SONY CXD2467Q

CXD2467Q
Digital Signal Driver/Timing Generator
For the availability of this product, please contact the sales office.
Description
The CXD2467Q incorporates digital signal processor
type RGB driver and timing generator functions onto a
single IC. Operation is possible with a system clock up
to 135MHz (max.). This IC can process video signals
in bands up to SXGA standard, and can output the
timing signals for driving various LCD panels such as
SXGA (LCX028) and XGA (LCX017 and LCX023).
Features
• Various picture quality adjustment functions such
as user adjustment, white balance adjustment and
gamma correction
• OSD MIX, black frame processing, mute and limiter
functions
• Drives various data projector LCD panels such as
SXGA (LCX028) and XGA (LCX017 and LCX023)
• Controls the sample-and-hold position of the
CXA2112R sample-and-hold driver
• Line inversion and field inversion signal generation
• Supports AC drive of LCD panels during no signal
240 pin QFP (Plastic)
Absolute Maximum Ratings (VSS = 0V)
• Supply voltage
VDD
VSS – 0.5 to +4.0
V
• Input voltage
VI
Vss – 0.5 to VDD + 0.5 V
• Output voltage
VO Vss – 0.5 to VDD + 0.5 V
• Storage temperature
Tstg
–55 to +125
°C
Recommended Operating Conditions
• Supply voltage
VDD
3.0 to 3.6
• Operating temperature
Topr
–20 to +75
V
°C
Applications
LCD projectors and other video equipment
Structure
Silicon gate CMOS IC
Note) Company names and product names, etc. contained in these materials are the trademarks or registered
trademarks of the respective companies.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E98X38-PS
CXD2467Q
Block Diagram
PSAVE1
PSAVE2
8×2×3
2×2×3
2
2
R, G, B IN
R, G, B OSD
YM
YS
PCTL
PCLK
PDAT
10
DSD
10 × 2 × 3
PARALLEL I/F
CLKOUT
CLK2
CLK1P
CLK1N
CLK1C
R, G, B OUT
D
Q
TG
Q
CLKSEL1
CLKPOL1
CLKSEL2
HDIN1
HDPOL1
VDIN1
Direct Clear
HRET, ORACT, HST,
HCK1, HCK2, DCK1,
DCK1X, DCK2,
DCK2X, ENB, PCG,
CLP1, CLP2, VST,
VCK, FRP, BLK,
RGT, XRGT, DWN,
HB, VB1, VB2, SHA,
SHB, SHC, SHD, INV
XCLR
VDPOL1
CLK4
CLK3P
CLK3N
CLK3C
D
Q
IRACT
Q
CLKSEL3
CLKPOL2
CLKSEL4
HDIN2
HDPOL2
–2–
IRRET, IRACT
CXD2467Q
R1OUT3
R1OUT4
R1OUT5
R1OUT6
R1OUT7
VDD
R1OUT8
R1OUT9
VSS
PCG
VB2
VB1
VSS
HB
DWN
VST
VCK
VDD
VSS
ENB
BLK
HCK1
HCK2
VDD
DCK1
DCK2X
DCK1X
DCK2
HST
VSS
RGT
XRGT
FRP
PRG
CLP1
CLP2
SHA
SHB
SHC
SHD
INV
VDD
IRACT
VSS
TEST1
ORACT
TEST4
TEST3
TEST2
PSAVE2
PSAVE1
R1IN7
R1IN6
VDD
VSS
R1IN3
R1IN5
R1IN4
R1IN1
R1IN2
Pin Configuration
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121
R1IN0 181
120 R1OUT2
R2IN7 182
119 R1OUT1
R2IN6 183
118 R1OUT0
R2IN5 184
117 R2OUT9
R2IN4 185
116 R2OUT8
VDD 186
115 VSS
VSS 187
114 VDD
R2IN3 188
113 R2OUT7
R2IN2 189
112 R2OUT6
R2IN1 190
111 R2OUT5
R2IN0 191
110 R2OUT4
G1IN7 192
109 R2OUT3
G1IN6 193
108 VSS
G1IN5 194
107 R2OUT2
G1IN4 195
106 R2OUT1
G1IN3 196
105 R2OUT0
G1IN2 197
104 G1OUT9
VSS 198
103 G1OUT8
G1IN1 199
102 VSS
G1IN0 200
101 G1OUT7
G2IN7 201
100 G1OUT6
G2IN6 202
99 G1OUT5
G2IN5 203
98 G1OUT4
G2IN4 204
97 G1OUT3
G2IN3 205
96 VSS
G2IN2 206
95 G1OUT2
G2IN1 207
94 G1OUT1
G2IN0 208
93 G1OUT0
VDD 209
92 G2OUT9
VSS 210
91 G2OUT8
B1IN7 211
90 VSS
B1IN6 212
89 VDD
B1IN5 213
88 G2OUT7
B1IN4 214
87 G2OUT6
B1IN3 215
86 G2OUT5
B1IN2 216
85 G2OUT4
B1IN1 217
84 G2OUT3
B1IN0 218
83 VSS
B2IN7 219
82 G2OUT2
B2IN6 220
81 G2OUT1
B2IN5 221
80 G2OUT0
VSS 222
79 B1OUT9
B2IN4 223
78 VSS
B2IN3 224
77 B1OUT8
B2IN2 225
76 B1OUT7
B2IN1 226
75 B1OUT6
B2IN0 227
74 B1OUT5
R1OSD1 228
73 B1OUT4
R1OSD0 229
72 VSS
G1OSD1 230
71 B1OUT3
G1OSD0 231
70 B1OUT2
B1OSD1 232
69 B1OUT1
B1OSD0 233
68 B1OUT0
VDD 234
67 VSS
VSS 235
66 VDD
–3–
B2OUT4
B2OUT3
B2OUT1
B2OUT2
VSS
B2OUT0
VDD
VSS
XCLR
HRET
IRRET
CLKSEL4
CLKPOL2
CLKSEL3
CLK4
VSS
VSS
CLK3C
VDD
CLK3N
CLK3P
HDPOL2
HDIN2
CLKSEL1
CLKSEL2
CLKPOL1
VSS
CLKOUT
VSS
VSS
CLK2
CLK1C
VSS
CLK1P
CLK1N
VDPOL1
HDPOL1
VDIN1
HDIN1
PDAT0
PDAT1
PCTL
PCLK
VSS
VSS
VDD
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
PDAT2
8
PDAT4
7
PDAT3
6
PDAT7
5
PDAT6
4
PDAT5
3
PDAT8
2
PDAT9
1
VDD
61 B2OUT5
YS2
62 B2OUT6
G2OSD1 240
YM2
63 B2OUT7
R2OSD0 239
B2OSD0
64 B2OUT8
R2OSD1 238
B2OSD1
65 B2OUT9
YS1 237
G2OSD0
YM1 236
CXD2467Q
Pin Description
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
1
G2OSD0
I
OSD green data input (port 2)
—
2
B2OSD1
I
OSD blue data input (port 2)
—
3
B2OSD0
I
OSD blue data input (port 2)
—
4
YM2
I
OSD YM input (port 2)
L
5
YS2
I
OSD YS input (port 2)
L
6
VDD
—
Power supply
—
7
VSS
—
GND
—
8
PCTL
I
Parallel I/F control signal input
H
9
PCLK
I
Parallel I/F clock input
—
10
PDAT9
I
Parallel I/F data input
—
11
PDAT8
I
Parallel I/F data input
—
12
PDAT7
I
Parallel I/F data input
—
13
PDAT6
I
Parallel I/F data input
—
14
PDAT5
I
Parallel I/F data input
—
15
PDAT4
I
Parallel I/F data input
—
16
PDAT3
I
Parallel I/F data input
—
17
PDAT2
I
Parallel I/F data input
—
18
VDD
—
Power supply
—
19
VSS
—
GND
—
20
PDAT1
I
Parallel I/F data input
—
21
PDAT0
I
Parallel I/F data input
—
22
HDIN1
I
Horizontal sync signal input-1
—
23
VDIN1
I
Vertical sync signal input-1
—
24
HDPOL1
I
HDIN1 input polarity selection
(High: positive polarity, Low: negative polarity)
L
25
VDPOL1
I
VDIN1 input polarity selection
(High: positive polarity, Low: negative polarity)
L
26
CLK1P
I
Clock input-1 (small-amplitude differential input, positive polarity)
—
27
CLK1N
I
Clock input-1 (small-amplitude differential input, negative polarity)
—
28
VSS
GND
—
29
CLK1C
Clock input-1 (CMOS input)
—
30
VSS
GND
—
31
CLK2
1/2 frequency-divided clock input-1 (CMOS input)
—
32
VSS
GND
—
—
I
—
I
—
–4–
CXD2467Q
Input pin
processing
for open status
Pin
No.
