ANPEC APW7128QA

APW7128
30V, 1.2MHz, White LED Driver
Features
General Description
•
Wide Input Voltage Range from 2.7V to 21V
•
High Current-Limit up to 3.5A
•
0.5V Reference Voltage with ± 3%
The APW7128 is the high power and high efficiency
boost converter with an integrated 30V FET ideal for LCD
panel backlighting applications. 30V output voltage allows for 8 high-power LEDs in series, and 3.5A inductor
current limit allows for more LED strings connected in
parallel. The low 0.5V feedback voltage offers higher
efficiency in WLED driver applications. The wide input
range from 2.7V to 21V made APW7128 a perfect solution for various applications such as LCD monitor and
portable devices. The OVP pin monitors the output voltage to protect IC during open load and FB pin short circuit operations. The APW7128 provides the ALS pin to
simplify the interface to an ambient light sensor for automatic dimming. The APW7128 is available in the thermally enhanced DFN-10 lead 3mm x 3mm package.
System Accuracy
•
50mΩ Integrated N-FET
•
Fixed 1.2MHz Switching Frequency
•
High Efficiency up to 95%
•
Open-LED Protection
•
Under Voltage Lockout Protection
•
ALS Control Input Pin
•
Over Temperature Protection
•
Low Shutdown Current: <1uA
•
3mm x 3mm DFN-10 Package
•
Lead Free and Green Devices Available
Pin Configuration
(RoHS Compliant)
Applications
•
•
FB 1
Display Backlighting
- Automotive
- LCD Monitors
- Notebook Displays
10 ALS
COMP 2
9 GND
Metal
LX Pad
(Bottom)
OVP 3
EN 4
PGND 5
Portable Displays
8 BP
7 VIN
6 LX
APW7128
DFN3x3-10 Top View
Ordering and Marking Information
Package Code
QA: DFN3x3-10
Operating Ambient Temperature Range
I : -40 to 85 ° C
Handling Code
TR : Tape & Reel
Assembly Material
L : Lead Free Device
G : Halogen and Lead Free Device
APW7128
Assembly Material
Handling Code
Temperature Range
Package Code
APW7128 QA:
APW
7128
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
1
www.anpec.com.tw
APW7128
Absolute Maximum Ratings
Symbol
(Note 1)
Parameter
VIN
VIN pin to GND
Rating
Unit
-0.3 to 30
V
VLX
LX pin to PGND
-0.3 to 30
V
VOVP
OVP pin to GND
-0.3 to 30
V
VBP
BP pin to GND
-0.3 to 6
V
VEN
EN pin to GND
-0.3 to 30
V
VALS
ALS pin to GND
-0.3 to 6
V
PGND to GND
TJ
-0.3 to 0.3
V
150
°C
-65 to 150
°C
260
°C
Maximum Junction Temperature
TSTG
Storage Temperature Range
TL
Maximum Lead Soldering Temperature, 10 Seconds
Note 1: Stresses beyond the absolute maximum rating may damage the device and exposure to absolute maximum rating conditions
for extended periods may affect device reliability.
Thermal Characteristics (Note 2)
Symbol
Parameter
Package
Typical Value
Unit
θJA
Junction to Ambient Thermal Resistance
in Free Air
DFN3x3-10
80
°C/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. The exposed pad
is soldered directly on the PCB.
Recommended Operating Conditions
Symbol
Parameter
VIN
VOUT
Rating
Unit
VIN Supply Voltage, (VIN=BP)
2.7 to 5.5
V
VIN Supply Voltage, (BP is open)
3.7 to 21V
V
up to 30
V
Output Voltage
TJ
Operating Ambient Temperature
-40 to 85
°C
TA
Operating Junction Temperature
-40 to 125
°C
Electrical Characteristics
VIN=6V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
2.4
2.5
2.6
V
INPUT SUPPLY CURRENT AND UVLO
BP Under Voltage Lockout
Threshold
VIN rising
UVLO Hysteresis
IVIN
VIN Supply Current
-
100
-
mV
EN=5V, switching
-
9
15
mA
EN=0V
-
-
1
uA
-
350
-
uA/V
-
50
-
uA
485
500
515
mV
ERROR AMPLIFIER
gm
ICOMP
VFB
Error Amplifier Transconductance
COMP Output Current
sourcing and sinking, VCOMP=1.5V
FB Voltage
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
2
www.anpec.com.tw
APW7128
Electrical Characteristics (Cont.)
VIN=6V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C.
