CEP13N10L/CEB13N10L N-Channel Enhancement Mode Field Effect Transistor FEATURES 100V, 12.8A, RDS(ON) = 175mΩ @VGS = 10V. RDS(ON) = 185mΩ @VGS = 5V. Super high dense cell design for extremely low RDS(ON). D High power and current handing capability. Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous @ TC = 25 C ID Drain Current-Continuous @ TC = 100 C Drain Current-Pulsed a IDM 100 Units V ±20 V 12.8 A 9 A 50 A 65 W 0.43 W/ C Maximum Power Dissipation @ TC = 25 C - Derate above 25 C PD Operating and Store Temperature Range TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 2.3 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 1. 2010.June. http://www.cetsemi.com Details are subject to change without notice . 1 CEP13N10L/CEB13N10L Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 100V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 3 175 V mΩ 185 mΩ Off Characteristics V On Characteristics b VGS(th) Gate Threshold Voltage Static Drain-Source RDS(on) On-Resistance Forward Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA VGS = 10V, ID = 6A 1 VGS = 5 V, ID = 5A 140 150 VDS = 10V, ID = 6A 5 S 450 pF 90 pF 25 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 80, ID = 11A, VGS = 10V, RGEN = 9.1Ω 8 16 ns 4 8 ns 30 60 ns Turn-Off Fall Time tf 3 6 ns Total Gate Charge Qg 12 24 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 80V, ID = 11A, VGS = 10V 1.3 nC 3 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 12.8A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 12.8 A 1.5 V CEP13N10L/CEB13N10L 15 16 ID, Drain Current (A) ID, Drain Current (A) VGS=10,..6,5,4V 12 9 6 VGS=3.0V 3 0 0 1 2 3 4 2.0 3.0 4.0 5.0 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 300 200 Coss 100 Crss 5 10 15 20 25 2.6 2.2 ID=6A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 1.0 Figure 1. Output Characteristics Ciss 0 0.0 -55 C VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 4 0 5 400 1.2 8 VDS, Drain-to-Source Voltage (V) 500 1.3 12 TJ=125 C 600 0 25 C -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.2 0.6 1.0 1.4 1.8 2.2 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 VDS=80V ID=11A 6 4 2 0 0 2 RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP13N10L/CEB13N10L 2 4 6 8 10 100ms 10 1ms 10ms DC 10 10 12 1 0 TC=25 C TJ=175 C Single Pulse -1 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 0.1 -1 PDM 0.05 0.02 0.01 t1 Single Pulse 10 -2 10 -2 t2 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 2