Symbol
I/O
33
CLKOUT
O
1/2 frequency-divided clock output
—
34
Vss
—
GND
—
35
CLKSEL1
I
Input clock selection (High: CLK1C, Low: CLK1P, N)
L
36
CLKSEL2
I
Input clock selection (High: CLK2, Low: CLK1)
L
37
CLKPOL1
I
1/2 frequency division circuit output selection
(High: XQ output, Low: Q output)
L
38
HDIN2
I
Horizontal sync signal input-2
—
39
HDPOL2
I
HDIN2 input polarity selection
(High: positive polarity, Low: negative polarity)
L
40
CLK3P
I
Clock input-2 (small-amplitude differential input, positive polarity)
—
41
CLK3N
I
Clock input-2 (small-amplitude differential input, negative polarity)
—
42
VDD
—
Power supply
—
43
VSS
—
GND
—
44
CLK3C
Clock input-2 (CMOS input)
—
45
VSS
GND
—
46
CLK4
I
1/2 frequency-divided clock input-2 (CMOS input)
—
47
CLKSEL3
I
Input clock selection (High: CLK3C, Low: CLK3P, N)
L
48
CLKSEL4
I
Input clock selection (High: CLK4, Low: CLK3)
L
49
CLKPOL2
I
1/2 frequency division circuit output selection
(High: XQ output, Low: Q output)
L
50
IRRET
O
Auxiliary pulse output
—
51
HRET
O
Auxiliary pulse output
—
52
VSS
—
GND
—
53
XCLR
External clear (Low: reset)
H
54
VDD
—
Power supply
—
55
VSS
—
GND
—
56
B2OUT0
O
Blue data output (port 2)
—
57
B2OUT1
O
Blue data output (port 2)
—
58
B2OUT2
O
Blue data output (port 2)
—
59
B2OUT3
O
Blue data output (port 2)
—
60
B2OUT4
O
Blue data output (port 2)
—
61
B2OUT5
O
Blue data output (port 2)
—
62
B2OUT6
O
Blue data output (port 2)
—
63
B2OUT7
O
Blue data output (port 2)
—
64
B2OUT8
O
Blue data output (port 2)
—
65
B2OUT9
O
Blue data output (port 2)
—
I
—
I
Description
–5–
CXD2467Q
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
66
VDD
—
Power supply
—
67
Vss
—
GND
—
68
B1OUT0
O
Blue data output (port 1)
—
69
B1OUT1
O
Blue data output (port 1)
—
70
B1OUT2
O
Blue data output (port 1)
—
71
B1OUT3
O
Blue data output (port 1)
—
72
VSS
—
GND
—
73
B1OUT4
O
Blue data output (port 1)
—
74
B1OUT5
O
Blue data output (port 1)
—
75
B1OUT6
O
Blue data output (port 1)
—
76
B1OUT7
O
Blue data output (port 1)
—
77
B1OUT8
O
Blue data output (port 1)
—
78
VSS
—
GND
—
79
B1OUT9
O
Blue data output (port 1)
—
80
G2OUT0
O
Green data output (port 2)
—
81
G2OUT1
O
Green data output (port 2)
—
82
G2OUT2
O
Green data output (port 2)
—
83
VSS
—
GND
—
84
G2OUT3
O
Green data output (port 2)
—
85
G2OUT4
O
Green data output (port 2)
—
86
G2OUT5
O
Green data output (port 2)
—
87
G2OUT6
O
Green data output (port 2)
—
88
G2OUT7
O
Green data output (port 2)
—
89
VDD
—
Power supply
—
90
VSS
—
GND
—
91
G2OUT8
O
Green data output (port 2)
—
92
G2OUT9
O
Green data output (port 2)
—
93
G1OUT0
O
Green data output (port 1)
—
94
G1OUT1
O
Green data output (port 1)
—
95
G1OUT2
O
Green data output (port 1)
—
96
VSS
—
GND
—
97
G1OUT3
O
Green data output (port 1)
—
98
G1OUT4
O
Green data output (port 1)
—
99
G1OUT5
O
Green data output (port 1)
—
100
G1OUT6
O
Green data output (port 1)
—
–6–
CXD2467Q
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
101
G1OUT7
O
Green data output (port 1)
—
102
VSS
—
GND
—
103
G1OUT8
O
Green data output (port 1)
—
104
G1OUT9
O
Green data output (port 1)
—
105
R2OUT0
O
Red data output (port 2)
—
106
R2OUT1
O
Red data output (port 2)
—
107
R2OUT2
O
Red data output (port 2)
—
108
VSS
—
GND
—
109
R2OUT3
O
Red data output (port 2)
—
110
R2OUT4
O
Red data output (port 2)
—
111
R2OUT5
O
Red data output (port 2)
—
112
R2OUT6
O
Red data output (port 2)
—
113
R2OUT7
O
Red data output (port 2)
—
114
VDD
—
Power supply
—
115
VSS
—
GND
—
116
R2OUT8
O
Red data output (port 2)
—
117
R2OUT9
O
Red data output (port 2)
—
118
R1OUT0
O
Red data output (port 1)
—
119
R1OUT1
O
Red data output (port 1)
—
120
R1OUT2
O
Red data output (port 1)
—
121
R1OUT3
O
Red data output (port 1)
—
122
R1OUT4
O
Red data output (port 1)
—
123
R1OUT5
O
Red data output (port 1)
—
124
R1OUT6
O
Red data output (port 1)
—
125
R1OUT7
O
Red data output (port 1)
—
126
VDD
—
Power supply
—
127
VSS
—
GND
—
128
R1OUT8
O
Red data output (port 1)
—
129
R1OUT9
O
Red data output (port 1)
—
130
PCG
O
PCG pulse output
—
131
VB2
O
VB2 signal output
—
132
VB1
O
VB1 signal output
—
133
VSS
—
GND
—
134
HB
O
HB signal output
—
135
DWN
O
Up/down inversion signal output
—
–7–
CXD2467Q
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
136
VST
O
V start pulse output
—
137
VCK
O
V clock pulse output
—
138
VDD
—
Power supply
—
139
VSS
—
GND
—
140
ENB
O
ENB pulse output
—
141
BLK
O
BLK pulse output
—
142
HCK1
O
H clock pulse output 1
—
143
HCK2
O
H clock pulse output 2 (reversed phase)
—
144
VDD
—
Power supply
—
145
DCK1
O
Auxiliary pulse output
—
146
DCK1X
O
Auxiliary pulse output
—
147
DCK2
O
Auxiliary pulse output
—
148
DCK2X
O
Auxiliary pulse output
—
149
HST
O
H start pulse output
—
150
VSS
—
GND
—
151
RGT
O
Left/right inversion signal output
—
152
XRGT
O
Left/right inversion signal output (reversed polarity)
—
153
FRP
O
AC drive inversion pulse output
—
154
PRG
O
PRG pulse output
—
155
CLP1
O
Pedestal clamp pulse output 1
—
156
CLP2
O
Pedestal clamp pulse output 2
—
157
SHA
O
External sample-and-hold driver control signal output
—
158
SHB
O
External sample-and-hold driver control signal output
—
159
SHC
O
External sample-and-hold driver control signal output
—
160
SHD
O
External sample-and-hold driver control signal output
—
161
INV
O
External sample-and-hold driver control signal output
—
162
VDD
—
Power supply
—
163
VSS
—
GND
—
164
IRACT
O
Auxiliary pulse output
—
165
ORACT
O
Auxiliary pulse output
—
166
TEST1
—
Test pin (Connect to GND.)
—
167
TEST2
—
Test pin (Connect to GND.)
—
168
TEST3
—
Test pin (Connect to VDD.)
—
169
TEST4
—
Test pin (Connect to VDD.)
—
170
PSAVE1
Power saving pin (High: standby status, Low: normal status)
L
I
–8–
CXD2467Q
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
171
PSAVE2
I
Power saving pin (High: standby status, Low: normal status)
L
172
R1IN7
I
Red data input (port 1)
—
173
R1IN6
I
Red data input (port 1)
—
174
VDD
—
Power supply
—
175
VSS
—
GND
—
176
R1IN5
I
Red data input (port 1)
—
177
R1IN4
I
Red data input (port 1)
—
178
R1IN3
I
Red data input (port 1)
—
179
R1IN2
I
Red data input (port 1)
—
180
R1IN1
I
Red data input (port 1)
—
181
R1IN0
I
Red data input (port 1)
—
182
R2IN7
I
Red data input (port 2)
—
183
R2IN6
I
Red data input (port 2)
—
184
R2IN5
I
Red data input (port 2)
—
185
R2IN4
I
Red data input (port 2)
—
186
VDD
—
Power supply
—
187
VSS
—
GND
—
188
R2IN3
I
Red data input (port 2)
—
189
R2IN2
I
Red data input (port 2)
—
190
R2IN1
I
Red data input (port 2)
—
191
R2IN0
I
Red data input (port 2)
—
192
G1IN7
I
Green data input (port 1)
—
193
G1IN6
I
Green data input (port 1)
—
194
G1IN5
I
Green data input (port 1)
—
195
G1IN4
I
Green data input (port 1)
—
196
G1IN3
I
Green data input (port 1)
—
197
G1IN2
I
Green data input (port 1)
—
198
VSS
GND
—
199
G1IN1
I
Green data input (port 1)
—
200
G1IN0
I
Green data input (port 1)
—
201
G2IN7
I
Green data input (port 2)
—
202
G2IN6
I
Green data input (port 2)
—
203
G2IN5
I
Green data input (port 2)
—
204
G2IN4
I
Green data input (port 2)
—
205
G2IN3
I
Green data input (port 2)
—
—
–9–
CXD2467Q
Pin
No.
Symbol
I/O
Description
Input pin
processing
for open status
206
G2IN2
I
Green data input (port 2)
—
207
G2IN1
I
Green data input (port 2)
—
208
G2IN0
I
Green data input (port 2)
—
209
VDD
—
Power supply
—
210
VSS
—
GND
—
211
B1IN7
I
Blue data input (port 1)
—
212
B1IN6
I
Blue data input (port 1)
—
213
B1IN5
I
Blue data input (port 1)
—
214
B1IN4
I
Blue data input (port 1)
—
215
B1IN3
I
Blue data input (port 1)
—
216
B1IN2
I
Blue data input (port 1)
—
217
B1IN1
I
Blue data input (port 1)
—
218
B1IN0
I
Blue data input (port 1)
—
219
B2IN7
I
Blue data input (port 2)
—
220
B2IN6
I
Blue data input (port 2)
—
221
B2IN5
I
Blue data input (port 2)
—
222
VSS
GND
—
223
B2IN4
I
Blue data input (port 2)
—
224
B2IN3
I
Blue data input (port 2)
—
225
B2IN2
I
Blue data input (port 2)
—
226
B2IN1
I
Blue data input (port 2)
—
227
B2IN0
I
Blue data input (port 2)
—
228
R1OSD1
I
OSD red data input (port 1)
—
229
R1OSD0
I
OSD red data input (port 1)
—
230
G1OSD1
I
OSD green data input (port 1)
—
231
G1OSD0
I
OSD green data input (port 1)
—
232
B1OSD1
I
OSD blue data input (port 1)
—
233
B1OSD0
I
OSD blue data input (port 1)
—
234
VDD
—
Power supply
—
235
VSS
—
GND
—
236
YM1
I
OSD YM input (port 1)
L
237
YS1
I
OSD YS input (port 1)
L
238
R2OSD1
I
OSD red data input (port 2)
—
239
R2OSD0
I
OSD red data input (port 2)
—
240
G2OSD1
I
OSD green data input (port 2)
—
—
– 10 –
∗ H: Pull-up, L: Pull-down
CXD2467Q
Electrical Characteristics
DC Characteristics
Item
(VSS = 0V, Topr = –20 to +75°C)
Symbol
Applicable pins
Conditions
Min.
Typ.
Max.
