SONY CXB1577R

CXB1577R
Post-Amplifier for Optical Fiber Communication Receiver
Description
The CXB1577R achieves the 2R optical-fiber
communication receiver functions (Reshaping and
Regenerating) on a single chip. This IC is equipped
with the signal detection function, which is used to
enable TTL/ECL outputs. Also, the output disable
function performs the output shutdown.
32 pin LQFP (Plastic)
Features
• Output disable function (TTL input)
• Signal detection function (TTL/ECL output)
Applications
• SONET/SDH:
• Fibre Channel:
:
• Gigabit-Ethernet:
622.08Mbps
531.25Mbps
1.062Gbps
1.25Gbps
Absolute maximum Ratings
• Supply voltage
• Storage temperature
• Input voltage difference | VD – VD |
• SW input voltage
• ECL output current
• TTL output current (High level)
• TTL output current (Low level)
• D/DB input voltage
• ODIS input voltage
Recommended Operating Conditions
• Supply voltage
• Termination voltage (for data)
• Termination voltage (for alarm 1,alarm 2)
• Termination resistance (for data)
• Termination resistance (for alarm 1)
• Termination resistance (for alarm 2)
• Operating temperature
VCC – VEE
Tstg
Vdif
Vi
IOQ/SD-ECL
IOH SD-TTL
IOL SD-TTL
–0.3 to +6
–65 to +150
0 to +2
VEE to VCC
–30 to 0
–20 to 0
0 to 20
Vcc – 2 to Vcc
VEE – 0.5 to VEE +5.5
V
°C
V
V
mA
mA
mA
V
V
5 ± 0.25
1.8 to 2.2
VEE
46 to 56
240 to 300
460 to 560
0 to +70
V
V
V
Ω
Ω
Ω
°C
VCC – VEE
VCC – VTD
VTA
RTD
RTA1
RTA2
Ta
Structure
Bipolar silicon monolithic IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E98402-PS
CXB1577R
VEE4
N.C.
CAP3
CAP2
VEE2
VEEI
DN
UP
Block Diagram and Pin Configuration
24
23
22
21
20
19
18
17
VCC4 25
∆V
16
VCC2
15
VEE1
14 D
SD-TTL 26
peak hold
peak hold
SDB-TTL 27
SD-ECL
28
SDB-ECL 29
13
DB
12
CAP1
11 CAP1B
Q 30
10 N.C.
QB 31
VCC3 32
ODIS
SW
VCC2
5
6
7
8
TM
4
VEE1
3
VEE2
2
N.C.
1
VEE3
9
–2–
VCC1
CXB1577R
Pin Description
Pin
No.
Symbol
Typical pin
voltage (V)
DC
1
VEE3
Equivalent circuit
Description
AC
Negative power supply for ECL
output buffer.
0
VCC2
10k
2
ODIS
0 or 5
(open)
VREF
2
300
10k
Controls the output shutdown
function. High voltage when
open; the Q output is fixed to
Low. Low voltage when
connected to VEE; the D input
results in the Q output with ECL
level. TTL level is also available.
VEE2
VCC2
Switches the identification
maximum voltage amplitude.
High voltage when open; the
identification maximum voltage
amplitude becomes 40mVp-p.
Low voltage when connected to
VEE; the amplitude becomes
20mVp-p.
60k
3
SW
0 or 5
(open)
3
40k
VEE2
Positive power supply for digital
block.
4
VCC2
5
N.C.
6
VEE2
0
Negative power supply for digital
block.
7
VEE1
0
Negative power supply for analog
block.
8
TM
5
No connected.
8
7
1.6
Chip temperature monitor.
VEE1
9
VCC1
10
N.C.
Positive power supply for analog
block.
5
No connected.
–3–
CXB1577R
Pin
No.
Symbol
Typical pin
voltage (V)
DC
11
CAP1B
12
CAP1
Equivalent circuit
AC
VCC1
7.5k
14
13
DB
Description
3.7
3.3
to
4.1
200
12
100p
13
11
1k
7.5k
200
1k
3.3
to
4.1
VEE1
Pins 11 and 12 connect a
capacitor which determines the
cut-off frequency for DC
feedback block.