Symbol
Parameter
Minimum FB Voltage
IFB
Test Conditions
VALS=0.3V
FB Input Bias Current
FB Line Regulation
VIN=2.7V to 21V
Min
Typ
Max
Unit
188
200
212
mV
-
-
1
µA
-
0.02
0.04
%/V
2.5
3.5
4.5
A
INTERNAL POWER SWITCH
Power Switch Current-Limit
RDS(ON)
Power Switch On Resistance
LX Leakage Current
VLX=30V
-
50
100
mΩ
-
-
1
µA
FSW
Switching Frequency
0.9
1.2
1.5
MHz
DMAX
LX Maximum Duty Cycle
92
95
98
%
2.9
3
3.1
V/V
-
-
1
µA
Over Voltage Threshold
30
32
34
V
OVP Hysteresis
2
3
4
V
OVP Leakage Current
-
-
30
µA
2.4
-
-
V
ALS
ALS Ratio
VALS=1V, VALS/VFB
ALS Pin Leakage
VALS=5V
OUTPUT OVERVOLTAGE PROTECTION
CONTROL LOGIC PIN
EN High-Level Input Voltage
EN Low-Level Input Voltage
EN Leakage Current
VEN=21V
-
-
0.4
V
-
-
1
µA
-
150
-
THERMAL SHUTDOWN
Thermal Shutdown Threshold
Thermal Shutdown Hysteresis
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
-
3
50
-
°
C
°
C
www.anpec.com.tw
APW7128
Typical Operating Characteristics
VIN Supply Current vs. VIN Supply Voltage
VIN Supply Current vs. VIN Supply Voltage
800
9.0
no switching
VIN Supply Current (uA)
VIN Supply Current (mA)
8.5
switching
7.5
6.5
5.5
4.5
700
600
500
3.5
2.5
400
0
5
10
15
20
0
25
5
10
15
20
25
VIN Supply Voltage (V)
VIN Supply Voltage (V)
FB Voltage vs. VIN Supply Voltage
Efficiency vs. Load Current
0.510
100
95
Efficiency (%)
VIN=19V
FB Voltage (V)
VIN=12V
90
VIN=6V
85
80
75
0.505
0.500
0.495
70
8LEDs in
series
65
0.490
60
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9
1
0
Load Current (A)
5
10
15
20
25
VIN Supply Voltage (V)
FB Voltage vs. ALS Input Voltage
EN Threshold Voltage vs. VIN Supply Voltage
0.55
2.0
EN Threshold Voltage (V)
FB Voltage (V)
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
1.8
EN High Threshold
1.6
1.4
EN Low Threshold
1.2
1.0
0
0.5
1
1.5
2
2
ALS Input Voltage (V)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
6
10
14
18
22
VIN Supply Voltage (V)
4
www.anpec.com.tw
APW7128
Typical Operating Characteristics (Cont.)
Power Switching On Resistance
vs. VIN Supply Voltage
Switching Frequency vs. VIN Supply Voltage
1.40
60
Switching Frequency (MHz)
Power Switch On Resistance (mΩ)
70
50
40
30
20
1.30
1.25
1.20
10
2
10
6
14
18
0
22
5
10
20
VIN Supply Voltage (V)
Switching Frequency
vs. Junction Temperature
VIN Supply Current
vs. Junction Temperature
1.50
800
1.45
750
1.35
1.30
1.25
1.20
1.15
1.10
25
no switching
700
1.40
1.05
650
600
550
500
450
400
350
300
250
1.00
200
-40 -20
0
20
40 60
-40 -20
80 100 120 140 160
Junction Temperature (oC)
0
20
40 60
80 100 120 140 160
Junction Temperature (oC)
FB Voltage vs. Junction
Temperature
Power Switching On Resistance
vs. Junction Temperature
0.510
100
0.508
0.506
80
FB Voltage (V)
Power Switch On Resistance (mΩ)
15
VIN Supply Voltage (V)
VIN Supply Current (uA)
Switching Frequency (MHz)
1.35
60
40
0.504
0.502
0.500
0.498
0.496
0.494
20
0.492
0.490
0
-40 -20
0
20
40 60
-40 -20
80 100 120 140 160
20
40 60
80 100 120 140 160
Junction Temperature (oC)
Junction Temperature (℃)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
0
5
www.anpec.com.tw
APW7128
Operating Waveforms
Refer to the typical application circuit. The test condition is VIN=5V, TA= 25oC unless otherwise specified.
