CET CEH2331

CEH2331
P-Channel Enhancement Mode Field Effect Transistor
PRELIMINARY
FEATURES
-20V, -5.2A , RDS(ON) = 48mΩ @VGS = -4.5V.
RDS(ON) = 60mΩ @VGS = -2.5V.
RDS(ON) = 78mΩ @VGS = -1.8V.
High dense cell design for extremely low RDS(ON).
D(1,2,5,6,)
Rugged and reliable.
Lead free product is acquired.
TSOP-6 package.
6
5
4
G(3)
1
2
3
S(4)
TSOP-6
ABSOLUTE MAXIMUM RATINGS
TA = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
-20
Units
V
Gate-Source Voltage
VGS
±12
V
ID
-5.2
A
IDM
-21
A
PD
2.0
W
TJ,Tstg
-55 to 150
C
Symbol
Limit
Units
RθJA
62.5
C/W
Parameter
Drain Current-Continuous
Drain Current-Pulsed
a
Maximum Power Dissipation
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Ambient b
This is preliminary information on a new product in development now .
Details are subject to change without notice .
1
Rev 2. 2010.Sep
http://www.cetsemi.com
CEH2331
Electrical Characteristics
Parameter
TA = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = -250µA
-20
Zero Gate Voltage Drain Current
IDSS
VDS = -20V, VGS = 0V
Gate Body Leakage Current
IGSS
VGS = ±12V, VDS = 0V
VGS(th)
VGS = VDS, ID = 250µA
Typ
Max
Units
1
µA
±100
nA
Off Characteristics
V
On Characteristics
Gate Threshold Voltage
Static Drain-Source
On-Resistance
RDS(on)
-1
V
VGS = -4.5V, ID = -3.3A
-0.4
36
48
mΩ
VGS = -2.5V, ID = -2.8A
46
60
mΩ
VGS = -1.8V, ID = -2A
60
78
mΩ
Dynamic Characteristics d
Forward Transconductance
gFS
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = -5V, ID = -4A
VDS = -10V, VGS = 0V,
f = 1.0 MHz
13
S
965
pF
200
pF
155
pF
Switching Characteristics d
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = -10V, ID = -4A,
VGS = -4.5V, RGEN = 3Ω
15
30
ns
10
20
ns
40
80
ns
Turn-Off Fall Time
tf
13
26
ns
Total Gate Charge
Qg
13
17
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = -10V, ID = -4A,
VGS = -4.5V
2.5
nC
3
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current b
IS
Drain-Source Diode Forward Voltage c
VSD
VGS = 0V, IS = -1A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Surface Mounted on FR4 Board, t < 5 sec.
c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
d.Guaranteed by design, not subject to production testing.
2
-5.2
A
-1.2
V
CEH2331
12
15
25 C
-VGS=2.5V
-ID, Drain Current (A)
-ID, Drain Current (A)
-VGS=4.5,-4.0,-3.5V
12
9
-VGS=2V
6
3
0
0
0.5
1
1.5
2
0
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
400
Coss
Crss
0
2
4
6
8
10
1
1.5
2
2.5
3
2.2
1.9
ID=-3.3A
VGS=-4.5V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
-VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
-IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
0.5
Figure 2. Transfer Characteristics
Ciss
ID=-250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
0
-55 C
Figure 1. Output Characteristics
600
1.2
TJ=125 C
-VGS, Gate-to-Source Voltage (V)
800
1.3
3
-VDS, Drain-to-Source Voltage (V)
1000
0
6
2.5
1200
200
9
-25
0
25
50
75
100
125
150
VGS=0V
10
1
10
0
10
-1
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
-VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
5 V =-10V
DS
ID=-4A
4
-ID, Drain Current (A)
-VGS, Gate to Source Voltage (V)
CEH2331
3
2
1
0
0
4
8
12
16
10
2
10
1
10
0
10
-1
10
-2
RDS(ON)Limit
1ms
10ms
100ms
DC
TA=25 C
TJ=150 C
Single Pulse
10
-2
10
-1
10
0
10
1
10
Qg, Total Gate Charge (nC)
-VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
V IN
RL
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
Figure 9. Switching Test Circuit
r(t),Normalized Effective
Transient Thermal Impedance
10
1
D=0.5
10
0
0.2
0.1
0.05
10
PDM
0.02
0.01
-1
t1
1. RθJA (t)=r (t) * RθJA
2. RθJA=See Datasheet
3. TJM-TA = P* RθJA (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-2
10
-3
t2
10
-2
10
-1
10
4
0
10
1
10
2
10
3
2