Pins 13 and 14 are input pins
for limiting amplifier block. Input
the signal with AC coupled.
14
D
15
VEE1
0
Negative power supply for analog
block.
16
VCC2
5
Positive power supply for digital
block.
17
UP
3.7
VCC2
986
140.9
18
DN
140.9
17
Connects a resistor for alarm
level setting.
Default voltage can be generated
without an external resistor by
shorting the VEEI pin to VEE.
100
18
100
SW
VCS
SW
19
VEEl
0
VEE2
19
20
VEE2
Generates the default voltage
between UP and DOWN.
The voltage (8.0mV for input
conversion) can be generated
between UP and DOWN (Pins 17
and 18) as alarm setting level by
connecting this pin to VEE.
Negative power supply for digital
block.
0
–4–
CXB1577R
Pin
No.
Symbol
Typical pin
voltage (V)
DC
Equivalent circuit
Description
AC
21
VCC2
80
10p
21
CAP2
3.2
200
5µA
VEE2
22
VCC2
80
10p
22
CAP3
3.2
Connects a peak hold circuit
capacitor for alarm block.
470pF should be connected
to Vcc each.
CAP2 pin connects a peak
hold capacitor for alarm
level setting block.
CAP3 pin connects a peak
hold capacitor for limiting
amplifier signal.
200
5µA
VEE2
No connected.
23
N.C.
24
VEE4
0
Negative power supply for TTL
output buffer.
25
VCC4
5
Positive power supply for TTL
output buffer.
VCC4
26
SD-TTL
0 or 3
26
40k
VEE4
–5–
Alarm signal TTL level output.
CXB1577R
Pin
No.
Symbol
Typical pin
voltage (V)
DC
Equivalent circuit
Description
AC
VCC4
27
SDB-TTL
0 or 3
Alarm signal TTL level output.
27
40k
VEE4
28
3.3
or
4.1
SD-ECL
VCC3
28
29
29
30
SDB-ECL
3.3
or
4.1
Q
3.3
or
4.1
VEE3
VCC3
30
31
31
QB
32
VCC3
Alarm signal ECL level output.
Terminate this pin in 510Ω to
VEE.
3.3
or
4.1
Data signal output.
Terminates this pin in 50Ω to
VTT = Vcc – 2V.
VEE3
Positive power supply for ECL
output buffer.
5
–6–
CXB1577R
Electrical Characteristics
DC Characteristics
Item
VCC = 5 ± 0.25V, VEE = GND, Ta = 0 to +70°C
Symbol
Supply current
IEE
Q/QB High output voltage
VOH
Q/QB Low output voltage
VOL
SD-ECL/SDB-ECL High output voltage VOH-E
Conditions
50Ω to VTT
510Ω to VEE
SD-ECL/SDB-ECL Low output voltage
VOL-E
SD-TTL/SDB-TTL High output voltage
VOH-T
IOH = –0.4mA
SD-TTL/SDB-TTL Low output voltage
VOL-T
IOL = 2mA
SW High input voltage
VIHSW
at SW pin Open: High
SW Low input voltage
VILSW
SW High input current
IIHSW
SW Low input current
IILSW
ODIS High input voltage
VIHOD
ODIS Low input voltage
VILOD
ODIS High input current
IIHOD
VIH = Vcc
ODIS Low input current
IILOD
VIL = VEE
D/DB input resistance
Rin
TM voltage
VTM
Min.
Typ.
