SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 D Organization . . . 4 194 304 × 72 Bits D Single 3.3-V Power Supply (±10% Tolerance) D JEDEC 168-Pin Dual-In-Line Memory D D D D Module (DIMM) With Buffer for Use With Socket TM4EP72xxB-xx — Uses Eighteen 16M-Bit High-Speed (4M × 4-Bit) Dynamic Random Access Memories (DRAMs) High-Speed, Low-Noise LVTTL Interface High-Reliability Plastic 26-Lead 300-Mil-Wide Surface-Mount Small-Outline J-Lead (SOJ) Package (DJ Suffix) and 26-Lead 300-Mil-Wide Surface-Mount Thin Small-Outline Package (TSOP) (DGA Suffix) Intended for Workstation / Server Applications D Long Refresh Periods: D D D D D − TM4EP72CxB: 64 ms (4 096 Cycles) − TM4EP72BxB: 32 ms (2 048 Cycles) 3-State Output Extended-Data-Out (EDO) Operation With CAS-Before-RAS (CBR), RAS-Only, and Hidden Refresh Ambient Temperature Range 0°C to 70°C Gold-Plated Contacts Performance Ranges ACCESS TIME tRAC (MAX) ’4EP72xxB-50 50 ns ’4EP72xxB-60 60 ns ’4EP72xxB-70 70 ns ACCESS ACCESS EDO TIME TIME CYCLE tCAC tAA tHPC (MAX) (MAX) (MIN) 13 ns 25 ns 20 ns 15 ns 30 ns 25 ns 18 ns 35 ns 30 ns description The TM4EP72BxB is a 32M-byte, 168-pin, buffered, dual-in-line memory module (DIMM). The DIMM is composed of eighteen TMS427409A, 4 194 304 × 4-bit 2K refresh EDO DRAMs, each in a 300-mil, 26-lead plastic TSOP (DGA suffix) or SOJ package (DJ suffix), and two SN74LVT162244 16-bit buffers, each in a 48-lead plastic TSOP mounted on a substrate with decoupling capacitors. See the TMS427409A data sheet (literature number SMKS893). The TM4EP72CxB is a 32M-byte, 168-pin, buffered DIMM. The DIMM is composed of eighteen TMS426409A, 4 194 304 × 4-bit 4K refresh EDO DRAMs, each in a 300-mil, 26-lead plastic TSOP (DGA suffix) or SOJ package (DJ suffix), and two 16-bit buffers mounted on a substrate with decoupling capacitors. See the TMS427409A data sheet (literature number SMKS893). These modules are intended for multimodule workstation / server applications where buffering is needed for address and control signals. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0−DQ31, while B0 is common to the DRAMs used for DQ32−DQ63. operation The TM4EP72xxB operates as eighteen TMS42x409As that are connected as shown in the TM4EP72xxB functional block diagram. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1998, Texas Instruments Incorporated !"#$%&" ' ()##*& %' "! +),-(%&" .%&*/ #".)(&' ("!"#$ &" '+*(!(%&"' +*# &0* &*#$' "! *1%' '&#)$*&' '&%.%#. 2%##%&3/ #".)(&" +#"(*''4 ."*' "& *(*''%#-3 (-).* &*'&4 "! %-- +%#%$*&*#'/ POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 1 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 DUAL-IN-LINE MEMORY MODULE ( TOP VIEW ) TM4EP72xPB ( SIDE VIEW ) PIN NOMENCLATURE − TM4EP72BxB A[0:10] A[0:10] B0 DQ[0:63] CB[0:7] ID[0:1] CAS0 and CAS4 RAS0 and RAS2 WE0 and WE2 OE0 and OE2 PD[1:8] PDE NC VDD VSS 1 10 11 Row-Address Inputs Column-Address Inputs Addr0 for Bank 2 Devices Data In / Data Out Check Bit In / Check Bit Out ID Pins Column-Address Strobe Row-Address Strobe Write Enable Output Enable Presence Detect Presence Detect Enable No-Connect Pin 3.3-V Supply Ground PIN NOMENCLATURE − TM4EP72CxB A[0:11] A[0:9] B0 DQ[0:63] CB[0:7] ID[0:1] CAS0 and CAS4 RAS0 and RAS2 WE0 and WE2 OE0 and OE2 PD[1:8] PDE NC VDD VSS 40 41 Row-Address Inputs Column-Address Inputs Addr0 for Bank 2 Devices Data In / Data