DATA SHEET MOS INTEGRATED CIRCUIT µPD16488A 1/92 DUTY LCD CONTROLLER/DRIVER WITH FOUR-LEVEL GRAY SCALE, ON-CHIP RAM DESCRIPTION The µPD16488A is a controller/driver which includes display RAM for full-dot LCDs that can provide a four-level gray scale display. This IC is able to drive full-dot LCDs that contain up to 128 x 92 dots. FEATURES • LCD controller/driver with on-chip display RAM • Full dot outputs: 128 segment outputs and 92 common outputs • Can operate using single power supply (logic system) in range from 1.7 to 3.6 V. • Selection of four levels of gray scales from among 33 possible levels (four-frame rate control + 8 pulse width modulation) • Serial data input and 8-bit parallel data input (i80 series interface and M68 series interface) • Dot display RAM: 128 x 128 x 2 bits • On-chip booster: Switchable from x2 to x9 modes • Selectable bias levels: 1/12 to 1/7 bias (normal display), 1/6 or 1/5 bias (partial display) • Duty settings: 1/92 to 1/1 duty • On-chip voltage divider resistor • On-chip oscillator ORDERING INFORMATION Part Number Package µPD16488AP Chip µPD16488AW Wafer Remark Purchasing the chip/wafer entails the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representative. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. S15745EJ2V0DS00 (2nd Edition) Date Published December 2001 NS CP(K) The mark shows major revised points. 2001 µPD16488A TABLE OF CONTENTS 1. BLOCK DIAGRAM....................................................................................................................................... 5 2. PIN CONFIGURATION (PAD LAYOUT) ..................................................................................................... 6 3. PIN FUNCTIONS.......................................................................................................................................... 9 3.1 Power Supply System Pins ................................................................................................................................ 9 3.2 Logic System Pins ............................................................................................................................................ 10 3.3 Driver-Related Pins........................................................................................................................................... 13 3.4 Test Pins........................................................................................................................................................... 13 4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS...................................... 14 5. DESCRIPTION OF FUNCTIONS............................................................................................................... 15 5.1 CPU Interface .................................................................................................................................................... 15 5.1.1 Selection of interface type ...................................................................................................................... 15 5.1.2 Parallel interface..................................................................................................................................... 15 5.1.3 Serial interface........................................................................................................................................ 16 5.1.4 Chip select.............................................................................................................................................. 16 5.1.5 Display data RAM and on-chip register access ...................................................................................... 16 5.2 Display Data RAM ............................................................................................................................................. 19 5.2.1 Display data RAM................................................................................................................................... 19 5.2.2 X address circuit ..................................................................................................................................... 19 5.2.3 Column address circuit ........................................................................................................................... 21 5.2.4 Y address circuit ..................................................................................................................................... 21 5.2.5 Common scan circuit .............................................................................................................................. 21 5.2.6 Display start line set ............................................................................................................................... 21 5.2.7 Display data latch circuit ......................................................................................................................... 21 5.3 Blink/Reverse Display Circuit.......................................................................................................................... 22 5.4 Oscillator........................................................................................................................................................... 24 5.5 Display Timing Generator................................................................................................................................ 28 5.6 Power Supply Circuit ....................................................................................................................................... 30 5.6.1 Booster ................................................................................................................................................... 30 5.6.2 Voltage regulator .................................................................................................................................... 32 5.6.3 Use of op amp for level power supply control ......................................................................................... 35 5.6.4 Application examples of power supply circuits........................................................................................ 36 5.7 LCD Display Drivers ......................................................................................................................................... 39 2 5.7.1 Full-dot pulse width modulation .............................................................................................................. 39 5.7.2 Full-dot frame rate control....................................................................................................................... 44 Data Sheet S15745EJ2V0DS µPD16488A 5.7.3 Line shift driver ....................................................................................................................................... 45 5.7.4 Display size settings ............................................................................................................................... 47 5.7.5 Setting of LCD AC driver's inversion cycle and AC driver's inversion position........................................ 47 5.8 Display Modes .................................................................................................................................................. 49 5.8.1 Partial display mode ............................................................................................................................... 49 5.8.2 Monochrome (black/white) display ......................................................................................................... 51 5.9 Reset.................................................................................................................................................................. 53 6. COMMAND REGISTERS........................................................................................................................... 54 6.1 Control Register 1 (R0)...................................................................................................................................... 55 6.2 Control Register 2 (R1)...................................................................................................................................... 56 6.3 Reset Command (R2)......................................................................................................................................... 57 6.4 X Address Register (R3).................................................................................................................................... 57 6.5 Y Address Register (R4).................................................................................................................................... 57 6.6 Duty Setting Register (R5) ................................................................................................................................ 58 6.7 AC Driver Inversion Cycle Register (R6).......................................................................................................... 59 6.8 AC Driver Inversion Position Shift Register (R7) ............................................................................................ 59 6.9 Partial AC Driver Inversion Cycle Register (R8).............................................................................................. 60 6.10 Partial AC Driver Inversion Position Shift Register (R9) .............................................................................. 60 6.11 Partial Display Mode Setting Register (R10) ................................................................................................. 61 6.12 Display Memory Access Register (R11)......................................................................................................... 61 6.13 Display Start Line Setting Register (R12) ...................................................................................................... 62 6.14 Blink X Address Register (R13) ...................................................................................................................... 62 6.15 Blink Start Line Address Register (R14) ........................................................................................................ 62 6.16 Blink End Line Address Register (R15) ......................................................................................................... 62 6.17 Blink Data Memory Access Register (R16).................................................................................................... 63 6.18 Inverted X Address Register (R17) ................................................................................................................. 63 6.19 Inversion Start Line Address Register (R18) ................................................................................................. 63 6.20 Inversion End Line Address Register (R19) .................................................................................................. 64 6.21 Inverted Data Memory (R20)............................................................................................................................ 64 6.22 Partial Start Line Address Register (R21)...................................................................................................... 64 6.23 Gray Scale Data Registers 1 to 4 (R23 to R26) .............................................................................................. 65 6.24 Partial Gray Scale Data Registers 1 to 4 (R27 to R30) .................................................................................. 65 6.25 Power System Control Register 1 (R32) ........................................................................................................ 66 6.26 Power System Control Register 2 (R33) ........................................................................................................ 67 6.27 Power System Control Register 3 (R34) ........................................................................................................ 68 6.28 Electronic Volume Register (R35) .................................................................................................................. 69 6.29 Partial Electronic Volume Register (R36) ...................................................................................................... 69 6.30 Boost Adjustment Register (R37)................................................................................................................... 69 6.31 RAM Test Mode Setting Register (R44).......................................................................................................... 70 6.32 Signature Read Register (R45) ....................................................................................................................... 70 Data Sheet S15745EJ2V0DS 3 µPD16488A 7. LIST OF µPD16488A REGISTERS ........................................................................................................... 71 8. POWER SUPPLY SEQUENCE ................................................................................................................. 72 8.1 Power ON Sequence (When Using On-Chip Power Supply, Power Supply ON → Display ON) .................. 72 8.2 Power OFF Sequence (When Using On-Chip Power Supply) ........................................................................ 73 8.3 Power ON Sequence (When Using External Driver Power Supply, Power ON → Display ON) ................... 73 8.4 Power Supply OFF Sequence (When Using External Driver Power Supply) ................................................ 74 8.5 VOUT, VLCD Voltage Sequence (Power ON → Power OFF) ............................................................................... 75 9. USE OF RAM TEST MODE ....................................................................................................................... 76 10. ELECTRICAL SPECIFICATIONS............................................................................................................ 77 11. CPU INTERFACE (REFERENCE EXAMPLE) ........................................................................................ 87 4 Data Sheet S15745EJ2V0DS µPD16488A 1. BLOCK DIAGRAM SEG128 SEG1 COM1 COM92 Common driver Segment driver Data register /RES /CS1 CS2 C86 PSX /RD(E) /WR(R,/W) D7(SI) D6(SCL) D5 to D0 RS M/S FR FRSYNC DOF SIGIN1 SIGIN2 TSTIFS TSTRTST TSTVIHL TESTOUT OSCIN1 OSCIN2 OSCOUT OSCSYNC CLS Segment G/S and blink control Display data latch Common timing generator Display data RAM (128 x 128 x 2 bits) I/O buffer Address decoder Command decoder Register Segment G/S and blink timer Timing generator Oscillator circuit D/A converter C1 , C1 + DC/DC converter Op amp LCD voltage generator + C9 , C9 C1A VOUT VRS IRS VR AMPOUTP AMPOUT VLCD VLC1 VLC2 VLC3 VLC4 VDD1 VDD2 VSS Remark /xxx indicates active low signals. Data Sheet S15745EJ2V0DS 5 µPD16488A 2. PIN CONFIGURATION (PAD LAYOUT) Chip size : 3.0 x 11.4 mm2 Chip : 485 µm TYP. 403 372 A1 A4 1 371 Pad type A : Pad size (AI) : 53 x 73 µm2 Bump size : 45 x 60 µm2 Bump height : 17 µm TYP. Pad type B : Pad size (AI) : 118 x 73 µm2 Bump size : 110 x 60 µm2 Bump height : 17 µm TYP. Alignment Mark Coordinate Mark Center Coordinate X [µm] Y [µm] M1 −1200.00 5300.00 M2 −1200.00 −5300.00 M3 1275.00 −5475.00 M4 1275.00 5475.00 Shape of Alignment Mark (unit: µm) A1,A2 Y 50 A3 A4 50 163 197 A3 A1 164 6 196 Data Sheet S15745EJ2V0DS 50 100 50 100 100 50 X 100 50 100 100 µPD16488A • µPD16488A Pad Layout (1/2) Pad No. Pin Name Pad Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 DUMMY DUMMY DUMMY DUMMY DUMMY VSS VRS VRS AMPOUTP AMPOUTP AMPOUT AMPOUT VR VR VLC4 VLC4 VLC3 VLC3 VLC2 VLC2 VLC1 VLC1 VLCD VLCD VSS VOUT VOUT VSS C9C9C9+ C9+ C8C8C8+ C8+ C7C7C7+ C7+ C6C6C6+ C6+ C5C5C5+ C5+ C4C4C4+ C4+ C3C3C3+ C3+ C2C2C2+ C2+ C1C1C1+ C1+ C1A C1A VDD2 VDD2 VDD2 VDD1 B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Coordinate Y [µ m] X [µ m] -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 5284.00 5154.00 5024.00 4894.00 4796.50 4590.00 4530.00 4470.00 4410.00 4350.00 4290.00 4230.00 4170.00 4110.00 4050.00 3990.00 3930.00 3870.00 3810.00 3750.00 3690.00 3630.00 3570.00 3510.00 3450.00 3390.00 3330.00 3270.00 3210.00 3150.00 3090.00 3030.00 2970.00 2910.00 2850.00 2790.00 2730.00 2670.00 2610.00 2550.00 2490.00 2430.00 2370.00 2310.00 2250.00 2190.00 2130.00 2070.00 2010.00 1950.00 1890.00 1830.00 1770.00 1710.00 1650.00 1590.00 1530.00 1470.00 1410.00 1350.00 1290.00 1230.00 1170.00 1110.00 1050.00 990.00 930.00 870.00 810.00 750.00 Pad No. 