–74
–51
Max.
mA
VCC – 1100
VCC – 860
VCC –1860
VCC – 1620
VCC –1100
VCC – 860
VCC –1900
VCC – 1620
0.5
VCC – 0.5
VCC
VEE
0.5
–100
2
VCC + 0.5
VEE
0.8
20
–400
765
Iin = 1mA
–7–
mV
2.4
10
at ODIS pin Open: High
Unit
1.2
1020
V
µA
V
µA
1275
Ω
2
V
CXB1577R
AC Characteristics
Item
Maximum input voltage amplitude
VCC = 5 ± 0.25V, VEE = GND, Ta = 0 to +70°C
Symbol
Vmax
Conditions
single-ended input
Amplifier gain (excluding the output buffer) GL
Identification maximum voltage
amplitude of alarm level
Min.
Max.
mVp-p
52
dB
20
SW: Open High,
VmaxA2
single-ended input
40
mVp-p
∆P1
SW: Low,
at default alarm level
3
∆P2
SW: Open High,
at default alarm level
3
6
7
Alarm setting level for default
Vdef
SW: Open High,
VEEI = VEE, fin = 100Mbps
Differential voltage input
6.6
8.0
9.3
Q/QB rise time
TrQ
230
350
Q/QB fall time
TfQ
230
350
SD-TTL/SDB-TTL rise time
TrSDT
SD-TTL/SDB-TTL fall time
TfSDT
SD-ECL/SDB-ECL rise time
TrSDE
SD-ECL/SDB-ECL fall time
TfSDE
Propagation delay time
TPD
SD response assert time
Tas
SD response deassert time
SD/SDB hysteresis width
Unit
1600
SW: Low,
single-ended input
VmaxA1
Typ.
6
7
dB
20% to 80%
50Ω to VTT
0.6V to 2.2V
CL = 10pF
10
20% to 80%
510Ω to VEE
1.6
mV
ps
10
ns
1.6
0.4
1.9
∗1
0
100
Tdas
∗2
2.3
100
SD response assert time for alarm
level default
Tasd
∗3
0
100
SD response deassert time for alarm
level default
Tdasd
∗4
2.3
100
µs
∗1 VUP – VDOWN = 100mV, Vin = 100mVp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3
pins) of 470pF, VEEI: Open.
∗2 VUP – VDOWN = 100mV, Vin = 1Vp-p (single ended), SW: High, peak hold capacitance (CAP2, CAP3
pins) of 470pF, connect VEEI: Open.
∗3 Vin = 50mVp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
∗4 Vin = 1Vp-p (single ended), SW: Low, peak hold capacitance of 470pF, connect VEEI to VEE.
–8–
CXB1577R
DC Electrical Characteristics Measurement Circuit
23
24
21
20
19
UP
DN
VEE2
CAP2
22
VEEI
C3
CAP3
VEE4
N.C.
C3
18
17
VCC4
VCC2
25
16
VEE1
15
∆V
C1 VD
SD-TTL
D
14
26
peak hold
SDB-TTL
C1
DB
peak hold
27
13
SD-ECL
CAP1
28
12
29
11
30
10 N.C.
510
SDB-ECL
CAP1B
510
Q
51
QB
31
51
VCC1
VCC3
32
9
8
TM
SW
VSW
7
VEE1
ODIS
VODIS
6
5
VEE2
4
3
N.C.
2
VCC2
1
VEE3
VTT
3V
5V
–9–
C2
CXB1577R
AC Electrical Characteristics Measurement Circuit
24
23
470p
22
20
19
UP
DN
VEE2
21
VEEI
REX1
CAP2
CAP3
VEE4
N.C.
470p
18
17
VCC2
VCC4
25
16
VEE1
15
∆V
SD-TTL
D
0.047µF
DB
0.047µF
14
26
peak hold
Oscilloscope
Hi-Z input
SDB-TTL
peak hold
27
13
SD-ECL
Z0 = 50
CAP1
28
12
29
11
30
10 N.C.
CAP1B
SDB-ECL
Z0 = 50
Oscilloscope
50Ω input
Q
Z0 = 50
QB
31
Z0 = 50
VCC3
VCC1
32
9
VCC
+2V
VEE
–3V
– 10 –
VEE1
VEE2
7
8
TM
6
5
N.C.