Out Check Bit In / Check Bit Out ID Pins Column-Address Strobe Row-Address Strobe Write Enable Output Enable Presence Detect Presence Detect Enable No-Connect Pin 3.3-V Supply Ground PRESENCE DETECT 84 2 POST OFFICE BOX 1443 PIN − 50 − 60 − 70 PD1 1 1 1 PD2 1 1 1 PD3 0 0 0 PD4 1 1 1 PD5 1 1 1 PD6 0 1 0 PD7 0 1 1 PD8 0 0 0 ID0 0 0 0 ID1 0 0 0 • HOUSTON, TEXAS 77251−1443 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 Pin Assignments ÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ PIN NO. NAME NO. 1 43 2 VSS DQ0 3 DQ1 4 PIN NAME NO. 85 44 VSS OE2 45 RAS2 DQ2 46 5 DQ3 6 7 VDD DQ4 8 DQ5 9 PIN NAME NO. PIN NAME 127 86 VSS DQ32 128 VSS NC 87 DQ33 129 NC CAS4 88 DQ34 130 NC 47 NC 89 DQ35 131 NC 48 WE2 90 132 PDE 49 91 133 50 VDD NC VDD DQ36 92 DQ37 134 VDD NC DQ6 51 NC 93 DQ38 135 NC 10 DQ7 52 CB2 94 DQ39 136 CB6 11 DQ8 53 CB3 95 DQ40 137 CB7 12 VSS DQ9 54 97 VSS DQ41 138 55 VSS DQ16 96 13 139 VSS DQ48 14 DQ10 56 DQ17 98 DQ42 140 DQ49 15 DQ11 57 DQ18 99 DQ43 141 DQ50 16 DQ12 58 DQ19 100 DQ44 142 DQ51 17 DQ13 59 101 DQ45 143 18 60 102 144 61 NC 103 VDD DQ46 VDD DQ52 19 VDD DQ14 VDD DQ20 145 NC 20 DQ15 62 NC 104 DQ47 146 NC 21 CB0 63 NC 105 CB4 147 NC 22 CB1 64 NC 106 CB5 148 NC 23 VSS NC 65 DQ21 107 DQ53 DQ22 108 VSS NC 149 66 150 DQ54 25 NC 67 DQ23 109 NC 151 DQ55 26 68 111 VDD NC 152 69 VSS DQ24 110 27 VDD WE0 153 VSS DQ56 28 CAS0 70 DQ25 112 NC 154 DQ57 29 NC 71 DQ26 113 NC 155 DQ58 30 RAS0 72 DQ27 114 NC 156 DQ59 31 OE0 73 115 NC 157 32 74 116 VDD DQ60 75 DQ29 117 VSS A1 158 33 VSS A0 VDD DQ28 159 DQ61 34 A2 76 DQ30 118 A3 160 DQ62 35 A4 77 DQ31 119 A5 161 DQ63 36 A6 78 A7 162 A8 79 VSS PD1 120 37 121 A9 163 VSS PD2 38 A10 80 PD3 122 A11 164 PD4 39 NC 81 PD5 123 NC 165 PD6 40 82 PD7 124 PD8 83 ID0 125 VDD NC 166 41 VDD NC 167 ID1 42 NC 84 VDD 126 B0 168 VDD 24 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 3 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 buffered dual-in-line memory module and components The buffered dual-in-line memory module and components include: D PC substrate: 1,27 " 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage D Bypass capacitors: Multilayer ceramic D Contact area: Nickel plate and gold plate over copper functional block diagram for the TM4EP72xxB RAS0 RAS2 WE0 WE2 OE0 OE2 CAS0 CAS4 CAS DQ[0:3] DQ[8:11] CB[0:3] DQ[20:23] DQ[28:31] DQ[0:3] A0 U[0:8] B0 A[1:n] OE W W OE W W DQ[40:43] OE W DQ[44:47] OE W CB[4:7] DQ[48:51] DQ[52:55] OE CAS DQ[56:59] OE CAS DQ[60:63] VDD RAS W RAS W RAS W RAS W RAS UB6 OE DQ[0:3] W UB5 DQ[0:3] RAS RAS UB4 DQ[0:3] RAS W RAS UB7 U[0:8], UB[0:8] Two 0.1 µF (minimum) per DRAM UB[0:8] A[1:n]: U[0:8], UB[0:8] POST OFFICE BOX 1443 OE CAS RAS W UB8 DQ[0:3] VSS 4 OE CAS RAS UB3 DQ[0:3] RAS U7 OE CAS W UB2 DQ[0:3] RAS U6 OE CAS RAS UB1 DQ[0:3] RAS U5 OE CAS W UB0 DQ[0:3] RAS U4 OE CAS DQ[36:39] U8 DQ[0:3] CAS W OE DQ[0:3] RAS U3 DQ[0:3] CAS DQ[24:27] OE DQ[0:3] CAS DQ[32:35] U2 DQ[0:3] CAS DQ[16:19] OE DQ[0:3] CAS W CAS RAS U1 DQ[0:3] CAS DQ[12:15] OE DQ[0:3] CAS W U0 DQ[0:3] CAS DQ[4:7] OE • HOUSTON, TEXAS 77251−1443 U[0:8], UB[0:8] SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 absolute maximum ratings over ambient temperature range (unless otherwise noted)† Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.5 V to 4.6 V Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Power dissipation: TM4EP72xxB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 W Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to VSS. ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ recommended operating conditions MIN NOM MAX 3 3.3 3.6 VDD VSS Supply voltage VIH VIL High-level input voltage 2 Low-level input voltage TA Ambient temperature Supply voltage 0 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 UNIT V V V −0.3 VDD + 0.3 0.8 0 70 °C V 5 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) TM4EP72BxB PARAMETER ’4EP72BxB-50 TEST CONDITIONS† IOH = − 2 mA IOH = − 100 µA IOL = 2 mA MIN LVTTL High-level output voltage VOL Low-level output voltage II Input current (leakage) IOL = 100 µA LVCMOS VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD IO Output current (leakage) VDD = 3.6 V, CASx high ICC1‡§ Average read- or write-cycle current VDD = 3.6 V, ICC2 MAX MIN 2.4 VOH Average standby current ’4EP72BxB-60 LVCMOS LVTTL MAX 2.4 VDD −0.2 ’4EP72BxB-70 MIN MAX UNIT 2.4 VDD −0.2 V VDD −0.2 0.4 0.4 0.4 0.2 0.2 0.2 ± 20 ± 20 ± 20 µA VO = 0 V to VDD, ± 20 ± 20 ± 20 µA Minimum cycle 2 160 1 800 1 620 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 36 36 36 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 18 18 18 mA V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RASx-only refresh), RASx low after CASx low (CBR) 2 160 1 800 1 620 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 1 980 1 620 1 440 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC 6 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 electrical characteristics over recommended ranges of supply voltage and ambient temperature (unless otherwise noted) (continued) TM4EP72CxB PARAMETER IOH = − 2 mA IOH = − 100 µA IOL = 2 mA High-level output voltage VOL Low-level output voltage II Input current (leakage) IOL = 100 µA LVCMOS VDD = 3.6 V, VI = 0 V to 3.9 V, All others = 0 V to VDD IO Output current (leakage) VDD = 3.6 V, CASx high ICC1‡§ Average read- or write-cycle current VDD = 3.6 V, ICC2 MIN LVTTL VOH Average standby current ’4EP72CxB-50 TEST CONDITIONS† ’4EP72CxB-60 MAX MIN 2.4 LVCMOS 2.4 VDD −0.2 LVTTL MAX ’4EP72CxB-70 MIN MAX UNIT 2.4 VDD −0.2 V VDD −0.2 0.4 0.4 0.4 0.2 0.2 0.2 ± 20 ± 20 ± 20 µA VO = 0 V to VDD, ± 20 ± 20 ± 20 µA Minimum cycle 1 620 1 260 1 080 mA VIH = 2 V (LVTTL), After one memory cycle, RASx and CASx high 36 36 36 mA VIH = VDD − 0.2 V (LVCMOS), After one memory cycle, RASx and CASx high 18 18 18 mA V ICC3‡§ Average refresh current (RAS-only refresh or CBR) VDD = 3.6 V, Minimum cycle, RASx cycling, CASx high (RASx-only refresh), RASx low after CASx low (CBR) 1 620 1 260 1 080 mA ICC4‡¶ Average EDO current VDD = 3.6 V, RASx low, 1 800 1 620 1 440 mA tHPC = MIN, CASx cycling † For conditions shown as MIN / MAX, use the appropriate value specified in the timing requirements. ‡ Measured with outputs open § Measured with a maximum of one address change while RASx = VIL ¶ Measured with a maximum of one address change during each EDO cycle, tHPC POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 7 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 capacitance over recommended ranges of supply voltage and ambient temperature, f = 1 MHz (see Note 2) ’4EP72xxB PARAMETER MIN MAX UNIT Ci(A) Input capacitance, A0 −A10 6 pF Ci(OE) Input capacitance, OEx 6 pF Ci(CAS) Input capacitance, CASx 6 pF Ci(RAS) Input capacitance, RASx 65 pF