both the low band and high band
LNA gain. Logic (0)=Low Gain, Logic (1)=High Gain.
Low band LNA input. The maximum VSWR is 2:1 (Cell/GSM RX band)
for both the gain and bypass mode. This pin is internally DC-biased
and should be DC blocked with a capacitor suitable for the frequency of
operation.
Low LNA OUT
Low LNA IN
Low LNA GND
4
High LNA IN
High band LNA input. The maximum VSWR is 2:1 (DCS/PCS RX band)
for both the gain and bypass mode. This pin is internally DC-biased
and should be DC blocked with a capacitor suitable for the frequency of
operation.
High LNA OUT
High LNA IN
High LNA GND
8
9
High LNA
GND
High LNA
VCC
High LNA
OUT
GND
IF OUT SEL
10
High MIX IN
6
7
11
12
NC
High LO IN
13
IF2-
High band LNA ground connection. Immediate grounding required
adjacent to pin.
See pin 4.
High band LNA supply voltage. Local bypass capacitor required.
High band LNA Output. Bias for the LNA is provided through this pin,
hence it should be connected to VCC through an inductor.
Direct connection to ground.
IF output select state control pin. This CMOS compatible signal controls the selection of the IF mixer output path (see the State Control
Truth Table). Local bypass capacitor required.
High band RF mixer input. Although the base of the mixer input transistor is AC coupled, this pin serves a dual purpose of providing a DC-bias
path via external inductor to GND. The typical input impedance is 8Ω
real and requires external matching to 50Ω.
High band local oscillator input. This pin is internally AC-coupled and
matched to 50Ω.
IF output. Open collector output, requires external matching components and DC connection to VCC.
High MIX IN
See pin 19.
IF2+
IF2+
15
MXR VCC
Rev A0 010905
IF output. Open collector output, requires external matching components and DC connection to VCC.
IF21 pF
1 pF
14
8
See pin 4.
FRONT-ENDS
5
1 pF
See pin 13.
Mixer supply voltage. Local bypass capacitor required.
8-127
RF2488
Pin
16
Preliminary
Function
IF1-
Description
Interface Schematic
IF output. Open collector output, requires external matching components and DC connection to VCC.
IF1+
1 pF
17
IF1+
IF output. Open collector output, requires external matching components and DC connection to VCC.
18
BAND SEL
19
Low LO IN
This CMOS compatible pin controls the selection of the low or high
band signal path (See the State Control Truth Table). Local bypass
capacitor required.
LO band local oscillator input. This pin is AC-coupled and matched to
50Ω.
IF11 pF
1 pF
See pin 16.
LO IN
500 Ω
FRONT-ENDS
8
20
TX/RX
21
Low MIX IN
22
23
VCC BIAS
Low LNA
OUT
Low LNA
VCC
24
This CMOS compatible TX/RX mode select Power Control Pin. CMOS
compatible signal controlling the functional state of the device (See the
State Control Truth Table). Local bypass capacitor required.
Low band RF mixer input. Although the base of the mixer input transistor is AC coupled, this pin serves a dual purpose of providing a DC bias
path via external inductor to GND. The typical input impedance is 8Ω
real and requires external matching to 50Ω.
Low MIX IN
Bias supply voltage. Local bypass capacitor required.
Low band LNA output. Bias for the LNA is provided through this pin,
hence it should be connected to VCC through and inductor.
See pin 3.
Low band LNA RF supply voltage. Local bypass capacitor required.
RF2488 State Control Truth Table
State
TX/RX
Band Sel
IF Out Sel
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8-128
Active Circuits
Low Band LNA, IF1 Mixer
Low Band LNA, IF2 Mixer
High Band LNA, IF1 Mixer
High Band LNA, IF2 Mixer
All Off
All Off
All Off
All Off
Rev A0 010905
RF2488
Preliminary
Detailed Description
The RF2488 is fabricated on a high performance Silicon Germanium process that allows optimization of key RF parameters (including noise figure, gain and linearity) for very low current consumption. The RF2488 is packaged in a small 24pin, 4mmx4mm, leadless chip carrier. It can be operated on a single supply voltage from 2.7V to 3.3V. To reduce power
consumption the RF2488 has a standby mode that draws less than 10uA.