4
3
VCC2
SW
2
ODIS
VEE3
1
1µF
CXB1577R
Application Circuit
VEE
24
23
22
21
20
19
UP
DN
REX1
VEEI
VEE2
470p
CAP2
CAP3
VEE4
N.C.
470p
18
17
VCC4 25
16
∆V
SD-TTL
26
15 VEE1
VTT
D
14
0.047µF
DB
0.047µF
51Ω
Signal Generator
51Ω
VIN
peak hold
TTL Output
SDB-TTL
peak hold
27
13
SD-ECL
ECL Output
VCC2
28
12
29
11
30
10 N.C.
51Ω
VTT
CAP1B
SDB-ECL
51Ω
51Ω
VTT
CAP1
1µF
Q
ECL Output
51Ω
QB
31
VCC3 32
TTL
Input
6
7
8
TM
5
VEE1
4
VEE2
3
N.C.
2
ODIS
VEE3
1
VCC2
9
SW
VTT
VCC – 2.0V
VCC1
VEE
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 11 –
CXB1577R
Notes on Operation
1. Limiting amplifier block
The limiting amplifier block is equipped with the auto-offset canceler circuit. When external capacitors C1 and
C2 are connected as shown in Fig. 1, the DC bias is set automatically in this block. External capacitor C1 and
IC internal resistor R1 determine the low input cut-off frequency f2 as shown in Fig. 2. Similarly, external
capacitor C2 and IC internal resistor R2 determine the high cut-off frequency f1 for DC bias feedback. Since
peaking characteristics may occur in the low frequency area of the amplifier gain characteristics depending on
the f1/f2 combination, set the C1 and C2 values so as to avoid the occurrence of peaking characteristics. The
target values of R1 and R2 and the typical values of C1 and C2 are as indicated below. When a single-ended
input is used, provide AC grounding by connecting Pin 13 to a capacitor which has the same capacitance as
capacitor C1.
R1 (internal): 1kΩ
R2 (internal): 7.5kΩ
f2: 3.4kHz
f1: 21Hz
C1 (external): 0.047µF
C2 (external): 1µF
14
D
C1
To IC interior
13
C1
R1
R1
R2
12
C2
R2
11
Fig. 1
Gain
Feedback frequency
response
f1
f2
Frequency
Fig. 2
– 12 –
Amplifier frequency
response
CXB1577R
2. Alarm block
In order to operate the alarm block, give the voltage difference between Pins 17 and 18 to set an alarm level
and connect the peak hold capacitor C3 shown in Fig. 3.
This IC has two setting methods of alarm level; one is to connect Pin 19 to VEE and leave Pins 17 and 18 open
to set an alarm level default value (8mV for input conversion). The other is to connect Pin 19 to VEE and set a
desired alarm level using the external resistors REX1, REX2 and REX3 shown in Fig. 3. Connect REX1 between
Pins 17 and 18 or connect REX3 between Pin 18 and Vcc when less alarm level is desired to be set than its
default value; connect REX2 between Pin 17 and Vcc when more alarm level is desired to be set than its default
value. However, the Pin 17 voltage must be higher than that of Pin 18.
This IC also features two-level setting of identification maximum voltage amplitude. The amplitude is set to
40mVp-p when Pin 3 is left open (High level) and it is set to 20mVp-p when Pin 3 is Low level. Therefore, the
noise margin can be increased by setting Pin 3 to Low level when the small signal is input. The relation of input
voltage and peak hold output voltage is shown in Fig. 5.
In the relation between the alarm setting level and hysteresis width, the hysteresis width is designed to
maintain a constant gain (design target value: 6dB) as shown in Fig. 4.
This IC is designed to externally have the capacitor C3, and the C3 value should be set so as to obtain desired
assert time and deassert time settings for the alarm signal.
The electrical characteristics for the SD response assert and deassert times are guaranteed only when
the waveforms are input as shown in the timing chart of Fig. 6.
REX1: 100Ω (when the alarm level is set to 4mV for input conversion.)
REX2: 8kΩ (when the alarm level is set to 10mV for input conversion.)
REX3: 4kΩ (when the alarm level is set to 4mV for input conversion.)
C3: 470pF
The table below shows the alarm logic.
The table below shows the output disable function logic.
SD
SD
Optical signal input
state
Q
Q
Signal input
High level
Low level
ODIS: Open High
Fixed Low
Fixed High
Signal interruption
Low level
High level
ODIS: Low
Data
Data
Optical signal input
state
Ra1, Ra2A and Ra2B values are
typical values.
From limiting amplifier
Peak Hold
SD-TTL
SDB-TTL
VCCA
Ra1
986
Ra2A
141
SD-ECL
SDB-ECL
Peak Hold
Ra2B
141
VCCA
VCS
VCCA
10p
10p
∆V
3
19
18
17
21
22
IC interior
19
REX2
VEEI
18
DN
UP
17
IC exterior
VEE
Fig. 3
– 13 –
REX1
VCC
C3
C3
REX3
VCC
VCC
VCC
CXB1577R
VDAS → Deassert level
VAS → Assert level
Peak hold output voltage
SD output
High
level
Low
level
VDAS
VAS
Small
Large
3dB
3dB
Alarm setting
input level
Hysteresis
SW → Low
SW → Open High
0
Input electrical
signal amplitude
Fig. 4
20
40
Input voltage [mVp-p]
Fig. 5
Data input
(D)
Hysteresis width
Alarm setting level
Data output
(Q)
Alarm output
(SD)
Assert time
Deassert time
Fig. 6
– 14 –
CXB1577R
Example of Representative Characteristics
1. Q/QB output waveform
VCC = 5V
VEE = GND
VTT = 3V
Ta = 27°C
D = 622Mbps
Vin = 5mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 7
VCC = 5V
VEE = GND
VTT = 3V
Ta = 27°C
D = 622Mbps
Vin = 10mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 500ps/div
Fig. 8
VCC = 5V
VEE = GND
VTT = 3V
Ta = 27°C
D = 1.25Gbps
Vin = 5mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 9
– 15 –
CXB1577R
VCC = 5V
VEE = GND
VTT = 3V
Ta = 27°C
D = 1.25Gbps
Vin = 10mVp-p
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
Q
QB
Ch. 1 = 400mV/div OFFSET = –1330mV, Ch. 2 = 400mV/div OFFSET = –1330mV, Timebase = 200ps/div
Fig. 10
2. Bit error rate
Bit error rate vs. Data input level
10 –3
622Mbps
1.0Gbps
1.25Gbps
10 –4
Bit error rate
10 –5
VCC = 5V
VEE = GND
VTT = 3V
Ta = 27°C
Single input
pattern: PRBS223-1
Q/QB = 50Ω to VTT
10 –6
10 –7
10 –8
10 –9
10 –10
1
1.5
2
Data input level [mVp-p]
Alarm level vs. REX1
Alarm level vs. Temperature
6.0
9
SW = H
SW = L
5.0
Alarm level [mV]
Alarm level [mV]
SW = H
SW = L
5.5
7
6
5
4
4.5
4.0
3.5
3.0
fin = 100Mbps
VCC – VEE = 5V
Ta = 27°C
Differential input
3
2
102
3
Fig. 11
3. Alarm level
8
2.5
fin = 100Mbps
VCC – VEE = 5V
Up-Down = 200Ω (REX1)
2.5
2.0
103
UP-DOWN (REX1) [Ω]
104
Fig. 12
–40
–20
0
40
20
Ta [°C]
Fig. 13
– 16 –
60
80
100
CXB1577R
Alarm level vs. Supply voltage
Alarm level vs. REX2
6.0
16
SW = H
SW = L
5.5
5.0
14
Alarm level [mV]
Alarm level [mV]
fin = 100Mbps
VCC – VEE = 5V
Ta = 27°C
Differential input
15
4.5
4.0
3.5
3.0
13
12
11
10
fin = 100Mbps
Ta = 27°C
Up-Down = 200Ω (REX1)
2.5
2.0
4.7
4.8
4.9
5.1
5.0
VCC – VEE [V]
SW = H
SW = L
9
5.2
8
103
5.3
104
VCC-UP (REX2) [Ω]
Fig. 14
Fig. 15
Alarm level vs. Temperature
Alarm level vs. Supply voltage
15.0
15.0
SW = H
SW = L
14.5
14.0
Alarm level [mV]
Alarm level [mV]
SW = H
SW = L
14.5
14.0
13.5
13.0
12.5
13.5
13.0
12.5
12.0
fin = 100Mbps
VCC – VEE = 5V
VCC-UP = 5kΩ (REX2)
12.0
–40
–20
0
20
40
Ta [°C]
60
80
fin = 100Mbps
Ta = 27°C
VCC-UP = 5kΩ (REX2)
11.5
11.5
11.0
4.7
100
4.8
4.9
5.1
5.0
VCC – VEE [V]
Fig. 16
Alarm level vs. REX3
5.3
Alarm level vs. Temperature
6.0
SW = H
SW = L
fin = 100Mbps
VCC – VEE = 5V
VCC-Down = 3kΩ (REX3)
SW = H
SW = L
5.5
8
5.0
Alarm level [mV]
7
6
5
4.5
4.0
3.5
fin = 100Mbps
VCC – VEE = 5V
Ta = 27°C
Differential input
4
3.0
3
103
5.2
Fig. 17
9
Alarm level [mV]
105
2.5
104
VCC-DOWN (REX3) [Ω]
–40
105
Fig. 18
–20
0
40
20
Ta [°C]
Fig. 19
– 17 –
60
80
100
CXB1577R
Alarm level vs. Supply voltage
Hysteresis width vs. Alarm level
6.0
8.0
5.0
6.0
4.5
5.0
4.0
4.0
3.5
3.0
3.0
2.0
2.5
1.0
2.0
4.7
5.0
4.9
5.1
VCC – VEE [V]
4.8
fin = 100Mbps
VCC – VEE = 5V
Ta = 27°C
0
2.0
5.3
5.2
SW = H
SW = L
7.0
HYS [dB]
Alarm level [mV]
fin = 100Mbps
Ta = 27°C
VCC-Down = 3kΩ (REX3)
SW = H
SW = L
5.5
4.0
6.0
10.0
8.0
Alarm level [mV]
Fig. 20
Hysteresis width vs. Temperature
Hyteresis width vs. Supply voltage
8.0
SW = H
SW = L
7.0
SW = H
SW = L
7.0
6.0
6.0
5.0
5.0
HYS [dB]
HYS [dB]
14.0
Fig. 21
8.0
4.0
3.0
4.0
3.0
2.0
2.0
fin = 100Mbps
VCC – VEE = 5V
Up, Down = Open
VEEI = VEE
1.0
–40
–20
0
20
40
Ta [°C]
60
fin = 100Mbps
Ta = 27°C
Up, Down = Open
VEEI = VEE
1.0
0
0
4.7
80
4.8
5.0
4.9
5.1
VCC – VEE [V]
5.2
Fig. 22
Fig. 23
Alarm level vs. Data rate
Hysteresis width vs. Data rate
16
5.3
12
SW = H
SW = L
14
SW = H
SW = L
10
12
VCC – VEE = 5V
Ta = 27°C
Up, Down = Open
VEEI = VEE
8
HYS [dB]
Alarm level [mV]
12.0
10
8
6
4
6
VCC – VEE = 5V
Ta = 27°C
Up, Down = Open
VEEI = VEE
4
2
2
0
0
200
400
600 800
fin [Mbps]
1000 1200 1400
0
Fig. 24
200
400
600 800
fin [Mbps]