Ci(W) Input capacitance, WEx 6 pF 9 pF Co Output capacitance NOTE 2: VDD= NOM supply voltage ± 10%, and the bias on pins under test is 0 V. switching characteristics over recommended ranges of supply voltage and ambient temperature (see Note 3) ’4EP72xxB-50 PARAMETER MIN MAX ’4EP72xxB-60 MIN MAX ’4EP72xxB-70 MIN MAX UNIT tAA tCAC Access time from column address (see Note 4) 30 35 40 ns Access time from CASx (see Note 4) 18 20 23 ns tCPA tRAC Access time from CASx precharge (see Note 4) 33 40 45 ns Access time from RASx (see Note 4) 50 60 70 ns tOEA tCLZ Access time from OEx (see Note 4) 18 20 23 ns Delay time, CASx to output in low impedance 2 tREZ tCEZ Output buffer turn off delay from RASx (see Note 5) 3 13 3 15 3 18 ns Output buffer turn off delay from CASx (see Note 5) 5 18 5 20 5 23 ns tOEZ tWEZ Output buffer turn off delay from OEx (see Note 5) 5 18 5 20 5 23 ns Output buffer turn off delay from WEx (see Note 5) 3 13 3 15 3 18 ns 2 2 ns NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 4. Access times are measured with output reference levels of VOH = 2 V and VOL = 0.8 V. 5. The maximum values of tREZ, tCEZ, tOEZ, and tWEZ are specified when the outputs are no longer driven. Data in must not be driven until one of the applicable maximum values is satisfied. EDO timing requirements (see Note 3) ’4EP72xxB-50 MIN MAX ’4EP72xxB-60 MIN MAX ’4EP72xxB-70 MIN MAX UNIT tHPC tPRWC Cycle time, EDO page mode, read-write 20 25 30 ns Cycle time, EDO read-write 55 64 71 ns tCSH tCHO Delay time, RASx active to CASx precharge 38 46 56 ns Hold time, OEx from CASx 7 10 10 ns tDOH tCAS Hold time, output from CASx 5 5 5 ns Pulse duration, CASx active 8 tWPE tOCH Pulse duration, WEx active (output disable only) 7 7 7 ns Setup time, OEx before CASx 8 10 10 ns tCP tOEP Pulse duration, CASx precharge 8 10 10 ns Precharge time, OEx 5 5 5 ns 10 000 NOTE 3: With ac parameters, it is assumed that tT = 2 ns. 8 POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 10 10 000 12 10 000 ns SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements (see Note 3) ’4EP72xxB-50 MIN MAX ’4EP72xxB-60 MIN MAX ’4EP72xxB-70 MIN MAX UNIT tRC tRWC Cycle time, random read or write tRASP tRAS Pulse duration, RASx active, fast page mode (see Note 6) 50 100 000 60 100 000 70 100 000 ns Pulse duration, RASx active, non-page mode (see Note 6) 50 60 70 ns tRP tWP Pulse duration, RASx precharge 30 40 50 ns Pulse duration, write command 9 11 11 ns tASC tASR Setup time, column address 0 0 0 ns Setup time, row address 5 5 5 ns tDS tRCS Setup time, data in (see Note 7) 5 5 5 ns Setup time, read command 0 0 0 ns tCWL tRWL Setup time, write command before CASx precharge 9 11 13 ns Setup time, write command before RASx precharge 10 12 14 ns 0 0 0 ns tWCS Cycle time, read-write Setup time, write command before CASx active (early-write only) 84 104 124 ns 116 140 165 ns 10 000 10 000 10 000 tWRP tWTS Setup time, WEx high before RAS low (CBR refresh only) 12 12 12 ns Setup time, WEx low before RAS low (test mode only) 12 12 12 ns tCSR tCAH Setup time, CASx referenced to RASx ( CBR refresh only ) 3 3 3 ns tDH tRAH Hold time, data in (see Note 7) tRCH tRRH tWCH tROH Hold time, write command during CASx active ( early-write only ) Hold time, RASx referenced to OEx tWRH tWTH tCHR tOEH Hold time, CASx referenced to RASx ( CBR refresh only ) tRHCP tAWD Hold time, column