PC812 PC812 High Noise Resistance Type Photocoupler ■ Features ■ Outline Dimensions 1. High noise reduction ( Common mode rejection voltage V CM : TYP. 1.5kV at dV/dt = 2kV/ µ s, R L = 470 Ω , V np = 100mV ) 2. High current transfer ratio ( CTR : MIN. 90% at I F = 5mA, V CE = 5V) 3. High isolation voltage between input and output ( Viso : 5 000V rms ) 4. Compact dual-in-line package ( Unit : mm ) CTR rank mark 2.54± 0.25 4 3 6.5 ± 0.5 PC812 Anode mark Internal connection 2 1 diagram 4 3 0.9 ± 0.2 1.2 ± 0.3 1 1 Anode 2 3 Emitter 2 Cathode 4 Collector 7.62 ± 0.3 ■ Applications ■ Absolute Maximum Ratings Input Output Parameter Forward current *1 Peak forward current Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature 3.0 ± 0.5 1. Motor-control circuits 2. Computer terminals 3. System appliances, measuring instruments 4. Signal transmission between circuits of different potentials and impedances 3.5 ± 0.5 0.5TYP. 4.58 ± 0.5 0.5 ± 0.1 θ θ θ = 0 to 13 ˚ (Ta = 25˚C ) Symbol IF I FM VR P V CEO V ECO IC PC P tot V iso T opr T stg T sol Rating 50 1 6 70 35 6 50 150 200 5 000 - 30 to + 100 - 55 to + 125 260 Unit mA A V mW V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width <=100 µ s, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” 0.26 ± 0.1 PC812 ■ Electro-optical Characteristics Input Output Transfer characteristics ( Ta = 25˚C ) Parameter Symbol Conditions MIN. Forward voltage VF I F = 20mA Peak forward voltage V F M I F M = 0.5A Reverse current IR V R = 4V Terminal capacitance Ct V = 0, f = 1kHz Collector dark current I CEO V CE = 20V, IF = 0 *4 C T R I F = 5mA, VCE = 5V 90 Current transfer ratio Collector-emitter saturation voltage V CE ( sat ) I F = 20mA, IC = 1mA 5 x 1010 Isolation resistance R ISO DC500V, 40 to 60% RH V = 0, f = 1MHz Floating capacitance Cf V CE = 5V, IC = 2mA, RL = 100 Ω, - 3dB 15 Cut-off frequency fc Rise time tr *4 Response time V CE = 2V, IC = 2mA, RL = 100 Ω Fall time tf *5 Common mode rejection voltage V CM d V/dt = 2kV/ µ s, RL = 470 Ω, Vnp = 100mV, IF = 0 TYP. 1.2 30 0.1 1011 0.6 80 4 5 1.5 MAX. 1.4 3.0 10 200 10 - 7 480 0.2 1.0 18 20 - Unit V V µA pF A % V Ω pF kHz µs µs kV *4 Classification table of current transfer ratio is shown below. *5 Test Circuit for VCM Model Rank No. mark PC812A A PC812B B PC812C C PC812 A , B o r C CTR ( % ) 90 to 180 150 to 180 240 to 480 90 to 480 I = 5mA VCE = 5V T a = 25˚C Measurement conditions tr( µ s) tf ( µ s) TYP. MAX. TYP. MAX. 3 14 4 16 4 16 5 18 5 18 7 20 4 18 5 20 V CE = 2V I C = 2mA R L = 100 Ω T a = 25˚C Fig. 1 Forward Current vs. Ambient Temperature VCC = 9V RL Vnp VCM Test condition Vnp = 100mV, RL = 470 Ω d V/dt = 2kV/ µ s, I F = 0 VCM : Common mode rejection voltage ( higher value of pulse wave ) d V/dt : Rising factor of voltage Fig. 2 Collector Power Dissipation vs. Ambient Temperature 60 ( mW ) 200 Collector power dissipation P 40 Forward current I F ( mA ) C 50 30 20 10 0 - 30 0 25 50 75 Ambient temperature T a 100 ( ˚C ) 125 150 100 50 0 - 30 0 25 50 75 Ambient temperature T 100 a ( ˚C ) 125 PC812 Fig. 3 Peak Forward Current vs. Duty Ratio Pulse width <=100 µs 5 000 500 T a = 25˚C T a = 75˚C 200 2 000 Forward current IF ( mA ) Peak forward current I FM ( mA ) 10 000 Fig. 4 Forward Current vs. Forward Voltage 1 000 500 200 100 50 50˚C 100 25˚C 0˚C 50 - 25˚C 20 10 5 20 2 10 1 5 5 10 -3 2 5 10 -2 2 5 10 -1 2 5 0 1 0.5 1.0 Duty ratio Fig. 5 Current Transfer Ratio vs. Forward Current 2.0 2.5 3.0 3.5 Fig. 6 Collector Current vs. Collector-emitter Voltage 500 40 I F = 30mA VCE = 5V T a = 25˚C 35 T a = 25˚C C ( mA ) 400 Collector current I Current transfer ratio CTR ( % ) 1.5 Forward voltage VF ( V ) 300 200 20mA 30 P C ( MAX.) 10mA 25 20 15 5mA 10 100 5 0 1 2 10 5 20 0 0 50 1 2 Forward current I F ( mA ) Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature 5 6 7 8 0.16 Collector emitter saturation voltage VCE(sat) ( V ) Relative current transfer ratio ( % ) 4 Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature 150 I F = 5mA VCE = 5V 100 50 0 - 30 3 Collector-emitter voltage VCE ( V ) 0 25 50 75 Ambient temperature T a ( ˚C ) 100 125 I F = 20mA 0.14 I C = 1mA 0.12 0.10 0.08 0.06 0.04 0.02 0 - 30 0 20 40 60 80 Ambient temperature T a ( ˚C ) 100 9 10 PC812 Fig.10 Response Time vs. Load Resistance Fig. 9 Collector Dark Current vs. Ambient Temperature 10 -6 500 5 V CE = 20V 100 5 10 -8 10 -9 5 5 10 - 10 20 10 td tr 2 ts 1 0.5 - 11 0.2 0.1 0.01 5 10 tf 5 5 10 VCE = 2V I C = 2mA T a = 25˚C 50 Response time ( µ s ) Collector dark current I CEO ( A ) 10 200 -7 - 12 0 - 30 20 40 60 80 100 120 140 Ambient temperature T a ( ˚C ) 0.1 1 10 Load resistance RL ( k Ω ) 50 Fig.11 Frequency Response Test Circuit for Response Time VCE = 5V I C = 2mA T a = 25˚C Voltage gain A v ( dB ) 0 Input VCC -5 Output 100 Ω Input RD RL Output 10% - 10 90% RL = 10k Ω - 15 td 1k Ω ts tr - 20 0.5 1 2 10 5 20 50 100 200 500 Frequency f ( kHz ) Collector-emitter saturation voltage VCE(sat) ( V ) Fig.12 Collector-emitter Saturation Voltage vs. Forward Current Test Circuit for Frepuency Response 8 T a = 25˚C I C = 0.5mA 7 1mA VCC 6 3mA 5 RD RL Output 5mA 4 7mA 3 2 1 0 ● Please refer to the chapter 0 1 2 3 4 5 6 Forward current I F 7 ( mA ) 8 9 10 “ Precautions for Use ” tf