CXD1961Q DVB-S Front-end IC (QPSK demodulator + FEC) Preliminary For the availability of this product, please contact the sales office. Description The CXD1961Q is a single chip DVB Satellite Broadcasting Front-end IC, including dual ADC for analog I/O inputs, QPSK demodulator, Viterbi decoder, de-interleaver, Reed-Solomon decoder and Energy Dispersal descrambler. It is suitable for use in a DVB Integrated Receiver Decoder. Features • Dual 6 bit A/D converters • QPSK demodulator Multi-symbol rate operation Nyquist roll off filter (α = 0.35) Clock recovery circuit Carrier recovery circuit AGC control circuit • Viterbi decoder Constraint length K =7 Punctured rate R = 1/2 –7/8 Truncation length 144 Punctured rate search function BER monitor • De-interleaver Packet synchronization Convolutional de-interleaver • Reed-Solomon decoder (204, 188) • Energy dispersal descrambler • CPU interface l2C bus interface/8 bit CPU bus TTL interface level (5V input capability) • JTAG(IEEE std 1149.1–1990) test mode • Package : QFP-100pin • Single +3.3V Power Supply • Symbol rate max:32MSPS min:TBD • Power consumption TBD • 0.4um CMOS Technology 100 pin QFP (Plastic) Absolute Maximum Ratings (Ta=25°C, GND=0V) • Supply voltage VDD –0.5 to 4.6 V • Input voltage VIN –0.5 to VDD+0.5 V • Output voltage VOUT –0.5 to VDD+0.5 V • I/O voltage VI/O –0.5 to VDD+0.5 V V • CPU I/F pin VCPUIF –0.5 to 5.5 • Operating temperature Topr 0 to +75 °C • Storage temperature Tstg –55 to +150 °C DC Recommended Operating Conditions (Ta=0°C to 75°C, GND=0 V) • Supply voltage VDD 3.15 to 3.45 V • Input Hi-level VIH VDD–0.7 to VDD+0.5 V • Input Lo-level VIL 0.3 to VDD +0.2 V Applications • DVB-S Set Top Box (Satellite) Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. —1— PE96417-TE CXD1961Q Block Diagram 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 1 Analog I/Q 2 Sampling Clock 3 2ch ADC 79 78 VCO 77 4 PLL 5 76 75 6 74 7 QPSK Demodulator Digital Filter 8 73 9 72 10 71 11 70 12 69 NCO Viterbi Decoder 13 68 14 67 15 66 16 65 64 17 JTAG Oscillator De-interleaver 18 19 63 62 61 20 60 21 Reed-Solomon Decoder 22 59 CPU I/F 23 l2C bus 24 58 57 56 25 26 55 Energy Dispersal 27 54 28 53 29 8bit CPU bus Decoded data & clock 30 31 32 33 34 35 52 51 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Typical Application Block Diagram LNB QPSK+FEC I/Q Detector Amp SAW Data LPF SONY CXD1961Q LPF VCO PLL 90° Reference OSC Micro Controller —2— LPF Crystal Clock CXD1961Q VSS10 TEST6 VDD11 TEST7 VSS11 CPOUT VCOC AVD2 OPX IN OPOUT AVS2 VCOEN RT1 QIN AVD1 AVS1 RB1 AVD0 RT0 IIN Pin Configuration 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 VDD10 AVS0 1 RB0 2 79 CR7 VDD0 3 78 CR6 VSS0 4 77 CR5 CPUSEL 5 76 CR4 PLLSEL 6 75 VSS9 TEST1 7 74 VDD9 TEST2 8 72 CR3 TEST3 9 73 CR2 VDD1 10 71 CR1 VSS1 11 70 CR0 SDATA 12 69 CKV SCLK 13 68 AGCPWM SEN 14 67 VSS8 VDD2 15 66 VDD8 VSS2 16 65 TEST5 TCK 17 64 TEST4 TMS 18 63 XI TDO 19 62 XO TDI 20 61 VSS7 CK8OUT 21 60 VDD7 RESET 22 59 SDA TE 23 58 SCL VDD3 24 57 ADD3 VSS3 25 56 ADD2 PKTCLK 26 55 ADD1 BYTCLK 27 54 