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 Pin Name Pad Type VDD1 VDD1 VSS VSS VSS CLS CLS VDD1 M/S M/S VSS C86 C86 PSX PSX VDD1 IRS IRS VSS /CS1 /CS1 CS2 CS2 VDD1 /RES /RES RS RS VSS /WR (R,/W ) /WR (R,/W ) /RD (E) /RD (E) VDD1 D7 D7 D6 D6 DUMMY D5 D5 D4 D4 DUMMY D3 D3 D2 D2 DUMMY D1 D1 D0 D0 DUMMY FRSYNC FRSYNC FR FR DUMMY DOF DOF OSCIN1 OSCIN1 OSCIN2 OSCIN2 OSCOUT OSCOUT DUMMY OSCSYNC OSCSYNC A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A Pad Coordinate X [µ m] Y [µ m] -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 Data Sheet S15745EJ2V0DS 690.00 630.00 570.00 510.00 450.00 390.00 330.00 270.00 210.00 150.00 90.00 30.00 -30.00 -90.00 -150.00 -210.00 -270.00 -330.00 -390.00 -450.00 -510.00 -570.00 -630.00 -690.00 -750.00 -810.00 -870.00 -930.00 -990.00 -1050.00 -1110.00 -1170.00 -1230.00 -1290.00 -1350.00 -1410.00 -1470.00 -1530.00 -1590.00 -1650.00 -1710.00 -1770.00 -1830.00 -1890.00 -1950.00 -2010.00 -2070.00 -2130.00 -2190.00 -2250.00 -2310.00 -2370.00 -2430.00 -2490.00 -2550.00 -2610.00 -2670.00 -2730.00 -2790.00 -2850.00 -2910.00 -2970.00 -3030.00 -3090.00 -3150.00 -3210.00 -3270.00 -3330.00 -3390.00 -3450.00 Pad No. Pin Name Pad Type 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 DUMMY DUMMY VSS SIGIN1 SIGIN1 VDD1 SIGIN2 SIGIN2 VSS TESTOUT TESTOUT TSTIFS TSTIFS TSTRTST TSTRTST TSTVIHL TSTVIHL VSS DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY COM47 COM48 COM49 COM50 COM51 COM52 COM53 COM54 COM55 COM56 COM57 COM58 COM59 COM60 COM61 COM62 COM63 COM64 COM65 COM66 COM67 COM68 COM69 COM70 COM71 COM72 COM73 DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY COM74 COM75 COM76 COM77 COM78 COM79 COM80 COM81 COM82 COM83 COM84 A A A A A A A A A A A A A A A A A A A B B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A B B B B A A A A A A A A A A A A A Pad Coordinate X [µ m] Y [µ m] -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1383.50 -1172.50 -1075.00 -965.00 -905.00 -845.00 -785.00 -725.00 -665.00 -605.00 -545.00 -485.00 -425.00 -365.00 -305.00 -245.00 -185.00 -125.00 -65.00 -5.00 55.00 115.00 175.00 235.00 295.00 355.00 415.00 475.00 535.00 595.00 655.00 771.00 906.00 1041.00 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 -3510.00 -3570.00 -3630.00 -3690.00 -3750.00 -3810.00 -3870.00 -3930.00 -3990.00 -4050.00 -4110.00 -4170.00 -4230.00 -4290.00 -4350.00 -4410.00 -4470.00 -4530.00 -4796.50 -4894.00 -5024.00 -5154.00 -5284.00 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5474.76 -5257.50 -5160.00 -5100.00 -5040.00 -4980.00 -4920.00 -4860.00 -4800.00 -4740.00 -4680.00 -4620.00 -4560.00 -4500.00 -4440.00 7 µPD16488A • µPD16488A Pad Layout (2/2) Pad No. Pin Name Pad Type Pad Coordinate Y [µ m] X [µ m] Pad No. Pin Name Pad Type Pad Coordinate X [µ m] Y [µ m] 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 COM85 COM86 COM87 COM88 COM89 COM90 COM91 COM92 DUMMY SEG128 SEG127 SEG126 SEG125 SEG124 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 SEG99 SEG98 SEG97 SEG96 SEG95 SEG94 SEG93 SEG92 SEG91 SEG90 SEG89 SEG88 SEG87 SEG86 SEG85 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 -4380.00 -4320.00 -4260.00 -4200.00 -4140.00 -4080.00 -4020.00 -3960.00 -3900.00 -3840.00 -3780.00 -3720.00 -3660.00 -3600.00 -3540.00 -3480.00 -3420.00 -3360.00 -3300.00 -3240.00 -3180.00 -3120.00 -3060.00 -3000.00 -2940.00 -2880.00 -2820.00 -2760.00 -2700.00 -2640.00 -2580.00 -2520.00 -2460.00 -2400.00 -2340.00 -2280.00 -2220.00 -2160.00 -2100.00 -2040.00 -1980.00 -1920.00 -1860.00 -1800.00 -1740.00 -1680.00 -1620.00 -1560.00 -1500.00 -1440.00 -1380.00 -1320.00 -1260.00 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 SEG67 SEG66 SEG65 SEG64 SEG63 SEG62 SEG61 SEG60 SEG59 SEG58 SEG57 SEG56 SEG55 SEG54 SEG53 SEG52 SEG51 SEG50 SEG49 SEG48 SEG47 SEG46 SEG45 SEG44 SEG43 SEG42 SEG41 SEG40 SEG39 SEG38 SEG37 SEG36 SEG35 SEG34 SEG33 SEG32 SEG31 SEG30 SEG29 SEG28 SEG27 SEG26 SEG25 SEG24 SEG23 SEG22 SEG21 SEG20 SEG19 SEG18 SEG17 SEG16 SEG15 A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 -180.00 -120.00 -60.00 0.00 60.00 120.00 180.00 240.00 300.00 360.00 420.00 480.00 540.00 600.00 660.00 720.00 780.00 840.00 900.00 960.00 1020.00 1080.00 1140.00 1200.00 1260.00 1320.00 1380.00 1440.00 1500.00 1560.00 1620.00 1680.00 1740.00 1800.00 1860.00 1920.00 1980.00 2040.00 2100.00 2160.00 2220.00 2280.00 2340.00 2400.00 2460.00 2520.00 2580.00 2640.00 2700.00 2760.00 2820.00 2880.00 2940.00 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 SEG84 SEG83 SEG82 SEG81 SEG80 SEG79 SEG78 SEG77 SEG76 SEG75 SEG74 SEG73 SEG72 SEG71 SEG70 SEG69 SEG68 A A A A A A A A A A A A A A A A A 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 -1200.00 -1140.00 -1080.00 -1020.00 -960.00 -900.00 -840.00 -780.00 -720.00 -660.00 -600.00 -540.00 -480.00 -420.00 -360.00 -300.00 -240.00 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 DUMMY DUMMY COM46 A A A A A A A A A A A A A A A A A 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 3000.00 3060.00 3120.00 3180.00 3240.00 3300.00 3360.00 3420.00 3480.00 3540.00 3600.00 3660.00 3720.00 3780.00 3840.00 3900.00 3960.00 8 Data Sheet S15745EJ2V0DS Pad No. 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 Pin Name COM45 COM44 COM43 COM42 COM41 COM40 COM39 COM38 COM37 COM36 COM35 COM34 COM33 COM32 COM31 COM30 COM29 COM28 DUMMY DUMMY DUMMY DUMMY DUMMY DUMMY COM27 COM26 COM25 COM24 COM23 COM22 COM21 COM20 COM19 COM18 COM17 COM16 COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 DUMMY DUMMY Pad Type A A A A A A A A A A A A A A A A A A A A B B B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A B Pad Coordinate X [µ m] Y [µ m] 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1274.76 1041.00 906.00 771.00 595.00 535.00 475.00 415.00 355.00 295.00 235.00 175.00 115.00 55.00 -5.00 -65.00 -125.00 -185.00 -245.00 -305.00 -365.00 -425.00 -485.00 -545.00 -605.00 -665.00 -725.00 -785.00 -845.00 -905.00 -965.00 -1075.00 -1172.50 4020.00 4080.00 4140.00 4200.00 4260.00 4320.00 4380.00 4440.00 4500.00 4560.00 4620.00 4680.00 4740.00 4800.00 4860.00 4920.00 4980.00 5040.00 5100.00 5160.00 5257.50 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 5474.76 µPD16488A 3. PIN FUNCTIONS 3.1 Power Supply System Pins Symbol VDD1 Name Pad No. I/O Logic power supply 70-72, 78, 86, 94, − Power supply pin for logic circuit 67-69 − Power supply pin for booster Logic and driver 6, 25, 28, 73 to 75, 81, − Ground pin for logic and driver circuits ground pin 89, 99, 143, 149, 158 − Power supply pin for driver. Output pin for on-chip booster. pin VDD2 Boost circuit Description 104, 146 power supply pin VSS VOUT Driver power 26, 27 Connect a 1 µF boost capacitor between this pin and the GND supply pin pin. If not using the on-chip booster, a direct driver power supply can be input. VLCD, Reference power 24, 23, VLC1 to VLC4 supply pins for 22 to 15 − These are reference power supply pins for the LCD driver. Connect a capacitor between these pins and the GND pin if an internal bias has been selected. driver C1+, C1− Boost capacitor 64, 63, 62, 61 C2+, C2− connection pins (1) − These are capacitor connection pins for the booster. When 60, 59, 58, 57 using the on-chip booster, connect a 1 µF capacitor between − C3 , C3 56, 55, 54, 53 positive (+) and negative (-) pins. C4+, C4− 52, 51, 50, 49 C5+, C5− 48, 47, 46, 45 C6+, C6− 44, 43, 42, 41 + + − C7 , C7 40, 39, 38, 37 C8+, C8− 36, 35, 34, 33 C9+, C9− 32, 31, 30, 29 C1A Boost capacitor connection pin (2) 65, 66 − This is a capacitor connection pin for boost adjustment. When using the on-chip booster, connect a 1 µF capacitor between this pin and the GND pin. Data Sheet S15745EJ2V0DS 9 µPD16488A 3.2 Logic System Pins (1/3) Symbol PSX Name Data transfer Pad No. I/O Description 84, 85 Input This pin is used to select between parallel data input and serial selection data input. PSX = H: Parallel data input PSX = L: Serial data input /CS1, Chip select CS2 90, 91, Input 92, 93 These pins are used for chip select signals. When /CS1 = L (CS2 = H), the chip is active and can perform data input/output operations including command and data I/O. /RD Read (E) (enable) 102, 103 Input When i80 series parallel data transfer (/RD) has been selected, the signal at this pin is used to enable read operations. Data is output to the data bus only when this pin is L. When M68 series parallel data transfer (E) has been selected, the signal at this pin is used to enable write operations. Data is written at the falling edge of this signal. /WR Write (R,/W) (read/write) 100, 101 Input When i80 series parallel data transfer (/WR) has been selected, the signal at this pin is used to enable write operations. Data is written at the rising edge of this signal. When 68 series parallel data transfer (R,/W) has been selected, this pin is used to determine the direction of data transfer. L: Write H: Read C86 Interface selection 82, 83 Input This pin is used to switch between interface modes (i80 series CPU or M68 series CPU). L: Selects i80 series CPU mode H: Selects M68 series CPU mode D0 to D5, Data bus D6 (SCL) (serial clock) 115 to 118, connects to an 8-bit or 16-bit standard CPU bus. D7 (SI) (serial input) 120 to 123 When the serial interface has been selected (PSX = L), D6 105 to 108, 110 to 113, I/O These pins comprise an 8-bit bidirectional data bus that functions as a serial clock input pin (SCL) and D7 functions as a serial data input pin (SI). In either case, pins D0 to D5 are in high impedance mode. When the chip is not selected, D0 to D7 are in high impedance mode. RS Index 97, 98 Input Usually, this pin is connected to the LSB of the standard CPU register/data, address bus and is used to distinguish between data from index command registers and data/commands. selection RS = H: Indicates that data from D0 to D7 is data/command RS = L : Indicates that data from D0 to D7 is index register contents /RES Reset 95, 96 Input When /RES is low, an internal reset is performed. The reset operation is executed at the /RES signal level. 10 Data Sheet S15745EJ2V0DS µPD16488A (2/3) Symbol CLS Name Select clock Pad No. I/O Description 76, 77 Input This pin is used to select whether or not to use the divider within division the display clock oscillator. CLS = H: Use divider CLS = L: Do not use divider When using an external clock, the CLS = L setting is input via the OSCIN1 and OSCIN2 pins as normal and partial clocks respectively. When CLS = H, clock input is via the OSCIN1 pin only. FR Frame signal 127, 128 I/O This pin is used as I/O pin for the LCD's AC conversion signal. M/S = H: Output M/S = L: Input When using the µPD16488A in master/slave mode, both FR pins must be connected. FRSYNC Frame 125, 126 I/O This pin is used as I/O pin for the LCD's AC conversion synchronization synchronization signal. signal M/S = H: Output M/S = L: Input When the µPD16488A is used in master/slave mode, both FRSYNC pins must be connected. DOF Display blink 130, 131 I/O This pin is used to control the LCD's display blink function. M/S = H: Output M/S = L: Input When the µPD16488A is used in master/slave mode, both DOF pins must be connected. M/S Master/slave 79, 80 Input This pin is used to select between master and slave operation modes. In master operation mode, it outputs the timing signal required by the LCD driver and in slave operation mode it inputs this timing signal from an external source for use in LCD display synchronization. M/S = H: Master operation mode M/S = L: Slave operation mode Settings dependent on the M/S mode are listed in the following chart. Power supply circuit FR FRSYNC DOF H Valid Output Output Output L Invalid Input Input Input M/S IRS VLCD regulation 87, 88 Input This pin is used to select the resistor that is used for VLCD voltage regulation. IRS = H: Uses internal resistor IRS = L: Does not use internal resistor. The VLCD voltage level is regulated using the external voltage division resistor that is connected to the VR pin. This pin is valid only in master operation mode. In slave operation mode, this pin is fixed high or low level. SIGIN1, Signature setting 144, 145, SIGIN2 pins 147, 148 Input These pins can be used to set a unique signature for the IC. The signal set via these pins can subsequently be read from the signature read register (R45). Data Sheet S15745EJ2V0DS 11 µPD16488A (3/3) Symbol OSCIN1 Name Oscillation signal Pad No. I/O 132, 133 Input pins OSCIN2 Description A resistor can be inserted between OSCIN1-OSCOUT, and OSCIN2-OSCOUT. When using an external oscillator, a clock 134, 135 Input signal is input via the OSCIN pins according to the CLS pin's status and the OSCOUT pin is left unconnected. OSCOUT 136, 137 Output The wiring between OSCIN1-OSCOUT and OSCIN2-OSCOUT must 139, 140 Output Display clock output pin. be as short as possible, and use after proper evaluation. OSCSYNC Display clock output See 5. 4 Oscillator concerning use or this pin when the µPD16488A is in master or slave operation mode. 12 Data Sheet S15745EJ2V0DS µPD16488A 3.3 Driver-Related Pins Symbol SEG1 to Pad No. I/O Segment Name 347-220 Output Segment output pins Description Common 166 to 192, 200 to 218, Output Common output pins Input VRS is an op amp input pin for regulating the driving voltage of SEG128 COM1 to COM92 350 to 368, 375 to 401 VRS Op amp input pin 7, 8 for regulating the the LCD. This is a reference voltage input for the LCD voltage driving voltage of regulation amplifier. the LCD When using the internal drive circuit (i.e., when OP1 = 1), we recommend inserting a 0.1 to 1 µF capacitor between this pin and GND. VR Input pin for the op 13, 14 Input VR is an input for the op amp's feedback connection. Insert this amp's feedback pin between GND and AMPOUT when using the feedback resistor connection for this input. This pin is valid only when not using an internal resistor for VLCD voltage regulation (i.e., when IRS = L). This pin cannot be used when using the internal resistor for VLCD voltage regulation (i.e., when IRS = H). AMPOUT Op amp output 9, 10 Output These are op amp output pins for regulating the driving voltage of the LCD. When not using an internal resistor for VLCD voltage regulation (i.e., when IRS = L), these outputs are connected to AMPOUTP the LCD drive voltage regulation resistor (see 5.6.2 Voltage 11, 12 regulator). We recommend inserting a 0.01 to 0.1 µF capacitor between these pins in order to stabilize the internal op amp's output. DUMMY Dummy pin 1 to 5, 109, 114, 119, − 124, 129, 138, 141, Dummy pin. These pins are not connected inside IC. Usually, leave these 142, 159 to 165, pins open. 193 to 199, 219, 348, 349, 369 to 374, 402, 403 3.4 Test Pins Symbol TSTIFS Name Test input I/O 152, 153, Input Description These pins are used to set a test mode for the IC. Normally, connect these pins to VSS. 154, 155, TSTRTST 156, 157 TSTVIHL TESTOUT Pad No. Test output 150, 151 Output These pins are used when the IC is in test mode. Usually, leave them open. Data Sheet S15745EJ2V0DS 13 µPD16488A 4. PIN I/O CIRCUITS AND RECOMMENDED CONNECTION OF UNUSED PINS The I/O circuit type of each pin and recommended connection of unused pins are described below. Pin Name Input Type Input/output Recommended Connection of Unused Pins Notes PSX Schmitt trigger Input Mode setting pin. Note 1 /CS1 Filter Input Connect to VSS. − CS2 Filter Input Connect to VDD1. − /RD(E) Filter Input Connect to VDD1 (i80 series interface), connect to VDD1 − or VSS (serial interface). /WR(R,/W) Filter Input C86 Schmitt trigger D0 to D5 Filter Input Input/output Connect to VDD1 or VSS (serial interface). Mode setting pin. − Note 1 − Leave open D6(SCL) Filter Input/output − D7(SI) Filter Input/output − − RS Filter Input Register setting pin. /RES Schmitt trigger Input Connect to VDD1. − CLS Schmitt trigger Input Mode setting pin Note 1 FR CMOS Input/output Leave open (using master mode, M/S = H). − FRSYNC CMOS Input/output Leave open (using master mode, M/S = H). − DOF CMOS Input/output Leave open (using master mode, M/S = H). M/S Schmitt trigger Input Mode setting pin. Note 1 IRS Schmitt trigger Input Mode setting pin. Note 1 SIGIN1 Schmitt trigger Input Connect to VDD1 or VSS. − SIGIN2 Schmitt trigger Input Connect to VDD1 or VSS. − OSCIN1 Schmitt trigger Input OSCIN2 Schmitt trigger Input − Note 2 − − − Connect to VDD1 or VSS (CLS = H) − OSCOUT − Output Leave open (when using external clock) − OSCSYNC − Output Leave open − TSTIFS Schmitt trigger Input Connect to VSS (during normal use) − TSTRTST Schmitt trigger Input Connect to VSS (during normal use) − TSTVIHL Schmitt trigger Input Connect to VSS (during normal use) − TESTOUT - Output Leave open Notes 1. Connect to either VDD1 or VSS, depending on the mode setting. 