Shutdown
Start-up
VEN
1
1
VEN
VOUT
VOUT
2
2
IIN
4
4
IIN
VIN=12V, L=10uH, CCOMP=0.22uF
VIN=12V, L=10uH, CCOMP=0.22uF
CH1: VEN, 10V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 500mA/div, DC
TIME: 1ms/div
CH1: VEN, 10V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 500mA/div, DC
TIME: 10ms/div
Overvoltage Protection
Switching Waveforms
1
VCOMP
1
2
VOUT
3
2
IIN
4
4
Output is open
VIN=12V, L=10uF, IOUT=160mA
CH1: VIN, 50mV/div, AC
CH1: VCOMP, 0.5V/div, DC
CH2: VOUT, 10V/div, DC
CH4: IIN, 100mA/div, DC
TIME: 10ms/div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
CH2: VOUT, 200mV/div, AC
CH3: VLX, 20V/div, DC
CH4: IL, 200mA/div, DC
TIME: 0.5us/div
6
www.anpec.com.tw
APW7128
Pin Description
PIN
FUNCTION
NO.
NAME
1
FB
2
COMP
3
OVP
4
EN
5
PGND
6
LX
Internal Power MOSFET Drain.
7
VIN
Supply Voltage Input.
8
BP
Output of The Internal 5V Regulator. Connect a 1µF bypass capacitor to GND. Do not apply an
external load to BP.
9
GND
Signal Ground.
10
ALS
Ambient Light Sensor Input. Allow the light sensor to control the FB voltage for LED dimming. If the
ALS function is not used, tie the ALS pin to BP pin.
Regulator Feedback Pin. Connect a current sense resistor to GND to set the LED current.
Error Amplifier Output. Connect a 0.22µF capacitor for compensation and soft-start. When EN is
pulled low, an internal switch will discharge the COMP voltage to 0V.
Output Over Voltage Monitor Pin. Tie to VOUT for OVP function.
Enable Input Pin. Pull EN above 2.4V to enable the device; pull EN below 0.4V to disable the
device. The EN pin cannot be left floating.
Power Ground. Source of the internal N-channel power MOSFET.
Block Diagram
BP
VIN
OVP
LDO
UVLO
0.9V
LX
EN
Control Logic
Thermal
Shutdown
Σ
GND
PGND
Oscillator
FB
COMP
0.5V
ALS
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
7
www.anpec.com.tw
APW7128
Typical Application Circuit
6V to 21V
L1 10uH
D1
C1
10uF
10
7
ON
4
9
OFF
8
C2
1uF
ALS
VIN
OVP
EN
COMP
GND
PGND
BP APW7128
PWM
brightness
control
Up to 8
LEDs per
String
3
2
C3
5
0.22uF
1
FB
3V
C5
1uF
6
LX
Up to 8 Strings
R3
120k
VADJ
0V
R2
24k
C4
0.1uF
R4
10k
R1 I
LED(max)=20mA
3.75
ILED(min)=0mA
Figure1. Analog Dimming with PWM Voltage
VDD
6V to 21V
L1 10uH
D1
C1
10uF
10
ALS
R2
7
ON
4
9
OFF
8
C2
1uF
6
ALS
LX
VIN
OVP
EN
COMP
GND
PGND
BP APW7128
FB
Up to 8 Strings
C5
1uF
Up to 8
LEDs per
String
3
2
5
C3
0.22uF
1
R1
3.125
Figure2. Analog Dimming with External ALS Voltage
Designation
L1
C1
C2
C3
C5
D1
Supplier
GOTREND
Murata
Murata
Murata
Murata
Zowie
Part Number
GTSD53
GRM31CR61E106K
GRM155R61A105K
GRM155R60J224KE01
GRM21BR71H105KA12
MSCD104
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
8
Specification
10uH, 1.33A
X5R, 25V, 10uF
X5R, 10V, 1uF
X5R, 6.3V. 0.22uF
X7R, 50V, 1uF
1.0A, 40V
Wedsite
www.gotrend.com.tw
www.murata.com
www.murata.com
www.murata.com
www.murata.com
www.zowie.com.tw
www.anpec.com.tw
APW7128
Function Description
Output Overvoltage Protection
If the FB pin is shorted to ground or an LED fails open
internal thermal sensor circuit will disable the device
and allow the device to cool down. When the device’s
circuit, output voltage in BOOST mode can increase to
potentially damaging voltages. An optional overvoltage
junction temperature cools by 50°C, the internal thermal
sense circuit will enable the device, resulting in a pulsed
protection circuit can be enabled by connection of the
OVP pin to the output voltage. The device will stop
output during continuous thermal protection. Thermal
protection is designed to protect the IC in the event of
switching if the output voltage exceeds OVP high
threshold and re-start when the output voltage falls
over temperature conditions. For normal operation, the
junction temperature cannot exceed TJ=+125 °C.
below OVP low threshold. During sustained OVP fault
conditions, VOUT will saw-tooth between the upper and
Internal 5V LDO
The APW7128 provides an internal 5V LDO for the control circuitry, and the output of the internal LDO is BP pin.
lower threshold voltages at a frequency determined by
the magnitude of current available to discharge the
In normal operation, connect a 1µF or greater capacitor to GND is recommended. The internal LDO cannot
output capacitor. Note that the OVP pin must be connected to output voltage for OVP function.
supply any more current than is required to operate the
APW7128. Therefore, do not apply any external load to
Ambient Light Sensor Interface
BP pin. In applications, where the VIN is less than 5.5V,
BP should be tied to VIN through a 10Ω resistor.