The RF2488 has two frequency bands of operation. Each is comprised of an LNA and two downconverting mixers with
combined RF inputs, and two separate intermediate frequency outputs. The LNA outputs and mixer RF inputs are typically connected through an image reject SAW filter, which provides image rejection and out-of-band blocking with low inband insertion loss. Either of the two IF outputs can be selected whether operating in low band or high band mode. This
feature allows different IF frequencies and SAW filters to be used for different air interfaces in multi-mode phones. The
modes are selected using the external BAND SEL and IF SEL pins; these can be switched using standard CMOS logic
levels.
LNA
There are two LNA circuits: one for high band and one for low band. They have two gain conditions: high gain and low
gain. The gain state is selected using the external GAIN SEL pin that can be switched with standard CMOS logic levels.
In high gain mode, the low band LNA exhibits 18dB of gain combined with a noise figure of <1.4dB and a input IP3 (IIP3)
of 3dB. In low gain mode, the device switches to a highly linear state, with IIP3 in excess of 20dBm and a gain of -9dB
with a current drain of less than 500uA.
In high gain mode, the high band LNA exhibits 17dB of gain combined with a noise figure of <1.7dB and a IIP3 of 2dB.
In low gain mode, the device switches to a highly linear state, with IIP3 in excess of 15dBm and a gain of -6dB with a current drain of less than 500uA.
Mixers
The mixers are all single-balanced mixers, with low noise figure, high linearity and high gain. The RF input match can be
tuned for a wide range of RF input frequencies. In low band mode, the match consists of an inductive choke to ground
and a 7Ω to 50Ω step up input match. In high band mode, the match consists of a resonant circuit that provides a DC
choke to ground and a 7Ω to 50Ω step up input match.
The LO input port is internally matched to 50Ω and is internally DC-blocked for easy interface across a wide bandwidth.
The LO input can be driven with signals as low as -9dBm with no performance degradation. The matching of the IF outputs is discussed in the applications section.
Rev A0 010905
8-129
8
FRONT-ENDS
The LNAs require a DC-blocking capacitor at the input and an inductor to ground; the inductor is used to provide additional input linearity and can be removed if the linearity is not required. The LNA output requires an output match, which
is determined by the input impedance of the IR SAW filter (typically 50Ω). The match must include an inductor to supply
to provide the LNA with a DC path to VCC.
RF2488
Preliminary
Application Schematic
1.2 pF
GND
I/O
GND
I/O
GND
GND
Saw
Filters
4.7 nH
Bias VCC
15 nH
5 pF
LNA1 VCC
100 pF
4.7 nH
100 pF
100 pF
TX/RX
LO1 IN
2.2 nH
Band Select
24
GAIN SEL
100 pF
56 nH
LNA1 IN
23
22
21
20
19
100 pF
1
18
2
17
3
16
4
15
5
14
6
13
IF1 OUT
C3
L1
C1
L2
R1
33 nF
2.2 nH
33 nF
C19
1 nF
C2
LNA2 IN
8
DNI
DNI
FRONT-ENDS
LNA2 VCC
7
8
9
10
11
MX VCC
100 pF
12
C18
1 nF
C1
10 pF
12 nH
10 nH
L1
C2
L2
R1
100 pF
100 pF
IF2 OUT
IF OUT
SELECT
C3
2.2 nH
LO2 IN
3 pF (HQ)
GND
I/O
GND
I/O
GND
GND
8.2 nH
Saw
Filter
8-130
Rev A0 010905
RF2488
Preliminary
Application Information
Calculating the mixer output match
The evaluation boards mixer output match is explained below.
VCC
L2
R1
C3
IF OUT
IF+
C1
L1
IF-
C2
The match is made up of six components, each of which is discussed below.
Inductor L2
This inductor functions as a choke at the IF frequency, and should be made as large as possible, to not interact with the
current combiner network. In addition, it provides a DC path from VCC to the mixer core transistors.
Capacitors C1 and C2
These capacitors should be equal, and along with L1, define the resonant frequency.
Capacitor C3
This capacitor is used to provide a DC-block.
Resistor R1
This is primarily used to set the output impedance of the network. The impedance at the resonant frequency can be
measured, and R1 can be placed in parallel to reduce the real impedance to the desired value. Alternatively, an approximation can be made using the following equation.
1
1 –1
R 1 = æ ------------- – ------ö
è R OUT R Pø
This is only an approximation, because it assumes the capacitors have infinite Q, and does not take into account PCB
parasitics.
The following equation can be used to approximately calculate the resonant frequency of the circuit.
1
f IF = ----------------------------------------------L1
2 π ------ ( C1 + C EQ )
2
Rev A0 010905
8-131
8
FRONT-ENDS
Inductor L1
This inductor, along with capacitors C1 and C2 determine the resonant frequency of the current combining circuit, as well
as the output impedance at the resonant point. The output impedance will be dependent on the parasitic resistance of
the inductor RP. A high Q inductor will result in a high output impedance.
RF2488
Preliminary
Where CEQ is the capacitance seen looking into IF+ and IF-, this is made up of an on-chip network that is used for high
frequency filtering and any on-chip and PCB stray capacitances.
The internal network is shown below.
1 pF
IF+
1 pF
Internal Circuitry
IF1 pF
FRONT-ENDS
8
8-132
Rev A0 010905
RF2488
Preliminary
Evaluation Board Schematic
IF@135MHz
(Download Bill of Materials from www.rfmd.com.)
GND
GND
FL1*
Saw Filter
50 Ω µstrip
GND
R3*
0Ω
Bias VCC
C10
5 pF
C1
1.2 pF
C3
100 pF
L6
4.7 nH
C2
100 pF
L1
15 nH
Band Select
24
GAIN SEL
23
22
21
20
C6
100 pF
19
1
18
2
17
3
16
4
15
5
14
L13
180 nH
TRL
L8
56 nH
J4
LNA1 IN
C13
33 nF
50 Ω µstrip
50 Ω µstrip
J5
LNA2 IN
C12
33 nF
L10
2.2 nH
C11*
DNI
L9*
DNI
6
L15
560 nH
R9
820 Ω
C20
1 nF
50 Ω µstrip
J7
IF1 OUT
C22
8 pF
C19
1 nF
C15
10 pF
MX VCC
13
7
L4
12 nH
L17
10 nH
8
9
C9
100 pF
C24
100 pF
10
11
C7
100 pF
12
C16
10 pF
L12
180 nH
C25
3 pF (HQ)
C17
10 pF
L16
560 nH
R10
820 Ω
L5
2.2 nH
GND
R6*
0Ω
R7*
0Ω
C23
8 pF
C21
1 nF
L14
180 nH
R8
0Ω
50 Ω µstrip
J6
IF2 OUT
50 Ω µstrip
J9
LO2 IN
50 Ω µstrip
J10
MX2 IN
I/O
GND
I/O
IF OUT
SELECT
8
C18
1 nF
L7
8.2 nH
2488400-
GND
50 Ω µstrip
J8
LNA2 OUT
C14
10 pF
GND
R5
0Ω
L11
180 nH
TRL
LNA2 VCC
C8
10 pF
J3
LO1 IN
L3
2.2 nH
C5
100 pF
C4
100 pF
TX/RX
50 Ω µstrip
LNA1 VCC
FL2*
Saw Filter
NOTE: Parts with * after reference designator should not be populated on evaluation board.
JP1
VCC
P1
1
2
CON2
GND
1
2
LNA1 VCC
3
4
LNA2 VCC
5
6
MX VCC
7
8
IF Out Select
9
10
Gain Select
11
12
Bias VCC
13
14
Band Select
15
C26 +
1 µF
C27
1 nF
Rev A0 010905
16
HEADER 8X2
TX/RX
C28
1 nF
R11
10 kΩ
C29
1 nF
R12
10 kΩ
C30
1 nF
C31
1 nF
R13
10 kΩ
C32
1 nF
R14
10 kΩ
C33
1 nF
C34
1 nF
C35
1 nF
8-133
FRONT-ENDS
R1
0Ω
R4
0Ω
L2
4.7 nH
50 Ω µstrip
J1
LNA1 OUT
J2
MX1 IN
I/O
GND
I/O
R2*
0Ω
RF2488
Preliminary
Evaluation Board Layout
Board Size 2.3” x 1.9”
Board Thickness 0.062”, Board Material FR-4, Multi-Layer
Assembly
Top
Inner 1
Inner 2
FRONT-ENDS
8
8-134
Rev A0 010905
RF2488
Preliminary
Back
FRONT-ENDS
8
Rev A0 010905
8-135
RF2488
Preliminary
LNA1 Gain versus Frequency
Gain Select=High, 880 MHz
20.0
19.0
19.0
18.0
18.0
Gain (dB)
Gain (dB)
LNA1 Gain versus Supply Voltage
Gain Select=High, VCC=3 V
20.0
17.0
17.0
16.0
16.0
+25°C Gain
-40°C Gain
+85°C Gain
15.0
865.0
+25°C Gain
-40°C Gain
+85°C Gain
15.0
870.0
875.0
880.0
885.0
890.0
895.0
900.0
2.6
2.7
2.8
Frequency (MHz)
LNA1 Noise Figure versus Frequency
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.0
0.8
3.4
1.2
1.0
0.8
0.4
+25°C Noise Figure
-40°C Noise Figure
0.2
+25°C Noise Figure
-40°C Noise Figure
+85°C Noise Figure
0.2
+85°C Noise Figure
0.0
865.0
0.0
870.0
875.0
880.0
885.0
890.0
895.0
900.0
2.6
2.7
2.8
Frequency (MHz)
2.9
3.0
3.1
3.2
3.3
LNA1 Input IP3 versus Frequency
LNA1 Input IP3 versus Supply Voltage
Gain Select=High, -25 dBm per tone, 1 MHz Separation, VCC=3 V
Gain Select=High, 880/881 MHz, -25 dBm per tone
5.0
3.0
3.0
IIP3 (dBm)
4.0
2.0
1.0
2.0
1.0
+25°C IIP3
-40°C IIP3
+85°C IIP3
+25°C IIP3
-40°C IIP3
+85°C IIP3
0.0
865.0
3.4
Supply Voltage (V)
4.0
0.0
870.0
875.0
880.0
885.0
Frequency (MHz)
8-136
3.3
0.6
0.4
5.0
3.2
Gain Select=High, 880 MHz
Noise Figure (dB)
Noise Figure (dB)
3.1
2.0
0.6
IIP3 (dBm)
FRONT-ENDS
8
3.0
LNA1 Noise Figure versus Supply Voltage
Gain Select=High, VCC=3 V
2.0
2.9
Supply Voltage (V)
890.0
895.0
900.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
Rev A0 010905
RF2488
Preliminary
11.0
11.0
11.0
10.0
10.0
10.0
10.0
875.0
880.0
885.0
890.0
895.0
8.0
900.0
8.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
8.0
2.6
2.7
2.8
3.0
3.1
3.2
3.3
Supply Voltage (V)
Mixer1 Noise Figure versus Frequency
Mixer1 Noise Figure versus Supply Voltage
3.4
880 MHz, LO PIN=-6 dBm
13.0
13.0
12.0
12.0
12.0
12.0
11.0
11.0
11.0
11.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
8.0
8.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
7.0
6.0
865.0
870.0
875.0
880.0
885.0
890.0
895.0
IFOUT1 Noise Figure (dB)
13.0
8.0
7.0
7.0
6.0
900.0
6.0
8.0
7.0
6.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
Mixer1 Input IP3 versus Frequency