address 8 10 12 ns 13 15 17 ns Hold time, row address 6 8 8 ns Hold time, read command referenced to CASx (see Note 8) 0 0 0 ns Hold time, read command referenced to RASx (see Note 8) −2 −2 −2 ns 9 11 13 ns 8 10 10 ns Hold time, WEx high after RAS low (CBR refresh) 12 12 12 ns Hold time, WEx low after RAS low (test mode only) 12 12 12 ns 8 8 8 ns Hold time, OEx command 14 16 19 ns Hold time, RASx active from CASx precharge 33 40 45 ns Delay time, column address to write command ( read-write only ) 47 54 62 ns tCPW tCRP Delay time, WEx low after CASx precharge (read-write only) 45 54 62 ns 3 3 3 ns tCWD tOED Delay time, CASx to write command ( read-write only ) 35 39 45 ns Delay time, OEx to data in 15 17 20 tRAD tRAL Delay time, RASx to column address (see Note 9) Delay time, CASx precharge to RASx 8 Delay time, column address to RASx precharge tCAL Delay time, column address to CASx precharge NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 6. In a read-write cycle, tRWD and tRWL must be observed. 7. Referenced to the later of CASx or WEx in write operations 8. Either tRCH or tRRH must be satisfied for a read cycle. 9. The maximum value is specified only to ensure access time. POST OFFICE BOX 1443 20 10 25 10 ns 30 ns 30 35 40 ns 20 23 28 ns • HOUSTON, TEXAS 77251−1443 9 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 ac timing requirements (see Note 3) (continued) ’4EP72xxB-50 tRCD tRPC Delay time, RASx to CASx ( see Note 9) tRSH tRWD Delay time, RASx precharge to CASx ’4EP72xxB-60 ’4EP72xxB-70 MIN MAX MIN MAX MIN MAX 10 32 12 40 12 47 UNIT ns 3 3 3 ns Delay time, CASx active to RASx precharge 18 20 23 ns Delay time, RASx to write command (read-write only) 67 79 92 ns tTAA tTCPA Access time from address (test mode) 30 35 40 ns Access time from column precharge (test mode) 40 45 50 ns tTRAC tREF Access time from RASx (test mode) 50 60 70 ns Refresh time interval 32 tT Transition time NOTES: 3. With ac parameters, it is assumed that tT = 2 ns. 9. The maximum value is specified only to ensure access time. 10 POST OFFICE BOX 1443 2 • HOUSTON, TEXAS 77251−1443 30 32 2 30 2 32 ms 30 ns SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 device symbolization (TM4EP72BPB illustrated) TM4EP72BPB -SS Buffered Key Position YYMMT 3.3-V Voltage Key Position YY MM T -SS = = = = Year Code Month Code Assembly Site Code Speed Code NOTE A: Location of symbolization may vary. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 11 SMMS686A − AUGUST 1997 − REVISED FEBRUARY 1998 MECHANICAL DATA BRW (R-PDIM-N168) DUAL IN-LINE MEMORY MODULE 5.255 (133,48) 5.245 (133,22) (Note D) Notch 0.157 (4,00) x 0.122 (3,10) Deep 2 Places 0.039 (1,00) TYP 0.125 (3,18) 0.054 (1,37) 0.046 (1,17) Notch 0.079 (2,00) x 0.122 (3,10) Deep 2 Places 0.050 (1,27) 0.014 (0,35) MAX 0.118 (3,00) TYP 0.125 (3,18) 0.700 (17,78) TYP 0.118 (3,00) DIA 2 Places 1.005 (25,53) 0.995 (25,27) 0.106 (2,70) MAX 0.157 (4,00) MAX (For Double-Sided DIMM Only) 4088184/A 00/97 NOTES: A. B. C. D. E. 12 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Falls within JEDEC MO-161 Dimension includes De−panelization variations; applies between notch and tab edge. Outline may vary above notches to allow router/panelization irregularities. POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251−1443 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated