SHARP PC812

PC812
PC812
High Noise Resistance Type
Photocoupler
■ Features
■ Outline Dimensions
1. High noise reduction
( Common mode rejection voltage
V CM : TYP. 1.5kV at dV/dt = 2kV/ µ s,
R L = 470 Ω , V np = 100mV )
2. High current transfer ratio
( CTR : MIN. 90% at I F = 5mA, V CE = 5V)
3. High isolation voltage between input and
output ( Viso : 5 000V rms )
4. Compact dual-in-line package
( Unit : mm )
CTR rank mark
2.54± 0.25
4
3
6.5 ± 0.5
PC812
Anode mark
Internal connection
2
1
diagram
4
3
0.9 ± 0.2
1.2 ± 0.3
1
1
Anode
2
3
Emitter
2
Cathode
4
Collector
7.62 ± 0.3
■ Applications
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
3.0 ± 0.5
1. Motor-control circuits
2. Computer terminals
3. System appliances, measuring instruments
4. Signal transmission between circuits of
different potentials and impedances
3.5 ± 0.5
0.5TYP.
4.58 ± 0.5
0.5 ± 0.1
θ
θ
θ = 0 to 13 ˚
(Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CEO
V ECO
IC
PC
P tot
V iso
T opr
T stg
T sol
Rating
50
1
6
70
35
6
50
150
200
5 000
- 30 to + 100
- 55 to + 125
260
Unit
mA
A
V
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width <=100 µ s, Duty ratio : 0.001
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
0.26 ± 0.1
PC812
■ Electro-optical Characteristics
Input
Output
Transfer
characteristics
( Ta = 25˚C )
Parameter
Symbol
Conditions
MIN.
Forward voltage
VF
I F = 20mA
Peak forward voltage
V F M I F M = 0.5A
Reverse current
IR
V R = 4V
Terminal capacitance
Ct
V = 0, f = 1kHz
Collector dark current
I CEO
V CE = 20V, IF = 0
*4
C T R I F = 5mA, VCE = 5V
90
Current transfer ratio
Collector-emitter saturation voltage V CE ( sat ) I F = 20mA, IC = 1mA
5 x 1010
Isolation resistance
R ISO DC500V, 40 to 60% RH
V = 0, f = 1MHz
Floating capacitance
Cf
V CE = 5V, IC = 2mA, RL = 100 Ω, - 3dB
15
Cut-off frequency
fc
Rise time
tr
*4
Response time
V CE = 2V, IC = 2mA, RL = 100 Ω
Fall time
tf
*5
Common mode rejection voltage
V CM d V/dt = 2kV/ µ s, RL = 470 Ω, Vnp = 100mV, IF = 0
TYP.
1.2
30
0.1
1011
0.6
80
4
5
1.5
MAX.
1.4
3.0
10
200
10 - 7
480
0.2
1.0
18
20
-
Unit
V
V
µA
pF
A
%
V
Ω
pF
kHz
µs
µs
kV
*4 Classification table of current transfer ratio is shown below.
*5 Test Circuit for VCM
Model
Rank
No.
mark
PC812A
A
PC812B
B
PC812C
C
PC812 A , B o r C
CTR ( % )
90 to 180
150 to 180
240 to 480
90 to 480
I = 5mA
VCE = 5V
T a = 25˚C
Measurement
conditions
tr( µ s)
tf ( µ s)
TYP. MAX. TYP. MAX.
3
14
4
16
4
16
5
18
5
18
7
20
4
18
5
20
V CE = 2V
I C = 2mA
R L = 100 Ω
T a = 25˚C
Fig. 1 Forward Current vs.
Ambient Temperature
VCC = 9V
RL
Vnp
VCM
Test condition
Vnp = 100mV, RL = 470 Ω
d V/dt = 2kV/ µ s, I F = 0
VCM : Common mode rejection
voltage
( higher value of pulse wave )
d V/dt : Rising factor of voltage
Fig. 2 Collector Power Dissipation vs.
Ambient Temperature
60
( mW )
200
Collector power dissipation P
40
Forward current I
F
( mA )
C
50
30
20
10
0
- 30
0
25
50
75
Ambient temperature T
a
100
( ˚C )
125
150
100
50
0
- 30
0
25
50
75
Ambient temperature T
100
a
( ˚C )
125
PC812
Fig. 3 Peak Forward Current vs. Duty Ratio
Pulse width <=100 µs
5 000
500
T a = 25˚C
T a = 75˚C
200
2 000
Forward current IF ( mA )
Peak forward current I FM ( mA )
10 000
Fig. 4 Forward Current vs. Forward Voltage
1 000
500
200
100
50
50˚C
100
25˚C
0˚C
50
- 25˚C
20
10
5
20
2
10
1
5
5
10
-3 2
5
10
-2 2
5
10
-1 2
5
0
1
0.5
1.0
Duty ratio
Fig. 5 Current Transfer Ratio vs.
Forward Current
2.0
2.5
3.0
3.5
Fig. 6 Collector Current vs.
Collector-emitter Voltage
500
40
I F = 30mA
VCE = 5V
T a = 25˚C
35
T a = 25˚C
C
( mA )
400
Collector current I
Current transfer ratio CTR ( % )
1.5
Forward voltage VF ( V )
300
200
20mA
30
P C ( MAX.)
10mA
25
20
15
5mA
10
100
5
0
1
2
10
5
20
0
0
50
1
2
Forward current I F ( mA )
Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature
5
6
7
8
0.16
Collector emitter saturation voltage VCE(sat) ( V )
Relative current transfer ratio ( % )
4
Fig. 8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
150
I F = 5mA
VCE = 5V
100
50
0
- 30
3
Collector-emitter voltage VCE ( V )
0
25
50
75
Ambient temperature T a ( ˚C )
100
125
I F = 20mA
0.14
I C = 1mA
0.12
0.10
0.08
0.06
0.04
0.02
0
- 30
0
20
40
60
80
Ambient temperature T a ( ˚C )
100
9
10
PC812
Fig.10 Response Time vs. Load Resistance
Fig. 9 Collector Dark Current vs.
Ambient Temperature
10
-6
500
5 V CE = 20V
100
5
10
-8
10
-9
5
5
10
- 10
20
10
td
tr
2
ts
1
0.5
- 11
0.2
0.1
0.01
5
10
tf
5
5
10
VCE = 2V
I C = 2mA
T a = 25˚C
50
Response time ( µ s )
Collector dark current I CEO ( A )
10
200
-7
- 12
0
- 30
20 40 60 80 100 120 140
Ambient temperature T a ( ˚C )
0.1
1
10
Load resistance RL ( k Ω )
50
Fig.11 Frequency Response
Test Circuit for Response Time
VCE = 5V
I C = 2mA
T a = 25˚C
Voltage gain A v ( dB )
0
Input
VCC
-5
Output
100 Ω
Input
RD
RL
Output
10%
- 10
90%
RL = 10k Ω
- 15
td
1k Ω
ts
tr
- 20
0.5
1
2
10
5
20
50
100
200
500
Frequency f ( kHz )
Collector-emitter saturation voltage VCE(sat) ( V )
Fig.12 Collector-emitter Saturation Voltage vs.
Forward Current
Test Circuit for Frepuency Response
8
T a = 25˚C
I C = 0.5mA
7
1mA
VCC
6
3mA
5
RD
RL
Output
5mA
4
7mA
3
2
1
0
● Please refer to the chapter
0
1
2
3
4
5
6
Forward current I F
7
( mA )
8
9
10
“ Precautions for Use ”
tf