—
—
3.0
3.3
3.6
0.65VDD
—
VDD + 0.3
VSS
—
0.25VDD
0.8VDD
—
VDD + 0.3
VSS
—
0.2VDD
(VDD ×
0.606)
– 0.1
VDD ×
0.606
(VDD ×
0.606)
+ 0.1
VIL3 + 0.3
—
VDD
VSS
—
VIH3 – 0.3
—
VDD – 0.5
—
VDD
—
VSS
—
0.4
—
—
Supply voltage VDD
Input
voltage 1
VIH1
Input
voltage 2
VIH2
Input
voltage 3
VIL1
CLK1C, CLK2
CLK3C, CLK4
∗1
VIL2
VC
(center
level)
VIH3∗2
CLK1P, CLK1N
CLK3P, CLK3N
CMOS input cell
CMOS Schmitt trigger
input cell
Small-amplitude
differential input
VIL3∗2
Output
voltage
VOH
VOL
All output pins
Current
IDD
consumption
—
CLK = 135MHz
VDD = 3.3V
Output load = 30pF
∗3
490
Unit
V
mA
360
∗1 Input pins other than those indicated in items Input voltage 1 and Input voltage 3.
∗2 VIH3 > (Maximum VC value) and VIL3 < (Minimum VC value).
∗3 PSAVE1 = PSAVE2 = H
AC Characteristics
Item
(VDD = 3.3 ± 0.3V, VSS = 0V, Topr = –20 to +75°C)
Symbol
Clock input cycle
—
Applicable pins
Conditions
Min.
Typ.
Max.
CLK1, CLK3
—
7.4
—
—
CLK2, CLK4
∗4
—
14.8
—
—
—
12.8
—
—
—
2
—
—
Input setup time
tis
Input hold time
tih
Output rise/fall delay time
tor/tof
HCK1, HCK2, HST CL = 90pF
—
12
19
Output rise/fall delay time
tor/tof
PCG, VST, VCK,
ENB, BLK
CL = 50pF
—
12
19
Output rise/fall delay time
tor/tof
CLKOUT
CL = 50pF
—
11
18
Output rise/fall delay time
tor/tof
All other output
pins
CL = 30pF
—
12
19
Cross-point time difference
∆t
HCK1, HCK2
CL = 90pF
–5
—
5
Cross-point time difference
∆t
HCK1, HCK2
CL = 90pF
48
50
52
∗4
∗4 RGB input, OSD input, HDIN1, VDIN1 and HDIN2
– 11 –
Unit
ns
CXD2467Q
Timing Definition
CLK1P, CLK1C
CLK3P, CLK3C
50%
CLK1N, CLK3N
50%
CLK2, CLK4
50%
VIH3
VIL3
VIH3
VIL3
VDD
0V
VDD
RGB input, OSD input,
HDIN1, VDIN1, HDIN2
0V
tis
CLK1P, CLK1C
CLK3P, CLK3C
50%
CLK1N, CLK3N
50%
tih
VIH3
50%
VIL3
VIH3
50%
VIL3
VDD
CLK2, CLK4
50%
50%
0V
VDD
50%
50%
CLKOUT
0V
tof
tor
VDD
50%
Outputs other than CLKOUT
0V
tor
VDD
50%
Outputs other than CLKOUT
0V
tof
VDD
HCK1
50%
50%
0V
VDD
50%
HCK2
50%
∆t
0V
∆t
VDD
HCK1, HCK2
50%
50%
50%
tl
th
– 12 –
0V
CXD2467Q
Parallel Transfer Data AC Characteristics
(VDD = 3.3 ± 0.3V, VSS = 0V, Topr = –20 to +75°C)
Item
Symbol
PCTL setup time with respect to rise of PCLK
tcs
Min.
8T∗5
PCTL hold time with respect to rise of PCLK
tch
8T
—
—
PDAT[9:0] setup time with respect to rise of PCLK
tds
4T
—
—
PDAT[9:0] hold time with respect to rise of PCLK
tdh
4T
—
—
PCLK pulse width
tw
4T
—
—
∗5 T: Master clock (CLK1P/CLK1N, CLK1C, CLK3P/CLK3N, CLK3C) cycle [ns]
Timing Definition
tcs
tch
VDD
PCTL
50%
50%
0V
tw
tw
VDD
PCLK
50%
50%
0V
tds
tdh
VDD
PDAT[9:0]
50%
50%
0V
– 13 –
Typ.
Max.
—
—
CXD2467Q
Description of Operation
1. DSD and TG Blocks
1-1. Description of Input/Output Pins
(a) Sync signal input pins (HDIN1 and VDIN1)
Horizontal and vertical separate sync signals are input to HDIN1 (Pin 22) and VDIN1 (Pin 23), respectively.
The CXD2467Q supports only non-interlace sync signals with a dot clock of 135MHz or less. Also, the HSYNC
width should be 40 dot clocks or more, and the VSYNC width, 1H or more.
(b) Sync signal polarity setting pins (HDPOL1 and VDPOL1)
The polarity of the input horizontal and vertical sync signals are set by HDPOL1 (Pin 24) and VDPOL1 (Pin
25), respectively. Set to high level for positive polarity, and to low level for negative polarity.
(c) Master clock input pins (CLK1P/CLK1N, CLK1C and CLK2) and clock selection pins (CLKSEL1 and CLKSEL2)
Phase comparison is performed by an external circuit and a clock synchronized to the sync signal is input. The
1/N (N is the number of clocks during one horizontal period) frequency-divided dot clock pulse is output from
HRET (Pin 51) for the external phase comparator.
The master clock input pins consist of CLK1P/CLK1N (Pins 26 and 27) for small-amplitude differential input
(center level: 2.0V, amplitude: ±0.4V), and CLK1C (Pin 29) and CLK2 (Pin 31) for CMOS level input for a total
of three channels. These are selected according to CLKSEL1 (Pin 35) and CLKSEL2 (Pin 36).
CLKSEL1
CLKSEL2
Selected clock input pins
L
L
CLK1P/CLK1N (small-amplitude differential input, input at the same frequency as
the dot clock)
H
L
CLK1C (CMOS level input, input at the same frequency as the dot clock)
—
H
CLK2 (CMOS level input, input at 1/2 the frequency of the dot clock)
—: Don't care
(d) Clock polarity switching pin (CLKPOL1)
When CLK1P/1N or CLK1C is selected, the clock is 1/2 frequency divided inside the IC using the falling edge
of the HD pulse as the reference. The polarity of this 1/2 frequency-divided clock is switched by CLKPOL1 (Pin
37). Normally CLKPOL1 is used at low level.
CLK1P
HDIN1 (Active Low)
Internal clock for
DSD and TG blocks
CLKPOL1 = L
CLKPOL1 = H
(e) RGB signal input pins (R1IN, R2IN, G1IN, G2IN, B1IN and B2IN)
These pins input RGB signals that have been demultiplexed to 1:2. The Red signal is input to R1IN (Pins 172,
173 and 176 to 181) and R2IN (Pins 182 to 185 and 188 to 191), the Green signal to G1IN (Pins 192 to 197,
199 and 200) and G2IN (Pins 201 to 208), and the Blue signal to B1IN (Pins 211 to 218) and B2IN (Pins 219 to
221 and 223 to 227).
– 14 –
CXD2467Q
(f) OSD signal input pins (R1OSD, R2OSD, G1OSD, G2OSD, B1OSD, B2OSD, YM1, YM2, YS1 and YS2)
These pins input OSD signals that have been demultiplexed to 1:2. The Red signal is input to R1OSD (Pins
228 and 229) and R2OSD (Pins 238 and 239), the Green signal to G1OSD (Pins 230 and 231) and G2OSD
(Pins 1 and 240), and the Blue signal to B1OSD (Pins 232 and 233) and B2OSD (Pins 2 and 3). In addition,
the YM signal is input to YM1 (Pin 236) and YM2 (Pin 4), and the YS signal to YS1 (Pin 237) and YS2 (Pin 5).
(g) Clock output pin (CLKOUT)
The internal master clock is output from CLKOUT (Pin 33).
(h) RGB signal output pins (R1OUT, R2OUT, G1OUT, G2OUT, B1OUT and B2OUT)
These pins output the arithmetically processed RGB signals in the 1:2 demultiplexed state. The Red signal is
output from R1OUT (Pins 118 to 125, 128 and 129) and R2OUT (Pins 105 to 107, 109 to 113, 116 and 117),
the Green signal from G1OUT (Pins 93 to 95, 97 to 101, 103 and 104) and G2OUT (Pins 80 to 82, 84 to 88, 91
and 92), and the Blue signal from B1OUT (Pins 68 to 71, 73 to 77 and 79) and B2OUT (Pins 56 to 65).
(i) Power saving pins (PSAVE1 and PSAVE2)
The gamma block RAM can be set to standby mode using both PSAVE1 (Pin 170) and PSAVE2 (Pin 171).
The RAM operates normally when these pins are set to low level, and enters standby mode to reduce power
consumption when set to high level. At this time data can not be set to or read from the RAM. However, data
set in advance in the RAM is held even in standby mode. In addition, the gamma block RAM output is the data
held just before the pin voltage changes to high level, so the RAM output changes according to the data set in
the RAM, etc. Therefore, using the mute function to fix the CXD2467Q output to the desired level in standby
mode is recommended.
1-2. RGB Signal and OSD Signal Pipeline Delay
The RGB signal I/O pipeline delay is 42 dot clocks. In addition, the OSD, YM and YS signal pipeline delay is 12
dot clocks. Note that the phase relationship between each clock and the RGB signals is as shown in the
figures below. This relationship is the same for the OSD, YM and YS signals.