2. Input either VDD1 or VSS output from CPU, depending on the mode setting. 14 Data Sheet S15745EJ2V0DS µPD16488A 5. DESCRIPTION OF FUNCTIONS 5.1 CPU Interface 5.1.1 Selection of interface type The µPD16488A chip transfers data using an 8-bit bidirectional data bus (D7 to D0) or a serial data input (SI). Setting the polarity of the PSX pin as either H (high) or L (low) selects between 8-bit parallel or serial data input, as shown in the following table. PSX H: Parallel input L: Serial input CS RS /RD /WR C86 D7 D6 CS RS /RD /WR C86 D7 D6 D5 to D0 SCL Hi-Z Note2 CS RS Note1 Note1 Note1 SI D5 to D0 Notes 1. Fixed as either High or Low. 2. Hi-Z: High impedance 5.1.2 Parallel interface When the parallel interface has been selected (PSX = H), setting the C86 pin as either H or L enables a direct connection to an i80 series or M68 series CPU (see table below). C86 /CS1 CS2 RS /RD /WR D7 to D0 H: M68 series CPU /CS1 CS2 RS E R,/W D7 to D0 L: i80 series CPU /CS1 CS2 RS /RD /WR D7 to D0 The data bus signal is identified according to the combination of the RS, /RD(E), and /WR(R,/W) signals, as shown in the following table. Common M68 RS R,/W /RD i80 /WR Function 1 1 0 1 Reads display data and registers 1 0 1 0 Writes display data and registers 0 1 0 1 Prohibited 0 0 1 0 Writes to index register Data Sheet S15745EJ2V0DS 15 µPD16488A 5.1.3 Serial interface When the serial interface has been selected (PSX = L), if the chip is active (/CS1 = L, CS2 = H), serial data input (SI) and serial clock input (SCL) can be received. Serial data is read from D7 and then from D6 to D0 on the rising edge of the serial clock, via the serial input pin. This data is synchronized on the eighth serial clock's rising edge and is then converted to parallel data for processing. RS input is used to judge serial input data as display data or command data: when RS = H the data is display/command data and when RS = L the data is index data. When the chip enters active mode, RS input is read at the rising edge after every eighth serial clock and is then used to judge the serial input data. The serial interface signal chart is shown below. Figure 5-1. Serial Interface Signal Chart CS2 = H /CS1 SI SCL D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 RS Remarks 1. If the chip is not active, the shift register and counter are reset to their initial settings. 2. The data read function is disabled during serial interface mode. 3. When using SCL wiring, take care concerning the possible effects of terminating reflection and noise from external sources. We recommend checking operation with the actual device. 5.1.4 Chip select The µPD16488A has two chip select pins (/CS1 and CS2). The CPU parallel interface or serial interface can be used only when /CS1 = L and CS2 = H. When chip select is inactive, P0 to P7 are set to high impedance (invalid) and input of RS, /RD, or /WR is not active. If serial interface mode has been set, the shift register and counter are both reset. 5.1.5 Display data RAM and on-chip register access Because only the required cycle time (tcyc) is satisfied when accessing the µPD16488A from the CPU, high-speed data transfer is possible. There is no need to consider any wait time. No dummy data is needed when writing data. Even when data is read, there is no need for dummy data except in the display memory access register (R11). In other words, dummy data is required only when reading data from the display memory access register (R11). Figure 5-2 illustrates this relationship. 16 Data Sheet S15745EJ2V0DS µPD16488A Figure 5-2. Write and Read (1/2) Write <CPU> /WR DATA N N+1 <Internal timing> N+2 N+3 Latch BUS holder N N+1 N+2 N+3 Write signal Read (display memory access register (R11)) <CPU> /WR /RD DATA N n N n+1 <Internal timing> Address preset Read signal Column address Preset N BUS holder n N Address set #n N+2 Increment N + 1 Dummy read Data Sheet S15745EJ2V0DS n+1 Data read #n n+2 Data read #n + 1 17 µPD16488A Figure 5-2. Write and Read (2/2) Read (other than display memory access register) <CPU> /WR /RD DATA IRn IR address set #n 18 IRn data IRn register data read IRn+1 IR address set #n + 1 Data Sheet S15745EJ2V0DS IRn + 1 Data IRn + 1 register data read µPD16488A 5.2 Display Data RAM 5.2.1 Display data RAM This is the RAM that is used to store the display's dot data. The RAM configuration is 256 bits (32 x 8 bits) x 128 bits. Any specified bit can be accessed by selecting the corresponding X address and Y address. D0 to D7 are the display data sent from the CPU, and correspond to SEGx on the LCD display (see Figure 5-3). The CPU writes data to and reads data from the display RAM via the I/O buffer, and these read/write operations are independent of the signal read operations for the LCD driver. Accordingly, there are no adverse effects (such as flicker) in the LCD display when display data RAM is accessed asynchronously. Figure 5-3. Display Data RAM MSB D7 LSB D6 D5 D4 D3 D2 D1 Pixel 3 D0 Pixel 1 Pixel 2 Pixel 4 LCD panel Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 1 Pixel 2 Pixel 3 Pixel 4 X address 00H X address 01H SEG1 SEG2 D7 D6 D5 D4 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 COM0 COM1 COM2 COM3 COM4 Display data LCD display 5.2.2 X address circuit As shown in Figure 5-4, the display data RAM's X address is specified via the X address register (R3). When using X address increment mode (INC = 0: control register 2 (R1)), the specified X address is incremented (by 1) each time a display data read or write operation is executed. The CPU is able to continuously access the display data. The X address is incremented to 1FH, after which the Y address is incremented after each read or write operation and the X address is set back to 00H. For monochrome (black-and-white) display, the X address is incremented to 0FH, after which the Y address is incremented after each read or write operation and the X address is set back to 00H. Data Sheet S15745EJ2V0DS 19 µPD16488A D4 D3 D2 D1 0 0 0 0 1 01H 0 0 0 0 0 00H D0 1 1 1 1 1 1FH Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 COM output Yaddress D7 D6 D5 D4 D3 D2 D1 D0 COM1 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 Start COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 92-line COM83 COM84 COM85 COM86 COM87 COM88 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH COM89 COM90 COM91 COM92 20 Column Address D0 ADC D0 78H 07H SEG8 0 79H 06H SEG7 1 7AH 05H SEG6 LCD output 7BH 04H SEG5 SEG128 00H 7FH 7CH 03H SEG4 Data Sheet S15745EJ2V0DS SEG127 01H 7EH 7DH 02H SEG3 SEG126 02H 7DH 7EH 01H SEG2 SEG125 03H 7CH 7FH 00H 7FH SEG1 X address Figure 5-4. Configuration of X Address Register µPD16488A 5.2.3 Column address circuit When displaying the contents of the display data RAM, the column address corresponds to the SEG output, as shown in Figure 5-4. As is shown in Table 5-1, the correspondence between the display RAM's column address and segment output can be inverted using the ADC flag in control register 1 (R0) (segment driver direction selection flag). This reduces the constraints on chip layout when assembling the LCD module. Table 5-1. Relationship between Column Address and SEG Output SEG Output SEG1 SEG128 ADC 0 00H → Column address → 7FH (D1) 1 7FH ← Column address ← 00H 5.2.4 Y address circuit As is shown in Figure 5-4, the Y address register (R4) is used to specify the display data RAM's Y address. When using Y address increment mode (INC = 1: control register 2 (R1)), the specified Y address is incremented (by 1) each time a display data read or write operation is executed. The CPU is able to continuously access the display data. The Y address is incremented to 7FH, after which the X address is incremented after each read or write operation and the Y address is set back to 00H. 5.2.5 Common scan circuit The common scan circuit sets the scan lines for common signals. The scan direction is set using the COMR flag in control register 1 (R0), as shown in Table 5-2. For example, when using 1/80 duty, when COMR = L the scan direction is COM1 → COM80 and when COMR = H, the scan direction is COM80 → COM1 using the COM80 to COM1 pins. Table 5-2. Relationship between Common Scan Circuit and Scan Direction COMR 0 COM1 → COM92 (D0) 1 COM92 → COM1 5.2.6 Display start line set As is shown in Figure 5-4, display start line set specifies the Y address that corresponds to the COM1 output for displaying the contents of display data RAM. The display start line setting register (R12) is used to specify the top line in the display. The screen can be scrolled, overwritten, etc. A 7-bit display start address is set to the display start line setting register. 5.2.7 Display data latch circuit The display data latch circuit is used for temporary storage of data that is output to the LCD driver from the display data RAM. The display scan command that sets normal or reverse display mode and the display ON/OFF command control latched data so that there is no effect on the data in the display data RAM. Data Sheet S15745EJ2V0DS 21 µPD16488A 5.3 Blink/Reverse Display Circuit The µPD16488A enables blinking display and reverse display in designated parts of the full dot display. A blinking display is achieved by cycling ON/OFF (level 0 when four-level gray scale mode has been selected) at approximately 1 Hz and reverse display is achieved by inverting the display level value. The area designated for blinking is specified via the blink start/end line address registers (R14 and R15), the blink X address register (R13), and the blink data memory access register (R16). First, the blinking display's start and end line addresses are selected via the blink start/end line address registers. Next, the blink X address register (R13) and the blink data memory (R16) are used to select the column for the blinking display. The inversion start/end line address registers (R18 and R19), the inverted X address register (R17), and the inverted data memory access register (R20) are used to select the reverse display area. First, the inversion start/end line address registers (R18 and R19) are set to select the line addresses where the reverse display will start and end. Next, the inverted X address register (R17) and the inverted data memory access register (R20) are used to select the column for the reverse display. The specified blink/inverted X address is incremented (by 1) with each input of blink/reverse display data. The blink RAM and inversion RAM, which have a 128 bit (16 x 8 bit) configuration, are used to store data for blinking display and reverse display respectively. To access the desired bit, simply specify the corresponding X address. The blink/reverse data (data bits D0 to D7 sent from the CPU) correspond to SEGx on the LCD display, as shown in Figure 5-5. After the area and data settings are complete, the BLD bit and IVD bit in the control register 1 (R0) are set to H, at which point the blinking and/or reverse display of data begins. Figure 5-6 illustrates the relationship between the start line address, end line address, blink/reverse data, and LCD display. Table 5-3. Inversion Manipulation and Display Original Level After Inversion Four-level gray scale display mode 0, 0 1, 1 0, 1 1, 0 1, 0 0, 1 1, 1 0, 0 B/W display mode 1 0 0 1 D3 0 0 1 D2 0 0 1 D1 D0 0 0 1 0 00H 1 01H 1 0FH 22 Data Sheet S15745EJ2V0DS Column address ADC 0 1 D0 D0 LCD output SEG128 00H 7FH SEG127 01H 7EH SEG126 02H 7DH SEG125 03H 7CH SEG124 04H 7BH SEG123 05H 7AH SEG122 08H 79H D7 D6 D5 D4 D3 D2 D1 D0 SEG121 07H 78H 77H 08H SEG9 SEG16 70H 0FH 78H 07H SEG8 SEG15 71H 0EH 79H 06H SEG7 SEG14 72H 0DH 7AH 05H SEG6 SEG13 73H 0CH 7BH 04H SEG5 SEG12 74H 0BH 7CH 03H SEG4 SEG11 75H 0AH 7DH 02H SEG3 SEG10 76H 09H 7FH 00H 7EH 01H SEG2 Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 SEG1 X address Figure 5-5. Correspondence Between Blink/Reverse Data and Segments µPD16488A Figure 5-6. Setting Image of Blink/Reverse Display Area Blink/revese data n n+1 n+2 n+3 n+4 n+5 n+6 n+7 001 100 10 00 10 01 10 00 01 01 00 00 10 01 10 0 001 01 00 0 011 00 10 0 011 0010 0 001 0100 Start line End line Blinking or reverse display pixels. Example of sequence for setting blink/reverse display Start Blink/inversion start line address register Blink/inversion end line address register Blink/inverted X address register Blink/inverted data memory access register Data Write completed ? No Yes Control register 1 (BLD, IVD = H) End Data Sheet S15745EJ2V0DS 23 µPD16488A 5.4 Oscillator The µPD16488A include a CR-type oscillator (R external) for normal and partial display, which generates the display clocks. The clocks from this oscillator are controlled via the CLS pin and the DTY flag in the control register 2 (R1). The clock configuration for the display can be set to suit the target system. The functions of this circuit are described below. •The oscillator for normal and partial display is enabled only when resistors RN and RP have been connected. The DTY flag in the control register 2 (R1) and the CLS pin status are used to switch between the oscillation clocks for normal display and partial display modes. •The divider divides the external clock that has been input for the normal oscillator and the normal display into a clock for partial display. The external clock that is input for the partial oscillator and partial display is also divided for the partial display. •The division level is automatically set for the divider based on the relationship between the ON/OFF status of the divider setting pin (CLS pin) and the duty of the specified partial display, as shown in Table 5-4. Figure 5-7. Oscillator Block Selected via DTY/CLS OSCIN1 OSCIN2 Normal display/ partial display oscillator Signal to select division level for partial display OSCOUT MUX TOSCSYNC To graphic driver Partial display divider Normal/partial signal CLS The relationship between the frame frequency (fFRAME), oscillation frequency (fOSCIN1), and setting duty (in normal display mode) is described below. fFRAME = fOSCIN1 ÷ 8 ÷ N (in four-level gray scale display mode) fFRAME = fOSCIN1 ÷ 4 ÷ N (in B/W display mode) N = 1/N duty (setting duty) 24 Data Sheet S15745EJ2V0DS µPD16488A Table 5-4. Setting of Division Level for Partial Display and Static Icon Display In four-level gray scale display mode (GRAY = L, control register 2 (R1)) Display Mode Normal Display Duty Ratio 1/1 to 1/80 Partial Display Duty Ratio Division Source OSCIN1 /OSCIN2 1/38 1/25 1/12 1/38 1/25 1/12 OSCIN1 Divider Normal/Partial ON/OFF Select DTY CLS L (Normal) OSCIN2 L(OFF) H (Partial) 1/38 Four-level gray scale GRAY = L OSCIN1 H(ON) 1/12 1/38 1/25 1/12 1/38 1/25 1/12 1/81 to 1/92 OSCIN1 L (Normal) Partial frame frequency: fOSCIN2 /8 /38 1/1 Partial frame frequency: fOSCIN2 /8 /25 1/2 Partial frame frequency: fOSCIN2 /2(division ratio) /8 /12 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /8 /38 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /8 /25 1/4 Partial frame frequency: fOSCIN1 /4(division ratio) /8 /12 − H(ON) OSCIN2 L(OFF) 1/12 H (Partial) 1/38 1/25 1/1 L(OFF) 1/38 1/25 − H(ON) 1/12 1/25 Comments L(OFF) 1/38 1/25 Partial Division Ratio OSCIN1 H(ON) 1/12 1/1 Partial frame frequency: fOSCIN2 /8 /38 1/1 Partial frame frequency: fOSCIN2 /8 /25 1/2 Partial frame frequency: fOSCIN2 /2(division ratio) /8 /12 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /8 /38 1/4 Partial frame frequency: fOSCIN1 /4(division ratio) /8 /25 1/8 Partial frame frequency: fOSCIN1 /8(division ratio) /8 /12 In black/white display mode (GRAY = H, control register 2 (R1)) Display Mode Normal Display Duty Ratio Partial Display