Mixer1 Input IP3 versus Supply Voltage
-25 dBm per tone, 1 MHz Separation, VCC=3 V, LO PIN=-6 dBm
-25 dBm per tone, 880/881 MHz, LO PIN=-6 dBm
14.0
12.0
12.0
12.0
12.0
10.0
10.0
10.0
10.0
8.0
8.0
8.0
8.0
6.0
6.0
6.0
6.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
4.0
2.0
0.0
865.0
870.0
875.0
880.0
885.0
Frequency (MHz)
Rev A0 010905
890.0
895.0
IFOUT1 IIP3 (dBm)
14.0
IFOUT2 IIP3 (dBm)
14.0
13.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
Frequency (MHz)
IFOUT1 IIP3 (dBm)
2.9
Frequency (MHz)
VCC=3 V, LO PIN=-6 dBm
9.0
4.0
4.0
2.0
2.0
0.0
900.0
0.0
14.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
4.0
2.0
0.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
8-137
8
FRONT-ENDS
870.0
9.0
IFOUT2 IIP3 (dBm)
8.0
865.0
9.0
12.0
IFOUT2 Noise Figure (dB)
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
IFOUT1 Gain (dB)
11.0
IFOUT2 Gain (dB)
12.0
IFOUT2 Noise Figure (dB)
IFOUT1 Gain (dB)
880 MHz, LO PIN=-6 dBm
12.0
9.0
IFOUT1 Noise Figure (dB)
Mixer1 Gain versus Supply Voltage
VCC=3 V, LO PIN=-6 dBm
IFOUT2 Gain (dB)
Mixer1 Gain versus Frequency
12.0
RF2488
Preliminary
LNA2 Gain versus Frequency
Gain Select=High, 1960 MHz
18.0
17.0
17.0
16.0
16.0
Gain (dB)
Gain (dB)
LNA2 Gain versus Supply Voltage
Gain Select=High, VCC=3 V
18.0
15.0
15.0
14.0
14.0
+25°C Gain
-40°C Gain
+85°C Gain
13.0
1920.0
+25°C Gain
-40°C Gain
+85°C Gain
13.0
1930.0
1940.0
1950.0
1960.0
1970.0
1980.0
1990.0
2000.0
2.6
2.7
2.8
Frequency (MHz)
LNA2 Noise Figure versus Frequency
Noise Figure (dB)
Noise Figure (dB)
1.0
3.4
1.5
1.0
0.5
+25°C Noise Figure
-40°C Noise Figure
+85°C Noise Figure
+25°C Noise Figure
-40°C Noise Figure
+85°C Noise Figure
0.0
1920.0
0.0
1930.0
1940.0
1950.0
1960.0
1970.0
1980.0
1990.0
2000.0
2.6
2.7
2.8
Frequency (MHz)
2.9
3.0
3.1
3.2
3.3
LNA2 Input IP3 versus Frequency
LNA2 Input IP3 versus Supply Voltage
Gain Select=High, -25 dBm per tone, 1 MHz Separation, VCC=3 V
Gain Select=High, 1960/1961 MHz, -25 dBm per tone
5.0
3.0
3.0
IIP3 (dBm)
4.0
2.0
1.0
2.0
1.0
+25°C IIP3
-40°C IIP3
+25°C IIP3
-40°C IIP3
+85°C IIP3
+85°C IIP3
0.0
1920.0
3.4
Supply Voltage (V)
4.0
0.0
1930.0
1940.0
1950.0
1960.0
1970.0
Frequency (MHz)
8-138
3.3
2.0
1.5
5.0
3.2
Gain Select=High, 1960 MHz
0.5
IIP3 (dBm)
FRONT-ENDS
3.1
2.5
2.0
8
3.0
LNA2 Noise Figure versus Supply Voltage
Gain Select=High, VCC=3 V
2.5
2.9
Supply Voltage (V)
1980.0
1990.0
2000.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
Rev A0 010905
RF2488
Preliminary
12.0
12.0
12.0
11.0
11.0
11.0
11.0
10.0
10.0
10.0
10.0
1940.0
1950.0
1960.0
1970.0
1980.0
1990.0
8.0
2000.0
8.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
8.0
2.6
2.7
2.8
3.0
3.1
3.2
3.3
Supply Voltage (V)
Mixer2 Noise Figure versus Frequency