(1) CLK1P/CLK1N and CLK1C input (CLKPOL1 = low)
HD (Active Low)
CLK1P
R1IN
N–2
N
N+2
N+4
N+6
N + 8 N + 10 N+ 12 N + 14 N + 16 N + 18
R2IN
N–1
N+1
N+3
N+5
N+7
N + 9 N + 11 N + 13 N + 15 N + 17 N + 19
CLKOUT
R1OUT
N – 44 N – 42 N – 40 N – 38 N – 36 N – 34 N – 32 N – 30 N – 28 N – 26 N – 24
R2OUT
N – 43 N – 41 N – 39 N – 37 N – 35 N – 33 N – 31 N – 29 N – 27 N – 25 N – 23
– 15 –
CXD2467Q
(2) CLK1P/CLK1N and CLK1C input (CLKPOL1 = high)
HD (Active Low)
CLK1P
R1IN
N–2
N
N+2
N+4
N+6
N + 8 N + 10 N+ 12 N + 14 N + 16 N + 18
R2IN
N–1
N+1
N+3
N+5
N+7
N + 9 N + 11 N + 13 N + 15 N + 17 N + 19
CLKOUT
R1OUT
N – 44 N – 42 N – 40 N – 38 N – 36 N – 34 N – 32 N – 30 N – 28 N – 26 N – 24
R2OUT
N – 43 N – 41 N – 39 N – 37 N – 35 N – 33 N – 31 N – 29 N – 27 N – 25 N – 23
(3) CLK2 input
CLK2
R1IN
N–2
N
N+2
N+4
N+6
N + 8 N + 10 N+ 12 N + 14 N + 16 N + 18
R2IN
N–1
N+1
N+3
N+5
N+7
N + 9 N + 11 N + 13 N + 15 N + 17 N + 19
CLKOUT
R1OUT
N – 44 N – 42 N – 40 N – 38 N – 36 N – 34 N – 32 N – 30 N – 28 N – 26 N – 24
R2OUT
N – 43 N – 41 N – 39 N – 37 N – 35 N – 33 N – 31 N – 29 N – 27 N – 25 N – 23
1-3. Description of DSD Block Signal Processing Functions
The DSD block signal processing flow is shown below. The input RGB signals undergo fine picture quality
adjustment in the order of user adjustment, white balance adjustment and gamma correction. Further, the
CXD2467Q is also equipped with various adjustment functions such as black frame processing, mute, OSD,
limiter, and negative/positive inversion.
White balance
adjustment block
User adjustment block
R, G, B IN
USER
GAIN
USER
BRIGHT
SUB
GAIN
SUB
BRIGHT
Gamma correction block
GAM
GAIN
GAMMA
R, G, B OSD
YS, YM
BLACK
FRAME
MUTE
Black frame
processing block
Mute
block
OSD
OSD
block
LIMIT
INVERT
SELECT
R, G, B OUT
Limiter Negative/positive
block
inversion block
– 16 –
GAM
BRIGHT
CXD2467Q
The various signal processing functions are described below. Note that the coefficients used for each
arithmetic operation are set through the parallel I/F block. See the individual descriptions of each parallel I/F
block item for a detailed description of the parallel I/F block.
(a) User gain block
This block performs multiplication processing as the user gain adjustment. Multiplication is performed as
follows using the 8-bit data a[7:0] input to this IC and an 8-bit coefficient b[7:0].
c[15:0] = a[7:0] × b[7:0]
The upper 12 bits c[15:4] of the arithmetic results are output. Next, the c[4] value is checked and rounding is
performed to 11 bits. Further, the MSB of the rounded 11 bits is checked, clipping is performed to prevent
overflow, and the lower 10 bits are output. Note that since the coefficient has 8 bits and the 5th bit of the
arithmetic results is rounded, the maximum gain by this operation is 255/32 = 7.96875 times and this can be
varied in 256 steps. The arithmetic coefficient is shared by R, G and B, and the initial value is 020h.
Coefficient
8
b[7:0]
Input
a[7:0]
8
Rounding
and
clipping
12
a×b
c[15:4]
10
Output
(b) User bright block
This block performs addition and subtraction processing as the user bright adjustment. The 10 bits of data
a[9:0] output from the user gain block, a 10-bit coefficient b[9:0], and a 1-bit code are used as the inputs to
perform arithmetic processing with an accuracy of 1 bit. Addition is performed when the code = 0, and
subtraction when the code = 1. However, when performing subtraction, set an arithmetic coefficient that is the
twos complement of the number to be subtracted.
The initial adder performs the following addition:
c[10:0] = a[9:0] + b[9:0]
Then, overflow and underflow are judged according to c[10] which is the MSB of the arithmetic results and the
code data value. 3FFh is output when overflow occurs, and 000h when underflow occurs. Note that the
arithmetic coefficient and code are shared by R, G and B, and the initial values are 000h and 0h, respectively.
Coefficient
10
b[9:0]
Input
a[9:0]
10
a+b
Code
11
Clipping
c[10:0]
– 17 –
10
Output
CXD2467Q
(c) Sub gain block
This block performs multiplication processing as the white balance gain adjustment. Multiplication is performed
as follows using the 10-bit data a[9:0] output from the user bright block and an 8-bit coefficient b[7:0] as inputs.
c[17:0] = a[9:0] × b[7:0]
The upper 13 bits c[17:5] of the arithmetic results are output. Next, the c[5] value is checked and rounding is
performed to 12 bits. Further, the upper 2 bits of the rounded 12 bits are checked, clipping is performed to
prevent overflow, and the lower 10 bits are output. Note that since the coefficient has 8 bits and the 6th bit of
the arithmetic results is rounded, the maximum gain by this operation is 255/64 = 3.984375 times and this can
be varied in 256 steps. The arithmetic coefficients can be set independently for R, G and B, and the initial
value is 040h for each.
Coefficient
8
b[7:0]
Input
a[9:0]
10
a×b
13
c[17:5]
Rounding
and
clipping
10
Output
(d) Sub bright block
This block performs addition and subtraction processing as the white balance bright adjustment. Note that the
block configuration is the same as the user bright block. However, the arithmetic coefficients and codes can be
set independently for R, G and B, and the initial values are 000h and 0h for each, respectively.
(e) Gamma block
This block performs gamma correction for the user- and white balance-adjusted signal. This block comprises a
10-bit × 1024-word RAM, and the gamma correction curve can be set as desired. The results of this correction
are output as 10 bits. The RAM data is set through the parallel I/F block. Note that the RAM output is
undetermined while data is being set in this RAM, and also during power-on.
Input
10
RAM
10bit × 1024 word
10
Output
(f) Gamma gain block
This block performs multiplication processing for the gamma-corrected signal as the gain adjustment for
correcting variance in the VT curve of the LCD panel. Multiplication is performed as follows using the 10-bit
data a[9:0] output from the gamma block and an 8-bit coefficient b[7:0] as inputs.
c[17:0] = a[9:0] × b[7:0]
The upper 12 bits c[17:6] of the arithmetic results are output. Next, the c[6] value is checked and rounding is
performed to 11 bits. Further, the MSB of the rounded 11 bits is checked, clipping is performed to prevent
overflow, and the lower 10 bits are output. Note that since the coefficient has 8 bits and the 7th bit of the
arithmetic results is rounded, the maximum gain by this operation is 255/128 = 1.9921875 times and this can
be varied in 256 steps. The arithmetic coefficients can be set independently for R, G and B, and the initial
value is 080h for each.
– 18 –
CXD2467Q
Coefficient
8
b[7:0]
Input
a[9:0]
10
a×b
Rounding
and
clipping
12
c[17:6]
10
Output
(g) Gamma bright block
This block performs addition and subtraction processing for the gamma-corrected signal as the bright
adjustment for correcting variance in the VT curve of the LCD panel. Note that the block configuration is the
same as the user bright block. However, the arithmetic coefficients and codes can be set independently for R,
G and B, and the initial values are 000h and 0h for each, respectively.
(h) Black frame block
This block can perform processing to fix the blanking period of the video signal to the desired level regardless
of the front-end signal processing results. This is effective when attempting to display a video signal which has
been pixel-converted using a scan converter, etc., on a LCD panel or other display with a fixed number of
pixels. If the number of pixels calculated from the effective period of the video signal to be displayed is less
than the number of pixels of the display on which the signal is to be displayed, the blanking period of the video
signal is displayed in the excess pixels. At this time, the displayed blanking period can be fixed to the desired
level regardless of the gain and bright adjustment, gamma correction or other picture quality adjustment results
by processing with this block.
Here, the desired range of the video signal is replaced with 10-bit data (FRM) by switching the video signal
(port 1 and port 2) and the coefficients using the pulse output from the pulse decoder. This range can be set as
desired by the 11-bit coefficients (H1F, H2F, V1F and V2F) set in the pulse decoder. Then separate pulses are
output from the pulse decoder for each of the port 1 (R1, G1 and B1) and port 2 (R2, G2 and B2) processing
system blocks. By doing so, the black frame display range can be controlled in 1-dot units for the horizontal
direction and in 1-line units for the vertical direction. Note that the 1-dot unit for the horizontal direction is the 1dot unit when viewed with the video signal displayed. Also, all coefficients are shared by R, G and B, and the
initial value is 000h for each. However, note that when all black frame display range coefficients (H1F, H2F,
V1F and V2F) are 000h, black frame display processing is not performed regardless of the black frame signal
level coefficient values.
11
Internal HD
Pulse
decoder
Internal VD
Coefficient (FRM)
Input (port 2)
Horizontal direction display range (H2F)
11
Internal MCLK
Input (port 1)
Horizontal direction display range (H1F)
11
Vertical direction display range (V1F)
11
10
10
Selector
Vertical direction display range (V2F)
10
Output (port 1)
10
Selector
– 19 –
10
Output (port 2)
CXD2467Q
(i) Mute block
This block performs mute processing by replacing the video signal with data of the desired level. Of the
arithmetic coefficients set from the register, the mute data can be set independently for R, G and B, and the
initial value is 000h for each. Also, the mute processing select data is shared by R, G and B, and the initial
value is 1h. Therefore, mute is applied in the initial status. This is because the gamma block RAM output value
is undetermined in the initial status. Therefore, note that in order to output the video signal, the mute
processing select data must be set to 0h after data is set in the RAM.
Select data
Input
Coefficient (mute level)
10
10
Selector
10
Output
(j) OSD block
This block performs video signal half-tone processing and OSD-MIX processing by inputting the 2-bit OSD
data for each color and the YS and YM signals. In the initial shift block, the input data is shifted by one bit to
the LSB side when the YM signal is high level. For example, when 0F0h is input, 078h is output. Video signal
half-tone processing is performed in this manner by halving the input data level.
The selector-1 block determines the OSD level by assigning four types of coefficients with respect to the OSD
input data. In the Red block, R0D is selected and output when the OSD data is 0h, R1D when 1h, R2D when
2h, and R3D when 3h. Similarly, one of G0D, G1D, G2D or G3D is selected in the Green block, and one of
B0D, B1D, B2D or B3D in the Blue block. Next, the selector-2 block performs OSD-MIX processing by
switching the video signal and the data selected by the selector-1 block using the YS signal. Here, the
selector-1 block output data is selected and OSD-MIX processing is performed when the YS signal is high
level.
The four coefficients can be set independently for R, G and B, and the initial values are all 000h. These
coefficients are all 10 bits, and the OSD data is 2 bits for each of R, G and B, so 4 half tones can be selected
as desired from among 1024 half tones for each of R, G and B. Therefore, the desired 64 (= 26) colors can be
selected from among the total 1.07374 billion (= 230) colors for R, G and B.