VSS6 PKTERR 28 53 VDD6 DATA0 29 52 ADD0 DATA1 30 51 CS —3— DS RW D7 D5 D6 VSS5 VDD5 D3 D4 D2 D1 D0 DATA7 DATA6 VSS4 DATA5 VDD4 DATA4 DATA2 DATA3 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 CXD1961Q Pin Description No. 1 2 3 4 5 6 7–9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29–33 34 35 36–38 39–43 44 45 46–48 49 50 51 52 53 54 Symbol AVS0 RB0 VDD0 VSS0 CPUSEL PLLSEL TEST1–3 VDD1 VSS1 SDATA SCLK SEN VDD2 VSS2 TCK TMS TDO TDI CK8OUT RESET TE VDD3 VSS3 PKTCLK BYTCLK PKTERR DATA0–4 VDD4 VSS4 DATA5–7 D0–D4 VDD5 VSS5 D5–D7 RW DS CS ADD0 VDD6 VSS6 I/O — — — — I I I — — O O O — — I I O I O I I — — O O O O — — O I/O — — I/O I I I I — — Description Analog Ground ADC0 bottom reference voltage Digital Power Supply (+3.3 V) Digital Ground CPU interface select (L : I2C bus) Connect Digital Ground Test input (connect Digital Ground) Digital Power Supply (+3.3 V) Digital Ground SONY internal use SONY internal use SONY internal use Digital Power Supply (+3.3 V) Digital Ground JTAG test clock JTAG test mode select JTAG test data output JTAG test data input Divide by 8 clock of Crystal clock Reset input (L : reset) Test Enable (H : test enable) Digital Power Supply (+3.3 V) Digital Ground R/S Packet clock R/S Byte clock R/S uncorrectable Packet flag R/S data output (DATA0 : LSB) Digital Power Supply (+3.3 V) Digital Ground R/S data output (DATA7 : MSB) 8 bit CPU bus data I/O (D0 : LSB) Digital Power Supply (+3.3 V) Digital Ground 8 bit CPU bus data I/O (D7 : MSB) 8 bit CPU bus Read/Write (H : Read) 8 bit CPU bus Data strobe 8 bit CPU bus Chip Select 8 bit CPU bus Address0 (LSB) Digital Power Supply (+3.3 V) Digital Ground —4— CXD1961Q No. 55–57 58 59 60 61 62 63 64, 65 66 67 68 69 70–73 74 75 76–79 80 81 82, 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Symbol ADD1–3 SCL SDA VDD7 VSS7 XO XI TEST4, 5 VDD8 VSS8 AGCPWM CKV CR0–3 VDD9 VSS9 CR4–7 VDD10 VSS10 TEST6, 7 VDD11 VSS11 CPOUT AVD2 VCOC OPXIN OPOUT AVS2 VCOEN RT1 AVD1 QIN AVS1 RB1 RT0 AVD0 IIN I/O I I I/O — — O I O — — O O O — — O — — O — — O — I I O — I — — I — — — — I Description 8 bit CPU bus Address1–3 (ADD3 : MSB) I2C bus serial clock I2C bus serial data Digital Power Supply (+3.3 V) Digital Ground Oscillator output (for Crystal) Oscillator input (for Crystal) Test output (VSS level) Digital Power Supply (+3.3 V) Digital Ground PWM output for AGC Sampling Clock monitor output Clock Recovery data 0–3 (CR0 : LSB) Digital Power Supply (+3.3 V) Digital Ground Clock Recovery data 4–7 (CR7 : MSB) Digital Power Supply (+3.3 V) Digital Ground Test output (VSS level) Digital Power Supply (+3.3 V) Digital Ground PLL Charge pump output Analog Power Supply (+3.3 V) VCO control voltage input Embedded OP-Amp Negative input Embedded OP-Amp output Analog Ground VCO enable (H : enable) ADC1 top reference voltage Analog Power Supply (+3.3 V) Analog Q input (ADC1 input) Analog Ground ADC1 bottom reference voltage ADC0 top reference voltage Analog Power Supply (+3.3 V) Analog input (ADC0 input) Note) Apply 0.1 µF capacitor to every power supply