TI TM893CBK32

TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
D
D
D
D
D
D
D
D
D
Organization
TM893CBK32 . . . 8 388 608 × 32 Bit
Single 5-V Power Supply (±10% Tolerance)
72-Pin, Leadless Single In-Line Memory
Module ( SIMM) for Use With Sockets
TM893CBK32 – Utilizes Sixteen 16-Megabit
Dynamic RAMs in Plastic Small-Outline
J-Lead ( SOJ) Packages
Long Refresh Period
32 ms (2048 Cycles)
All Inputs, Outputs, Clocks Fully TTL
Compatible
3-State Output
Common CAS Control for Eight Common
Data-In and Data-Out Lines in Four Blocks
Enhanced Page-Mode Operation With
CAS-Before-RAS ( CBR), RAS-Only, and
Hidden Refresh
D
D
Presence Detect
Performance Ranges:
ACCESS
TIME
tRAC
D
D
D
D
’893CBK32-60
’893CBK32-70
’893CBK32-80
(MAX)
60 ns
70 ns
80 ns
ACCESS ACCESS READ
TIME
TIME
OR
tAA
tCAC WRITE
CYCLE
(MAX)
(MAX)
(MIN)
30 ns
15 ns
110 ns
35 ns
18 ns
130 ns
40 ns
20 ns
150 ns
Low Power Dissipation
Operating Free-Air-Temperature Range
0°C to 70°C
Gold-Tabbed Versions Available:†
TM893CBK32
Tin-Lead (Solder) Tabbed Versions
Available:
TM893CBK32S
description
The TM893CBK32 is a 32-megabyte, dynamic random-access memory organized as four times 8 388 608 × 8
bits in a 72-pin, leadless single in-line memory module ( SIMM). The SIMM is composed of 16 TMS417400DJ,
4 194 304 × 4-bit dynamic RAMs, each in 24 / 26-lead plastic small-outline J-lead ( SOJ) packages mounted on
a substrate with decoupling capacitors. The TMS417400DJ is described in the TMS417400 data sheet. The
TM893CBK32 SIMM is available in the double-sided BK leadless module for use with sockets.
operation
The TM893CBK32 operates as sixteen TMS417400DJs connected as shown in the functional block diagram
and Table 1. The common I / O feature dictates the use of early-write cycles to prevent contention on D and Q.
refresh
The refresh period is extended to 32 ms, and during this period each of the 2048 rows must be strobed with RAS
to retain data. To conserve power, CAS can remain high during the refresh sequence.
power up
To achieve proper operation, an initial pause of 200 µs followed by a minimum of eight initialization cycles is
required after full VCC level is achieved. These eight initialization cycles must include at least one refresh
( RAS-only or CBR ) cycle.
† Part numbers in this data sheet are for the gold-tabbed version; the information applies to both gold-tabbed and solder-tabbed versions.
Copyright  1995, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
BK SINGLE-IN-LINE PACKAGE
( TOP VIEW )
2
VSS
DQ0
DQ16
DQ1
DQ17
DQ2
DQ18
DQ3
DQ19
VCC
NC
A0
A1
A2
A3
A4
A5
A6
A10
DQ4
DQ20
DQ5
DQ21
DQ6
DQ22
DQ7
DQ23
A7
NC
VCC
A8
A9
RAS3
RAS2
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
NC
NC
VSS
CAS0
CAS2
CAS3
CAS1
RAS0
RAS1
NC
W
NC
DQ8
DQ24
DQ9
DQ25
DQ10
DQ26
DQ11
DQ27
DQ12
DQ28
VCC
DQ29
DQ13
DQ30
DQ14
DQ31
DQ15
NC
PD1
PD2
PD3
PD4
NC
VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
TM893CBK32
( SIDE VIEW )
PIN NOMENCLATURE
A0 – A10
CAS0 – CAS3
DQ0 – DQ31
NC
PD1 – PD4
RAS0 – RAS3
VCC
VSS
W
Address Inputs
Column-Address Strobe
Data In/Data Out
No Connection
Presence Detects
Row-Address Strobe
5-V Supply
Ground
Write Enable
PRESENCE DETECT
PD1
(67)
PD2
(68)
PD3
(69)
PD4
(70)
80 ns
NC
NC
70 ns
NC
VSS
VSS
VSS
NC
60 ns
NC
VSS
SIGNAL (PIN)
TM893CBK32
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
VSS
NC
NC
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
Table 1. Connection Table
RASx
DATA BLOCK
CASx
SIDE 1
SIDE 2
DQ0 – DQ7
RAS0
RAS1
CAS0
DQ8 – DQ15
RAS0
RAS1
CAS1
DQ16 – DQ23
RAS2
RAS3
CAS2
DQ24 – DQ31
RAS2
RAS3
CAS3
single in-line memory module and components
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage
Bypass capacitors: Multilayer ceramic
Contact area for TM893CBK32: Nickel plate and gold plate over copper