Fig. 25
– 18 –
1000 1200 1400
CXB1577R
4. DC voltage
SD-ECL "H" level vs. Supply voltage
SD-ECL "H" level vs. Temperature
–860
–860
Ta = 27°C
SD-ECL
SDB-ECL
–900
–900
–940
–940
"H" level [mV]
"H" level [mV]
SD-ECL
SDB-ECL
–980
–980
–1020
–1020
–1060
–1060
–1100
–1100
4.7
4.8
5
4.9
5.1
VCC – VEE [V]
5.2
5.3
–40
–20
0
Fig. 26
SD-ECL "L" level vs. Supply voltage
60
80
100
SD-ECL "L" level vs. Temperature
–1640
Ta = 27°C
SD-ECL
SDB-ECL
SD-ECL
SDB-ECL
–1680
–1680
–1720
–1720
"L" level [mV]
"L" level [mV]
20
40
Ta [°C]
Fig. 27
–1640
–1760
VCC – VEE = 5V
–1760
–1800
–1800
–1840
–1840
–1880
–1880
4.7
4.8
5
4.9
5.1
VCC – VEE [V]
5.2
5.3
–40
–20
0
Fig. 28
SD-TTL "H" level vs. Supply voltage
60
80
100
SD-TTL "H" level vs. Temperature
3.4
Ta = 27°C
VCC – VEE = 5V
3.2
"H" level [V]
3.2
3.0
2.8
3.0
2.8
2.6
2.6
2.4
4.7
20
40
Ta [°C]
Fig. 29
3.4
"H" level [V]
VCC – VEE = 5V
2.4
4.8
4.9
5.1
5
VCC – VEE [V]
5.2
5.3
–40
Fig. 30
–20
0
20
40
Ta [°C]
Fig. 31
– 19 –
60
80
100
CXB1577R
SD-TTL "L" level vs. Supply voltage
SD-TTL "L" level vs. Temperature
200
200
Ta = 27°C
VCC – VEE = 5V
180
"L" level [mV]
"L" level [mV]
180
160
140
120
160
140
120
100
100
4.7
4.8
5
4.9
5.1
VCC – VEE [V]
5.2
5.3
–40
–20
0
Fig. 32
Q "H" level vs. Supply voltage
80
100
Q "H" level vs. Temperature
–860
Ta = 27°C
Q-H
QB-H
Q-H
QB-H
–900
–900
–940
–940
"H" level [mV]
"H" level [mV]
60
Fig. 33
–860
–980
VCC – VEE = 5V
–980
–1020
–1020
–1060
–1060
–1100
–1100
4.7
4.8
5
4.9
5.1
VCC – VEE [V]
5.2
5.3
–40
–20
0
Fig. 34
20
40
Ta [°C]
60
80
100
Fig. 35
Q "L" level vs. Supply voltage
Q "L" level vs. Temperature
–1620
–1620
Ta = 27°C
Q-L
QB-L
Q-L
QB-L
–1660
–1660
–1700
–1700
"L" level [mV]
"L" level [mV]
20
40
Ta [°C]
–1740
–1740
–1780
–1780
–1820
–1820
–1860
VCC – VEE = 5V
–1860
4.7
4.8
5
4.9
5.1
VCC – VEE [V]
5.2
–40
5.3
Fig. 36
–20
0
20
40
Ta [°C]
Fig. 37
– 20 –
60
80
100
CXB1577R
Package Outline
Unit: mm
32PIN LQFP (PLASTIC)
7.0
1.7MAX
5.0
S
B
0.08
S
17
24
B
A
25
16
A
9
32
(0.5)
8
1
X4
X4
0.2
S
0.2
AB
S
AB
S
AB
0.5
0.08 M
0.2 ± 0.03
(0.2)
(0.125)
0.1 ± 0.05
0.125 ± 0.02
0.6 ± 0.15
0.25
(0.5)
0° to 8°
DETAIL B
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
LQFP-32P-L01
LEAD TREATMENT
PALLADIUM PLATING
EIAJ CODE
LQFP032-P-0505
LEAD MATERIAL
COPPER ALLOY
PACKAGE MASS
0.1g
JEDEC CODE
NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).
– 21 –