Duty Ratio Division Source OSCIN1 /OSCIN2 Divider Normal/Partial ON/OFF Select DTY CLS Partial Division Ratio Comments 1/38 1/25 1/12 1/38 L(OFF) L (Normal) OSCIN1 1/25 − H(ON) 1/12 1/1 to 1/80 1/38 1/25 OSCIN2 L(OFF) 1/12 H (Partial) 1/38 1/25 B/W 1/12 1/38 1/25 1/12 1/38 1/25 1/12 GRAY = H 1/81 to 1/92 OSCIN1 H(ON) OSCIN1 L (Normal) OSCIN2 L(OFF) H (Partial) 1/38 1/25 1/1 Partial frame frequency: fOSCIN2 /4 /25 1/2 Partial frame frequency: fOSCIN2 /2(division ratio) /4 /12 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /4 /38 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /4 /25 1/4 Partial frame frequency: fOSCIN1 /4(division ratio) /4 /12 − H(ON) 1/12 1/12 Partial frame frequency: fOSCIN2 /4 /38 L(OFF) 1/38 1/25 1/1 OSCIN1 H(ON) 1/1 Partial frame frequency: fOSCIN2 /4 /38 1/1 Partial frame frequency: fOSCIN2 /4 /25 1/2 Partial frame frequency: fOSCIN2 /2(division ratio) /4 /12 1/2 Partial frame frequency: fOSCIN1 /2(division ratio) /4 /38 1/4 Partial frame frequency: fOSCIN1 /4(division ratio) /4 /25 1/8 Partial frame frequency: fOSCIN1 /8(division ratio) /4 /12 Data Sheet S15745EJ2V0DS 25 µPD16488A Table 5-5 shows the relationship between the CLS pin, resistors RN and RP, and the display clock circuit. Table 5-5. Relationship between CLS Pin/Resistors and Display Clock Circuit RN Connection RP Connection CLS Clock for Normal Display Clock for Partial Display Use Example (Figure 5-8) Connected Connected L Internal oscillator Internal oscillator (A) Connected Not connected H Internal oscillator Divided from oscillator clock (B) Not connected Connected L External clock Internal oscillator (C) Not connected Not connected L External clock External clock (D) Not connected Not connected H External clock Divided from external clock (E) Figure 5-8. Clock Use Examples (A) (B) OSCIN1 RN OSCIN2 OSCIN1 H or L RN OSCIN2 RP OSCOUT OSCOUT (D) (C) fN fN OSCIN1 OSCIN1 fP OSCIN2 OSCIN2 RP OSCOUT (E) fN OSCIN1 H or L Open 26 OSCIN2 OSCOUT Data Sheet S15745EJ2V0DS Open OSCOUT µPD16488A Figure 5-9. Master/Slave Connection Examples (A) Master Slave (M/S = H) (M/S = L, CLS = L) OSCSYNC OSCIN1 OSCIN2 Open OSCOUT (B) Master Slave (M/S = H) (M/S = L, CLS = H) OSCIN1 OSCSYNC H or L OSCIN2 Open OSCOUT Data Sheet S15745EJ2V0DS 27 µPD16488A 5.5 Display Timing Generator The display clock generates timing signals for the line address circuit and the display data latch circuit. Display data is latched into the display data latch circuit in synch with the display clock and is output via segment driver output pins. Reading of the display data is completely independent of the CPU's accessing of the display data RAM. Consequently, there are no adverse effects (such as flicker) on the LCD panel even when the display data RAM is accessed asynchronously in relation to the LCD contents. The internal common timing is generated from the display clock. As shown in Figure 5-10, a driver waveform based on the frame AC drive method is generated for the LCD driver. If a multiple set of µPD16488A chips are used, the display timing signals (FR and FRSYNC) for the slave side must be supplied from the master side. Table 5-6. Relationship Between Operation Mode and FR, FRSYNC 28 Operation Mode FR FRSYNC Master (M/S = H) Output Output Slave (M/S = L) Input Input Data Sheet S15745EJ2V0DS µPD16488A Figure 5-10. Driver Waveform Based on Frame AC Drive Method 1frame 1 2 3 4 5 6 7 8 90 91 92 1 2 3 4 5 6 7 8 90 91 92 OSCSYNC FRSYNC FR RAM DATA VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM2 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM92 VLC3 VLC4 VSS Data Sheet S15745EJ2V0DS 29 µPD16488A 5.6 Power Supply Circuit The power supply circuit supplies the voltage needed to drive the LCD. It includes a booster, voltage regulator, and voltage follower. In the power supply circuit, the power system control register 1 (R32) is used to control the ON/OFF status of the power supply circuit's booster, voltage regulator (also called V regulator), and voltage follower (V/F). This makes it possible to jointly use an external power supply together with certain functions of the on-chip power supply. Table 5-7 shows the function that controls the 3-bit data in the power system control register 1 (R32) and Table 5-8 shows a reference chart of combinations. Table 5-7. Control Values of Bits in Power System Control 1 Status Item 1 0 ON OFF OP2 Booster control bit OP1 Voltage regulator (V regulator) control bit ON OFF OP0 Voltage follower (V/F) control bit ON OFF Table 5-8. Reference Chart of Combinations Use Status <1> Use on-chip power supply OP2 OP1 OP0 1 1 1 Booster V Regulator enable V/F External Power Supply Input Boost-Related Note System Pins enable enable VDD2 Used <2> Use V regulator and V/F only 0 1 1 disable enable enable VOUT Not connected <3> Use V/F only 0 0 1 disable disable enable VOUT, AMPOUT Not connected <4> Use external power supply only 0 0 0 disable disable disable VOUT, Not connected VLCD to VLC4 Note The boost-related system pins are indicated as pins C1+, C1− to C9+, C9−, and C1A. 5.6.1 Booster A booster that boosts the LCD driving voltage by 2 to 9 times is incorporated in the power supply circuit. Since the booster uses signals from the on-chip oscillator, either the oscillator must be operating or a display clock must be input from an external source. The booster uses pins C1+, C1− to C9+, C9− for normal boost and pins C1A and VDD2 for boost regulation. The wire impedance should be kept as low as possible. The number of boost levels is set using the FBS2, FBS1, and FBS0 flags in the power system control 3 (R34), as shown in Table 5-9. Caution If a capacitor is connected to a boost-related system pin that is not for one of these set boost levels, current consumption may increase. Therefore, do not connect any capacitors beyond the number of set boost levels. This also applies for the CA1 pin, used to regulate the boost levels. Figure 5-11 describes the connection method for boost levels and capacitors. The partial booster is settings are made using the BST1 and BST0 flags in the power system control 3 (R34), as shown in Table 5-10. 30 Data Sheet S15745EJ2V0DS µPD16488A C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ C8− C9+ C9− C1A C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ C8− C9+ C9− C1A C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ C8− C9+ C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ C8− C9+ C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ C2− C3+ C3− C4+ C4− C5+ C5− C6+ C6− C7+ C7− C8+ 9x boost mode 8x boost mode 7x boost mode 6x boost mode C8− C9+ C9− C1A C9− C1A 5x boost mode open C8− C9+ open C9− C1A open C9− C1A open C1− C2+ C1− C2+ C1− C2+ C1− C2+ C1− C2+ C1− C2+ open C1+ C1+ C1+ C1+ C1+ C1+ Figure 5-11. Connection Method for Boost Levels and Capacitors open 4x boost mode Table 5-9. Boost Level Settings for Normal Display's Booster FBS2 FBS1 FBS0 Boost Level 0 0 0 4x 0 0 1 5x 0 1 0 6x 0 1 1 7x 1 0 0 8x 1 0 1 9x 1 1 0 Prohibited 1 1 1 Prohibited Table 5-10. Boost Level Settings for Partial Display's Booster BST1 BST0 Boost Level 0 0 2x 0 1 3x 1 0 4x 1 1 Prohibited Data Sheet S15745EJ2V0DS 31 µPD16488A 5.6.2 Voltage regulator The boost voltage from VOUT is supplied to the voltage regulator and output as the LCD drive voltage VLCD. Since the µPD16488A has a 256-step electronic volume function and an on-chip resistor for VLCD voltage regulation, a small number of components can be used to configure a highly accurate voltage regulator. (1) When using an on-chip resistor for VLCD voltage regulation The on-chip resistor for VLCD voltage regulation and the electronic volume function can be used to regulate the contrast of the LCD contents by controlling the LCD drive voltage VLCD using commands only. In such cases, no external resistor is needed. If VLCD < VOUT, then the value for VLCD can be determined from the following equation. Example Equation VLCD < VOUT VLCD = (1 + Rb ) VEV Ra VLCD = (1 + Rb ) (1 − α ) VREG Ra 384 Remark VEV = (1 − α ) VREG 384 Figure 5-12. When Using On-Chip Resistor for VLCD Voltage Regulation + VEV (Constant voltage source + electronic volume) VLCD Rb Ra VREG is the IC's on-chip constant voltage source, for which three types of temperature characteristic curves are available. These temperature characteristic curves can be adjusted via settings in the power system control register 1 (R32) (TSC1, TCS0), as shown in Table 5-11. Table 5-11 shows the VREG voltage when TA = 25°C. Table 5-11. VREG Voltage When TA = 25°°C Status Internal power supply TCS1 TCS0 Temperature Curve (%/°C) VREG (TYP.) (V) 0 0 −0.06 1.04 0 1 −0.08 0.98 1 0 −0.09 0.93 1 1 −0.12 0.85 α is the electronic volume register (R35) value. Any of 256 statuses can be set as the fetched status for α corresponding to the data set to the 8-bit electronic control register. α values based on settings in the electronic volume register (R35: normal display mode) and the partial electronic volume register (R36: partial display mode) are listed in Table 5-12. 32 Data Sheet S15745EJ2V0DS µPD16488A Table 5-12. α Values Based on Settings in Electronic Volume Register Register α EV7 EV6 EV5 EV4 EV3 EV2 EV1 EV0 PEV7 PEV6 PEV5 PEV4 PEV3 PEV2 PEV1 PEV0 0 0 0 0 0 0 0 0 384 0 0 0 0 0 0 0 1 254 0 0 0 0 0 0 1 0 253 0 0 0 0 0 0 1 1 252 : : 1 1 1 1 1 1 0 1 2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 Rb/Ra is an on-chip resistance factor used for the VLCD voltage regulator. This factor can be controlled at eight levels based on settings in power control register 2 (R33) (VRR2, VRR1, VRR0: normal display mode and PVR2, PVR1, PVR0: partial display mode). Reference voltage values (1 + Rb/Ra) are determined based on 4-bit data set to VLCD's on-chip resistance factor register, as shown in Table 5-13. Table 5-13. Determination of Reference Voltage Values Based on Settings of On-Chip Resistor for VLCD Voltage Regulation Register VRR2 VRR1 VRR0 PVR2 PVR1 PVR0 0 0 0 0 0 1 8 0 1 0 12 0 1 1 13 1 0 0 16 1 0 1 19 1 1 0 21 1 1 1 24 Data Sheet S15745EJ2V0DS 1+Rb/Ra 5 33 µPD16488A (2) When using an external resistor (instead of using the on-chip resistor for VLCD voltage regulation) Instead of using only the on-chip resistor setting for VLCD voltage regulation (IRS = L), resistors (Ra', Rb' and Rc') can be added between VSS and VR, between AMPOUTP and AMPOUT, and between VR and AMPOUT to set the LCD drive voltage VLCD. In such cases, the electronic volume function can be used to control the LCD drive voltage VLCD and to regulate the contrast of the LCD contents via commands. In addition, the µPD16488A enable selection between two display values (for normal display and partial display). The value is set using an external division resistor and is automatically selected by the DTY flag in the control register 2 (R1). The VLCD value can be determined using Example 1 (DTY = 0) and Example 2 (DTY = 1) if it is within the range of VLCD < VOUT. Example 1. DTY = 0, normal display mode VLCD = (1 + Rb′ ) VEV Ra′ VLCD = (1 + Rb′ ) (1 − α ) VREG Ra′ 384 Remark VEV (1 − α ) VREG 384 Example 2. DTY = 1, partial display mode Rb′ × Rc ) VEV Ra′(Rb′ + Rc) VLCD = (1+ Rb′ × Rc ) (1 − α ) VREG 384 Ra′(Rb′ + Rc) VLCD = (1+ Remark VEV = (1 − α ) VREG 384 Figure 5-13. When Using External Resistor + VLCD A VR AMPOUT B Normal/partial VLC1 regulation select circuit AMPOUTP Rb' Rc Ra' 34 A B Normal display mode (DTY = 0) A B Partial display mode (DTY = 1) Data Sheet S15745EJ2V0DS µPD16488A 5.6.3 Use of op amp for level power supply control Although the µPD16488A includes a circuit designed for low power consumption (HPM1, HPM0 = 0, 0), display quality problems may occur when a large-load LCD panel is used. In such cases, the display quality and power consumption level can be improved by setting. The HPM1 and HPM0 flags in the power system control register 1 (R32) to "0, 1" to "1, 1" to switch to the op amp driver capacity for mode settings shown in Table 5-14. Check the actual display quality before deciding which mode to set. If setting high power mode still does not sufficiently improve the display quality, the LCD drive voltage must be provided from an external power source. Table 5-14. Op Amp Mode Setting HPM1 HPM0 Mode Setting 0 0 Normal mode 0 1 Low power mode 1 0 High power mode 1 1 For power ON mode Data Sheet S15745EJ2V0DS 35 µPD16488A 5.6.4 Application examples of power supply circuits Figures 5-14 to 5-19 show application examples of power supply circuits. Figure 5-14. IRS = H, [OP2, OP1, OP0] = [1, 1, 1] 9x boost mode VDD1 VDD2 VRS VOUT VR Open AMPOUTP C1+ AMPOUT C1 C2+ VLCD C2 C3+ VLC1 C3 - VLC2 C4+ VLC3 C4 C5+ VLC4 C5 - C6+ C6 C7+ C9+ C9 C1A C7 C8+ C8 VSS Figure 5-15. IRS = L, [OP2, OP1, OP0] = [1, 1, 1] 9x boost mode VRS VDD1 VDD2 VOUT AMPOUTP Rc VR Rb' C1+ C1 C2+ C2 C3+ C3 - AMPOUT VLCD VLC1 VLC2 C4+ C4 C5+ VLC3 VLC4 C5 - C6+ C6 C7+ C7 C8+ C9+ C9 C1A C8 VSS 36 Data Sheet S15745EJ2V0DS Ra' µPD16488A Figure 5-16. IRS = H, [OP2, OP1, OP0] = [0, 1, 1] VRS VDD1 VDD2 VR Open VOUT AMPOUTP C1+ C1 C2+ C2 C3+ C3 C4+ Open C4 C5+ AMPOUT VLCD VLC1 VLC2 VLC3 VLC4 C5 C6+ C6 C7+ C7 C8+ C9+ Open C9 C1A C8 VSS Figure 5-17. IRS = L, [OP2, OP1, OP0] = [0, 0, 1] VRS Open VR Open VDD1 VDD2 VOUT C1+ AMPOUTP C1 C2+ AMPOUT C2 C3+ C3 C4+ Open C4 C5+ VLCD VLC1 VLC2 VLC3 VLC4 C5 C6+ C6 C7+ C7 C8+ C9+ C9 C1A Open C8 VSS Data Sheet S15745EJ2V0DS 37 µPD16488A Figure 5-18. IRS = L, [OP2, OP1, OP0] = [0, 0, 0] VDD1 VDD2 VRS VOUT AMPOUTP VR Open AMPOUT C1+ C1 C2+ VLCD C2 C3+ VLC1 C3 - VLC2 C4+ Open VLC3 C4 C5+ VLC4 C5 C6+ C6 C7+ C9+ Open C9 C1A C7 C8+ C8 VSS Figure 5-19. Master/Slave Connection Example VRS VDD1 VDD2 VDD1 VDD2 VRS VR VR Open VOUT AMPOUTP AMPOUTP AMPOUT AMPOUT C1 + VOUT C1+ − C1 + C2 C1− C2+ VLCD VLCD VLC1 VLC1 VLC2 VLC2 VLC3 VLC3 VLC4 VLC4 − C2 C3+ − C3 + C4 Open Master Slave − C4 + C5 − − C7 C8+ + C9 − C9 C1A C9+ Open C9 − C1A − C4 − C5 + C6 − + C7 − C7 C8 + C8 − VSS C8 VSS 38 − C3 C4 + C5 − + C6 C5 C6 + C6 − C7 + C2− C3+ Data Sheet S15745EJ2V0DS Open µPD16488A 5.7 LCD Display Drivers µPD16488A includes a full dot driver. The full dot driver has a 33-level gray-scale palette (eight levels of pulse width modulation plus four-frame rate control), from which four levels of gray scale can be selected and registered as the IC's output gray-scale palette (refer to 6.23 Gary scale registers 1 to 4 (R23 to R26)). 5.7.1 Full-dot pulse width modulation The µPD16488A's pulse width modulator divides the normal LCD display signal's segment pulse width by eight and outputs in synch with the dot output timing based on the ratio (1/8 to 8/8 pulses) for the gray-scale palette that has been selected via a command. Figure 5-20. Full-Dot Pulse Width Modulation 1 frame 1 2 3 4 5 6 7 8 90 91 92 1 2 3 4 5 6 7 8 90 91 92 VLCD VLC1 VLC2 SEG1 VLC3 VLC4 VSS VLCD VLC1 VLC2 COM1 VLC3 VLC4 VSS Enlarged section 1 2 3 8/8 6/8 4/8 1/8 VLCD VLC1 VLC2 Caution There is no pulse width modulation for common outputs. Data Sheet S15745EJ2V0DS 39 µPD16488A The output pulses are output as odd-numbered lines/even-numbered lines or as even-numbered lines/odd-numbered lines, as shown in Figure 5-21. The pulse rising edge and falling edge combinations for each frame are listed in Table 5-15. Figure 5-21. Example of Pulse Width Modulated Output 1 frame 1 2 3 4 5 6 7 8 9 10 11 12 90 91 92 VLCD VLC1 VLC2 VLC3 VLC4 VSS 4/8 40 1 2 3 8/8 8/8 8/8 3/8 4/8 Data Sheet S15745EJ2V0DS 1 2 3 4 5 6 7 8 µPD16488A Table 5-15. Example of Pulse Width Modulated Output (1/3) Gray-scale COM level 1, 2 Frames 3, 4 Frames 5, 6 Frames 7, 8 Frames SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered 0 4n+1 4n+2 4n+3 4n+4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4n+1 4n+2 4n+3 4n+4 ↑1 0 0 0 ↓1 0 0 0 0 0 0 ↑1 0 0 0 ↓1 0 ↓1 0 0 0 ↑1 0 0 0 0 ↓1 0 0 0 ↑1 0 2 4n+1 ↑1 ↓1 0 0 ↑1 ↓1 0 0 4n+2 4n+3 4n+4 ↓1 0 0 ↑1 0 0 0 ↓1 ↑1 0 ↑1 ↓1 ↓1 0 0 ↑1 0 0 0 ↓1 ↑1 0 ↑1 ↓1 3 4 5 4n+1 ↑1 ↓1 ↓1 ↑1 ↑1 ↓1 0 0 4n+2 ↓1 ↑1 0 0 ↓1 ↑1 ↑1 ↓1 4n+3 ↑1 ↓1 ↓1 ↑1 0 0 ↓1 ↑1 4n+4 0 0 ↑1 ↓1 ↓1 ↑1 ↑1 ↓1 4n+1 ↑1 ↓1 ↓1 ↑1 ↑1 ↓1 ↓1 ↑1 4n+2 ↓1 ↑1 ↑1 ↓1 ↓1 ↑1 ↑1 ↓1 4n+3 4n+4 ↑1 ↓1 ↓1 ↑1 ↓1 ↑1 ↑1 ↓1 ↑1 ↓1 ↓1 ↑1 ↓1 ↑1 ↑1 ↓1 4n+1 4n+2 ↑2 ↓1 ↓2 ↑1 ↓1 ↑1 ↑1 ↓1 ↑1 ↓2 ↓1 ↑2 ↓1 ↑1 ↑1 ↓1 4n+3 4n+4 ↑1 ↓1 ↓1 ↑1 ↓1 ↑2 ↑1 ↓2 ↑1 ↓1 ↓1 ↑1 ↓2 ↑1 ↑2 ↓1 4n+1 ↑2 ↓2 ↓1 ↑1 ↑2 ↓2 ↓1 ↑1 4n+2 4n+3 4n+4 ↓2 ↑1 ↓1 ↑2 ↓1 ↑1 ↑1 ↓2 ↑2 ↓1 ↑2 ↓2 ↓2 ↑1 ↓1 ↑2 ↓1 ↑1 ↑1 ↓2 ↑2 ↓1 ↑2 ↓2 7 4n+1 4n+2 4n+3 4n+4 ↑2 ↓2 ↑2 ↓1 ↓2 ↑2 ↓2 ↑1 ↓2 ↑1 ↓2 ↑2 ↑2 ↓1 ↑2 ↓2 ↑2 ↓2 ↑1 ↓2 ↓2 ↑2 ↓1 ↑2 ↓1 ↑2 ↓2 ↑2 ↑1 ↓2 ↑2 ↓2 8 4n+1 ↑2 ↓2 ↓2 ↑2 ↑2 ↓2 ↓2 ↑2 4n+2 ↓2 ↑2 ↑2 ↓2 ↓2 ↑2 ↑2 ↓2 4n+3 4n+4 ↑2 ↓2 ↓2 ↑2 ↓2 ↑2 ↑2 ↓2 ↑2 ↓2 ↓2 ↑2 ↓2 ↑2 ↑2 ↓2 9 4n+1 4n+2 4n+3 4n+4 ↑3 ↓2 ↑2 ↓2 ↓3 ↑2 ↓2 ↑2 ↓2 ↑2 ↓2 ↑3 ↑2 ↓2 ↑2 ↓3 ↑2 ↓3 ↑2 ↓2 ↓2 ↑3 ↓2 ↑2 ↓2 ↑2 ↓3 ↑2 ↑2 ↓2 ↑3 ↓2 10 4n+1 4n+2 4n+3 4n+4 ↑3 ↓3 ↑2 ↓2 ↓3 ↑3 ↓2 ↑2 ↓2 ↑2 ↓3 ↑3 ↑2 ↓2 ↑3 ↓3 ↑3 ↓3 ↑2 ↓2 ↓3 ↑3 ↓2 ↑2 ↓2 ↑2 ↓3 ↑3 ↑2 ↓2 ↑3 ↓3 6 Remarks 1. n: Integer from 0 to 31. 