Mixer2 Noise Figure versus Supply Voltage
3.4
1960 MHz, LO PIN=-6 dBm
12.0
12.0
11.0
11.0
11.0
11.0
10.0
10.0
10.0
10.0
9.0
9.0
9.0
9.0
8.0
8.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
7.0
6.0
1920.0
1930.0
1940.0
1950.0
1960.0
1970.0
1980.0
1990.0
IFOUT1 Noise Figure (dB)
12.0
7.0
7.0
6.0
2000.0
6.0
8.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
2.7
2.8
2.9
3.0
3.1
3.2
3.3
Mixer2 Input IP3 versus Frequency
Mixer2 Input IP3 versus Supply Voltage
-25 dBm per tone, 1960/1961 MHz, LO PIN=-6 dBm
9.0
8.0
8.0
7.0
7.0
6.0
6.0
5.0
5.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
2.0
1920.0
1930.0
1940.0
1950.0
1960.0
1970.0
Frequency (MHz)
Rev A0 010905
1980.0
1990.0
4.0
10.0
IFOUT1 IIP3 (dBm)
10.0
9.0
3.0
3.4
Supply Voltage (V)
-25 dBm per tone, 1 MHz Separation, VCC=3 V, LO PIN=-6 dBm
4.0
7.0
6.0
2.6
IFOUT2 IIP3 (dBm)
10.0
12.0
8.0
Frequency (MHz)
IFOUT1 IIP3 (dBm)
2.9
Frequency (MHz)
VCC=3 V, LO PIN=-6 dBm
9.0
8.0
8.0
6.0
6.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
4.0
3.0
2.0
2000.0
10.0
4.0
2.0
2.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
8-139
8
FRONT-ENDS
1930.0
9.0
IFOUT2 IIP3 (dBm)
8.0
1920.0
9.0
13.0
IFOUT2 Noise Figure (dB)
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
IFOUT1 Gain (dB)
12.0
IFOUT2 Gain (dB)
13.0
IFOUT2 Noise Figure (dB)
IFOUT1 Gain (dB)
1960 MHz, LO PIN=-6 dBm
13.0
9.0
IFOUT1 Noise Figure (dB)
Mixer2 Gain versus Supply Voltage
VCC=3 V, LO PIN=-6 dBm
IFOUT2 Gain (dB)
Mixer2 Gain versus Frequency
13.0
RF2488
Preliminary
27.0
27.0
26.0
26.0
26.0
26.0
25.0
25.0
25.0
25.0
880.0
885.0
890.0
895.0
23.0
900.0
23.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
24.0
23.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Frequency (MHz)
Supply Voltage (V)
LNA1+Mixer1 Noise Figure versus Frequency
LNA1+Mixer1 Noise Figure versus Supply Voltage
Gain Select=High, VCC=3 V, LO PIN=-6 dBm
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
Gain Select=High, 880 MHz, LO PIN=-6 dBm
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
1.0
0.5
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
0.5
0.0
865.0
870.0
875.0
880.0
885.0
890.0
895.0
2.8
2.9
3.0
3.1
3.2
3.3
LNA1+Mixer1 Input IP3 versus Frequency
LNA1+Mixer1 Input IP3 versus Supply Voltage
-7.0
-7.0
-9.0
-11.0
-11.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
-13.0
-15.0
870.0
875.0
880.0
885.0
Frequency (MHz)
890.0
895.0
IFOUT1 IIP3 (dBm)
-5.0
-4.0
-4.0
-6.0
-6.0
-8.0
-8.0
-10.0
-10.0
-12.0
-12.0
-13.0
-15.0
-17.0
900.0
3.4
Gain Select=High, 880/881 MHz, -40 dBm per tone, LO=-6 dBm
IFOUT2 IIP3 (dBm)
IFOUT1 IIP3 (dBm)
2.7
Supply Voltage (V)
-9.0
8-140
0.0
2.6
Frequency (MHz)
-5.0
0.5
0.0
Gain Select=High, -40 dBm per tone, 1 MHz Separation, VCC=3 V, LO=-6 dBm
-3.0
-3.0
-17.0
865.0
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
0.5
0.0
900.0
IFOUT2 NF (dBm)
IFOUT1 NF (dBm)
875.0
24.0
IFOUT1 NF (dBm)
3.5
870.0
24.0
28.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
-14.0
IFOUT2 IIP3 (dBm)
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
IFOUT1 Gain (dB)
27.0
IFOUT2 Gain (dB)
27.0
IFOUT2 NF (dBm)
IFOUT1 Gain (dB)
28.0
23.0
865.0
FRONT-ENDS
Gain Select=High, 880 MHz, LO PIN=-6dBm
28.0
24.0
8
LNA1+Mixer1 Gain versus Supply Voltage
Gain Select=High, VCC=3 V, LO PIN=-6dBm
IFOUT2 Gain (dB)
LNA1+Mixer1 Gain versus Frequency
28.0
-14.0
-16.0
-16.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
Rev A0 010905
RF2488
Preliminary
28.0
27.0
26.0
26.0
25.0
25.0
IFOUT1 NF (dBm)
27.0
Gain Select=High, 880 MHz, VCC=3 V
3.0
IFOUT2 Gain (dB)
IFOUT1 Gain (dB)
LNA1+Mixer1 Noise Figure versus LO Amplitude
Gain Select=High, 880 MHz, VCC=3.0 V
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
24.0
23.0
-10.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
24.0
0.5
23.0
-9.0
0.0
-10.0
1.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
LO Amplitude (dBm)
LNA1+Mixer1 Input IP3 versus LO Amplitude
LNA1+Mixer1 Current versus Supply Voltage
Gain Select=High, 880/881 MHz, -40 dBm per tone, VCC=3.0 V
-3.0
-5.0
-5.0
-7.0
-7.0
-9.0
-9.0
-11.0
-11.0
0.5
0.0
-9.0
LO Amplitude (dBm)
-3.0
IFOUT2 NF (dBm)
LNA1+Mixer1 Gain versus LO Amplitude
28.0
1.0
Gain Select=High, 880 MHz, LO PIN=-6dBm
20.0
Current (mA)
8
16.0
FRONT-ENDS
-13.0
IFOUT2 IIP3 (dBm)
14.0
-13.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
-15.0
-17.0
-10.0 -9.0
-40°C Current
+85°C Current
-17.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
+25°C Current
12.0
-15.0
10.0
1.0
2.6
2.7
2.8
LO Amplitude (dBm)
LNA2+Mixer2 Gain versus Frequency
Gain Select=High, VCC=3 V, LO PIN=-6dBm
3.1
3.2
3.3
3.4
Gain Select=High, 1960 MHz, LO PIN=-6dBm
27.0
28.0
27.0
26.0
26.0
25.0
25.0
24.0
24.0
23.0
23.0
26.0
24.0
24.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
22.0
1930.0
1940.0
1950.0
1960.0
1970.0
Frequency (MHz)
Rev A0 010905
1980.0
1990.0
IFOUT1 Gain (dB)
IFOUT1 Gain (dB)
26.0
20.0
1920.0
3.0
LNA2+Mixer2 Gain versus Supply Voltage
IFOUT2 Gain (dB)
28.0
2.9
Supply Voltage (V)
22.0
21.0
20.0
2000.0
22.0
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
22.0
IFOUT2 Gain (dB)
IFOUT1 IIP3 (dBm)
18.0
21.0
20.0
20.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
8-141
RF2488
Preliminary
Gain Select=High, 1960 MHz, LO PIN=-6 dBm
3.5
3.0
3.0
3.0
3.0
2.5
2.5
2.5
2.5
2.0
2.0
2.0
2.0
1.5
1.5
1.5
1.5
IFOUT1 NF (dBm)
3.5
IFOUT2 NF (dBm)
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
1.0
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
1.0
0.5
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
0.5
0.5
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
0.5
0.0
2000.0
0.0
1930.0
1940.0
1950.0
1960.0
1970.0
1980.0
1990.0
0.0
2.6
2.7
2.8
Frequency (MHz)
3.1
3.2
3.3
3.4
Supply Voltage (V)
LNA2+Mixer2 Input IP3 versus Supply Voltage
Gain Select=High, 1960/1961 MHz, -40 dBm per tone, LO=-6 dBm
-4.0
-4.0
-6.0
-6.0
-6.0
-6.0
-8.0
-8.0
-8.0
-8.0
-10.0
-10.0
-10.0
-10.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
-12.0
-14.0
1920.0 1930.0
1940.0 1950.0
1960.0 1970.0 1980.0 1990.0
IFOUT1 IIP3 (dBm)
LNA2+Mixer2 Input IP3 versus Frequency
IFOUT2 IIP3 (dBm)
IFOUT1 IIP3 (dBm)
3.0
Gain Select=High, -40 dBm per tone, 1 MHz Separation, VCC=3 V, LO=-6 dBm
-4.0
-4.0
8
-12.0
-12.0
-14.0
2000.0
-14.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
LNA2+Mixer2 Gain versus LO Amplitude
LNA2+Mixer2 Noise Figure versus LO Amplitude
Gain Select=High, 1960 MHz, VCC=3.0 V
Gain Select=High, 1960 MHz, VCC=3 V
3.5
26.0
26.0
3.0
3.0
25.0
25.0
2.5
2.5
24.0
24.0
2.0
2.0
23.0
23.0
1.5
1.5
+25°C Gain, IFout1
-40°C Gain, IFout1
+85°C Gain, IFout1
+25°C Gain, IFout2
-40°C Gain, IFout2
+85°C Gain, IFout2
22.0
21.0
20.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
LO Amplitude (dBm)
8-142
-2.0
-1.0
0.0
1.0
IFOUT1 NF (dBm)
27.0
IFOUT2 Gain (dB)
27.0
-12.0
-14.0
2.6
Frequency (MHz)
IFOUT1 Gain (dB)
2.9
IFOUT2 IIP3 (dBm)
0.0
1920.0
FRONT-ENDS
3.5
3.5
22.0
1.0
+25°C NF, IFout1
-40°C NF, IFout1
+85°C NF, IFout1
1.0
21.0
0.5
+25°C NF, IFout2
-40°C NF, IFout2
+85°C NF, IFout2
0.5
20.0
0.0
-10.0
IFOUT2 NF (dBm)
IFOUT1 NF (dBm)
LNA2+Mixer2 Noise Figure versus Supply Voltage
Gain Select=High, VCC=3 V, LO PIN=-6 dBm
IFOUT2 NF (dBm)
LNA2+Mixer2 Noise Figure versus Frequency
3.5
0.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
1.0
LO Amplitude (dBm)
Rev A0 010905
RF2488
Preliminary
LNA2+Mixer2 Input IP3 versus LO Amplitude
LNA2+Mixer2 Current versus Supply Voltage
Gain Select=High, 1960/1961 MHz, -40 dBm per tone, VCC=3.0 V
-2.0
-2.0
-4.0
-4.0
-6.0
-6.0
Gain Select=High, 1960 MHz, LO PIN=-6dBm
28.0
26.0
-8.0
-10.0
-10.0
+25°C IIP3, IFout1
-40°C IIP3, IFout1
+85°C IIP3, IFout1
+25°C IIP3, IFout2
-40°C IIP3, IFout2
+85°C IIP3, IFout2
-12.0
-14.0
-10.0 -9.0
-7.0
-6.0
-5.0
-4.0
-3.0
LO Amplitude (dBm)
-2.0
-1.0
0.0
22.0
20.0
18.0
16.0
+25°C Current
-12.0
-40°C Current
14.0
+85°C Current
-14.0
-8.0
Current (mA)
-8.0
IFOUT2 IIP3 (dBm)
IFOUT1 IIP3 (dBm)
24.0
1.0
12.0
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
Supply Voltage (V)
FRONT-ENDS
8
Rev A0 010905
8-143
RF2488
Preliminary
FRONT-ENDS
8
8-144
Rev A0 010905