The APW7128 provides the ALS pin to simplify the interface to an ambient light sensor. The ambient light sensor detects the ambient light and yields a current which
is related to the illuminance. Connect a load resistor
from the current output of ambient light sensor to ground
to provide an output voltage to ALS pin. The ALS voltage
will be divided by an internal divider circuit, and the divided ALS voltage will replace the internal reference
voltage. The LED current can be calculated by the following equation:
I LED =
1 V ALS
×
3 R2
Note that the maximum FB voltage is set to 0.5V, and
minimum FB voltage is set to 0.2V. If the divided ALS
voltage is over 0.5V or less 0.2V, the LED current is limited at:
ILED (MAX ) =
0 .5 V
R2
ILED (MIN ) =
0 .2 V
R2
where R2 is the resistor from FB to GND.
Enable/Disable
Pull the EN above 2V to enable the device and pull EN
pin below 0.4V to disable the device. In shutdown mode,
the internal control circuits are turned off, the quiescent
current is below 1uA.
Thermal Shutdown
When the junction temperature exceeds 150°C, the
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
9
www.anpec.com.tw
APW7128
Application Information
Inductor Selection
Connecting more LED strings
The APW7128 can drive 8 LED strings in parallel and up
to 8 LEDs per string (VF<3.5V). Each string must have the
A larger value of inductor will reduce the peak inductor
current, resulting in smaller input ripple current, higher
same number of LEDs. In the applications that have the
same total number of LEDs, more strings and less LEDs
efficiency and reducing stress on the internal MOSFET.
However, the larger value of inductor has a large
in series are more efficiency than less strings and more
LEDs in series.
dimension, lower saturation current, and higher series
resistance.
Brightness Control
A good rule for determining the inductance is to allow the
peak-to-peak ripple current to be approximately 30% to
The method for dimming the LEDs is to apply a PWM
voltage through an RC filter into the FB pin.
50% of the maximum input current. Calculate the required
inductance value by the equation:
The RC filter is used to convert the PWM voltage into an
analog voltage. The values of the R and C depend upon
L = ( V − V )× V
∆I × F × V
OUT
the frequency of the PWM voltage and the amount of allowable ripple voltage on FB pin. The LED current is pro-
L
current. The values of R1 and R2 are calculated by the
following equations:
IIN =
VFB × (ILED(max) × R3 + VADJ(low) − ILED(min) × R3 − VADJ(high))
VADJ(high) × ILED(max) + VFB × ILED(min) − VADJ(low) × ILED(min) − VFB × ILED(max)
R1 =
V FB × (1 +
VOUT×ILOAD
VIN × η
It is necessary to choose an inductor that ensures the
inductor saturation current rating to exceed the peak
inductor current for the application.
R2
R2
× V ADJ ( low )
)−
R3
R3
I
IN
OUT
∆IL = (30% − 50%) × IIN
portional to the PWM duty cycle. 0 % duty delivers maximum LED current and 100% duty delivers minimum LED
R2 =
IN
SW
To make sure that the peak inductor current is below the
current-limit 2.5A. Calculating the peak inductor current
LED (max)
by the following equation:
where:
ILED(max) is the maximum LED current
ILED(min) is the minimum LED current
IPEAK = IIN + 0.5 × ∆IL
VADJ(high) is the maximum PWM voltage level
VADJ(min) is the minimum PWM voltage level
IPEAK =
VOUT × ILOAD ( VOUT − VIN) × VIN
+
VIN × η
2 × L × FSW × VOUT
where
VFB is the FB pin Voltage
η is the efficiency
Schottky Diode Selection
APW7128
FB
A fast recovery time and low forward voltage Schottky diode is necessary for optimum efficiency. Ensure that the
1
R2
VADJ(max)
PWM
Voltage
diode’s average and peak current rating exceed the average output current and peak inductor current. In addition,
R1
R3
the diode’s reverse voltage must exceed output voltage.