terminal. Apply 0.1µF capacitor to RB0, RT0, RB1, RT1 for stable A to D conversion. —5— CXD1961Q CPU Interface Register Sub R/W address MSB 7 6 5 4 3 2 1 LSB 0 0 R ADC_IN7 ADC_IN6 ADC_IN5 ADC_IN4 ADC_IN3 ADC_IN2 ADC_IN1 ADC_IN0 1 R BECNT15 BECNT14 BECNT13 BECNT12 BECNT11 BECNT10 BECNT9 BECNT8 2 R BECNT7 BECNT6 BECNT5 BECNT4 BECNT3 BECNT2 BECNT1 BECNT0 3 R QSYNC AFC3 AFC2 AFC1 AFC0 VSYNC RSYNC BEM_END 4 W AGC7 AGC6 AGC5 AGC4 AGC3 AGC2 AGC1 AGC0 5 W VS_N4 VS_N3 VS_N2 VS_N1 VS_N0 RATE2 RATE1 RATE0 6 W QS_N3 QS_N2 QS_N1 QS_N0 AC2 AC1 BC2 BC1 7 W AK2 AK1 S_INV TIMER1 TIMER0 8 W PLL_CTL MON_SW 9 W DF_SKIP DOUT_INV RS_SKIP A W SFD18 SFD17 SFD16 SFD15 SFD14 B W SFD10 SFD9 SFD8 SFD7 C W SFD2 SFD1 SFD0 D W NC023 NC022 E W NC015 F W NC07 VS_T3 AGC_INV AGC_MOD TIMER2 VS_T2 SSEL VS_T1 VS_T0 AFC_MOD BER_T2 CE_LEV1 CE_LEV0 BER_T1 BER_T0 SFD13 SFD12 SFD11 SFD6 SFD5 SFD4 SFD3 PCD2 PCD1 PCD0 NC021 NC020 NC019 NC018 NC017 NC016 NC014 NC013 NC012 NC011 NC010 NC09 NC08 NC06 NC05 NC04 NC03 NC02 NC01 NC00 REF_SEL REF_LSB Note) 1. Above Registers are shared by I2C bus interface and 8 bit CPU bus interface. 2. To select CPU interface, use CPUSEL (Pin 5) ; H : 8 bit CPU bus / L : I2C bus. 3. I2C bus interface slave address; MSB 6 5 4 3 2 1 LSB 0 1 1 0 1 1 1 0 Write mode : DC (Hex) Read mode : DD (Hex) —6— R/W CXD1961Q CPU Interface Register Brief Explanation ADD 0 ADD 1, 2 ADD 3 ADD 4 ADD 5 ADD 6 ADD 7 ADD 8 ADD 9 ADD A ADD A, B, C ADD C ADD D, E, F ADC_IN (7 : 0) BECNT (15 : 0) QSYNC AFC (3 : 0) VSYNC RSYNC BEM_END AGC (7 : 0) ADC input level (I2+Q2 at QPSK demodulator) Bit Error Count at QPSK demodulator output QPSK Synchronization Flag (H : in sync.) Auto Frequency Control data Viterbi dec. Synchronization Flag (H : in sync) Reed-Solomon dec. Synchronization Flag (H : in sync) Bit Error Monitor enable Flag (H : enable) (when AGC mode is H) AGC Gain control data (when AGC mode is L) Reference data for self AGC VS_N (4 : 0) V sync threshold Bit Error Count (see Fig. 1) RATE (2 : 0) Punctured rate (see Fig. 2) QS_N (3 : 0) Threshold data for QPSK sync. judgement (see Fig. 3) AC (2 : 1), BC (2 : 1) Parameter for Carrier recovery loop filter (see Fig. 4) AK (2 : 1) Parameter for Clock recovery loop filter (see Fig. 4) S_INV I/Q exchange (H : enable) AGC_INV AGC control voltage polarity (H : positive) AGC_MOD H : controlled by CPU (slave) L : self AGC mode (master) TIMER (2 : 0) Timer for AGC master mode (see Fig. 5) PLL_CTL For SONY internal use (input 0 for norma use) MON_SW For SONY internal use (input 0 for norma use) VS_T (3 : 0) Monitor period for Viterbi sync. (see Fig. 6) CE_LEV (1 : 0) Clock recovery Error feed back level (see Fig. 7) DF_SKIP Digital Filter skip mode (H : enable) DOUT_INV Data output timing invert (H : falling edge) RS_SKIP R/S decode skip mode (H : enable) SSEL For SONY internal use (input 0 for normal use) AFC_MOD For SONY internal use (input 0 for normal use) BER_T (2 : 0) Monitor period for Bit error Count (see Fig. 8) HS_PLL For SONY internal use (input 0 for normal use) SFD (17 : 11) For SONY internal use (input 0 for normal use) PCD (2 : 0) For SONY internal use (input 0 for normal use) REF_SEL For SONY internal use (input 0 for normal use) REF_LSB For SONY internal use (input 0 for normal use) NC0 (23 : 0) Sampling Frequency 2*Fs=NC0 (0 : 23)*8*Fxtal/224 (Fxtal=Crystal Frequency) Fig. 1 V sync threshold (Error Counter Preset data) Register VS_N4 VS_N3 VS_N2 VS_N1 VS_N0 9 8 7 6 Limit ×2 ×2 ×2 ×2 ×25 (ex. VS_N (4 : 0)=(1, 1, 0, 0, 1) Limit=0×29+0×28+1×27+1×26+0×25=192) max. : 992 min. : 32 Fig. 2 Punctured Rate Punc. rate RATE2 RATE1 RATE0 1/2 0 0 1 2/3 0 1 0 3/4 0 1 1 4/5 1 0 0 —7— 5/6 1 0 1 6/7 1 0 0 7/8 1 1 1 Auto 0 0 0 CXD1961Q Fig. 3 QPSK Synchronization monitor QSYNC Threshold QSYNC Monitor Period (QS_N3)×27+(QS_N2)×26+(QS_N1)×25+(QS_N0)×24 256 (fix) Fig. 4 Costas Loop Filter co-efficiency Parameter (0, 0) (0, 1) (1, 0) (AC2, AC1) ×1 1/2 1/4 (BC2, BC1) ×1 ×2 ×4 (AK2, AK1) ×1 1/2 1/4 (1, 1) 1/8 ×8 1/8 Item Carrier recovery IIR filter Carrier recovery tracking range Clock recovery IIR filter Fig. 5 Timer period (Sampling Frequency = 60 MHz) TIMER2 1 1 1 1 0 0 0 0 TIMER1 1 1 0 0 1 1 0 0 TIMER0 1 0 1 0 1 0 1 0 Period (ms) 140 70 35 17.5 8.75 4.38 2.19 1.09 Frequency (kHz) 7.14 14.3 28.6 57.1 114 229 457 914 Fig. 6 V sync monitor period (measurement period counter preset data) Register VS_T3 VS_T2 VS_T1 VS_T0 max. : 6656 12 11 10 9 Period (viterbi clock) ×2 ×2 ×2 ×2 min. : 512 12 11 10 9 (ex. VS_T (3:0)=(0, 1, 1, 1) → Limit=1×2 +0×2 +0×2 +0×2 =4096) (viterbi clock) Fig. 7 Clock recovery error data (8 bit) feed back level NCO 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CE_LEV (1, 1) (1, 0) (0, 1) (0, 0) Fig. 8 Bit Error Monitor period (Viterbi clock) BER_T2 1 1 1 1 0 BER_T1 1 1 0 0 1 BER_T0 1 0 1 0 1 19 18 17 16 Period 2 2 2 2 215 0 1 0 214 0 0 1 213 —8— 0 0 0 26 CXD1961Q Functional Description (1) CPU Interface CXD1961Q has two CPU interface, an 8 bit CPU bus and an I2C bus interface. Fix CPUSEL (Pin 5) to DC L or H level depending on the choice of bus. CPUSEL=L : I2C bus / H : 8 bit bus I2C bus Interface The CXD1961Q's slave address is "1101110", and the read/write operation is based on Philips standard. <Write Data> In write operation, the second byte is input as the sub-address of the start position. The 3rd byte then forms the data to be written to the start register. Successive data bytes are written to successive sub-address register. S Slave A SubT Address 0 C Address A 1101110 K Nhex A Input data C for "N" K A Input data C for "N+1" K A C K • • • A S C T K P STA : Start condition ACK : Acknowledgment by CXD1961Q STP : Stop Condition Note) Registers of Sub-Address 0hex to 3hex are read only <Read Data> Before read operation, the sub-address of the start register to be read is input by using write operation, and terminated by a stop condition. Read operation then begins with the second byte which is the data of the start register. Data of successive sub-address registers are read successively following by the second byte. S Slave A SubT Address 0 C Address A 1101110 K Nhex A S