OSD data
Coefficient (R0D)
2
10
Coefficient (R1D)
10
Coefficient (R2D)
10
Coefficient (R3D)
10
Selector-1
10
YS signal
YM signal
Input
10
Shift
– 20 –
10
Selector-2
10
Output
CXD2467Q
(k) Limiter block
This block performs limiter processing so that the output signal does not exceed a certain range. First, the
input data is compared with the low-side limiter level LLIM and high-side limiter level HLIM coefficients. When
these results are input data ≤ LLIM, the output is clipped at the LLIM level. When HLIM ≤ input data, the output
is clipped at the HLIM level. When LLIM < IN < HLIM, the input data is output directly. Note that the two
coefficients are shared by R, G and B, and the initial values are both 000h. Set the two coefficients so as to
constantly maintain the relationship LLIM < HLIM. Also, when both coefficient values are 000h, limiter
processing is not performed.
Input
Coefficient (HLIM)
Coefficient (LLIM)
10
10
10
Limiter
Output
10
(l) Negative/positive inversion
This block performs negative/positive inversion processing. Here, negative/positive inversion processing is
performed by outputting the input data directly when the select data is low, or inverting and outputting the input
data when the select data is high. The select data is shared by R, G and B, and the initial value is 0h.
Select data
Input
10
Selector
– 21 –
10
Output
CXD2467Q
2. IRACT Block
The IRACT block consists of frequency divider and pulse generation circuits, and outputs a pulse synchronized
with the horizontal sync signal input to HDIN2 from IRACT (Pin 164). The structure of this block is independent
from other blocks in the CXD2467Q. The clock system is also independent, so the IRACT block can be
operated using a different clock than the TG and DSD blocks.
(a) Sync signal input pin and signal polarity switching pin (HDIN2 and HDPOL2)
The horizontal sync signal for the IRACT block is input to HDIN2 (Pin 38), and the sync signal polarity is set by
HDPOL2 (Pin 39). Set HDPOL2 to high level when the horizontal sync signal is positive polarity, and to low
level when negative polarity.
(b) Clock input pins (CLK3P/CLK3N, CLK3C and CLK4) and clock selection pins (CLKSEL3 and CLKSEL4)
These are the clock input pins for the IRACT block. Like the master clock, a clock synchronized to the
horizontal sync signal is input. The 1/N (N is the number of clocks during one horizontal period) frequencydivided clock pulse is output from IRRET (Pin 50). Like the master clock, the clock input pins consist of
CLK3P/CLK3N (Pins 40 and 41) for small-amplitude differential input (center level: 2.0V, amplitude: ±0.4V),
and CLK3C (Pin 44) and CLK4 (Pin 46) for CMOS level input for a total of three channels. These are selected
according to CLKSEL3 (Pin 47) and CLKSEL4 (Pin 48).
CLKSEL3
CLKSEL4
L
L
CLK3P/CLK3N (small-amplitude differential input, input at the same frequency as
the dot clock)
H
L
CLK3C (CMOS level input, input at the same frequency as the dot clock)
—
H
CLK4 (CMOS level input, input at 1/2 the frequency of the dot clock)
Selected clock input pins
—: Don't care
(c) Clock polarity switching pin (CLKPOL2)
When CLK3P/3N or CLK3C is selected, the clock is 1/2 frequency divided inside the IC using the falling edge
of the HD pulse as the reference. The polarity of this 1/2 frequency-divided clock is switched by CLKPOL2 (Pin
49). Normally CLKPOL2 is used at low level.
CLK3P
HDIN2 (Active Low)
Internal clock for
IRACT block
CLKPOL2 = L
CLKPOL2 = 2
– 22 –
CXD2467Q
3. System Clear Pin (XCLR)
All internal circuits are initialized by setting XCLR (Pin 53) low. Initialization should be performed during poweron.
4. Parallel I/F Block
Register data settings in this IC are performed by parallel data. As shown in the Timing Chart below, the
parallel I/F comprises a total 12-bit wide bus consisting of control signal PCTL (Pin 8), clock signal PCLK (Pin
9) and 10-bit wide data signal PDAT[9:0] (Pins 10 to 17, 20 and 21).
The data signal is input in the order of main address, sub address and data. When setting data in this IC,
divide the data into five blocks as shown in the table below. Next, the sub address specifies the initial address
of the data to be written in the block designated by the main address. The data is set sequentially from the
data at the address designated by the sub address. The address of each data set thereafter is automatically
incremented by +1 from the address designated by the sub address, so further address setting is unnecessary.
This makes it possible to set only the necessary data from the desired address of the desired block.
Timing Chart
PCTL (Pin 8)
PCLK (Pin 9)
PDAT[9:0]
(Pins 10 to 17, 20 and 21)
main
sub
address address
data
Main Address Table
Main address
Set block
000h
Gamma block (Red) RAM
001h
Gamma block (Green) RAM
002h
Gamma block (Blue) RAM
003h
DSD arithmetic coefficients for other than gamma block
004h
TG and IRACT block setting data
4-1. Gamma Block (Main Address: 000h to 002h)
In this block, the gamma correction data is set in a 10-bit × 1024-word RAM. Here, the set sub address directly
becomes the RAM write address. Thereafter, the RAM write address is automatically incremented by +1.
Following the main address, designate the RAM write start address in the sub address with 10 bits, then set
the gamma correction data in 10 bits.
– 23 –
CXD2467Q
4-2. DSD Block (Main Address: 003h)
The DSD block data format is as follows.
Data Format
Sub address
000h
001h
002h
003h
004h
005h
006h
007h
008h
009h
00Ah
00Bh
00Ch
00Dh
00Eh
00Fh
010h
011h
012h
013h
014h
015h
016h
017h
018h
019h
01Ah
01Bh
01Ch
01Dh
01Eh
01Fh
020h
021h
022h
023h
024h
025h
026h
027h
PDAT9
—
UB9
—
RSB9
—
GSB9
—
BSB9
—
RGB9
—
GGB9
—
BGB9
FRM9
H1F9
—
H2F9
—
V1F9
—
V2F9
—
RM9
GM9
BM9
R0D9
R1D9
R2D9
R3D9
G0D9
G1D9
G2D9
G3D9
B0D9
B1D9
B2D9
B3D9
LLIM9
HLIM9
PDAT8
UBF
UB8
RSBF
RSB8
GSBF
GSB8
BSBF
BSB8
RGBF
RGB8
GGBF
GGB8
BGBF
BGB8
FRM8
H1F8
—
H2F8
—
V1F8
—
V2F8
—
RM8
GM8
BM8
R0D8
R1D8
R2D8
R3D8
G0D8
G1D8
G2D8
G3D8
B0D8
B1D8
B2D8
B3D8
LLIM8
HLIM8
PDAT7
UG7
UB7
RSG7
RSB7
GSG7
GSB7
BSG7
BSB7
RGG7
RGB7
GGG7
GGB7
BGG7
BGB7
FRM7
H1F7
—
H2F7
—
V1F7
—
V2F7
—
RM7
GM7
BM7
R0D7
R1D7
R2D7
R3D7
G0D7
G1D7
G2D7
G3D7
B0D7
B1D7
B2D7
B3D7
LLIM7
HLIM7
PDAT6
UG6
UB6
RSG6
RSB6
GSG6
GSB6
BSG6
BSB6
RGG6
RGB6
GGG6
GGB6
BGG6
BGB6
FRM6
H1F6
—
H2F6
—
V1F6
—
V2F6
—
RM6
GM6
BM6
R0D6
R1D6
R2D6
R3D6
G0D6
G1D6
G2D6
G3D6
B0D6
B1D6
B2D6
B3D6
LLIM6
HLIM6
Data
PDAT5 PDAT4
UG5
UG4
UB5
UB4
RSG5 RSG4
RSB5 RSB4
GSG5 GSG4
GSB5 GSB4
BSG5 BSG4
BSB5 BSB4
RGG5 RGG4
RGB5 RGB4
GGG5 GGG4
GGB5 GGB4
BGG5 BGG4
BGB5 BGB4
FRM5 FRM4
H1F5 H1F4
—
—
H2F5 H2F4
—
—
V1F5 V1F4
—
—
V2F5 V2F4
—
—
RM5
RM4
GM5
GM4
BM5
BM4
R0D5 R0D4
R1D5 R1D4
R2D5 R2D4
R3D5 R3D4
G0D5 G0D4
G1D5 G1D4
G2D5 G2D4
G3D5 G3D4
B0D5 B0D4
B1D5 B1D4
B2D5 B2D4
B3D5 B3D4
LLIM5 LLIM4
HLIM5 HLIM4
PDAT3
UG3
UB3
RSG3
RSB3
GSG3
GSB3
BSG3
BSB3
RGG3
RGB3
GGG3
GGB3
BGG3
BGB3
FRM3
H1F3
—
H2F3
—
V1F3
—
V2F3
—
RM3
GM3
BM3
R0D3
R1D3
R2D3
R3D3
G0D3
G1D3
G2D3
G3D3
B0D3
B1D3
B2D3
B3D3
LLIM3
HLIM3
PDAT2 PDAT1
UG2
UG1
UB2
UB1
RSG2 RSG1
RSB2 RSB1
GSG2 GSG1
GSB2 GSB1
BSG2 BSG1
BSB2 BSB1
RGG2 RGG1
RGB2 RGB1
GGG2 GGG1
GGB2 GGB1
BGG2 BGG1
BGB2 BGB1
FRM2 FRM1
H1F2 H1F1
—
—
H2F2 H2F1
—
—
V1F2 V1F1
—
—
V2F2 V2F1
SMSEL INVSEL
RM2
RM1
GM2
GM1
BM2
BM1
R0D2 R0D1
R1D2 R1D1
R2D2 R2D1
R3D2 R3D1
G0D2 G0D1
G1D2 G1D1
G2D2 G2D1
G3D2 G3D1
B0D2 B0D1
B1D2 B1D1
B2D2 B2D1
B3D2 B3D1
LLIM2 LLIM1
HLIM2 HLIM1
PDAT0
UG0
UB0
RSG0
RSB0
GSG0
GSB0
BSG0
BSB0
RGG0
RGB0
GGG0
GGB0
BGG0
BGB0
FRM0
H1F0
H1F10
H2F0
H2F10
V1F0
V1F10
V2F0
V2F10
RM0
GM0
BM0
R0D0
R1D0
R2D0
R3D0
G0D0
G1D0
G2D0
G3D0
B0D0
B1D0
B2D0
B3D0
LLIM0
HLIM0
Initial
value
020h
000h
040h
000h
040h
000h
040h
000h
080h
000h
080h
000h
080h
000h
000h
000h
000h
000h
000h
000h
000h
000h
004h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
000h
—: Don't care
– 24 –
CXD2467Q
The detailed setting contents are described below.
(a) UG: User gain block coefficient setting
The user gain block arithmetic coefficient is set in UG7 (MSB) to UG0 (LSB). The initial value is 20h.
(b) UB and UBF: User bright block coefficient settings
The user bright block arithmetic coefficient is set in UB9 (MSB) to UB0 (LSB), and the code bit is set in UBF.
Addition is performed when the code bit = 0, and subtraction when the code bit = 1. When performing
subtraction, set an arithmetic coefficient that is the twos complement of the number to be subtracted. The initial
values of the arithmetic coefficient and the code bit are 000h and 0h, respectively.
(c) RSG, GSG and BSG: Sub gain block coefficient settings
The R, G and B sub gain block arithmetic coefficients are set in RSG7 (MSB) to RSG0 (LSB), GSG7 (MSB) to
GSG0 (LSB) and BSG7 (MSB) to BSG0 (LSB), respectively. The initial value of each coefficient is 40h.
(d) RSB, RSBF, GSB, GSBF, BSB and BSBF: Sub bright block coefficient settings
The R, G and B sub bright block arithmetic coefficients are set in RSB9 (MSB) to RSB0 (LSB), GSB9 (MSB) to
GSB0 (LSB) and BSB9 (MSB) to BSB0 (LSB), respectively. Also, the R, G and B code bits are set in RSBF,
GSBF and BSBF, respectively. Addition is performed when the code bit = 0, and subtraction when the code bit
= 1. When performing subtraction, set an arithmetic coefficient that is the twos complement of the number to
be subtracted. The initial values of the arithmetic coefficients and the code bits are 000h and 0h, respectively.
(e) RGG, GGG and BGG: Gamma gain block coefficient settings
The R, G and B gamma gain block arithmetic coefficients are set in RGG7 (MSB) to RGG0 (LSB), GGG7
(MSB) to GGG0 (LSB) and BGG7 (MSB) to BGG0 (LSB), respectively. The initial value of each coefficient is
80h.
(f) RGB, RGBF, GGB, GGBF, BGB and BGBF: Gamma bright block coefficient settings
The R, G and B gamma bright block arithmetic coefficients are set in RGB9 (MSB) to RGB0 (LSB), GGB9
(MSB) to GGB0 (LSB) and BGB9 (MSB) to BGB0 (LSB), respectively. Also, the R, G and B code bits are set in
RGBF, GGBF and BGBF, respectively. Addition is performed when the code bit = 0, and subtraction when the
code bit = 1. When performing subtraction, set an arithmetic coefficient that is the twos complement of the
number to be subtracted. The initial values of the arithmetic coefficients and the code bits are 000h and 0h,
respectively.
(g) FRM, H1F, H2F, V1F and V2F: Black frame processing block coefficient settings
The black frame signal level for the black frame processing block is set in FRM9 (MSB) to FRM0 (LSB). In
addition, the black frame display range coefficients for the horizontal direction are set in H1F10 (MSB) to H1F0
(LSB) and H2F10 (MSB) to H2F0 (LSB), and for the vertical direction in V1F10 (MSB) to V1F0 (LSB) and
V2F10 (MSB) to V2F0 (LSB).
The horizontal direction display range can be set in 1-dot units using the HD input edge as the reference. The
falling edge is used as the reference when HD input is negative polarity input, and the rising edge when
positive polarity input. The vertical direction display range can be set in 1-line units using the VD input edge as
the reference. The falling edge is used as the reference when VD input is negative polarity input, and the rising
edge when positive polarity input. Set the display range values in H1F , H2F, V1F and V2F. Note that when all
black frame display range coefficients are 000h, black frame processing is not performed. The initial value of
each coefficient is 000h.
– 25 –
CXD2467Q
HD (Active Low)
H1F
H2F
Black frame display range
Black frame display range
VD (Active Low)
V1F
V2F
Black frame display range
Black frame display range
(h) SMSEL, RM, GM and BM: Mute block coefficient settings
The mute processing select data for the R, G and B mute blocks is set in SMSEL. Also, the R, G and B mute
level coefficients are set in RM9 (MSB) to RM0 (LSB), GM9 (MSB) to GM0 (LSB) and BM9 (MSB) to BM0
(LSB), respectively. Mute processing is performed when SMSEL = 1, and not when SMSEL = 0. The initial
values of the select data and mute level coefficients are 1h and 000h, respectively.
(i) R0D, R1D, R2D, R3D, G0D, G1D, G2D, G3D, B0D, B1D, B2D and B3D: OSD block coefficient settings
The R, G and B OSD block decoding data is set in R0D9 (MSB) to R0D0 (LSB), R1D9 (MSB) to R1D0 (LSB),
R2D9 (MSB) to R2D0 (LSB), R3D9 (MSB) to R3D0 (LSB), G0D9 (MSB) to G0D0 (LSB), G1D9 (MSB) to G1D0
(LSB), G2D9 (MSB) to G2D0 (LSB), G3D9 (MSB) to G3D0 (LSB), B0D9 (MSB) to B0D0 (LSB), B1D9 (MSB) to
B1D0 (LSB), B2D9 (MSB) to B2D0 (LSB) and B3D9 (MSB) to B3D0 (LSB). The desired OSD color can be set
by assigning the decoding data with respect to the input OSD data in the OSD block. The initial values are all
000h.
(j) LLIM, HLIM: Limiter block coefficient settings
The limiter block limit value data is set in LLIM9 (MSB) to LLIM0 (LSB) and HLIM9 (MSB) to HLIM0 (LSB). Be
sure to set data so that the relationship LLIM < HLIM is constantly maintained. Note that when 000h is set for
both LLIM and HLIM, limiter processing is not performed. The initial values are both 000h.
(k) INVSEL: Negative/positive inversion block coefficient setting
The negative/positive inversion block select data is set in INVSEL. Negative/positive inversion processing is
performed when INVSEL = 1, and not when INVSEL = 0. The initial value is 0h, respectively.
– 26 –
CXD2467Q
4-3. TG and IRACT Blocks (Main Address: 004h)
The timing pulses output from the CXD2467Q are generated according to the data set in the data register. The
related registers are shown below. Sub addresses 000h to 025h are the TG block related data, and 026h to
02Bh are the IRACT block related data. The TG and IRACT block data format is as follows.
Data Format
Sub address
000h
001h
002h
003h
004h
005h
006h
007h
008h
009h
00Ah
00Bh
00Ch
00Dh
00Eh
00Fh
010h
011h
012h
013h
014h
015h
016h
017h
018h
019h
01Ah
01Bh
01Ch
01Dh
01Eh
01Fh
020h
021h
022h
023h
024h
025h
026h
027h
028h
029h
02Ah
02Bh
Data
PDAT9 PDAT8 PDAT7 PDAT6 PDAT5 PDAT4 PDAT3 PDAT2 PDAT1 PDAT0
Initial
value
PLP0
PLP10
ORU0
ORU10
ORD0
ORD10
HP0
HP10
PCGU0
PCGU10
PCGD0
PCGD10
PRGU0
PRGU10
PRGD0
PRGD10
ENBU0
ENBU10
ENBD0
ENBD10
CP1U0
CP1U10
CP1D0
CP1D10
CP2U0
CP2U10
CP2D0
CP2D10
HSTU0
HSTU10
HSTD0
HSTD10
VCRV0
VCRV10
VP0
VP10
FRI0
FRI10
IRP0
IRP10
IRU0
IRU10
IRD0
IRD10
297h
015h
080h
000h
000h
000h
022h
000h
086h
000h
142h
000h
086h
000h
100h
000h
0FEh
000h
00Ch
000h
0C0h
000h
132h
000h
088h
000h
128h
000h
146h
000h
15Eh
000h
086h
000h
020h
02Eh
3FFh
001h
297h
001h
080h
000h
000h
000h
PLP9
—
ORU9
—
ORD9
—
HP9
—
PCGU9
—
PCGD9
—
PRGU9
—
PRGD9
—
ENBU9
—
ENBD9
—
CP1U9
—
CP1D9
—
CP2U9
—
CP2D9
—
HSTU9
—
HSTD9
—
VCRV9
—
VP9
—
FRI9
—
IRP9
—
IRU9
—
IRD9
—
PLP8
SLVRS
ORU8
—
ORD8
—
HP8
—
PCGU8
—
PCGD8
—
PRGU8
—
PRGD8
—
ENBU8
—
ENBD8
—
CP1U8
—
CP1D8
—
CP2U8
—
CP2D8
—
HSTU8
—
HSTD8
—
VCRV8
—
VP8
—
FRI8
SLDS
IRP8
—
IRU8
—
IRD8
—
PLP4
PLP7
PLP5
PLP6
SLPRS3 SLPRS2 SLPRS1 SLPRS0
ORU7 ORU6 ORU5 ORU4
—
—
—
—
ORD7 ORD6 ORD5 ORD4
—
—
—
—
HP4
HP7
HP5
HP6
—
—
—
—
PCGU7 PCGU6 PCGU5 PCGU4
—
—
—
—
PCGD7 PCGD6 PCGD5 PCGD4
—
—
—
—
PRGU7 PRGU6 PRGU5 PRGU4
—
—
—
—
PRGD7 PRGD6 PRGD5 PRGD4
—
—
—
—
ENBU7 ENBU6 ENBU5 ENBU4
—
—
—
—
ENBD7 ENBD6 ENBD5 ENBD4
—
—
—
—
CP1U7 CP1U6 CP1U5 CP1U4
—
—
—
—
CP1D7 CP1D6 CP1D5 CP1D4
—
—
—
—
CP2U7 CP2U6 CP2U5 CP2U4
—
—
—
—
CP2D7 CP2D6 CP2D5 CP2D4
—
—
—
—
HSTU7 HSTU6 HSTU5 HSTU4
—
—
—
—
HSTD7 HSTD6 HSTD5 HSTD4
—
—
—
—
VCRV7 VCRV6 VCRV5 VCRV4
—
—
—
—
VP4
VP7
VP5
VP6
—
SLFR HSCN VSCN
FRI4
FRI7
FRI5
FRI6
MBK1 MBK0 SHP0 SHP1
IRP4
IRP7
IRP5
IRP6
—
—
—
—
IRU4
IRU7
IRU5
IRU6
—
—
—
—
IRD4
IRD7
IRD5
IRD6
—
—
—
—
PLP3
SLHCK1
ORU3
—
ORD3
—
HP3
—
PCGU3
—
PCGD3
—
PRGU3
—
PRGD3
—
ENBU3
—
ENBD3
—
CP1U3
—
CP1D3
—
CP2U3
—
CP2D3
—
HSTU3
—
HSTD3
—
VCRV3
—
VP3
HB
FRI3
SHP2
IRP3
—
IRU3
—
IRD3
—
PLP2
SLHCK0
ORU2
—
ORD2
—
HP2
—
PCGU2
—
PCGD2
—
PRGU2
—
PRGD2
—
ENBU2
—
ENBD2
—
CP1U2
—
CP1D2
—
CP2U2
—
CP2D2
—
HSTU2
—
HSTD2
—
VCRV2
—
VP2
VB1
FRI2
SHP3
IRP2
SLHR
IRU2
—
IRD2
—
PLP1
PLP11
ORU1
ORU11
ORD1
ORD11
HP1
HP11
PCGU1
PCGU11
PCGD1
PCGD11
PRGU1
PRGU11
PRGD1
PRGD11
ENBU1
ENBU11
ENBD1
ENBD11
CP1U1
CP1U11
CP1D1
CP1D11
CP2U1
CP2U11
CP2D1
CP2D11
HSTU1
HSTU11
HSTD1
HSTD11
VCRV1
VCRV11
VP1
VB2
FRI1
INV
IRP1
IRP11
IRU1
IRU11
IRD1
IRD11
—: Don't care
– 27 –
CXD2467Q
The detailed setting contents are described below.
(a) PLP: PLL counter frequency division ratio setting
This sets the frequency division ratio of the 1/N frequency divider (PLL counter) for phase comparison. The
value of (total number of dots in one horizontal period N) – 1 is set in PLP11 (MSB) to PLP0 (LSB). The
frequency division ratio can be set up to 4096. However, only even numbers can be set for the value of N. The
initial value is 697h (N = 1688).
(b) SLHCK: HCK cycle setting
The HCK1 (Pin 142) and HCK2 (Pin 143) cycle is set in SLHCK1 (MSB) and SLHCK0 (LSB). 0h is set for LCD
panels that perform 6-dot simultaneous sampling, 1h for 12-dot simultaneous sampling, 2h for 18-dot
simultaneous sampling and 3h for 24-dot simultaneous sampling. Note that HCK2 is the reverse-phase signal
of HCK1. The initial value is 1h (12-dot simultaneous sampling).
(c) SLPRS: PLL counter reset cycle setting
The PLL counter is reset according to the value set in PLP, but reset can also be applied separately by
HSYNC. The HSYNC cycle at which reset is applied is set in SLPRS3 (MSB) to SLPRS0 (LSB). When 0h is
set, the PLL counter is not reset. When 1h is set, the front edge of HSYNC is detected and the PLL counter is
reset each time HSYNC is input. The reset cycle increases thereafter so that when Fh is set, the PLL counter
is reset by HSYNC every 15H. The initial value is 1h (reset every 1H).
(d) SLVRS: PLL counter VSYNC reset
This sets whether to reset the PLL counter with each VSYNC. The PLL counter is not reset when set to 0h,
and reset when 1h. However, when SLPRS = 0h (no reset by HSYNC), the PLL counter is not reset regardless
of the SLVRS setting. The initial value is 0h (no reset).
(e) ORU/ORD: ORACT pulse settings
The ORACT (Pin 165) pulse rise position within one horizontal period is set in ORU11 (MSB) to ORU0 (LSB),
and the fall position is set in ORD11 (MSB) to ORD0 (LSB). The PLL counter reset timing is used as the
reference (all 0). Also, the least significant bit is ignored, so setting is in 2-dot units. The initial values are ORU
= 080h and ORD = 000h.
(f) HP: Picture horizontal position setting
The timing at which the counter is initialized to generate the PCG (Pin 130), PRG (Pin 154), ENB (Pin 140),
CLP1 (Pin 155), CLP2 (Pin 156), HST (Pin 149), HCK1 and HCK2 horizontal drive pulses within one horizontal
period is set in HP11 (MSB) to HP0 (LSB). Changing this setting causes the phase relationships of the
horizontal drive pulses as well as the changing positions of VCK (Pin 137) and FRP (Pin 153) relative to
HSYNC to change in an interlocked manner, making it possible to change the picture horizontal position.
Settings can be made in 1-dot units. Note that HCK1 and HCK2 are initialized at this timing, and change at the
cycle set by SLHCK. (See the Timing Chart.) The initial value is 022h.
(g) PCGU/PCGD, PRGU/PRGD, ENBU/ENBD, CP1U/CP1D, CP2U/CP2D and HSTU/HSTD:
Horizontal drive pulse settings
These set the rise and fall positions of the PCG, PRG, ENB, CLP1, CLP2 and HST pulses within one
horizontal period. The horizontal drive pulse initialization timing set by HP is used as the reference. (See the
Timing Chart.) Also, the least significant bit is ignored, so setting is in 2-dot units. The initial values are as
follows.
PCGU = 086h/PCGD = 142h
PRGU = 086h/PRGD = 100h
ENBU = 0FEh/ENBD = 00Ch
CP1U = 0C0h/CP1D = 132h
CP2U = 088h/CP2D = 128h
HSTU = 146h/HSTD = 15Eh
– 28 –
CXD2467Q
(h) VCRV: VCK pulse polarity inversion position setting
The VCK and FRP pulse polarity inversion position within one horizontal period is set in VCRV11 (MSB) to
VCRV0 (LSB). The reference is the same as that for the horizontal drive pulse setting above. Also, the least
significant bit is ignored, so setting is in 2-dot units. The initial value is 086h.
(i) VP: Picture vertical position setting
The picture vertical position is set in VP10 (MSB) to VP0 (LSB). Changing this setting causes the phase
relationships of the VST (Pin 136), VCK and FRP pulses relative to VSYNC to change in an interlocked
manner. Settings can be made in 1-line units. The initial value is 020h.
(j) HB, VB1 and VB2: LCD panel control signal settings
These set the LCD panel control signals. The data set in HB, VB1 and VB2 is output from the HB (Pin 134),
VB1 (Pin 132) and VB2 (Pin 131) output pins, respectively. Also, when either VB1 or VB2 is set to 0h, the BLK
pulse is output. The methods of using these signals differ according to the LCD panel, and some LCD panels
may not even have input pins supporting these signals. See the specifications of the used LCD panel for
details. The initial values are HB = 1h, VB1 = 1h and VB2 = 1h.
(k) HSCN and VSCN: LCD panel scan direction settings
These set the horizontal and vertical scan directions of the LCD panel. The HSCN setting data is output from
RGT (Pin 151), and the VSCN setting data from DWN (Pin 135). Also, changing the HSCN setting reverses the
HCK1 and HCK2 phases. See the specifications of the used LCD panel for a detailed description of the scan
direction. The initial values are HSCN = 1h and VSCN = 0h.
(l) SLFR: FRP pulse inversion cycle setting
This sets the inversion cycle of the polarity inversion pulse (FRP pulse) used for AC driving of LCD panels. The
polarity is inverted at 1-line cycles when set to 0h, and at 1-field cycles when set to 1h. The initial value is 0h
(1-line inversion).
(m) SHP0, SHP1, SHP2, SHP3 and INV: CXA2112R sample-and-hold control
These control the sample-and-hold position of the CXA2112R (sample-and-hold driver). The SHP0, SHP1,
SHP2 and SHP3 setting data is reflected to SHA, SHB, SHC and SHD (Pins 157 to 160) as shown below.
Also, the INV setting data is output directly from the INV (Pin 161) output pin. See the specifications of the
CXA2112R for a detailed description of control methods. The initial values are SHP0 = 0h, SHP1 = 0h, SHP2 =
0h, SHP3 = 0h and INV = 0h.
Setting
Output
Setting
Output
SHP3 to SHP0
SHPA
SHPB
SHPC
SHPD
SHP3 to SHP0
SHPA
SHPB
SHPC
SHPD
0000
L
L
L
L
1000
L
L
Z
L
0001
H
H
L
L
1001
H
H
Z
L
0010
Z
L
L
L
1010
Z
L
Z
L
0011
Z
H
L
L
1011
Z
H
Z
L
0100
L
L
H
H
1100
L
L
Z
H
0101
H
H
H
H
1101
H
H
Z
H
0110
Z
L
H
H
1110
Z
L
Z
H
0111
Z
H
H
H
1111
Z
H
Z
H
Z: High impedance state
– 29 –
CXD2467Q
(n) FRI: Free-running cycle setting
When VSYNC has not been input for a specified period, a judgment of "no signal" is made to allow AC driving
of LCD panels even when there is no signal. In this case, a vertical start pulse and FRP pulse are output at a
specified cycle (free-running operation). The period until a judgment of "no signal" is made and the VST pulse
cycle during free-running operation are set in FRI10 (MSB) to FRI0 (LSB). The initial value is 7FFh (2048H
cycle).
(o) MBK0 and MBK1: Decimation operation settings
This sets the decimation operation which decimates the display lines at a specified ratio. This IC has two builtin modes: 2/14-line decimation and 1/4-line decimation. MBK0 turns decimation operation on and off, and
MBK1 selects the mode. Decimation is not performed when MBK0 = 0h, and is performed when MBK0 = 1h.
Also, 2/14-line decimation is performed when MBK1 = 0h, and 1/4-line decimation when MBK1 = 1h. The initial
values are MBK0 = 0h and MBK1 = 0h (no decimation).
(p) SLDS: Test data
This is test data. Set to 0h. The initial value is 0h.
(q) IRP: IRACT block frequency divider frequency division ratio setting
Like the PLL counter, this sets the frequency division ratio of the 1/N frequency divider for phase comparison.
The value of (total number of dots in one horizontal period N) – 1 is set in IRP11 (MSB) to IRP0 (LSB). The
frequency division ratio can be set up to 4096. However, only even numbers can be set for the value of N. The
initial value is 697h (N = 1688).
(r) SLHR: IRACT block frequency divider reset setting
This sets whether the IRACT block frequency divider is reset by the HSYNC input to HDIN2. The frequency
divider is reset when 0h, and not reset when 1h. The initial value is 0h (reset).
(s) IRU/IRD: IRACT pulse settings
The IRACT pulse rise position within one horizontal period is set in IRU11 (MSB) to IRU0 (LSB), and the fall
position in IRD11 (MSB) to IRD0 (LSB) relative to the HSYNC input to HDIN2. The IRACT block frequency
divider reset timing is used as the reference (all 0). Also, the least significant bit is ignored, so setting is in 2dot units. The initial values are IRU = 080h and IRD = 000h.
Note) The above setting values may be invalid in certain cases. (For example, settings which exceed the
number of clocks in 1H or number of lines in 1V of the input signal, etc.) Normal pulses will not be
output in these cases, so be sure to refer to the setting examples on the following page when making
the settings.
– 30 –
CXD2467Q
Data Register Setting Examples
Examples of data register settings for typical LCD panels driven by this IC and input signals are shown below.
The optimum settings may differ depending on the actual input signal specifications and differences in video
signal processing systems, so be sure to adjust the setting values as necessary.
(a) Example settings when using the LCX028
Input signal: SXGA (1280 × 1024 dots, fH = 64kHz, fV = 60Hz, dot clock = 108MHz)
PLL counter
PLP = 697h (N = 1688, same as default value)
H position
HP = 000h
PCG pulse
PCGU = 074h/PCGD = 136h
PRG pulse
PRGU = 074h/PRGD = 0F6h
ENB pulse
ENBU = 0F6h/ENBD = 008h
CLP1 pulse
CP1U = 088h/CP1D = 128h
HST pulse
HSTU = 146h/HSTD = 15Eh
VCK/FRP inversion position
VCRV = 074h
V position
VP = 020h (same as default value)
(b) Example settings when using the LCX023 or LCX017
Input signal: XGA (1024 × 768 dots, fH = 48kHz, fV = 60Hz, dot clock = 65MHz)
PLL counter
PLP = 53Fh (N = 1344)
H position
HP = 042h
PCG pulse
PCGU = 050h/PCGD = 0D4h
PRG pulse
PRGU = 050h/PRGD = 09Eh
ENB pulse
ENBU = 09Eh/ENBD = 002h
CLP1 pulse
CP1U = 024h/CP1D = 0B0h
HST pulse
HSTU = 0CEh/HSTD = 0E6h
VCK/FRP inversion position
VCRV = 050h
V position
VP = 023h
Free-running frequency
FRI = 63Fh (1600H)
– 31 –
– 32 –
IRACT
IRRET
(HDIN2)
FRP
VCK
PRG
PCG
ENB
HCK2
HCK1
HST
CLP2
CLP1
ORACT
HRET
(HDIN1)
14ck
128ck
128ck
136ck
138ck
194ck
Horizontal drive pulse initialization position
242ck
The 1H and 1V cycle FRP polarity is not specified.
122ck
160ck
188ck
114ck
4ck
24ck
Data register setting: Default
(Example for input signal with total number of horizontal dots = 1688)
∗ When HSCN = 0 (left/right inversion), the HCK1 and HCK2 phases are reversed.
34ck
20-dot clocks (ck)
Horizontal Direction Timing Chart
TG and IRACT Block Timing Chart
CXD2467Q
– 33 –
IRACT
IRRET
(HDIN2)
BLK
PRG
PCG
ENB
HST
FRP
VCK
VST
ORACT
HRET
(VDIN1)
(HDIN1)
∗ The 1H and 1V cycle FRP polarity is not specified.
Vertical Direction Timing Chart
Data register setting: Default
(Example for input signal with total number of vertical lines = 1066)
CXD2467Q
– 34 –
IRACT
IRRET
(HDIN2)
BLK
PRG
PCG
ENB
HST
FRP
VCK
VST
ORACT
HRET
(VDIN1)
(HDIN1)
∗ The 1H and 1V cycle FRP polarity is not specified.
Vertical Direction Timing Chart
Data register setting: VB1 = 0 or VB2 = 0, VP = 01E/h, other settings = default
(Example for input signal with total number of vertical lines = 1000)
CXD2467Q
– 35 –
IRACT
IRRET
(HDIN2)
BLK
PRG
PCG
ENB
HST
FRP
VCK
VST
ORACT
HRET
(VDIN1)
(HDIN1)
∗ The 1H and 1V cycle FRP polarity is not specified.
Vertical Direction Timing Chart
Data register setting: MBK0 = 1, MBK1 = 0, VP = 00A/h, other settings = default
(Example for input signal with total number of vertical lines = 1250)
CXD2467Q
– 36 –
IRACT
IRRET
(HDIN2)
BLK
PRG
PCG
ENB
HST
FRP
VCK
VST
ORACT
HRET
(VDIN1)
(HDIN1)
∗ The 1H and 1V cycle FRP polarity is not specified.
Vertical Direction Timing Chart
Data register setting: MBK0 = 1, MBK1 = 1, VP = 00C/h, other settings = default
(Example for input signal with total number of vertical lines = 1066)
CXD2467Q
CXD2467Q
Application Circuit
To LCD panel
+3.3V
From A/D converter
To D/A converter
0.1µ
10µ
2k
0.1µ
2k
0.1µ
0.1µ
0.1µ
10µ
R1OUT5
R1OUT4
R1OUT3
R1OUT6
R1OUT7
VSS
VDD
R1OUT8
VB2
R1OUT9
VB1
PCG
HB
VSS
VST
DWN
VSS
VDD
VCK
BLK
ENB
HCK1
VDD
DCK1
HCK2
DCK2
DCK1X
DCK2X
VSS
HST
RGT
FRP
XRGT
PRG
CLP1
SHA
SHB
CLP2
INV
SHC
SHD
VSS
VDD
IRACT
TEST1
ORACT
TEST2
TEST3
TEST4
R1IN7
R1
OUT2 120
R1OUT1 119
R1OUT0 118
184 R2IN5
R2OUT9 117
185 R2IN4
R2OUT8 116
186 VDD
VSS 115
VDD 114
189 R2IN2
R2OUT6 112
190 R2IN1
R2OUT5 111
191 R2IN0
R2OUT4 110
192 G1IN7
R2OUT3 109
193 G1IN6
VSS 108
194 G1IN5
R2OUT2 107
195 G1IN4
R2OUT1 106
196 G1IN3
R2OUT0 105
197 G1IN2
G1OUT9 104
198 VSS
G1OUT8 103
199 G1IN1
VSS 102
200 G1IN0
G1OUT7 101
201 G2IN7
G1OUT6 100
202 G2IN6
G1OUT5 99
203 G2IN5
G1OUT4 98
204 G2IN4
G1OUT3 97
205 G2IN3
VSS 96
206 G2IN2
G1OUT2 95
207 G2IN1
G1OUT1 94
208 G2IN0
G1OUT0 93
209 VDD
G2OUT9 92
210 VSS
G2OUT8 91
211 B1IN7
VSS 90
212 B1IN6
VDD 89
213 B1IN5
G2OUT7 88
214 B1IN4
G2OUT6 87
215 B1IN3
G2OUT5 86
216 B1IN2
G2OUT4 85
217 B1IN1
G2OUT3 84
218 B1IN0
VSS 83
219 B2IN7
G2OUT2 82
220 B2IN6
G2OUT1 81
221 B2IN5
G2OUT0 80
222 VSS
B1OUT9 79
223 B2IN4
VSS 78
224 B2IN3
B1OUT8 77
225 B2IN2
B1OUT7 76
226 B2IN1
B1OUT6 75
227 B2IN0
B1OUT5 74
228 R1OSD1
B1OUT4 73
229 R1OSD0
VSS 72
230 G1OSD1
B1OUT3 71
231 G1OSD0
B1OUT2 70
232 B1OSD1
B1OUT1 69
233 B1OSD0
B1OUT0 68
234 VDD
VSS 67
235 VSS
VDD 66
B2OUT2
B2OUT3
B2OUT1
B2OUT0
XCLR
HRET
IRRET
CLKPOL2
CLKSEL4
CLKSEL3
CLK3C
CLK3N
CLK3P
HDPOL2
HDIN2
CLKPOL1
CLKSEL2
CLKSEL1
CLKOUT
CLK1C
CLK1N
CLK1P
HDPOL1
VDPOL1
VDIN1
HDIN1
PDAT0
PDAT1
PDAT2
PDAT3
PDAT4
B2
OUT4
VSS
VDD
VSS
CLK4
VSS
VSS
VDD
VSS
VSS
CLK2
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
VSS
8
VSS
7
VSS
6
VDD
5
PCLK
4
PCTL
3
VDD
2
VSS
1
PDAT5
B2OUT6 62
B2OUT5
61
PDAT6
B2OUT7 63
239 R2OSD0
G2OSD1
240
PDAT7
238 R2OSD1
PDAT8
B2OUT8 64
PDAT9
B2OUT9 65
237 YS1
YS2
236 YM1
YM2
0.1µ
R2OUT7 113
G2
OSD0
10µ
10µ
0.1µ
OSD input
0.1µ
0.1µ
To D/A converter
CLKOUT
HDIN2
CLK3P
CLK3N
+3.3V
CLK3C
Parallel data input
HDIN1
VDIN1
CLK1P
CLK1N
CLK1C
CLK2
CLK4
+3.3V
10k
1µ
CLKPOL2
CLKSEL4
CLKSEL3
HDPOL2
CLKPOL1
CLKSEL2
GND
CLKSEL1
GND
VDPOL1
GND
0.1µ
HDPOL1
OSD input
0.1µ
188 R2IN3
B2OSD1
B2OSD0
From A/D converter
187 VSS
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 37 –
0.1µ
0.1µ
0.1µ
To D/A converter
0.1µ
PSAVE1
R1IN0
182 R2IN7
183 R2IN6
PSAVE2
VSS
VDD
R1IN6
R1IN5
R1IN4
R1IN3
181
R1IN2
R1IN1
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121
CXD2467Q
Package Outline
Unit: mm
240PIN QFP(PLASTIC)
34.6 ± 0.2
4.1 MAX
+ 0.10
0.40 – 0.15
32.0 ± 0.1
180
121
0.10
181
120
A
240
61
1
+ 0.05
0.22 – 0.03
0.25
0° – 8°
0.45 MIN – 0.75 MAX
0.5
DETAIL A
60
+ 0.05
0.145 – 0.03
0.08 M
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
QFP-240P-L022
LEAD TREATMENT
PALLADIUM PLATING
EIAJ CODE
QFP240-P-3232
LEAD MATERIAL
COPPER ALLOY
JEDEC CODE
PACKAGE MASS
– 38 –
7.6g