Contact area for TM893CBK32S: Nickel plate and tin-lead over copper
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
RAS2
CAS1
11
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251–1443
11
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
CAS3
CAS2
11
DQ0 –
DQ3
11
DQ4 –
DQ7
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ8 –
DQ11
11 4 M × 4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ12 –
DQ15
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ16 –
DQ19
11
DQ20 –
DQ23
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ24 –
DQ27
DQ28 –
DQ31
functional block diagram (side 2)
A0 – A10
RAS1
W
CAS0
11
RAS3
CAS1
11
11
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ0 –
DQ3
11
DQ4 –
DQ7
CAS3
CAS2
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ8 –
DQ11
11 4 M × 4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ12 –
DQ15
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
11
DQ16 –
DQ19
11
DQ20 –
DQ23
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
4M×4
A0 – A10
RAS
W
CAS
OE
DQ1–
DQ4
DQ24 –
DQ27
DQ28 –
DQ31
Template Release Date: 7–11–94
11
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
A0 – A10
RAS0
W
CAS0
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
4
functional block diagram (side 1)
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Voltage range on VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power dissipation (TM893CBK32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
recommended operating conditions
MIN
NOM
MAX
VCC
VIH
Supply voltage
4.5
5
5.5
V
High-level input voltage
2.4
6.5
V
VIL
TA
Low-level input voltage (see Note 2)
–1
0.8
V
0
70
°C
Operating free-air temperature
UNIT
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER
VOH
VOL
High-level output voltage
Low-level output voltage
TEST CONDITIONS
’893BBK32-60
IOH = – 5 mA
IOL = 4.2 mA
MIN
MAX
2.4
’893BBK32-70
MIN
MAX
2.4
’893BBK32-80
MIN
MAX
2.4
UNIT
V
0.4
0.4
0.4
V
± 20
± 20
± 20
µA
II
Input current (leakage)
VCC = 5.5 V,
VI = 0 V to 6.5 V,
All others = 0 V to VCC
IO
Output current (leakage)
VCC = 5.5 V,
CAS high
VO = 0 V to VCC,
± 20
± 20
± 20
µA
ICC1
Read or write cycle current
(see Note 3)
VCC = 5.5 V,
Minimum cycle
896
816
736
mA
VIH = 2.4 V (TTL),
After 1 memory cycle,
RAS and CAS high
32
32
32
mA
VIH = VCC – 0.2 V (CMOS),
After 1 memory cycle,
RAS and CAS high
16
16
16
mA
1760
1600
1440
mA
576
496
416
mA
ICC2
Standby current
ICC3
Average refresh current
(RAS only or CBR)
(see Note 3)
VCC = 5.5 V,
Minimum cycle,
RAS cycling,
CAS high (RAS only);
RAS low after CAS low (CBR)
ICC4
Average page current
(see Note 4)
VCC = 5.5 V,
RAS low,
tPC = Minimum,
CAS cycling
NOTES: 3. Measured with a maximum of one address change while RAS = VIL
4. Measured with a maximum of one address change while CAS = VIH
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
capacitance over recommended ranges of supply voltage and operating free-air temperature,
f = 1 MHz (see Note 5)
’893CBK32
PARAMETER
MIN
MAX
UNIT
Ci(A)
Input capacitance, A0 – A10
80
pF
Ci(R)
Input capacitance, RAS inputs
28
pF
Ci(C)
Input capacitance, CAS inputs
28
pF
Ci(W)
Input capacitance, W
112
pF
Co(DQ)
Output capacitance on DQ pins
14
pF
NOTE 5: VCC = 5 V ± 0.5 V and the bias on pins under test is 0 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature
’893CBK32-60
PARAMETER
MIN
’893CBK32-70
MAX
MIN
MAX
’893CBK32-80
MIN
MAX
UNIT
tAA
tCAC
Access time from column-address
30
35
40
ns
Access time from CAS low
15
18
20
ns
tCPA
tRAC
Access time from column precharge
35
40
45
ns
Access time from RAS low
60
70
80
ns
tCLZ
tOH
CAS to output in the low-impedance state
0
0
0
Output disable from start of CAS high
3
3
3
tOFF Output disable time after CAS high (see Note 6)
NOTE 6: tOFF is specified when the output is no longer driven.
