GL390/GL390V Thin Bow Type Resin Mold Package Infrared Emitting Diodes GL390/GL390V ■ Features ■ Outline Dimensions (Unit : mm) 1. Thin bow type resin mold package (Resin area : 2.0 x 3.1 x 5.2 mm) 2. Low peak forward voltage ( GL390V) φ 3.8 ± 0.3 φ 3.1 2.0 +- 0.1 0.3 ❈1 ■ Applications 2 24.0 MIN. 0.8 MAX. 0.2 +- 0.5 0.2 4.1 1. Cameras 2. Infrared remote controllers Protruded resin 1 Epoxy resin 5.2 ± 0.3 VFM : TYP. 1.9V at IFM=0.5A 1 2 2 - 0.5 ± 0.1 (1.0) 2 - 0.5 ± 0.1 1 Anode 2 Cathode (2.54) ❈ 1 Resin type GL390 * Tolerance : ± 0.2mm GL390V Pale blue transparent resin Blue transparent resin ■ Model Lineup Model Radiant intensity (mW/sr) Half intensity angle (˚ ) GL390 TYP. 13 GL390V TYP. 16 TYP. ± 18 ■ Absolute Maximum Ratings Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Operating temperature Storage temperature *2 Soldering temperature Symbol IF I FM VR P T opr T stg T sol (Ta=25˚C) Rating 60 1 6 150 - 25 to 85 - 40 to 85 260 Unit mA A V mW ˚C ˚C ˚C *1 Pulse width <=100µ s, Duty ratio=0.01 *2 For 3 seconds at the position of 2.6 mm from the resin edge “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.” GL390/GL390V ■ Electro-optical Characteristics Parameter (Ta=25 ˚C ) Symbol VF Forward voltage GL390 GL390V Peak forward voltage V FM Reverse current *3 GL390 GL390V Radiant intensity Peak emission wavelength Half intensity wavelength GL390 GL390V Terminal capacitance Response frequency Half intensity angle *3 Conditions I F = 50mA 7 9 - I FM = 0.5A IR V R = 3V IE I F = 50mA λP ∆λ I F = 5mA I F = 5mA Ct V R = 0 f = 1MHz fc ∆θ MIN. - I F = 20mA TYP. 1.3 2.2 1.9 13 16 950 45 70 50 300 ± 18 MAX. 1.5 3.5 3.0 10 - Unit V V µA mW/sr I E : Value obtained by converting the value in power of radiant fluxes emitted at the solid angle of 0.01 sr (steradian) in the direction of mechanical axis of the lens portion into 1 sr or all those emitted from the light emitting diode. Fig. 2 Peak Forward Current vs. Duty Ratio Fig. 1 Forward Current vs. Ambient Temperature 120 10000 5000 Peak forward current I Forward current I 60 40 20 0 - 25 Pulse width <=100 µ s Ta = 25˚C (mA) FM 80 F (mA) 100 1000 500 100 50 10 0 25 50 75 85 100 Ambient temperature Ta (˚C ) 125 10 -3 10 -2 10 Duty ratio -1 1 nm nm pF kHz ˚ GL390/GL390V Fig. 3 Spectral Distribution Fig. 4 Peak Emission Wavelength vs. Ambient Temperature 100 1000 Peak emission wavelength λ p (nm) I F = 5mA Relative radiant intensity (%) Ta = 25˚C 80 60 40 20 0 880 900 920 940 960 I F = const. 975 950 925 900 - 25 980 1000 1020 1040 Wavelength λ (nm) 0 25 Fig. 5-1 Forward Current vs. Forward Voltage (GL390) + 50˚C + 25˚C 0˚C + 85˚C - 25˚C (mA) F 50 - 20˚C Forward current I Forward current I F (mA) 25˚C 0˚C 100 100 1000 Ta= 75˚C 50˚C 75 Fig. 5-2 Forward Current vs. Forward Voltage (GL390V) 500 200 50 Ambient temperature Ta ( ˚C ) 20 10 5 100 10 2 1 0 0.5 1.0 1.5 2.0 Forward voltage V 3.0 2.5 F 1 3.5 0 1.5 2.0 1000 (mW/sr) 10 Radiant intensity I E 5 2 1 0.5 F 2.5 3.0 (V) Fig. 7 Radiant Intensity vs. Forward Current IF = const. 20 1.0 Forward voltage V Fig. 6 Relative Radiant Flux vs. Ambient Temperature Relative radiant flux 0.5 (V) 100 Ta=25˚C Pulse width 100 µ s Duty ratio=0.01 : DC : Pulse GL390V 10 GL390 1 0.1 0.2 0.1 - 25 0 25 50 75 Ambient temperature Ta ( ˚C) 100 0.01 0.1 1 10 100 Forward current I F (mA) 1000 GL390/GL390V Fig. 8-1 Radiation Diagram (Horizontal Direction) - 10˚ 0˚ + 10˚ - 40˚ - 50˚ - 60˚ Relative radiant intensity (%) - 30˚ - 40˚ - 30˚ - 20 -˚ 10˚ 0˚ + 10˚+ 20˚ + 30˚ + 40˚ + 30˚ - 50˚ + 40˚ - 60˚ + 50˚ - 70˚ + 60˚ - 70˚ + 70˚ - 80˚ + 80˚ - 90˚ 0 Fig. 8-2 Radiation Diagram (Vertical Direction) + 20˚ + 90˚ Angular displacement θ ● Please refer to the chapter "Precautions for Use". (Page 78 to 93) + 50˚ Relative radiant intensity (%) - 20˚ + 70˚ + 80˚ - 80˚ - 90˚ + 60˚ 0 Angular displacement θ + 90˚