C T K P S Slave A A A Output data Output data T Address 1 C C C from "N" from "N+1" A 1101110 K K K • • • Note) Registers of Sub-Address 4hex to Fhex are write only —9— A S C T K P CXD1961Q 8 bit CPU bus Interface (Write cycle) DS RW D [7:0] Valid input ADD [3:0 ] Valid Address CS T1 T2 T3 Timing Description T2–T1 Address, CS to Data valid T3–T1 R/W to DS T3–T2 Data valid to DS T4–T3 DS pulse width T5–T4 Data hold time T6–T4 Address, CS, R/W hold time Note) Registers of Address 0hex to 3 hex are read only T4 T5 T6 T5 T6 Min (nsec) Max (nsec) 25 24 10 70 21 24 (Read cycle) DS RW D [7:0] Valid output ADD [3:0] Valid Address CS T1 Timing T2–T1 T3–T2 T4–T2 T5–T4 T6–T4 T2 T3 Description Address, CS, R/W to DS DS to Data valid DS pulse width Data hold time Address, CS, R/W hold time T4 Min (nsec) Max (nsec) 24 75 105 24 24 Note) Registers of Address 4hex to Fhex are write only —10— CXD1961Q (2) Analog to Digital Converters The Dual 6 bit A to D converters quantize the analog I/Q input data. The input range of the ADC's is determined by external resistors. RT0 (RT1) is the top reference voltage, and RB0 (RB1) is the bottom reference voltage. RT0 (RT1) and RB0 (RB1) are connected internally with a 320 Ω (Typical value) resistor. In the example shown in the following figure, input range is approximately 1.1 V, and center voltage 1.65 V. AVD (+3.3V) CXD1961Q 330Ω RT Top reference level Input range 320Ω 330Ω Bottom reference level RB AVS (0V) (3) AGC Input signal level of the A to D Converter is estimated by calculating I2+Q2 in 16 bit precision, and the upper 8 bits of the estimated data are sent via the CPU I/F as ADC_IN [7:0]. CXD1961Q has two AGC modes that can be selected by AGC_MOD. In AGC slave mode, ADC_IN[7:0] is checked and an appropriate gain level AGC[7:0] is returned by the micro controller. This value is converted into 8 bit PWM format and output from AGCPWM (Pin 68). In AGC master mode, reference level AGC[7:0] is set via the CPU I/F and compared to ADC_IN[7:0] internally. The updated gain level is then output at the AGCPWM pin. In normal operation, ADC_IN[7:0] becomes almost equal to reference level. In AGC master mode, AGC control interval is set by TIMER[2:0]. In both modes, AGCPWM output should be low pass filtered, and if needed, the level should be converted to satisfy the AGC gain control range. Depending on AGC_INV, the polarity can be inverted. (H:positive / L:negative) CPU Register ADC_IN [7 : 0] AGC_MOD Reference level ADC_IN [7 : 0] 0F 3F 7F FF → → ADD 0h ADD 7h AGC [7 : 0] TIMER [2 : 0] → → Input signal level to ADC input range ratio 0.25 0.5 0.7 1.0 or over range Note) ADC input range is subject to temperature and VDD level. —11— ADD 4h ADD 7h AGC_INV → ADD 7h CXD1961Q (4)Clock Recovery Initial sampling clock frequency is set by a 24 bit word via the CPU I/F. This 24 bit word is written to the NCO(Numerically Controlled Oscillator). The sampling frequency is: Fsample= 8*NCO [23:0]*Fxtal/224 where: NCO [23:0] is the parameter for sampling frequency, "8" is the divider gain of the PLL, Fxtal is the reference crystal frequency, whose value should be more than 30MHz (32MHz is recommended). The internal digital clock recovery loop feeds clock error data to the above NCO to provide sampling timing correction . AK [2:1] is the Loop Filter coefficient and CE_LEV [1:0] is the Loop Gain. This value limits clock recovery range and resolution. (see the CPU Interface Register Brief Explanation Fig.7) Sampling clock is output from CKV (pin 69). CPU I/F Register AK [2:1] → ADD 7h CE_LEV [1:0] → ADD 8h NCO [23:0] → ADD D, E, Fh (Example) CE_LEV [1:0]=(0,1), NCO [23:0]=(001110000000000000000000), Fxtal=32 MHz Sampling Frequency = 8*(221+220+219)*32*106/224 = 23*7*106 = 56*106 → 56 MHz Clock recovery range = 29/(221+220+219) = 1/210/7 = 139.5..*10–6 → ±140 ppm 1 6 24 Clock recovery = 8*2 *32*10 /2 = 30.5. . . → 31 Hz resolution (5)Carrier Recovery The Analog I/Q inputs have a carrier offset frequency, which is not corrected by the tuner's PLL Synthesizer. The offset is compensated by a Costas Loop, using a frequency multiplier, loop filter and the NCO. AC [2:1] is the coefficient of the loop filter and BC [2:1] is the loop gain parameter. QPSK synchronization(QSYNC) is determined by monitoring the output of loop filter. The internal sync detector monitors 256 cycles, and checks the value with the threshold set by QS_N [3:0]. In QPSK synchronization, AFC [3:0] indicates the offset proportional value which remains at that point. This value is the average data of the loop filter output. If AFC3(=MSB) is high, tuner PLL has a negative offset to the carrier frequency , and vice versa if AFC3 is low. By feeding the AFC [3:0] to the tuner's PLL Synthesizer, carrier offset can be corrected with the PLL step size. CPU I/F Register QSYNC,AFC [3:0] → ADD 3h QS_N [3:0], AC [2:1], BC [2:1] —12— → ADD 6h CXD1961Q (6)Viterbi decoder By using QPSK demodulated data and Viterbi decoded data, the existence of errors is detected. Bit error measured over a certain period is used to determine the correct punctured rate and phase synchronization as well as bit error rate (BER). VS_N[4:0] is used to set the error count threshold, and VS_T[3:0] is used to set the error count duration. (see Fig.1 and Fig. 6 of CPU Interface Register Brief Explanation) For example) VS_N[4:0]=(1, 1, 0, 0, 1) → Error Count threshold =192 VS_T[3:0] =(1, 0, 1, 1) → Error Count duration = 2048 In this case, bit error is checked for 2048 cycles. If the error count is less than 192, CXD1961Q judges that punctured decoding is in sync and VSYNC goes high. Punctured rate is set by RATE[2:0]. When a certain rate is set by RATE[2:0], only punctured phase search is performed. Punctured rate and phase search is performed if RATE[2:0] is set to (0, 0, 0). CXD1961Q has 216 (= 65536) bit counter for BER estimation. BER monitor period is set by BER_T[2:0] (see Fig. 8), and the error count is read by CPU I/F as BECNT[15:0]. If BEM_END is low, punctured rate or phase search is not finished and the error count is not reliable at that moment. CPU I/F Register BERCNT[15:0] → ADD 1, 2h VS_N[4:0] → ADD 5h VSYNC VS_T[3:0] → ADD 3h → ADD 8h BEM_END BER_T[2:0] → → ADD 3h ADD 9h (7) Packet synchronization and De-inter leaver 2 dimensional sync protection starts once sync word 47 hex or inverted sync word B 8 hex is detected. In this algorithm, sync status changes with hysteresis depending on sync or non-sync detection every 204 byte, so that the probability of false-LOCK or Sync-loss is minimized. When the packet synchronization is achieved,the convolutional de-inter leaver (Forney, depth=12) starts operating. (8) Reed - Solomon decoder The Galois Field is generated by F(x) = x8+x4+x3+x2+1 Code is generated by G(x) = (x-α0)(x-α1)(x-α2) • • (x-α15) If RS_SKIP is high, no correction is performed. CPU I/F Register RS_SKIP → ADD 9h (9) Energy Dispersal Energy dispersal descrambling is represented by the polynomial x15+ x14 +1. Initial sequence is loaded when inverted sync word B8hex is detected. 1 dimensional sync protection circuit checks the inverted sync word every 8 packets. When it is in sync, RSYNC goes high. Even if the sync is lost, the initial sequence continues to be loaded at previous time step. CPU I/F Register RSYNC → ADD 3h —13— CXD1961Q (10) Output Data Format The following figure shows the output format of BYTCLK, PKTCLK, PKTERR. BYTCLK is generated by dividing the internal viterbi clock by 8. Data output DATA[7:0] is output in sync with BYTCLK. DOUT_INV determines whether DATA[7:0] is output on the rising edge or the falling edge of BYTCLK. PKTCLK HighTime is equal to 188 data bytes period and PKTCLK Low-Time is equal to 16 parity bytes period. PKTERR goes H if an uncorrectable error packet is encountered. CPU I/F Register DOUT_INV → ADD 9h no error data correctable error parity data uncorrectable error parity data pa BYTCLK PKTCLK PKTERR BYTCLK and PKTCLK have varying forms, depending on the punctured rate. The following figure shows Minimum and Maximum values for each rate. One unit represents 1 sampling clock (=2∗Symbol rate) cycles. R=1/2 R=2/3 R=3/4 R=4/5 R=5/6 R=6/7 R=7/8 Period Min. Max. 16 16 12 12 10 11 10 10 9 10 9 10 9 10 BYTCLK High-Time Min. Max. 8 8 6 6 5 6 5 5 4 5 4 5 4 5 Low-Time Min. Max. 8 8 6 6 5 6 5 5 4 5 4 5 4 5 (For example) SACLK R=1/2 Viterbi clock Byteclock R=7/8 Viterbi clock Byte clock —14— Period Min. Max. 3264 3264 2448 2448 2176 1276 2040 2040 1948 1949 1904 1904 1865 1866 PKTCLK High-Time Min. Max. 3008 3008 2256 2256 2005 2006 1880 1880 1804 1805 1754 1755 1718 1719 Low-Time Min. Max. 256 256 192 192 170 171 160 160 153 154 149 150 146 147 CXD1961Q Package Outline Unit : mm 100PIN LQFP (PLASTIC) 16.0 ± 0.2 ∗ 14.0 ± 0.1 75 51 76 (15.0) 50 0.5 ± 0.2 A 26 (0.22) 100 1 0.5 ± 0.08 + 0.08 0.18 – 0.03 25 + 0.2 1.5 – 0.1 + 0.05 0.127 – 0.02 0.1 0° to 10° 0.5 ± 0.2 0.1 ± 0.1 NOTE: Dimension “∗” does not include mold protrusion. DETAIL A PACKAGE STRUCTURE PACKAGE MATERIAL EPOXY/PHENOL RESIN SONY CODE LQFP-100P-L01 LEAD TREATMENT SOLDER PLATING EIAJ CODE ∗QFP100-P-1414-A LEAD MATERIAL 42 ALLOY JEDEC CODE PACKAGE WEIGHT —15—