2. ↑A: Rising edge of pulse during line A output. 3. ↓A: Rising edge of pulse at start of line A output. 4. A: PWM pulse width (A/8) Data Sheet S15745EJ2V0DS 41 µPD16488A Table 5-15. Example of Pulse Width Modulated Output (2/3) Gray-scale COM level 11 12 13 1, 2 Frames 3, 4 Frames 5, 6 Frames 7, 8 Frames SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered 4n+1 ↑3 ↓3 ↓3 ↑3 ↑3 ↓3 ↓2 ↑2 4n+2 ↓3 ↑3 ↑2 ↓2 ↓3 ↑3 ↑3 ↓3 4n+3 ↑3 ↓3 ↓3 ↑3 ↑2 ↓2 ↓3 ↑3 4n+4 ↓2 ↑2 ↑3 ↓3 ↓3 ↑3 ↑3 ↓3 4n+1 ↑3 ↓3 ↓3 ↑3 ↑3 ↓3 ↓3 ↑3 4n+2 ↓3 ↑3 ↑3 ↓3 ↓3 ↑3 ↑3 ↓3 4n+3 4n+4 ↑3 ↓3 ↓3 ↑3 ↓3 ↑3 ↑3 ↓3 ↑3 ↓3 ↓3 ↑3 ↓3 ↑3 ↑3 ↓3 4n+1 ↑4 ↓4 ↓3 ↑3 ↑3 ↓3 ↓3 ↑3 4n+2 ↓3 ↑3 ↑3 ↓3 ↓4 ↑4 ↑3 ↓3 4n+3 4n+4 ↑3 ↓3 ↓3 ↑3 ↓3 ↑4 ↑3 ↓4 ↑3 ↓3 ↓3 ↑3 ↓4 ↑3 ↑4 ↓3 4n+1 ↑4 ↓4 ↓3 ↑3 ↑4 ↓4 ↓3 ↑3 4n+2 ↓4 ↑4 ↑3 ↓3 ↓4 ↑4 ↑3 ↓3 4n+3 ↑3 ↓3 ↓4 ↑4 ↑3 ↓3 ↓4 ↑4 4n+4 ↓3 ↑3 ↑4 ↓4 ↓3 ↑3 ↑4 ↓4 4n+1 ↑4 ↓4 ↓4 ↑4 ↑4 ↓4 ↓3 ↑3 4n+2 ↓4 ↑4 ↑3 ↓3 ↓4 ↑4 ↑4 ↓4 4n+3 ↑4 ↓4 ↓4 ↑4 ↑3 ↓3 ↓4 ↑4 4n+4 ↓3 ↑3 ↑4 ↓4 ↓4 ↑4 ↑4 ↓4 4n+1 ↑4 ↓4 ↓4 ↑4 ↑4 ↓4 ↓4 ↑4 4n+2 4n+3 4n+4 ↓4 ↑4 ↓4 ↑4 ↓4 ↑4 ↑4 ↓4 ↑4 ↓4 ↑4 ↓4 ↓4 ↑4 ↓4 ↑4 ↓4 ↑4 ↑4 ↓4 ↑4 ↓4 ↑4 ↓4 4n+1 4n+2 ↑5 ↓4 ↓5 ↑4 ↓4 ↑4 ↑4 ↓4 ↑4 ↓5 ↓4 ↑5 ↓4 ↑4 ↑4 ↓4 4n+3 4n+4 ↑4 ↓4 ↓4 ↑4 ↓4 ↑5 ↑4 ↓5 ↑4 ↓4 ↓4 ↑4 ↓5 ↑4 ↑5 ↓4 4n+1 4n+2 ↑5 ↓5 ↓5 ↑5 ↓4 ↑4 ↑4 ↓4 ↑5 ↓5 ↓5 ↑5 ↓4 ↑4 ↑4 ↓4 4n+3 4n+4 ↑4 ↓4 ↓4 ↑4 ↓5 ↑5 ↑5 ↓5 ↑4 ↓4 ↓4 ↑4 ↓5 ↑5 ↑5 ↓5 19 4n+1 4n+2 4n+3 4n+4 ↑5 ↓5 ↑5 ↓4 ↓5 ↑5 ↓5 ↑4 ↓5 ↑4 ↓5 ↑5 ↑5 ↓4 ↑5 ↓5 ↑5 ↓5 ↑4 ↓5 ↓5 ↑5 ↓4 ↑5 ↓4 ↑5 ↓5 ↑5 ↑4 ↓5 ↑5 ↓5 20 4n+1 4n+2 ↑5 ↓5 ↓5 ↑5 ↓5 ↑5 ↑5 ↓5 ↑5 ↓5 ↓5 ↑5 ↓5 ↑5 ↑5 ↓5 4n+3 4n+4 ↑5 ↓5 ↓5 ↑5 ↓5 ↑5 ↑5 ↓5 ↑5 ↓5 ↓5 ↑5 ↓5 ↑5 ↑5 ↓5 4n+1 4n+2 4n+3 4n+4 ↑6 ↓5 ↑5 ↓5 ↓6 ↑5 ↓5 ↑5 ↓5 ↑5 ↓5 ↑6 ↑5 ↓5 ↑5 ↓6 ↑5 ↓6 ↑5 ↓5 ↓5 ↑6 ↓5 ↑5 ↓5 ↑5 ↓6 ↑5 ↑5 ↓5 ↑6 ↓5 14 15 16 17 18 21 Remarks 1. n: Integer from 0 to 31. 2. ↑A: Rising edge of pulse during line A output. 3. ↓A: Rising edge of pulse at start of line A output. 4. A: PWM pulse width (A/8) 42 Data Sheet S15745EJ2V0DS µPD16488A Table 5-15. Example of Pulse Width Modulated Output (3/3) Gray-scale COM level 22 23 24 25 26 27 28 29 30 31 32 1, 2 Frames 3, 4 Frames 5, 6 Frames 7, 8 Frames SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered SEG Odd Numbered SEG Even Numbered 4n+1 ↑6 ↓6 ↓5 ↑5 ↑6 ↓6 ↓5 ↑5 4n+2 4n+3 ↓6 ↑5 ↑6 ↓5 ↑5 ↓6 ↓5 ↑6 ↓6 ↑5 ↑6 ↓5 ↑5 ↓6 ↓5 ↑6 4n+4 ↓5 ↑5 ↑6 ↓6 ↓5 ↑5 ↑6 ↓6 4n+1 ↑6 ↓6 ↓6 ↑6 ↑6 ↓6 ↓5 ↑5 4n+2 4n+3 4n+4 ↓6 ↑6 ↓5 ↑6 ↓6 ↑5 ↑5 ↓6 ↑6 ↓5 ↑6 ↓6 ↓6 ↑5 ↓6 ↑6 ↓5 ↑6 ↑6 ↓6 ↑6 ↓6 ↑6 ↓6 4n+1 4n+2 ↑6 ↓6 ↓6 ↑6 ↓6 ↑6 ↑6 ↓6 ↑6 ↓6 ↓6 ↑6 ↓6 ↑6 ↑6 ↓6 4n+3 4n+4 ↑6 ↓6 ↓6 ↑6 ↓6 ↑6 ↑6 ↓6 ↑6 ↓6 ↓6 ↑6 ↓6 ↑6 ↑6 ↓6 4n+1 ↑7 ↓7 ↓6 ↑6 ↑6 ↓6 ↓6 ↑6 4n+2 4n+3 ↓6 ↑6 ↑6 ↓6 ↑6 ↓6 ↓6 ↑6 ↓7 ↑6 ↑7 ↓6 ↑6 ↓7 ↓6 ↑7 4n+4 ↓6 ↑6 ↑7 ↓7 ↓6 ↑6 ↑6 ↓6 4n+1 ↑7 ↓7 ↓6 ↑6 ↑7 ↓7 ↓6 ↑6 4n+2 ↓7 ↑7 ↑6 ↓6 ↓7 ↑7 ↑6 ↓6 4n+3 ↑6 ↓6 ↓7 ↑7 ↑6 ↓6 ↓7 ↑7 4n+4 ↓6 ↑6 ↑7 ↓7 ↓6 ↑6 ↑7 ↓7 4n+1 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 ↓6 ↑6 4n+2 ↓7 ↑7 ↑6 ↓6 ↓7 ↑7 ↑7 ↓7 4n+3 ↑7 ↓7 ↓7 ↑7 ↑6 ↓6 ↓7 ↑7 4n+4 ↓6 ↑6 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 4n+1 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 ↓7 ↑7 4n+2 ↓7 ↑7 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 4n+3 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 ↓7 ↑7 4n+4 ↓7 ↑7 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 4n+1 4n+2 8 ↓7 8 ↑7 ↓7 ↑7 ↑7 ↓7 ↑7 8 ↓7 8 ↓7 ↑7 ↑7 ↓7 4n+3 ↑7 ↓7 ↓7 ↑7 ↑7 ↓7 8 8 4n+4 ↓7 ↑7 8 8 ↓7 ↑7 ↑7 ↓7 4n+1 8 8 ↓7 ↑7 8 8 ↓7 ↑7 4n+2 4n+3 4n+4 8 ↑7 ↓7 8 ↓7 ↑7 ↑7 8 8 ↓7 8 8 8 ↑7 ↓7 8 ↓7 ↑7 ↑7 8 8 ↓7 8 8 4n+1 8 8 8 8 8 8 ↓7 ↑7 4n+2 4n+3 8 8 8 8 ↑7 8 ↓7 8 8 ↑7 8 ↓7 8 8 8 8 4n+4 ↓7 ↑7 8 8 8 8 8 8 4n+1 8 8 8 8 8 8 8 8 4n+2 4n+3 4n+4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Remarks 1. n: Integer from 0 to 31. 2. ↑A: Rising edge of pulse during line A output. 3. ↓A: Rising edge of pulse at start of line A output. 4. A: PWM pulse width (A/8) Data Sheet S15745EJ2V0DS 43 µPD16488A 5.7.2 Full-dot frame rate control When combined with pulse width modulation as described in Table 5-15, the µPD16488A's frame speed is based on 8frame cycles. The subsampling pattern is output based on the palette stored in the IC. Full-Dot Gray-Scale Palette (Output Pulse Width: x/8 Pulses) Gray Scale Frames 1 2 3 4 5 6 7 8 Level 0 0 0 0 0 0 0 0 0 Level 1 1 1 0 0 0 0 0 0 Level 2 1 1 0 0 1 1 0 0 Level 3 1 1 1 1 1 1 0 0 Level 4 1 1 1 1 1 1 1 1 Level 5 2 2 1 1 1 1 1 1 Level 6 2 2 1 1 2 2 1 1 Level 7 2 2 2 2 2 2 1 1 Level 8 2 2 2 2 2 2 2 2 Level 9 3 3 2 2 2 2 2 2 Level 10 3 3 2 2 3 3 2 2 Level 11 3 3 3 3 3 3 2 2 Level 12 3 3 3 3 3 3 3 3 Level 13 4 4 3 3 3 3 3 3 Level 14 4 4 3 3 4 4 3 3 Level 15 4 4 4 4 4 4 3 3 Level 16 4 4 4 4 4 4 4 4 Level 17 5 5 4 4 4 4 4 4 Level 18 5 5 4 4 5 5 4 4 Level 19 5 5 5 5 5 5 4 4 Level 20 5 5 5 5 5 5 5 5 Level 21 6 6 5 5 5 5 5 5 Level 22 6 6 5 5 6 6 5 5 Level 23 6 6 6 6 6 6 5 5 Level 24 6 6 6 6 6 6 6 6 Level 25 7 7 6 6 6 6 6 6 Level 26 7 7 6 6 7 7 6 6 Level 27 7 7 7 7 7 7 6 6 Level 28 7 7 7 7 7 7 7 7 Level 29 8 8 7 7 7 7 7 7 Level 30 8 8 7 7 8 8 7 7 Level 31 8 8 8 8 8 8 7 7 Level 32 8 8 8 8 8 8 8 8 Comments OFF data 50% 100% Remark The gradation in the Comments column are images of the gray-scale level. 44 Data Sheet S15745EJ2V0DS µPD16488A 5.7.3 Line shift driver If the frame rate control is performed with equal pulse widths and the same gray scale is displayed on the LCD's full screen, problems such as flickering may occur on the LCD panel. The µPD16488A provides a line shift driver as a countermeasure against such screen image problems. Using 8 frames per cycle, the segment PWM output timing is shifted among the common outputs, as shown in Table 5-16 below. Table 5-16. Line Shift Driver Turn 1 Turn 2 Frame 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 COM1 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 COM2 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 COM3 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 COM4 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 COM5 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 COM6 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 COM7 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 COM8 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 COM9 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 COM10 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 F1 F2 F3 F4 F5 F6 F7 F8 • • • • • • • • • • • • • • • • • • • • • Remark Fx: Pulse width modulated output frame (See 5.7.2 Full-dot frame rate control). Figure 5-22. Full Dot Frame Rate Control First frame 1 2 3 4 5 Second frame 91 92 1 2 ON OFF ON OFF ON OFF COM1 COM2 COM3 ON OFF ON OFF COM4 COM5 COM91 COM92 ON OFF ON OFF SEG1 8 1 5 3 7 1 5 3 7 2 6 SEG2 8 1 5 3 7 1 5 3 7 2 6 SEG3 8 1 5 3 7 1 5 3 7 2 6 SEG4 8 1 5 3 7 1 5 3 7 2 6 SEG5 8 1 5 3 7 1 5 3 7 2 6 Remark Numerical values in the segment data correspond to the gray-scale palette's frame numbers. Data Sheet S15745EJ2V0DS 45 µPD16488A Figure 5-23. Line Shift Driver Image Turn 1, first frame SEG1 SEG3 SEG2 SEG5 SEG4 SEG7 SEG6 SEG127 SEG8 COM1 F1 COM2 F5 COM3 F3 COM4 F7 COM5 F1 COM90 F5 COM91 F3 COM92 F7 SEG126 SEG128 Turn 1, second frame SEG1 SEG3 SEG2 46 SEG5 SEG4 SEG7 SEG6 SEG127 SEG8 COM1 F2 COM2 F6 COM3 F4 COM4 F8 COM5 F2 COM90 F6 COM91 F4 COM92 F8 Data Sheet S15745EJ2V0DS SEG126 SEG128 µPD16488A 5.7.4 Display size settings The µPD16488A can be set for any duty value from 1/1 to 1/92. This duty setting can be made via bits DT6 to DT0 in the duty setting register (R5), as shown in Table 5-17. Table 5-17. Duty Settings DT6 DT5 DT4 DT3 DT2 DT1 DT0 Duty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 : 1 1 1 0 0 0 0 1 1 1 0 1 1/1 1/2 1/3 1/4 : 1/90 1/91 1/92 1 0 1 1 1 0 0 prohibited Caution The duty setting can not be over 1/92 duty (5CH). If 1/92 duty is exceeded, operation is not guaranteed. 5.7.5 Setting of LCD AC driver's inversion cycle and AC driver's inversion position The µPD16488A enable any setting to be made for the AC driver's inversion position and the inversion position shift amount for each displayed frame via settings made in the AC driver inversion cycle register (R6) and the AC driver inversion position shift register (R7) for normal display mode or via settings made in the partial AC driver inversion cycle register (R8) and the partial AC driver inversion position shift register (R9) for partial display mode. In normal display mode, the AC driver inversion cycle can be set for any number of inverted (reverse display) lines listed in Table 5-18, based on the NID6 to NID0 bit settings in the AC driver inversion cycle register (R6). If the screen display size has been changed via settings made in the duty setting register (R5), the NIDn values are automatically overwritten by values from the corresponding DTYn bits. The shift amount for each displayed frame can be set as shown in Table 5-19 via settings made to bits MSD6 to MSD0 in the AC driver inversion position shift register (R7). Table 5-18. Settings of AC Driver Inversion Cycle Register (R6) NID6 NID5 NID4 NID3 NID2 NID1 NID0 Inverted Lines 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 : 1 1 1 0 0 0 0 1 1 1 0 1 1 2 3 4 : 90 91 92 1 0 1 1 1 0 0 prohibited Caution The inversion line can not be over 92-inversion line (5CH). If 92-inversion line is exceeded, operation is not guaranteed. Data Sheet S15745EJ2V0DS 47 µPD16488A Table 5-19. Settings of AC Driver Inversion Position Shift Register MSD6 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 Inversion Position Shift Amount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 1 0 1 1 0 0 1 89 1 0 1 1 0 1 0 90 1 0 1 1 0 1 1 91 1 0 1 1 1 0 0 prohibited : : Caution The inversion position shift amount can not be over 91 (5CH). If 91 is exceeded, operation is not guaranteed. In partial display mode, the AC driver inversion cycle can be set for any number of inverted (reverse display) lines listed in Table 5-20, based on the PID5 to PID0 bit settings in the partial AC driver inversion cycle register (R8). The shift amount for each displayed frame can be set as shown in Table 5-21 via settings made to bits PSD5 to PSD0 in the partial AC driver inversion position shift register (R9). Table 5-20. Settings of Partial AC Driver Inversion Cycle Register (R8) PID5 PID4 PID3 PID2 PID1 PID0 Inverted Lines 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 1 0 0 0 1 1 36 1 0 0 1 0 0 37 1 0 0 1 0 1 38 : : Table 5-21. Setting of Partial AC Driver Inversion Position Shift Register (R9) PSD5 PSD4 PSD3 PSD2 PSD1 PSD0 Inversion Position Shift Amount 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 1 3 : : 1 0 0 0 1 1 35 1 0 0 1 0 0 36 1 0 0 1 0 1 37 Be sure to maintain the following relationship among the display size, AC inversion cycle, and AC inversion position. Display size (duty) ≥ AC inversion cycle ≥ AC inversion shift amount Caution Setting a small inversion cycle will cause a reduction in the IC's display drive capacity and an increase in the current consumption. We therefore recommend determining the inversion cycle after making a thorough evaluation of the actual LCD panel. 48 Data Sheet S15745EJ2V0DS µPD16488A 5.8 Display Modes 5.8.1 Partial display mode The µPD16488A includes a function for outputting a display that uses only part of the LCD panel. The duty setting for partial display mode can be selected as 1/12, 1/25, or 1/38. Parts of the LCD panel that are outside of the specified display area are scanned with non-select waveforms. The partial start line address register (R21) is used to select which part of the LCD panel to use for the partial display. The display area starts from the start line address and includes the number of lines (12, 25, or 38 lines) that has been specified via the partial display mode setting (R10). When entering this mode, the booster is set to the boost level number that has been set via the power system control register 3 (partial display boost register) (R34) and the display start line is fixed as 00H. In addition, the bias level is automatically changed to the value that has been set via the partial display mode setting (R10). The relationship between the oscillator's frequency and the frame frequency in partial mode is also automatically changed. Figure 5-24 shows the mutual relationship between the partial line start address and the LCD display. When using the partial display mode, the blinking and reverse display functions can be used in the same way as during full-dot display mode. Caution The LCD driver voltage is lower in partial display mode, because the duty is lower than in normal display mode. There may be restrictions on the usable duty depending on the LCD panel characteristics. We recommend determining the partial duty after making a thorough evaluation of the actual LCD panel. Figure 5-24. Relationship Between Partial Line Start Address and LCD Display (in Partial Display Mode) 00H 01H 02H 03H ... 1DH 1EH 1FH Display start line (00H) 12, 25, or 38 lines Partial display start line Non-display areas Caution In partial display mode, the display start line setting register (R12) command is ignored. When switching from normal display mode to partial display mode or from partial display mode to normal display mode, if an electric charge remains in the smoothing capacitor that is connected between the LCD drive voltage pins (VLCD, VLC1 to VLC4) and the VSS pin, troubles such as a brief all-black display may occur during the mode switching operation. To avoid such troubles, we recommend using the following power-on sequence. Data Sheet S15745EJ2V0DS 49 µPD16488A (1) Normal display → partial display switch sequence DISP = 0 R0 Display OFF R32 High power mode settings R1 Control register 2: switch DTY flag ↓ HPM1 = 1, HPM0 = 0 ↓ Switch display mode ↓ 700 ms (stabilization time for LCD drive voltage and Wait time booster)Note ↓ HPM1 = X, HPM0 = X R32 (to mode used during normal display) ↓ DISP = 1 Note High power mode settings R0 Display ON, internal operations status This 700 ms wait time indicates the time for the VLCD level to change from 15 V to 6 V and thus varies according to the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the actual device. (2) Partial display → Normal display switch sequence DISP = 0 R0 Display OFF R32 Power ON mode settings R1 Control register 2: switch DTY flag ↓ HPM1 = 1, HPM0 = 1 ↓ Switch display mode ↓ 400 ms (stabilization time for LCD drive voltage and Wait time booster)Note ↓ HPM1 = X, HPM0 = X R32 (to mode used during normal display) ↓ DISP = 1 Note High power mode settings R0 Display ON, internal operations status This 400 ms wait time indicates the time for the VLCD level to change from 6 V to 15 V and thus varies according to the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the actual device. 50 Data Sheet S15745EJ2V0DS µPD16488A 5.8.2 Monochrome (black/white) display The µPD16488A provides both a four-level gray scale display mode and a monochrome display mode. To switch to the monochrome display mode, set GRAY = H. The display RAM for one screen of monochrome display mode contents is configured as 128 bits x 128 bits (16 x 8 bits). When using these IC's in monochrome display mode, two screens of data can be written to the display RAM and the two screens can be switched by setting the DSEL bit in the control register 2 (R1). Screen 1 is displayed on the LCD panel when DSEL = L and screen 2 is displayed when DSEL = H. When writing data, the display RAM uses the same X address (00H to 0FH) and Y address and the BWW bit value in the control register 2 (R1) determines which of the two screens the data will be written to: when BWW = L, data is written to screen 1 and when BWW = H, data is written to screen 2, as shown in Figure 5-25. When accessing a specified bit, specify both the X address and Y address. The display data in D0 to D7 (sent from the CPU) corresponds to the SEGx portions of the LCD display, as shown in Figure 5-26. Figure 5-27 shows the relationship between the display data in monochrome display mode and the page/column addresses. Figure 5-25. Display RAM Image in Monochrome (Black/White) Mode 00H 0FH 00H Screen 1 DSEL = L (during display) BWW = L (during write) 0FH Screen 2 DSEL = H (during display) BWW = H (during write) Figure 5-26. Relationship Between Display Data and LCD Display Data 7 0 0 0 0 0 0 0 0 6 1 1 1 1 1 1 1 0 5 0 0 1 0 0 0 0 0 4 0 0 0 1 0 0 0 0 3 0 0 0 0 1 0 0 0 2 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 7 1 0 0 1 0 0 1 0 6 1 0 0 1 0 0 1 0 5 1 0 0 1 0 0 1 0 4 1 0 0 1 0 0 1 0 3 0 0 0 0 0 0 0 0 2 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 Display data LCD display Data Sheet S15745EJ2V0DS 51 µPD16488A Figure 5-27. Relation Between the Display Data and X/Y Address D4 D3 D2 D1 0 0 0 0 1 01H 0 0 0 0 0 00H D0 0 1 1 1 1 0FH Data D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 COM output Yaddress D7 D6 D5 D4 D3 D2 D1 D0 COM1 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 COM15 COM16 COM17 COM18 COM19 COM20 COM21 COM22 COM23 COM24 COM25 COM26 COM27 COM28 COM29 COM30 Start COM31 COM32 COM33 COM34 COM35 COM36 COM37 COM38 92-line COM83 COM84 COM85 COM86 COM87 COM88 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH COM89 COM90 COM91 COM92 52 Column Address ADC 0 D0 78H 07H SEG8 1 79H 06H SEG7 D0 7AH 05H SEG6 LCD output 7BH 04H SEG5 SEG128 00H 7FH 7CH 03H SEG4 Data Sheet S15745EJ2V0DS SEG127 01H 7EH 7DH 02H SEG3 SEG126 02H 7DH 7EH 01H SEG2 SEG125 03H 7CH 7FH 00H 7FH SEG1 X address (in Monochrome Display Mode) µPD16488A 5.9 Reset In the µPD16488A, a reset is executed when the /RES input is at low level or when a reset command is entered. The IC is reset to its default settings. These default settings are listed in the table below. /RES Reset Command Control register 1 Register R0 Number Enabled (DISP flag only) Enabled Control register 2 R1 Enabled (IDIS flag only) X address register R3 Disabled Y address register R4 Duty setting register R5 AC driver inversion cycle register R6 EnabledNote2 AC driver inversion position shift register R7 Partial AC driver inversion cycle register R8 Enabled Partial AC driver inversion position shift register R9 Partial display mode setting register R10 Display memory access register Note1 R11 Disabled Display start line setting register R12 Enabled Blink X address register R13 Blink start line address register R14 Blink end line address register R15 Blink data memory access register Note1 R16 Disabled Inverted X address register R17 Enabled Inversion start line address register R18 Inversion end line address register Inverted data memory access register R19 Note1 R20 Disabled Partial start line address register R21 Enabled Gray scale data register 1 (0, 0) R23 Gray scale data register 2 (0, 1) R24 Gray scale data register 3 (1, 0) R25 Gray scale data register 4 (1, 1) R26 Partial gray scale data register 1 (0, 0) R27 Partial gray scale data register 2 (0, 1) R28 Partial gray scale data register 3 (1, 0) R29 Partial gray scale data register 4 (1, 1) R30 Power system control register 1 R32 Power system control register 2 R33 Power system control register 3 R34 Electronic volume register R35 Partial electronic volume register R36 Boost adjustment register R37 RAM test mode setting register R44 Signature read register R45 Disabled Enabled: Default value is input, Disabled: Default value is not input Notes 1. When using the /RES pin to reset, the contents of memory are not retained. Use the reset command to reset if the memory contents need to be retained. 2. Be sure to set this register again after input the reset command. Cautions 1. Using the /RES pin to reset initializes the shift clock counter. 2. Always input the reset command as the first command after power ON. Data Sheet S15745EJ2V0DS 53 µPD16488A 6. COMMAND REGISTERS The µPD16488A uses a combination of RS, /RD (E), and /WR (R,/W) signals to identify data bus signals. Command interpretation and execution is performed using internal timing that does not depend on any external clock. Therefore, processing is very fast and there is usually no need to check for a busy status. The i80 series CPU interface activates read commands using a low pulse input to the /RD pin and activates write commands using a low pulse input to the /WR pin. The M68 series CPU interface sets read mode using a high level input to the R,/W pin and sets write mode using a low level input to the same pin. It activates both read and write commands using a high-level pulse input to the E pin. Command descriptions using an i80 series CPU interface are shown as follows. The M68 series CPU interface differs from the i80 series CPU interface in that /RD (E) is at high level during status read and display data read operations, as shown in the following command descriptions and command table. If the serial interface has been selected, data is input sequentially starting from D7. 54 Data Sheet S15745EJ2V0DS µPD16488A 6.1 Control Register 1 (R0) This command specifies the µPD16488A's general operation modes. RS E /RD R,/W /WR D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 RMW DISP STBY BLD IVD HALT ADC COMR Flag Function RMW 0: Address is incremented after both write access and read access. 1: Read/modify/write mode (Address is incremented only after write access) DISP 0: Display OFF (All LCD output pins output the VSS level and oscillator and DC/DC converter are operating) 1: Display ON STBY 0: Normal operation 1: Internal operation and oscillation are stopped. Display is OFF. BLD The blinking dots are specified via the blink start/end line address registers and data is set to blink data RAM. 0: Stop blinking 1: Start blinking IVD The number of inverted dots is specified via the inversion start/end line address registers and data is set to inverted data RAM. 0: Stop inversion 1: Start inversion HALT 0: Start internal operation 1: Stop internal operation (since different display modes are used, when switching between partial and normal display modes, the LCD output pins all output the VSS level and the oscillator is operating, but the DC/DC converter is stopped) ADC Note The column address corresponding to the SEG outputs (see Table 6-1) for displaying the contents of the display data RAM. COMR Note This inverts (reverses) the scan direction for common outputs. (See Table 6-2) Note The reset command must be executed before changing this flag's setting. Table 6-1. Relationship between Display RAM Column Address and SEG Outputs SEG Output ADC (D1) SEG1 SEG128 0 00H → Column addresses → 7FH 1 7FH ← Column addresses ← 00H Table 6-2. Relationship between Common Scan Circuit and Scan Direction COM Output COMR (D0) Scan Direction 0 COM1 → COM92 1 COM92 → COM1 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 Data Sheet S15745EJ2V0DS 55 µPD16488A 6.2 Control Register 2 (R1) This command specifies the µPD16488A's general operation modes. RS E /RD R,/W /WR D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 FDM − − DSEL BWW GRAY DTY INC Flag Function FDM Settings for full screen display mode 0: Normal operation 1: Full screen display (set entire screen to ON) (When using four-level gray scale, gray-scale level 32 is output for full screen display). DSEL Selects display screen during monochrome display mode. 0: Screen 1 1: Screen 2 BWW Selects data write screen during monochrome display mode. 0: Screen 1 1: Screen 2 GRAY Note 0: 4-level gray scale display mode 1: Monochrome display mode DTY Note 0: Normal display mode (1/1 to 1/128 duty) 1: Partial display mode (1/12, 1/25, or 1/38 duty, 1/5 or 1/6 bias) INC 0: Increments X address at each access 1: Increments Y address at each access Note The HALT command must be executed before changing this flag's setting. Table 6-3. Relationship between IC's Functions and Display Modes Item Normal Display Mode (DTY = 0) Partial Display Mode (DTY = 1) Duty 1/1 to 1/92 duty ↔ 1/12, 1/25, or 1/38 duty Booster ×4, ×5, ×6, ×7, ×8, ×9 ↔ ×2, ×3, ×4 Bias level 1/11, 1/12, 1/10, 1/9, 1/8, 1/7 ↔ 1/5, 1/6 Gray scale data Uses levels set to the gray scale data ↔ Uses levels set to the partial gray scale registers (R23 to R26) data registers (R27 to R30) (1+Rb/Ra) Uses values of VRR2 to VRR0 in the power VLCD regulator resistance system control register 2 (R33) ↔ Uses values of PVR2 to PVR0 in the power system control register 2 (R33) factor Electronic volume ↔ Uses value from the electronic volume register (R35) volume register (R36) Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 56 Uses value from the partial electronic Data Sheet S15745EJ2V0DS µPD16488A 6.3 Reset Command (R2) When this command is input, the IC's registers (R0 to R44) are reset to their initial values. However, the contents of memory are retained. Always input the reset command as the first command after power application. RS D7 D6 D5 D4 D3 D2 D1 D0 1 0 0 0 0 0 0 0 1 6.4 X Address Register (R3) The X address register specifies the X address in the display RAM accessed by the CPU. This address is automatically incremented each time the display RAM is accessed (INC = 0, RMW = 0). RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − − XA4 XA3 XA2 XA1 XA0 Default settings (initial values set by reset command) D7 − D6 − D5 − D4 D3 D2 D1 D0 0 0 0 0 0 6.5 Y Address Register (R4) The Y address register specifies the Y address in the display RAM accessed by the CPU. This address is automatically incremented each time the display RAM is accessed (INC = 1, RMW = 0). RS D7 D6 D5 D4 D3 D2 D1 D0 1 − YA6 YA5 YA4 YA3 YA2 YA1 YA0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 Data Sheet S15745EJ2V0DS 57 µPD16488A 6.6 Duty Setting Register (R5) The display duty can be set to any duty ratio between 1/1 and 1/92, as is shown in Table 6-4. Before modifying this register, be sure to use the HALT command (control register 1 (R0)) to stop internal operations. Also, be sure to set this register again after input the reset command. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − DT6 DT5 DT4 DT3 DT2 DT1 DT0 Table 6-4. Duty Setting Register (R5) Settings DT6 DT5 DT4 DT3 DT2 DT1 DT0 Duty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 : 1 1 1 0 0 0 0 1 1 1 0 1 1/1 1/2 1/3 1/4 : 1/90 1/91 1/92 1 0 1 1 0 0 0 inhibited Caution The display size can not be over 1/92 duty ( 5CH). If 1/92 duty is exceeded, operation is not guaranteed. Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − − − − − 58 Data Sheet S15745EJ2V0DS µPD16488A 6.7 AC Driver Inversion Cycle Register (R6) The AC driver's line position for normal display mode can be set as shown in Table 6-5. When a DTYn value is changed in the duty setting register (R5), the NIDn value is automatically overwritten by the DTYn value. Be sure to set this register again after input the reset command. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − NID6 NID5 NID4 NID3 NID2 NID1 NID0 Table 6-5. AC Driver Inversion Cycle Register (R6) Settings NID6 NID5 NID4 NID3 NID2 NID1 NID0 Inversion Line 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 : 1 1 1 0 0 0 0 1 1 1 0 1 1 2 3 4 : 90 91 92 1 0 1 1 1 0 0 Inhibited Caution The inversion line can not be over 92 (5CH). If 92-line is exceeded, operation is not guaranteed. Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − − − − − 6.8 AC Driver Inversion Position Shift Register (R7) This register shifts the inversion position for each frame in normal display mode by the shift amount shown in Table 6-6. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − MSD6 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 Table 6-6. AC Driver Inversion Position Shift Register (R7) Settings MSD5 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 Inversion Position Shift Amount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 3 1 0 1 1 0 0 1 89 1 0 1 1 0 1 0 90 1 0 1 1 0 1 1 91 1 0 1 1 1 0 0 92 : : Caution The inversion position shift amount can not be over 91 (5CH). If 91 is exceeded, operation is not guaranteed. Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 Data Sheet S15745EJ2V0DS 59 µPD16488A 6.9 Partial AC Driver Inversion Cycle Register (R8) The AC driver's line position can be set as shown in Table 6-7. When a PDTn value is changed in the partial display mode setting register (R10), the PIDn value is automatically overwritten by the PDTn value. RS 1 D7 − D6 − D5 D4 D3 D2 D1 D0 PID5 PID4 PID3 PID2 PID1 PID0 Table 6-7. Partial AC Driver Inversion Cycle Register (R8) Settings PID5 PID4 PID3 PID2 PID1 PID0 Inversion Line 0 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 1 0 3 0 0 0 0 1 1 4 1 0 0 0 1 1 36 1 0 0 1 0 0 37 1 0 0 1 0 1 38 : : Default settings (initial values set by reset command) D7 − D6 − D5 D4 D3 D2 D1 D0 1 0 0 1 0 1 6.10 Partial AC Driver Inversion Position Shift Register (R9) This register shifts the inversion position for each frame by the shift amount shown in Table 6-8. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − PSD5 PSD4 PSD3 PSD2 PSD1 PSD0 Table 6-8. Partial AC Driver Inversion Position Shift Register (R9) Settings PSD5 PSD4 PSD3 PSD2 PSD1 PSD0 Inversion Position Shift Amount 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 2 0 0 0 0 1 1 3 1 0 0 0 1 1 35 1 0 0 1 0 0 36 1 0 0 1 0 1 37 : : Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − 0 0 0 0 0 60 Data Sheet S15745EJ2V0DS µPD16488A 6.11 Partial Display Mode Setting Register (R10) This command specifies the operation mode to be used in the µPD16488A's partial display mode. Before modifying this register, be sure to use the HALT command (control register 1 (R0)) to stop internal operations. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − − − PBIS − PDT1 PDT0 Flag Function PBIS Sets bias level for partial display mode 0: 1/5 bias 1: 1/6 bias PDT1, PDT0 PDT1 PDT0 0 0 Duty in partial display mode 1/38 duty 0 1 1/25 duty 1 0 1/12 duty 1 1 Prohibited Caution With the setting of 1/12 duty, the level voltage (VLCn) for driving liquid crystal pannel may not reach the set value depending on the panel used. Thoroughly evaluate the relationship between the duty and driving voltage with the actual system. Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − 0 − 0 0 6.12 Display Memory Access Register (R11) The display memory access register is used when accessing the display RAM. When this register is write-accessed, data is written directly to the display RAM. When this register is read-accessed, data from the display RAM is first latched to this register before being sent to the bus during the next read operation. Accordingly, one dummy read access is required after display RAM access has been set. When using reset command to reset, the contents of memory are retained. RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − − − − − Data Sheet S15745EJ2V0DS 61 µPD16488A 6.13 Display Start Line Setting Register (R12) Display start line set specifies the top line in the display. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − DSL6 DSL5 DSL4 DSL3 DSL2 DSL1 DSL0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 6.14 Blink X Address Register (R13) The blink X address register specifies the X address of the blink data RAM accessed by the CPU. This address is automatically incremented each time the blink data RAM is accessed. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − − − BXA3 BXA2 BXA1 BXA0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − 0 0 0 0 6.15 Blink Start Line Address Register (R14) The blink start line address register specifies the start line address of the display RAM accessed when the CPU uses blink display mode. The range of blinking lines is determined based on the contents of this register and the blink end line address register. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 − BSL6 BSL5 BSL4 BSL3 BSL2 BSL1 BSL0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 6.16 Blink End Line Address Register (R15) The blink end line address register specifies the end line address of the display RAM accessed when the CPU uses blink display mode. The range of blinking lines is determined based on the contents of this register and the blink start line address register. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 − BEL6 BEL5 BEL4 BEL3 BEL2 BEL1 BEL0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 62 Data Sheet S15745EJ2V0DS µPD16488A 6.17 Blink Data Memory Access Register (R16) The blink data memory access register is used to access the blink data RAM. When this register is write-accessed, data is written directly to the blink data RAM. When using reset command to reset, the contents of memory are retained. RS D7 D6 D5 D4 D3 D2 D1 D0 1 D7 D6 D5 D4 D3 D2 D1 D0 Data Status 0 Normal 1 Blink Default settings (initial values set by reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 6.18 Inverted X Address Register (R17) The inverted X address register specifies the X address in the inverted data RAM accessed by the CPU. This address is incremented each time the inversion RAM is accessed. RS 1 D7 − D6 − D5 − D4 − D3 D2 D1 D0 IXA3 IXA2 IXA1 IXA0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − 0 0 0 0 6.19 Inversion Start Line Address Register (R18) The inversion start line address register specifies the start line address in the display RAM accessed by the CPU when using reverse (inverted) display mode. The range of inverted lines is determined based on the contents of this register and the inversion end line address register. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − ISL6 ISL5 ISL4 ISL3 ISL2 ISL1 ISL0 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 Data Sheet S15745EJ2V0DS 63 µPD16488A 6.20 Inversion End Line Address Register (R19) The inversion end line address register specifies the end line address in the display RAM accessed by the CPU when using reverse (inverted) display mode. The range of inverted lines is determined based on the contents of this register and the inversion start line address register. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 − IEL6 IEL5 IEL4 IEL3 IEL2 IEL1 IEL0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 6.21 Inverted Data Memory Access Register (R20) The inverted data memory access register is used when accessing the inverted data RAM. When this register is accessed, the data is written directly to the inverted data RAM. When using reset command to reset, the contents of memory are retained. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 D7 D6 D5 D4 D3 D2 D1 D0 − Data Status 0 Normal 1 Inverted Default settings (initial values set by reset command, all data) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 6.22 Partial Start Line Address Register (R21) The partial start line address register specifies the start line address in the display RAM accessed by the CPU when using partial display mode. The partial display area is determined as the number of lines specified in the partial display mode setting register (R10), starting from this start line address. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 − PSL6 PSL5 PSL4 PSL3 PSL2 PSL1 PSL0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 0 0 0 0 64 Data Sheet S15745EJ2V0DS µPD16488A 6.23 Gray Scale Data Registers 1 to 4 (R23 to R26) The gray scale data registers specify the gray scale level when using normal four-level gray scale display mode. Use of this register optimizes the gray scale display. Rx Data RS D7 D6 D5 D4 D3 D2 D1 D0 Setting R23 0, 0 1 − − GD5 GD4 GD3 GD2 GD1 GD0 − R24 0, 1 1 − − GD5 GD4 GD3 GD2 GD1 GD0 − − GD5 GD4 GD3 GD2 GD1 GD0 − − GD5 GD4 GD3 GD2 GD1 GD0 − R25 1, 0 1 − R26 1, 1 1 − D7 D6 D5 D4 D3 D2 D1 D0 Gray scale level Disable Disable 0 0 0 0 0 0 Level 0 Disable Disable 0 0 0 0 0 1 Level 1 Disable Disable 0 0 0 0 1 0 Level 2 Disable Disable 0 0 0 0 1 1 Level 3 Disable Disable 0 1 1 1 1 1 Level 31 Disable Disable 1 0 0 0 0 0 Level 32 : : Default settings (initial values set by reset command, for all gray scale data registers) D7 D6 D5 D4 D3 D2 D1 D0 − − 0 0 0 0 0 0 6.24 Partial Gray Scale Data Registers 1 to 4 (R27 to R30) The partial gray scale data registers specify the gray scale level when using partial four-level gray scale display mode. Use of this register optimizes the gray scale display. Rx Data RS D7 D6 D5 D4 D3 D2 D1 D0 Setting R27 0, 0 1 − − PGD5 PGD4 PGD3 PGD2 PGD1 PGD0 − R28 0, 1 1 − − PGD5 PGD4 PGD3 PGD2 PGD1 PGD0 − R29 1, 0 1 − − PGD5 PGD4 PGD3 PGD2 PGD1 PGD0 − R30 1, 1 1 − − PGD5 PGD4 PGD3 PGD2 PGD1 PGD0 − D7 D6 D5 D4 D3 D2 D1 D0 Gray scale level Disable Disable 0 0 0 0 0 0 Level 0 Disable Disable 0 0 0 0 0 1 Level 1 Disable Disable 0 0 0 0 1 0 Level 2 Disable Disable 0 0 0 0 1 1 Level 3 : : Disable Disable 0 1 1 1 1 1 Level 31 Disable Disable 1 0 0 0 0 0 Level 32 Default settings (initial values set by reset command, for all partial gray scale data registers) D7 D6 D5 D4 D3 D2 D1 D0 − − 0 0 0 0 0 0 Data Sheet S15745EJ2V0DS 65 µPD16488A 6.25 Power System Control Register 1 (R32) This command sets the µPD16488A's power system mode. RS E /RD R,/W /WR D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 HPM1 HPM0 − TCS1 TCS0 OP2 OP1 OP0 Flag Function HPM1, HPM0 These flags set the driver mode as shown in Table 6-9. TCS1, TCS0 These flags set the value for selecting the VREG voltage's temperature curve, as shown in Table 6-10. OP2 to OP0 These flags control the booster's ON/OFF status, the voltage regulator (V regulator) and voltage follower (V/F). The functions controlled via these three bits by the power control setting command are listed in Table 6-11. Table 6-9. Driver Mode Setting HPM1 HPM0 0 0 Normal mode Mode Setting 0 1 Low-power mode 1 0 High-power mode 1 1 Power activation mode Table 6-10. Selection VREG Voltage's Temperature Curve Value TCS1 TCS0 Temperature gradient (%/°C) VREG (TYP.) (V) 0 0 −0.06 1.04 0 1 −0.08 0.98 1 0 −0.09 0.93 1 1 −0.12 0.85 Table 6-11. Detailed Description of Functions Controlled by Flags of Power System Control 1 Status Item 0 OFF OP2 Booster control flag ON OP1 V regulator control flag ON OFF OP0 Voltage follower control flag ON OFF Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 − 0 0 1 1 1 66 1 Data Sheet S15745EJ2V0DS µPD16488A 6.26 Power System Control Register 2 (R33) This command is used to control the on-chip register for VLCD voltage regualation. RS E /RD R,/W /WR D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 1 0 − VRR2 VRR1 VRR0 − PVR2 PVR1 PVR0 − Flag Function VRR2 to VRR0 When using normal display mode, power system control 2 (VLCD regulator resistance factor setting command) can be used to change the resistance factor at 8 levels. The three flags in power system control 2 set the values shown in Table 6-12 as reference values for (1 + Rb/Ra). PVR2 to PVR0 When using partial display mode, power system control 2 (VLCD regulator resistance factor setting command) can be used to change the resistance factor at 8 levels. The three flags in power system control 2 set the values shown in Table 6-12 as reference values for (1 + Rb/Ra). Table 6-12. Reference Values for VLCD Internal Resistance Factor Regulator Register Register VRR2 VRR1 VRR0 PVR2 PVR1 PVR0 0 0 0 0 0 1 8 0 1 0 12 0 1 1 13 1 0 0 16 1 0 1 19 1 1 0 21 1 1 1 24 1+Rb/Ra 5 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − 0 0 0 − 0 0 0 Data Sheet S15745EJ2V0DS 67 µPD16488A 6.27 Power System Control Register 3 (R34) This command sets the power system mode, including the bias setting for the µPD16488A's normal display mode and the number of boost levels for partial display mode. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 BIS2 BIS1 BIS0 FBS2 FBS1 FBS0 BST1 BST0 − Flag Function BIS2 to BIS0 Note These three flags select the bias ratio as shown below. BIS2 BIS1 BIS0 Bias ratio 0 0 0 1/12 bias 0 0 1 1/11 bias 0 1 0 1/10 bias 0 1 1 1/9 bias 1 0 0 1/8 bias 1 0 1 1/7 bias 1 1 0 Prohibited 1 1 1 Prohibited When partial display mode is set, the bias ratio set by the partial mode setting register (R10) is automatically selected. Note FBS2 to FBS0 BST1, BST0 The number of boost levels in booster for normal display mode is selected as shown below. FBS2 FBS1 FBS0 Boost level 0 0 0 x4 0 0 1 x5 0 1 0 x6 0 1 1 x7 1 0 0 x8 1 0 1 x9 1 1 0 Prohibited 1 1 1 Prohibited The number of boost levels in the booster for partial display mode is selected as shown below. BST1 BST0 Boost level 0 0 x2 0 1 x3 1 0 x4 1 1 Prohibited Note Be sure to execute the HALT command before changing these flag settings. Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 68 Data Sheet S15745EJ2V0DS µPD16488A 6.28 Electronic Volume Register (R35) The electronic volume register specifies the electronic volume value for adjusting the contrast when using normal display mode. Any value among 256 steps can be selected. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 EV7 EV6 EV5 EV4 EV3 EV2 EV1 EV0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 6.29 Partial Electronic Volume Register (R36) The partial electronic volume register specifies the electronic volume value for adjusting the contrast when using partial display mode. Any value among 256 steps can be selected. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 PEV7 PEV6 PEV5 PEV4 PEV3 PEV2 PEV1 PEV0 − Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 6.30 Boost Adjustment Register (R37) The voltage (range: 1/8 VDD2 to 7/8 VDD2) set to this register is applied to the boost level set for the booster. RS D7 D6 D5 D4 D3 D2 D1 D0 Setting 1 − − − − − DDC2 DDC1 DDC0 − Table 6-13. Boost Adjustment Register (R37) Settings DDC2 DDC1 DDC0 Boost Adjustment Voltage 0 0 0 Regulator Circuit Stopped 0 0 1 1/8 VDD2 0 1 0 2/8 VDD2 0 1 1 3/8 VDD2 1 0 0 4/8 VDD2 1 0 1 5/8 VDD2 1 1 0 6/8 VDD2 1 1 1 7/8 VDD2 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − − 0 0 0 Data Sheet S15745EJ2V0DS 69 µPD16488A 6.31 RAM Test Mode Setting Register (R44) The RAM test mode setting register directly writes the data for each type of display mode to the display RAM, as shown in Table 6-15. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − − − RTS3 RTS2 RTS1 RTS0 Table 6-15. RAM Test Mode Setting Register (R44) Setting RTS3 RTS2 RTS1 RTS0 Write Data 0 0 0 0 Normal operation 0 1 0 0 Displays list of gray scales 1 0 0 0 all 00/pixel 1 0 0 1 all 11/pixel 1 0 1 0 Checker pattern: 00/11 1 0 1 1 Checker pattern: 11/00 1 1 0 0 Checker pattern: 01/10 1 1 0 1 Checker pattern: 10/01 1 1 1 0 Vertical striped pattern: 00/11 1 1 1 1 Horizontal striped pattern: 00/11 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − 0 0 0 0 6.32 Signature Read Register (R45) This command is used to read the IC signature set via the SIGIN1 and SIGIN2 pins. This is a read-only register. RS D7 D6 D5 D4 D3 D2 D1 D0 1 − − − − − − SIGIN2 SIGIN1 Default settings (initial values set by reset command) D7 D6 D5 D4 D3 D2 D1 D0 − − − − − − − − 70 Data Sheet S15745EJ2V0DS µPD16488A 7. LIST OF µPD16488A REGISTERS CS RS 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Remark Index Register 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Register Name IR R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R35 R36 R37 R38 R39 R40 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 Index Register Control register 1 Control register 2 Reset command X address register Y address register Duty setting register AC driver inversion cycle register AC driver inversion position shift register Partial AC driver inversion cycle register Partial AC driver inversion potision shift register Partial display mode setting register Display memory access register Display start line setting register Blink X address register Blink start line address register Blink end line address register Blink data memory access register Inverted X address register Inversion start line address register Inversion end line address register Inverted data memory access register Partial start line address register R/W 7 6 5 Data Bits 4 3 2 1 0 W IR5 IR4 IR3 IR2 IR1 IR0 R/W RMW DISP STBY BLD IVD HALT ADC COMR R/W FDM DSEL BWW GRAY DTY INC CRES W R/W XA4 XA3 XA2 XA1 XA0 R/W YA6 YA5 YA4 YA3 YA2 YA1 YA0 R/W DT6 DT5 DT4 DT3 DT2 DT1 DT0 R/W NID6 NID5 NID4 NID3 NID2 NID1 NID0 W MSD6 MSD5 MSD4 MSD3 MSD2 MSD1 MSD0 W PID4 PID3 PID2 PID1 PID0 W PSD4 PSD3 PSD2 PSD1 PSD0 R/W PBIS PDT1 PDT0 R/W D7 D6 D5 D4 D3 D2 D1 D0 W DSL6 DSL5 DSL4 DSL3 DSL2 DSL1 DSL0 R/W BXA3 BXA2 BXA1 BXA0 R/W BSL6 BSL5 BSL4 BSL3 BSL2 BSL1 BSL0 R/W BEL6 BEL5 BEL4 BEL3 BEL2 BEL1 BEL0 R/W D7 D6 D5 D4 D3 D2 D1 D0 R/W IXA3 IXA2 IXA1 IXA0 R/W ISL6 ISL5 ISL4 ISL3 ISL2 ISL1 ISL0 R/W IEL6 IEL5 IEL4 IEL3 IEL2 IEL1 IEL0 R/W D7 D6 D5 D4 D3 D2 D1 D0 W PSL6 PSL5 PSL4 PSL3 PSL2 PSL1 PSL0 Gray scale data register 1 (0, 0) Gray scale data register 2 (0, 1) Gray scale data register 3 (1, 0) Gray scale data register 4 (1, 1) Patial gray scale data register 1 (0, 0) Patial gray scale data register 2 (0, 1) Patial gray scale data register 3 (1, 0) Patial gray scale data register 4 (1, 1) W W W W W W W W Power system control register 1 Power system control register 2 Power system control register 3 Electronic volume register Partial electronic volume register Boost adjustment register W W W W W W RAM test mode setting register Signature read register W R HPM1 HPM0 VRR2 BIS2 BIS1 EV7 EV6 PEV7 PEV6 GD5 GD5 GD5 GD5 PGD5 PGD5 PGD5 PGD5 GD4 GD4 GD4 GD4 PGD4 PGD4 PGD4 PGD4 GD3 GD3 GD3 GD3 PGD3 PGD3 PGD3 PGD3 GD2 GD2 GD2 GD2 PGD2 PGD2 PGD2 PGD2 GD1 GD1 GD1 GD1 PGD1 PGD1 PGD1 PGD1 GD0 GD0 GD0 GD0 PGD0 PGD0 PGD0 PGD0 VRR1 BIS0 EV5 PEV5 TCS1 VRR0 FBS2 EV4 PEV4 TSC0 OP2 PVR2 FBS1 FBS0 EV3 EV2 PEV3 PEV2 DDC2 OP1 PVR1 BST1 EV1 PEV1 DDC1 OP0 PVR0 BST0 EV0 PEV0 DDC0 RTS3 RTS2 RTS1 RTS0 SIG2 SIG1 : Not to use these registers. Data Sheet S15745EJ2V0DS 71 µPD16488A 8. POWER SUPPLY SEQUENCE The µPD16488A includes power supply circuitry, such as a booster and a voltage follower. When a reset is performed using the /RES pin, the reset function is restricted so as to prevent operation faults that may occur due to noise effects, etc. When electric charge remains in the smoothing capacitor that is connected between the VSS pin and the voltage pins related to the LCD driver (VLCD, VLC1 to VLC4), troubles such as a brief all-black display screen may occur when the power is switched ON or OFF. The following power-on sequence is recommended as a means to avoid such troubles when switching the power ON or OFF. 8.1 Power ON Sequence (When Using On-Chip Power Supply, Power Supply ON → Display ON) Turn power ON when /RES pin = L ↓ Power supply stabilization ↓ /RES pin = H ↓ Command reset ↓ Control register 1 DISP = 0, HALT = 1 ↓ R2 Wait at least 50 µs before command input Register reset R0 Display OFF, internal operations stopped IC functions set via command input • Control register 1 (DISP = 0, HALT = 1 status is retained) • Control register 2 • Power control register 1 (HPM1, HPM0 = 1, 1) • Power control registers 2, 3 • Electronic volume register • Partial electronic volume register Specification of power activation mode • Boost adjustment register ↓ User-specified settings via command input Duty setting register (R5) AC driver inversion cycle register (R6) Function settings for gray scale data, etc. ↓ Initialization complete ↓ Control register 1 DISP = 0, HALT = 0 ↓ Make sure to set the duty setting register (R5) and AC driver inversion cycle register (R6) R0 LCD display screen settings • Display start line setting register • Write screen data, etc. + wait time ↓ Power system control register 1 (Mode except HPM1, HPM0 (1, 1)) ↓ Control register 1 DISP = 1, HALT = 0 Note Display OFF, internal operations started After internal operations are started, wait at least 400 ms before turning on the LCD display Note. Cancels V/F mode for power activation R0 Display ON, internal operation start mode This 400 ms wait time varies according to the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the actual device (refer to 8.5 VOUT, VLCD Voltage Sequence (Power ON → Power OFF)). 72 Data Sheet S15745EJ2V0DS µPD16488A 8.2 Power OFF Sequence (When Using On-Chip Power Supply) Operation mode ↓ DISP = 0, HALT = 0 R0 Display OFF, internal operation start mode R32 Sets high power mode R35 [EV7, EV6, EV5, EV4, EV3, EV2, EV1, EV0] = [0, 0, 0, 0, 0, 0, 0, 0] R36 [PEV7, PEV6, PEV5, PEV4, PEV3, PEV2, PEV1, PEV0] = [0, 0, 0, 0, 0, 0, 0, 0] ↓ HPM1 = 1, HPM0 = 0 ↓ Set electronic volume register ↓ Set partial electronic volume register Wait at least 1200 ms before power OFF Note. ↓ Power supply OFF Note This 1200 ms wait time varies according to the panel characteristics and the capacitance value of the boost/smoothing capacitor. NEC recommends determining the wait time after making a thorough evaluation of the actual device (refer to 8.5 VOUT, VLCD Voltage Sequence (power ON → power OFF)). 8.3 Power ON Sequence (When Using External Driver Power Supply, Power ON → Display ON) VDD1, VDD2 power ON, VOUT = Hi-Z Logic power ON when /RES pin = L ↓ Power supply stabilization ↓ /RES pin = H ↓ Command reset R2 Wait at least 50 µs befor command input Register reset R0 Display OFF, internal operations stopped ↓ DISP = 0, HALT = 1 ↓ Power system control register 1 (R32) : [OP2, OP1, OP0] = [0 ,0 ,X] Initialization via command input (user-specified) Selection of IC functions, etc. ↓ DISP = 0, HALT = 0 R0 Display OFF, internal operations started ↓ VOUT power supply ON External LCD driver power supply ON ↓ Stabilization of external LCD driver power supply ↓ DISP = 1, HALT = 0 R0 Display ON, internal operations started Data Sheet S15745EJ2V0DS 73 µPD16488A 8.4 Power Supply OFF Sequence (When Using External Driver Power Supply) Operation mode ↓ DISP = 0, HALT = 0 R0 Display OFF, internal operation start mode ↓ VOUT = Hi-Z External driver power supply OFF ↓ DISP = 0, HALT = 1 R0 Display OFF, internal operations stopped ↓ Logic power supply OFF 74 VDD1, VDD2, power supply OFF Data Sheet S15745EJ2V0DS µPD16488A 8.5 VOUT, VLCD Voltage Sequence (Power ON → Power OFF) 0 VDD VOUT /RES pin = 0 Power ON /RES pin = 1 DISP = 0, HALT = 1 Default settings HPM = 3 HALT = 0 400 ms Select HPM = 0 to 2 DISP = 1 Normal display DISP = 0 HPM = 2 DTY = 1 700 ms VLCD = 15V 6V Select HPM = 0 to 2 DISP = 1 Partial display DISP = 0 HPM = 3 DTY = 0 400 ms Select HPM = 0 to 2 DISP = 1 Normal display DISP = 0 HPM = 2 EV = 0 1200 ms Power OFF Dotted line: VOUT Solid line: VLCD Conditions: VDD: VDD1 = VDD2 = 3.0 V Boost levels: x6 (in normal display mode), x3 (in partial display mode) Capacitors: VLCn pin to Cn+/− pin = 1 µF, AMPOUT pin, AMPOUTP pin, VRS pin = 0.1 µF Caution Connect a capacitor of less than 0.1 µF to both AMPOUT and AMPOUTP pins. Data Sheet S15745EJ2V0DS 75 µPD16488A 9. USE OF RAM TEST MODE The µPD16488A has a test mode for writing nine types of screen data to display RAM. When using the test mode, be sure to execute via the sequence shown below. If executing the test mode by some other sequence, troubles may appear in the screen display. Operation mode ↓ Control register 1 DISP = 0, STBY = 1 R0 Display OFF, set to standby R44 Select RAM write data R0 Display OFF, cancel standby ↓ Set RAM test mode ↓ Control register 1 DISP = 0, STBY = 0 ↓ After internal operations are started, wait at least 1 sec before turning on the LCD display Note. Wait time ↓ Control register 1 DISP = 1 R0 Display ON ↓ Settings complete Note This 1 sec wait time varies according to the panel characteristics and the capacitance value of the boost/smoothing capacitor. We recommend determining the wait time after making a thorough evaluation of the actual device. 76 Data Sheet S15745EJ2V0DS µPD16488A 10. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = +25°C, VSS = 0 V) Parameter Symbol Ratings Unit Logic system supply voltage VDD1 −0.3 to +4.0 V Booster supply voltage VDD2 −0.3 to +4.0 V Driver supply voltage VOUT −0.3 to +20.0 V Driver reference supply input voltage VLCD, VLC1 to VLC4 −0.3 to VOUT+0.3 V Logic system input voltage VIN1 −0.3 to VDD1+0.3 V Logic system output voltage VOUT1 −0.3 to VDD1+0.3 V Logic system input/output voltage VI/O1 −0.3 to VDD1+0.3 V Driver system input voltage VIN2 −0.3 to VOUT+0.3 V Driver system output voltage VOUT2 −0.3 to VOUT+0.3 V Operating ambient temperature TA −40 to +85 °C Storage temperature Tstg −55 to +125 °C Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. Recommended Operating Range Parameter Symbol MIN. TYP. MAX. Unit Logic system supply voltage VDD1 1.7 3.6 V Booster supply voltage VDD2 Note1 2.4 3.6 V Note2 Driver system supply voltage VOUT 5.5 18.0 V Logic system input voltage VIN 0 VDD1 V Driver system supply voltage VLCD, VLC1 to VLC4 Note2 0 VOUT V VOUT − 0.5 V Maximum setting for LCD driver voltage VLCD Note3 Notes 1. VDD1 must be less than or equal to VDD2 2. This item is the recommended parameter when the LCD has an external driver. 3. This item is the recommended parameter when an on-chip power supply circuit drives the LCD. Cautions 1. When using an external LCD driver, be sure to maintain these relations: VSS < VLC4 < VLC3 < VLC2 < VLC1 < VLCD ≤ VOUT. 2. Maintain the relations shown in 8. POWER SUPPLY SEQUENCE when turning the power ON or OFF. 3. When using an external resister (when not using an on-chip resister for VLCD adjustment), maintain supply of a voltage between 1.0 V and the VDD1 voltage to the VR and VRS pins. Data Sheet S15745EJ2V0DS 77 µPD16488A Electrical Characteristics 1 (Unless Otherwise Specified, TA = −40 to +85°°C, VDD1 = 1.7 to 3.6 V, VDD2 = 2.4 to 3.6 V) Parameter High-level input voltage Symbol Conditions VIH MIN. TYP.Note1 MAX. 0.8 VDD1 Unit V Low-level input voltage VIL High-level input current IIH1 Except for D7 (SI), D6 (SCL) and D5 to D0 0.2 VDD1 V 1 µA Low-level input current IIL1 Except for D7 (SI), D6 (SCL) and D5 to D0 High-level output voltage VOH IOUT = −1 mA except OSCOUT −1 µA Low-level output voltage VOL IOUT = 1 mA except OSCOUT 0.5 V High-level leakage current ILOH D7 (SI), D6 (SCL) and D5 to D0, 10 µA −10 µA 4 kΩ 4 kΩ VDD1 − 0.5 V VIN/OUT = VDD1 Low-level leakage current ILOL D7 (SI), D6 (SCL) and D5 to D0, VIN/OUT = VSS Common output ON resistance RCOM VLCn → COMn, VOUT = 15 V, VLCD = 12 V, 1/10 bias, |IO| = 50 µA Segment output ON resistance RSEG VLCn → SEGn, VOUT = 15 V, VLCD = 12 V, 1/10 bias, |IO| = 50 µA Driver voltage (boost voltage) VOUT In x5 boost mode, VDD = 3.0 V, 13.8 V 16.6 V Checker pattern display In x6 boost mode, VDD = 3.0 V, Checker pattern display Reference voltage VREG Note2 VDD = 3.0 V, TA = 85°C, TSC1,TSC0 = 1,1 0.720 0.790 0.860 V (temperature characteristic curves:−0.12%/°C) Oscillation frequency fOSCNote3 VDD1 = 3.0 V, TA = 25°C, 1/92 duty, 26.9 kHz 10.6 kHz in B/W mode, R = 1100 kΩ VDD1 = 3.0 V, TA = 25°C, 1/38 duty, in B/W mode, R = 3 MΩ Notes 1. TYP. values are reference values when TA = 25°C (except VREG). 2. The reference voltage values when TA = 25°C are shown below: MIN. = 0.775 V, TYP.= 0.850 V, MAX. = 0.925 V 3. The oscillation frequency varies according to the parasitic capacitance of the wiring capacitance. We therefore recommend determining the oscillation resister’s value after making a thorough evaluation of the actual device. 78 Data Sheet S15745EJ2V0DS µPD16488A Electrical Characteristics 2 (Unless Otherwise Specified, TA = −40 to +85°°C) Parameter Current consumption Symbol IDD11 (normal mode) Conditions Frame frequency = 70 Hz, MIN. TYP.Note MAX. Unit 160 220 µA 210 310 µA 270 390 µA 325 480 µA 115 155 µA 165 230 µA 95 140 µA 105 160 µA 10 µA B/W all display OFF data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Frame frequency = 70 Hz, B/W checker pattern display data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Current consumption IDD12 (high-power mode) Frame frequency = 70 Hz, B/W all display OFF data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Frame frequency = 70 Hz, B/W checker pattern display data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Current consumption IDD13 (low-power mode) Frame frequency = 70 Hz, B/W all display OFF data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Frame frequency = 70 Hz, B/W checker pattern display data output, 1/92 duty, VDD1 = VDD2 = 3.0 V, in x5 boost mode, VLCD = 12 V Current consumption IDD21 (partial display mode) Frame frequency = 70 Hz, B/W all display OFF data output, 1/38 duty, VDD1 = VDD2 = 3.0 V, in x3 boost mode, VLCD = 7.0 V, normal mode Frame frequency = 70 Hz, B/W checker pattern display data output, 1/38 duty, VDD1 = VDD2 = 3.0 V, VLCD = 7.0 V, in x3 boost mode, normal mode Current consumption IDD22 VDD1 = VDD2 = 3.0 V (standby mode) Note TYP. values are reference values when TA = 25°C. Data Sheet S15745EJ2V0DS 79 µPD16488A Required Timing Conditions (Unless Otherwise Specified, TA = −30 to +85°°C) (1) i80 CPU interface RS tAS8 tf tAH8 tr /CS1 (CS2 = H) tCYC8 tCCLW, tCCLR /WR, /RD tCCHR, tCCHW tDS8 tDH8 D0 to D7 (Write) tOH8 tACC8 D0 to D7 (Read) When VDD1 = 1.7 V to 2.0 V Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH8 RS 0 ns Address setup time tAS8 RS 0 ns System cycle time tCYC8 1000 ns Control low-level pulse width (/WR) tCCLW /WR 160 ns Control low-level pulse width (/RD) tCCLR /RD 430 ns Control high-level pulse width (/WR) tCCHW /WR 160 ns Control high-level pulse width (/RD) tCCHR /RD 160 ns Data setup time tDS8 D0 to D7 160 ns Data hold time tDH8 D0 to D7 0 ns /RD access time tACC8 D0 to D7, CL = 100 pF 0 470 ns Output disable time tOH8 D0 to D7, CL = 5 pF, R = 3 kΩ 0 170 ns Note TYP. values are reference values when TA = 25°C. 80 Data Sheet S15745EJ2V0DS µPD16488A When VDD1 = 2.0 to 2.5 V Parameter Symbol Conditions Address hold time tAH8 RS Address setup time tAS8 RS System cycle time tCYC8 MIN. TYP.Note MAX. 0 Unit ns 0 ns 600 ns Control low-level pulse width (/WR) tCCLW /WR 120 ns Control low-level pulse width (/RD) tCCLR /RD 240 ns Control high-level pulse width (/WR) tCCHW /WR 120 ns Control high-level pulse width (/RD) tCCHR /RD 120 ns Data setup time tDS8 D0 to D7 120 ns Data hold time tDH8 D0 to D7 0 /RD access time tACC8 D0 to D7, CL = 100 pF 0 280 ns Output disable time tOH8 D0 to D7, CL = 5 pF, R = 3 kΩ 0 170 ns MAX. Unit ns Note TYP. values are reference values when TA = 25°C. When VDD1 = 2.5 to 3.6 V Parameter Symbol Conditions MIN. TYP.Note Address hold time tAH8 RS 0 ns Address setup time tAS8 RS 0 ns System cycle time tCYC8 250 ns Control low-level pulse width (/WR) tCCLW /WR 60 ns Control low-level pulse width (/RD) tCCLR /RD 120 ns Control high-level pulse width (/WR) tCCHW /WR 60 ns Control high-level pulse width (/RD) tCCHR /RD 60 ns Data setup time tDS8 D0 to D7 60 ns Data hold time tDH8 D0 to D7 0 ns /RD access time tACC8 D0 to D7, CL = 100 pF 0 140 ns Output disable time tOH8 D0 to D5, CL = 5 pF, R = 3 kΩ 0 70 ns MAX. Unit Note TYP. values are reference values when TA = 25°C. /CS1 (CS2 = H) tRD /RD (VDD1 = 1.8 to 3.6 V) Parameter Chip select disable time Symbol tRD Conditions /RD-CS MIN. TYP.Note 10 ns Note TYP. values are reference values when TA = 25°C. Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less. 2. All timing is rated based on 20% or 80% of VDD1. Data Sheet S15745EJ2V0DS 81 µPD16488A (2) M68 CPU interface RS R,/W tAS6 tf tr tAH6 /CS1 (CS2 = H) tCYC6 tEWHR, tEWHW E tEWLR, tEWLW tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) When VDD1 = 1.7 to 2.0 V Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH6 RS 0 Address setup time tAS6 RS 0 ns ns System cycle time tCYC6 1000 ns Data setup time tDS6 D0 to D7 160 ns Data hold time tDH6 D0 to D7 0 ns Access time tACC6 D0 to D7, CL = 100 pF 0 470 ns Output disable time tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ 0 170 ns Read tEWHR E 430 ns Write tEWHW E 160 ns Read tEWLR E 160 ns Write tEWLW E 160 ns Enable high pulse width Enable low pulse width Note TYP. values are reference values when TA = 25°C. 82 Data Sheet S15745EJ2V0DS µPD16488A When VDD1 = 2.0 to 2.5 V Parameter Symbol Conditions Address hold time tAH6 RS Address setup time tAS6 RS System cycle time tCYC6 MIN. TYP.Note MAX. 0 Unit ns 0 ns 600 ns ns Data setup time tDS6 D0 to D7 120 Data hold time tDH6 D0 to D7 0 Access time tACC6 D0 to D7, CL = 100 pF 0 280 ns 0 170 ns Output disable time ns tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ tEWHR E 240 ns Write tEWHW E 120 ns Read tEWLR E 120 ns tEWLW E 120 ns Enable high pulse width Read Enable low pulse width Write Note TYP. values are reference values when TA = 25°C. When VDD1 = 2.5 to 3.6 V Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Address hold time tAH6 RS 0 ns Address setup time tAS6 RS 0 ns System cycle time tCYC6 250 ns Data setup time tDS6 D0 to D7 60 ns Data hold time tDH6 D0 to D7 0 Access time tACC6 D0 to D7, CL = 100 pF 0 140 ns 0 70 ns Output disable time Enable high pulse width Enable low pulse width ns tOH6 D0 to D7, CL = 5 pF, R = 3 kΩ Read tEWHR E 120 ns Write tEWHW E 60 ns Read tEWLR E 60 ns Write tEWLW E 60 ns Note TYP. values are reference values when TA = 25°C. Cautions 1. The rise and fall times of input signals (tr and tf) are rated at 15 ns or less. When using a fast system cycle time, the rated value range is either (tr + tf) ≤ (tCYC6 − tEWLW − tEWHW) or (tr + tf) ≤ (tCYC6 − tEWLR − tEWHR). 2. All timing is rated based on 20% or 80% of VDD1. Data Sheet S15745EJ2V0DS 83 µPD16488A (3) Serial interface tCSS tCSH /CS1 (CS2 = H) tSAS tSAH RS tSCYC tSLW SCL tf tSHW tr tSDS tSDH SI When VDD1 = 1.7 to 2.5 V Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Serial clock cycle tSCYC SCL 250 ns SCL high-level pulse width tSHW SCL 100 ns SCL low-level pulse width tSLW SCL 100 ns Address hold time tSAH RS 150 ns Address setup time tSAS RS 150 ns Data setup time tSDS SI 100 ns Data hold time tSDH SI 100 ns CS - SCL time tCSS CS 150 ns tCSH CS 150 ns Note TYP. values are reference values when TA = 25°C. When VDD1 = 2.5 to 3.6 V Parameter Symbol Conditions MIN. TYP.Note MAX. Unit Serial clock cycle tSCYC SCL 150 ns SCL high-level pulse width tSHW SCL 60 ns SCL low-level pulse width tSLW SCL 60 ns Address hold time tSAH RS 90 ns Address setup time tSAS RS 90 ns Data setup time tSDS SI 60 ns Data hold time tSDH SI 60 ns CS - SCL time tCSS CS 90 ns tCSH CS 90 ns Note TYP. values are reference values when TA = 25°C. Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less. 2. All timing is rated based on 20% or 80% of VDD1. 84 Data Sheet S15745EJ2V0DS µPD16488A (4) Common Parameter Clock input 1 Symbol fN Conditions MIN. When using OSCIN1, external clock, and TYP.Note MAX. Unit 26.9 150 kHz 53.8 150 kHz 10.6 50 kHz 21.3 50 kHz TYP.Note MAX. Unit 50 200 ns TYP.Note MAX. Unit 20 80 ns on-chip divider, 1/92 duty, B/W mode When using OSCIN1, external clock, and on-chip divider, 1/92 duty, four-level gray scale mode Clock input 2 fP When using OSCIN2, external clock for partial display mode, but not using on-chip divider, B/W mode When using OSCIN2, external clock for partial display mode, but not using on-chip divider, four-level gray scale mode Note TYP. values are reference values when frame frequency = 70 Hz. Cautions 1. The rise and fall times of input signal (tr and tf) are rated as 15 ns or less. 2. All timing is rated based on 20% or 80% of VDD1. (a) Display control output timing OSCSYNC tDFR FR (VDD1 = 1.7 to 2.5 V) Parameter FR delay time Symbol tDFR Conditions MIN. FR, CL = 50 pF Note TYP. values are reference values when TA = 25°C. (VDD1 = 2.5 to 3.6 V) Parameter FR delay time Symbol tDFR Conditions FR, CL = 50 pF MIN. Note TYP. values are reference values when TA = 25°C. Caution All timing is rated based on 20% or 80% of VDD1. Data Sheet S15745EJ2V0DS 85 µPD16488A (b) Reset timing tRW /RES tR Internal status During reset Reset complete When VDD1 = 1.7 to 2.5 V Parameter Symbol Reset time tR Reset low pulse width tRW Conditions /RES MIN. TYP.Note MAX. Unit 50 µs µs 50 Note TYP. values are reference values when TA = 25°C. When VDD1 = 2.5 to 3.6 V Parameter Symbol Reset time tR Reset low pulse width tRW Conditions /RES 50 Note TYP. values are reference values when TA = 25°C. Caution All timing is rated based on 20% or 80% of VDD1. 86 MIN. Data Sheet S15745EJ2V0DS TYP.Note MAX. Unit 50 µs µs µPD16488A 11. CPU INTERFACE (REFERENCE EXAMPLE) The µPD16488A can be connected to either an i80 series CPU or an M68 series CPU. Also, if a serial interface connection is used, the number of signal lines can be reduced. If several µPD16488A chip is used, the display area can be enlarged. When using this method, use the chip select signal to select and access the ICs. (1) M68 series CPU VCC RS A0 VDD1 A1 to A15 Decoder C86 /CS1 CPU D0 to D7 D0 to D7 E E R/W R,/W /RES /RES µPD16488A VIMA PSX VSS GND /RESET (2) i80 series CPU VCC RS A0 VDD1 A1 to A7 CPU Decoder C86 /CS1 D0 to D7 D0 to D7 /RD /RD /WR /WR /RES /RES µPD16488A /IORQ PSX VSS GND /RESET Data Sheet S15745EJ2V0DS 87 µPD16488A (3) When using serial interface RS A0 A1 to A7 Decoder Open CPU VDD1 C86 /CS1 D0 to D5 Port1 SI(D7) /Port2 SCL(D6) µPD16488A VCC PSX /RES /RES VSS GND /RESET 88 Data Sheet S15745EJ2V0DS H or L µPD16488A [MEMO] Data Sheet S15745EJ2V0DS 89 µPD16488A [MEMO] 90 Data Sheet S15745EJ2V0DS µPD16488A NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. Data Sheet S15745EJ2V0DS 91