TI SN74LVTH240APW

SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
D
D
D
D
D
D
1OE
1A1
2Y4
1A2
2Y3
1A3
2Y2
1A4
2Y1
GND
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
2OE
1Y1
2A4
1Y2
2A3
1Y3
2A2
1Y4
2A1
SN54LVTH240 . . . FK PACKAGE
(TOP VIEW)
1A2
2Y3
1A3
2Y2
1A4
2OE
D
SN54LVTH240 . . . J PACKAGE
SN74LVTH240A . . . DB, DW, OR PW PACKAGE
(TOP VIEW)
2Y4
1A1
1OE
VCC
D
State-of-the-Art Advanced BiCMOS
Technology (ABT) Design for 3.3-V
Operation and Low Static-Power
Dissipation
Support Mixed-Mode Signal Operation (5-V
Input and Output Voltages With 3.3-V VCC )
Support Unregulated Battery Operation
Down to 2.7 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Ioff and Power-Up 3-State Support Hot
Insertion
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
Package Options Include Plastic
Small-Outline (DW), Shrink Small-Outline
(DB), and Thin Shrink Small-Outline (PW)
Packages, Ceramic Chip Carriers (FK), and
Ceramic (J) DIPs
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
1Y1
2A4
1Y2
2A3
1Y3
2Y1
GND
2A1
1Y4
2A2
D
description
These octal buffers and line drivers are designed specifically for low-voltage (3.3-V) VCC operation, but with the
capability to provide a TTL interface to a 5-V system environment.
These devices are organized as two 4-bit buffer/line drivers with separate output-enable (OE) inputs. When OE
is low, the devices pass data from the A inputs to the Y outputs. When OE is high, the outputs are in the
high-impedance state.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
The SN54LVTH240 is characterized for operation over the full military temperature range of –55°C to 125°C.
The SN74LVTH240A is characterized for operation from –40°C to 85°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2000, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
FUNCTION TABLE
(each 4-bit buffer)
INPUTS
OUTPUT
Y
OE
A
L
H
L
L
L
H
H
X
Z
logic symbol†
1OE
1A1
1A2
1A3
1A4
1
2OE
EN
2
18
4
16
6
14
8
12
1Y1
2A1
1Y2
2A2
1Y3
2A3
1Y4
2A4
19
EN
11
9
13
7
15
5
17
3
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
1OE
1A1
1A2
1A3
1A4
2
1
2OE
2
18
4
16
6
14
8
12
1Y1
2A1
1Y2
2A2
1Y3
2A3
1Y4
2A4
POST OFFICE BOX 655303
19
11
9
13
7
15
5
17
3
• DALLAS, TEXAS 75265
2Y1
2Y2
2Y3
2Y4
2Y1
2Y2
2Y3
2Y4
SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Current into any output in the low state, IO: SN54LVTH240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74LVTH240A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH240 . . . . . . . . . . . . . . . . . . . . . . . 48 mA
SN74LVTH240A . . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
SN54LVTH240
SN74LVTH240A
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
0.8
0.8
V
Input voltage
5.5
5.5
V
IOH
IOL
High-level output current
–24
–32
mA
Low-level output current
48
64
mA
∆t/∆v
Input transition rise or fall rate
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
–55
High-level input voltage
2
Outputs enabled
2
10
V
10
–40
ns/V
µs/V
200
125
V
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
TEST CONDITIONS
VCC = 2.7 V,
VCC = 2.7 V to 3.6 V,
II = –18 mA
IOH = –100 µA
VCC = 2.7 V,
IOH = –8 mA
IOH = –24 mA
VCC = 3 V
VCC = 2
2.7
7V
VOL
VCC = 3 V
II
Control inputs
Data inputs
Ioff
II(hold)
(
)
Data inputs
VCC = 0 or 3.6 V,
VCC = 3.6 V,
VCC = 3
3.6
6V
–1.2
VCC–0.2
2.4
IOL = 24 mA
IOL = 16 mA
0.5
0.5
0.4
0.4
IOL = 32 mA
IOL = 48 mA
0.5
0.5
0.55
VI = VCC or GND
VI = VCC
IOZPU
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don’t care
ICC
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
V
0.55
IOL = 64 mA
VI = 5.5 V
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don’t care
V
2
0.2
VI = 0
VCC = 0, VI or VO = 0 to 4.5 V
VI = 0.8 V
VCC = 3 V
VI = 2 V
VCC = 3.6 V‡,
VI = 0 to 3.6 V
UNIT
V
2
0.2
VCC = 3.6 V,
VCC = 3.6 V,
Ci
SN74LVTH240A
TYP†
MAX
MIN
–1.2
VCC–0.2
2.4
IOH = –32 mA
IOL = 100 µA
IOZH
IOZL
∆ICC§
SN54LVTH240
TYP†
MAX
MIN
10
10
±1
±1
1
1
–5
µA
–5
±100
75
75
–75
–75
µA
µA
±500
VO = 3 V
VO = 0.5 V
Outputs high
Outputs low
Outputs disabled
VCC = 3 V to 3.6 V,
One input at VCC – 0.6 V,
Other inputs at VCC or GND
VI = 3 V or 0
3
Co
5
5
µA
–5
–5
µA
±100∗
±100
µA
±100∗
±100
µA
0.19
0.19
5
5
0.19
0.19
0.2
0.2
3
mA
mA
pF
VO = 3 V or 0
7
7
pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54LVTH240
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
Y
tPZH
tPZL
OE
Y
tPHZ
tPLZ
OE
Y
VCC = 3.3 V
± 0.3 V
SN74LVTH240A
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MAX
MIN
TYP†
MAX
4.3
5.1
1.1
2.2
3.8
4.6
1.2
4.7
4.9
1.3
2.6
4
4.2
MIN
MAX
0.9
MIN
MIN
UNIT
MAX
1
5.7
6.7
1.1
2.6
4.6
5.6
1.2
5.5
6.2
1.4
2.7
4.4
5
1
5.1
5.2
2
2.9
4.4
4.6
1.1
5.4
5.4
1.8
3
4.3
4.3
ns
ns
ns
† All typical values are at VCC = 3.3 V, TA = 25°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN54LVTH240, SN74LVTH240A
3.3-V ABT OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCBS679F – DECEMBER 1996 – REVISED MARCH 2000
PARAMETER MEASUREMENT INFORMATION
6V
500 Ω
From Output
Under Test
Open
S1
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
Timing Input
1.5 V
0V
tw
tsu
2.7 V
Input
1.5 V
1.5 V
th
2.7 V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
1.5 V
Input
1.5 V
0V
VOH
Output
1.5 V
1.5 V
VOL
1.5 V
tPLZ
3V
1.5 V
tPZH
VOH
Output
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
Output
Waveform 1
S1 at 6 V
(see Note B)
tPLH
tPHL
1.5 V
tPZL
tPHL
tPLH
2.7 V
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  2000, Texas Instruments Incorporated