R4
C4
VADJ(min)
Figure 3. Dimming with the PWM Voltage
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
10
www.anpec.com.tw
APW7128
Application Information (Cont.)
VIN
Capacitor Selection
An input capacitor is required to supply the ripple current
to the inductor and stabilize the input voltage. Larger
L1
D1
C1
C4
LX
VIN
input capacitor values and lower ESR provide smaller
input voltage ripple and noise. The typical value for input
C3
capacitor is 2.2µF to 10µF.
The output capacitor with typical value 1µF to 10µF is re-
C2
COMP
FB
BP
quired to maintain the output voltage. The COMP capacitor with typical value 0.22µF to 1µF stabilizes the converter and controls the soft-start.
To ensure the voltage rating of input and output capaci-
BOTTOM
SIDE PAD
GN
PGN
D
D
R2
Via connection to PGND plane
tors is greater than the maximum input and output voltage.
Via connection to GND plane
It is recommended using the ceramic capacitors with X5R,
Via connection to LX plane
X7R, or better dielectrics for stable operation over the
Short and wide wires
entire operating temperature range.
Short wires
Figure 4. Layouy Guidelines
Layout Consideration
The correct PCB layout is important for all switching
converters. If the layout is not carefully done, the regulator
could show stability problems as well as EMI problems.
Figure. 4 illustrates the layout guidelines; the bold lines
indicate these traces that must be short and wide. The
capacitors, the diode, and the inductor should be as close
to the IC as possible. Keep traces short, direct, and wide.
Keep the LX node away from FB and COMP pins. The
trace from diode to the LEDs may be longer. The ground
return of input capacitor and output capacitor should be
tied close to PGND. Use the different ground planes for
signal ground and power ground to minimize the effects
of ground noise. Connect these ground nodes at any place
close to one of the ground pins of the IC. The resistor
from FB to GND should be close to the FB pin as possible.
The metal plate of the bottom must be soldered to the
PCB and connected to LX node and the LX plane on the
backside through several thermal vias to improve heat
dissipation.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
11
www.anpec.com.tw
APW7128
Package Information
DFN3x3-10
D
b
E
A
D2
A1
A3
L
E2
Pin 1
Corner
e
DFN3*3-10
S
Y
M
B
O
L
MIN.
MAX.
MIN.
MAX.
A
0.80
1.00
0.031
0.039
0.05
0.000
0.002
0.30
0.007
A1
MILLIMETERS
0.00
A3
b
0.20 REF
0.18
D
D2
2.20
2.70
0.087
1.75
0.055
0.50
0.012
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
0.106
0.118 BSC
0.50 BSC
0.30
0.012
0.118 BSC
3.00 BSC
1.40
e
L
0.008 REF
3.00 BSC
E
E2
INCHES
0.069
0.016 BSC
12
0.020
www.anpec.com.tw
APW7128
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
178.0±2.00 50 MIN.
DFN3x3-10
T1
C
d
D
12.4+2.00 13.0+0.50 1.5 MIN.
-0.00
-0.20
P0
P1
P2
D0
D1
4.0±0.10
8.0±0.10
2.0±0.10
1.5+0.10
-0.00
1.5 MIN.
W
E1
20.2 MIN. 12.0±0.30 1.75±0.10
T
A0
B0
F
5.5±0.05
K0
0.6+0.00
-0.40 3.35±0.20 3.35±0.20 1.30±0.20
(mm)
Devices Per Unit
Package Type
DFN3X3-10
Unit
Tape & Reel
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
Quantity
3000
13
www.anpec.com.tw
APW7128
Reflow Condition (IR/Convection or VPR Reflow)
tp
TP
Critical Zone
TL to TP
Ramp-up
Temperature
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25°C to Peak
Time
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classification Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Time 25°C to Peak Temperature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Notes: All temperatures refer to topside of the package. Measured on the body surface.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
14
www.anpec.com.tw
APW7128
Classification Reflow Profiles (Cont.)
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures
3
3
Volume mm
≥350
225 +0/-5°C
225 +0/-5°C
Volume mm
<350
240 +0/-5°C
225 +0/-5°C
Package Thickness
<2.5 mm
≥2.5 mm
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
3
3
Volume mm
Volume mm
Volume mm
<350
350-2000
>2000
<1.6 mm
260 +0°C*
260 +0°C*
260 +0°C*
1.6 mm – 2.5 mm
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 mm
250 +0°C*
245 +0°C*
245 +0°C*
* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated
classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL
level.
Package Thickness
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B,A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Description
245°C, 5 SEC
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1tr > 100mA
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Apr., 2008
15
www.anpec.com.tw