CEG8304 Dual P-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES -30V, -3.6A, RDS(ON) = 58mΩ @VGS = -10V. RDS(ON) = 85mΩ @VGS = -4.5V. Super High dense cell design for extremely low RDS(ON). High power and current handing capability. Lead free product is acquired. D1 1 8 D2 S1 2 7 S2 S1 3 6 S2 G1 4 5 G2 TSSOP-8 for Surface Mount Package. G2 S2 S2 D G1 S1 S1 D TSSOP-8 ABSOLUTE MAXIMUM RATINGS TA = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS -30 Units V Gate-Source Voltage VGS ±20 V ID -3.6 A IDM -14 A PD 1.25 W TJ,Tstg -55 to 150 C Symbol Limit Units RθJA 100 C/W Parameter Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Ambient b This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 1. 2008.June http://www.cetsemi.com CEG8304 Electrical Characteristics Parameter TA = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = -250µA -30 Zero Gate Voltage Drain Current Gate Body Leakage Current, Forward IDSS IGSSF Gate Body Leakage Current, Reverse IGSSR Typ Max Units VDS = -30V, VGS = 0V -1 µA VGS = 20V, VDS = 0V 100 nA VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics c Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forward Transconductance Dynamic Characteristics gFS VGS = VDS, ID = -250µA -3 V VGS = -10V, ID = -3.6A -1 48 58 mΩ VGS = -4.5V, ID = -2.8A 64 85 mΩ VDS = -15V, ID = -3.6A 8 S 550 pF 90 pF 60 pF d Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = -15V, VGS = 0V, f = 1.0 MHz Switching Characteristics d Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = -15V, ID = -1A, VGS = -10V, RGEN = 6Ω 12 24 ns 3 6 ns 22 44 ns Turn-Off Fall Time tf 4 8 ns Total Gate Charge Qg 10 13 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = -15V, ID = -3.6A, VGS = -10V 3.3 nC 1.8 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current b IS Drain-Source Diode Forward Voltage c VSD VGS = 0V, IS = -3.6A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 Board, t < 10 sec. c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. d.Guaranteed by design, not subject to production testing. 2 -3.6 A -1.3 V CEG8304 30 7.5 25 C 24 18 -ID, Drain Current (A) -ID, Drain Current (A) -VGS=10,9,8,7V -VGS=4V 12 6 0 0.0 1 2 3 4 5 0.5 1.0 1.5 2.0 2.5 3.0 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 450 300 Coss 150 Crss 0 5 10 15 20 25 2.2 1.9 ID=-3.6A VGS=-10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 -VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS -IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 0.0 -VGS, Gate-to-Source Voltage (V) Ciss ID=-250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 -55 C TJ=125 C 1.5 -VDS, Drain-to-Source Voltage (V) 600 1.2 3 0 750 1.3 5 4.5 6 900 0 6 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) -VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=-15V ID=-3.6A 8 -ID, Drain Current (A) -VGS, Gate to Source Voltage (V) CEG8304 6 4 2 0 0 2 4 6 8 10 10 2 10 1 RDS(ON)Limit 10ms 100ms 10 0 10 -1 10 -2 1s DC TA=25 C TJ=150 C Single Pulse 10 -2 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) -VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms Figure 9. Switching Test Circuit r(t),Normalized Effective Transient Thermal Impedance 10 0 D=0.5 10 0.2 -1 0.1 0.05 10 PDM 0.02 0.01 -2 t1 Single Pulse 10 -3 10 -4 t2 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 10 -3 10 -2 10 -1 10 0 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 1 10 2 2