0
15
0
18
0
ns
ns
20
ns
timing requirements over recommended ranges of supply voltage and operating free-air
temperature
’893CBK32-60
MIN
MAX
’893CBK32-70
MIN
MAX
’893CBK32-80
MIN
MAX
UNIT
tRC
tPC
Cycle time, random read or write (see Note 7)
110
130
150
Cycle time, page-mode read or write (see Notes 7 and 8)
40
45
50
tRASP
tRAS
Pulse duration, page mode, RAS low
60
100 000
70
100 000
80
100 000
ns
Pulse duration, nonpage mode, RAS low
60
10 000
70
10 000
80
10 000
ns
tCAS
tCP
Pulse duration, CAS low
15
10 000
18
10 000
20
10 000
ns
Pulse duration, CAS high (precharge)
10
10
10
ns
tRP
tWP
Pulse duration, RAS high (precharge)
40
50
60
ns
Pulse duration, W low
10
10
10
ns
tASC
tASR
Setup time, column address before CAS low
0
0
0
ns
Setup time, row address before RAS low
0
0
0
ns
tDS
tRCS
Setup time, data before CAS low
0
0
0
ns
Setup time, W high before CAS low
0
0
0
ns
tCWL
tRWL
Setup time, W low before CAS high
15
18
20
ns
Setup time, W low before RAS high
15
18
20
ns
tWCS
tWRP
Setup time, W low before (precharge) CAS low
0
0
0
ns
10
10
10
ns
Setup time, W high before RAS low (CBR refresh only)
NOTES: 7. All cycles assume tT = 5 ns.
8. To assure tPC min, tASC should be ≥ tCP.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
ns
ns
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (concluded)
’893CBK32-60
MIN
MAX
’893CBK32-70
MIN
MAX
’893CBK32-80
MIN
MAX
UNIT
tCAH
tDH
Hold time, column address after CAS low
10
15
15
ns
Hold time, data after CAS and W low
10
15
15
ns
tRAH
tRCH
Hold time, row address after RAS low
10
10
10
ns
Hold time, W high after CAS high (see Note 9)
0
0
0
ns
tRRH
tRHCP
Hold time, W high after RAS high (see Note 9)
0
0
0
ns
Hold time, RAS high from CAS precharge
35
40
45
ns
tWCH
tWRH
Hold time, W low after CAS low
10
15
15
ns
Hold time, W high after RAS low (CBR refresh only)
10
10
10
ns
tCHR
tCRP
Delay time, RAS low to CAS high (CBR refresh only)
10
10
10
ns
Delay time, CAS high to RAS low
5
5
5
ns
tCSH
tCSR
Delay time, RAS low to CAS high
60
70
80
ns
tRAD
tRAL
Delay time, RAS low to column address (see Note 10)
15
Delay time, column address to RAS high
30
35
40
tCAL
tRCD
Delay time, column address to CAS high
30
35
40
Delay time, RAS low to CAS low (see Note 10)
20
tRPC
tRSH
Delay time, RAS high to CAS low (CBR refresh only)
tREF
tT
Refresh time interval
Delay time, CAS low to RAS low (CBR refresh only)
5
Delay time, CAS low to RAS high
5
30
45
15
20
52
15
20
ns
40
ns
ns
ns
60
ns
0
0
0
ns
15
18
20
ns
32
Transition time
5
35
3
30
32
3
30
3
32
ms
30
ns
NOTES: 9. Either tRRH or tRCH must be satisfied for a read cycle.
10. The maximum value is specified only to assure access time.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TM893CBK32, TM893CBK32S
8388608 BY 32-BIT
DYNAMIC RAM MODULE
SMMS652A – FEBRUARY 1995 – REVISED JUNE 1995
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated