Dual-Core Intel® Xeon® Processor 5000 Series Datasheet May 2006 Document Number: 313079-001 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Dual-Core Intel® Xeon® Processor 5000 Series may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel, Pentium, Intel Xeon, Intel SpeedStep, Intel NetBurst, Intel Architecture, Intel Virtualization Technology, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2004-2006, Intel Corporation. 2 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Contents 1 Introduction................................................................................................................. 9 1.1 Terminology ..................................................................................................... 11 1.2 State of Data .................................................................................................... 12 1.3 References ....................................................................................................... 12 2 Electrical Specifications ............................................................................................... 15 2.1 Front Side Bus and GTLREF ................................................................................ 15 2.2 Power and Ground Lands.................................................................................... 15 2.3 Decoupling Guidelines ........................................................................................ 16 2.3.1 VCC Decoupling...................................................................................... 16 2.3.2 VTT Decoupling ...................................................................................... 16 2.3.3 Front Side Bus AGTL+ Decoupling ............................................................ 16 2.4 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking ....................................... 16 2.4.1 Front Side Bus Frequency Select Signals (BSEL[2:0]) .................................. 17 2.4.2 Phase Lock Loop (PLL) and Filter .............................................................. 18 2.5 Voltage Identification (VID) ................................................................................ 19 2.6 Reserved or Unused Signals................................................................................ 21 2.7 Front Side Bus Signal Groups .............................................................................. 21 2.8 GTL+ Asynchronous and AGTL+ Asynchronous Signals ........................................... 23 2.9 Test Access Port (TAP) Connection....................................................................... 23 2.10 Mixing Processors.............................................................................................. 24 2.11 Absolute Maximum and Minimum Ratings ............................................................. 24 2.12 Processor DC Specifications ................................................................................ 25 2.12.1 VCC Overshoot Specification .................................................................... 31 2.12.2 Die Voltage Validation ............................................................................. 32 3 Mechanical Specifications............................................................................................. 33 3.1 Package Mechanical Drawings ............................................................................. 33 3.2 Processor Component Keepout Zones................................................................... 37 3.3 Package Loading Specifications ........................................................................... 37 3.4 Package Handling Guidelines............................................................................... 38 3.5 Package Insertion Specifications.......................................................................... 38 3.6 Processor Mass Specifications ............................................................................. 38 3.7 Processor Materials............................................................................................ 38 3.8 Processor Markings............................................................................................ 39 3.9 Processor Land Coordinates ................................................................................ 40 4 Land Listing ............................................................................................................... 43 4.1 Dual-Core Intel Xeon Processor 5000 Series Land Assignments ............................... 43 4.1.1 Land Listing by Land Name ...................................................................... 43 4.1.2 Land Listing by Land Number ................................................................... 52 5 Signal Definitions ...................................................................................................... 61 5.1 Signal Definitions .............................................................................................. 61 6 Thermal Specifications ................................................................................................ 69 6.1 Package Thermal Specifications ........................................................................... 69 6.1.1 Thermal Specifications ............................................................................ 69 6.1.2 Thermal Metrology ................................................................................. 75 6.2 Processor Thermal Features ................................................................................ 77 6.2.1 Thermal Monitor..................................................................................... 77 6.2.2 On-Demand Mode .................................................................................. 77 6.2.3 PROCHOT# Signal .................................................................................. 78 6.2.4 FORCEPR# Signal................................................................................... 78 6.2.5 THERMTRIP# Signal ............................................................................... 78 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 3 6.2.6 6.2.7 Tcontrol and Fan Speed Reduction ............................................................79 Thermal Diode........................................................................................79 7 Features ....................................................................................................................83 7.1 Power-On Configuration Options ..........................................................................83 7.2 Clock Control and Low Power States .....................................................................83 7.2.1 Normal State .........................................................................................84 7.2.2 HALT or Enhanced Powerdown States ........................................................84 7.2.3 Stop-Grant State ....................................................................................85 7.2.4 Enhanced HALT Snoop or HALT Snoop State, Stop Grant Snoop State...........................................................................86 7.3 Enhanced Intel SpeedStep® Technology ...............................................................86 8 Boxed Processor Specifications .....................................................................................89 8.1 Introduction ......................................................................................................89 8.2 Mechanical Specifications ....................................................................................90 8.2.1 Boxed Processor Heat Sink Dimensions (CEK).............................................91 8.2.2 Boxed Processor Heat Sink Weight ............................................................99 8.2.3 Boxed Processor Retention Mechanism and Heat Sink Support (CEK) .........................................................................99 8.3 Electrical Requirements ......................................................................................99 8.3.1 Fan Power Supply (Active CEK).................................................................99 8.3.2 Boxed Processor Cooling Requirements.................................................... 100 8.4 Boxed Processor Contents................................................................................. 101 9 Debug Tools Specifications ......................................................................................... 103 9.1 Debug Port System Requirements ...................................................................... 103 9.2 Target System Implementation.......................................................................... 103 9.2.1 System Implementation......................................................................... 103 9.3 Logic Analyzer Interface (LAI) .......................................................................... 103 9.3.1 Mechanical Considerations ..................................................................... 104 9.3.2 Electrical Considerations ........................................................................ 104 Figures 2-1 2-2 2-3 2-4 2-5 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 6-1 6-2 6-3 6-4 7-1 4 Phase Lock Loop (PLL) Filter Requirements............................................................18 Dual-Core Intel® Xeon® Processor 5000 Series (1066 MHz) Load Current versus Time ...................................................................................27 Dual-Core Intel® Xeon® Processor 5000 Series (667 MHz) and Dual-Core Intel® Xeon® Processor 5063 (MV) Load Current versus Time..................28 VCC Static and Transient Tolerance Load Lines ......................................................29 VCC Overshoot Example Waveform ......................................................................32 Processor Package Assembly Sketch.....................................................................33 Processor Package Drawing (Sheet 1 of 3) ............................................................34 Processor Package Drawing (Sheet 2 of 3) ............................................................35 Processor Package Drawing (Sheet 3 of 3) ............................................................36 Dual-Core Intel Xeon Processor 5000 Series Top-side Markings................................39 Dual-Core Intel Xeon Processor 5063 (MV) Top-side Markings..................................39 Processor Land Coordinates, Top View ..................................................................40 Processor Land Coordinates, Bottom View .............................................................41 Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profiles A and B.....................................................................................71 Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profiles ...................73 Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile ......................................75 Case Temperature (TCASE) Measurement Location.................................................76 Stop Clock State Machine....................................................................................85 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 8-1 Boxed Dual-Core Intel Xeon Processor 5000 Series 1U Passive/2U Active Combination Heat Sink (With Removable Fan) ............................. 89 8-2 Boxed Dual-Core Intel Xeon Processor 5000 Series 2U Passive Heat Sink .................. 90 8-3 2U Passive Dual-Core Intel Xeon Processor 5000 Series Thermal Solution (Exploded View) ....................................................................... 90 8-4 Top Side Board Keep-Out Zones (Part 1) .............................................................. 92 8-5 Top Side Board Keep-Out Zones (Part 2) .............................................................. 93 8-6 Bottom Side Board Keep-Out Zones ..................................................................... 94 8-7 Board Mounting Hole Keep-Out Zones .................................................................. 95 8-8 Volumetric Height Keep-Ins ................................................................................ 96 8-9 4-Pin Fan Cable Connector (For Active CEK Heat Sink) ........................................... 97 8-10 4-Pin Base Board Fan Header (For Active CEK Heat Sink)........................................ 98 8-11 Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution ....................... 100 Tables 1-1 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 3-1 3-2 3-3 4-1 4-2 5-1 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 Dual-Core Intel® Xeon® Processor 5000 Series Features ....................................... 10 Core Frequency to FSB Multiplier Configuration ..................................................... 17 BSEL[2:0] Frequency Table ................................................................................ 17 Voltage Identification Definition........................................................................... 19 Loadline Selection Truth Table for LL_ID[1:0] ....................................................... 20 Market Segment Selection Truth Table for MS_ID[1:0] ........................................... 20 FSB Signal Groups............................................................................................. 22 Signal Description Table ..................................................................................... 23 Signal Reference Voltages .................................................................................. 23 Processor Absolute Maximum Ratings................................................................... 24 Voltage and Current Specifications....................................................................... 25 VCC Static and Transient Tolerance ..................................................................... 28 BSEL[2:0], VID[5:0] Signal Group DC Specifications .............................................. 30 AGTL+ Signal Group DC Specifications ................................................................. 30 PWRGOOD Input and TAP Signal Group DC Specifications ....................................... 30 GTL+ Asynchronous and AGTL+ Asynchronous Signal Group DC Specifications .............................................................................................. 31 VTTPWRGD DC Specifications.............................................................................. 31 VCC Overshoot Specifications.............................................................................. 32 Package Loading Specifications ........................................................................... 37 Package Handling Guidelines............................................................................... 38 Processor Materials............................................................................................ 38 Land Listing by Land Name ................................................................................. 43 Land Listing by Land Number .............................................................................. 52 Signal Definitions .............................................................................................. 61 Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Specifications ........ 70 Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile A Table ....... 71 Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile B Table ....... 72 Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Specifications .......... 72 Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profile A Table ......... 73 Dual-Core Intel Xeon 5000 Series (667 MHz) Thermal Profile B Table ....................... 74 Dual-Core Intel Xeon Processor 5063 (MV) Thermal Specifications ........................... 74 Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile Table ............................. 75 Thermal Diode Parameters using Diode Model ....................................................... 80 Thermal Diode Interface..................................................................................... 81 Thermal Diode Parameters using Transistor Model ................................................. 81 Parameters for Tdiode Correction Factor ............................................................... 81 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 5 7-1 8-1 8-2 8-3 6 Power-On Configuration Option Lands...................................................................83 PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution................ 100 Fan Specifications for 4-pin Active CEK Thermal Solution....................................... 100 Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution........................ 100 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Revision History Revision 001 Description Initial release Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Date May 2006 7 Features Dual-Core processor Available at 3.73 GHz processor speed Includes 16-KB Level 1 data cache per core (2 x 16-KB) Includes 12-KB Level 1 trace cache per core (2 x 12-KB) 2-MB Advanced Transfer Cache per core (2 x 2-MB, On-die, full speed Level 2 (L2) Cache) with 8way associativity and Error Correcting Code (ECC) 667/1066 MHz front side bus 65 nm process technology Dual processing (DP) server support Intel® NetBurst® microarchitecture Hyper-Threading Technology allowing up to 8 threads per platform Hardware support for multi-threaded applications Intel® Virtualization Technology Intel® Extended Memory 64 Technology (Intel® EM64T) Execute Disable Bit (XD Bit) Enables system support of up to 64 GB of physical memory Enhanced branch prediction Enhanced floating-point and multimedia unit for enhanced video, audio, encryption, and 3D performance Advanced Dynamic Execution Very deep out-of-order execution System Management mode Machine Check Architecture (MCA) Interfaces to Memory Controller Hub The Dual-Core Intel Xeon Processor 5000 series are designed for high-performance dual-processor server and workstation applications. Based on the Intel NetBurst® microarchitecture and HyperThreading Technology (HT Technology), it is binary compatible with previous Intel® Architecture (IA-32) processors. The Dual-Core Intel Xeon Processor 5000 series are scalable to two processors in a multiprocessor system, providing exceptional performance for applications running on advanced operating systems such as Windows* XP, Windows Server 2003, Linux*, and UNIX*. The Dual-Core Intel Xeon Processor 5000 series deliver compute power at unparalleled value and flexibility for powerful servers, internet infrastructure, and departmental server applications. The Intel NetBurst micro-architecture, Intel Virtualization Technology and Hyper-Threading Technology deliver outstanding performance and headroom for peak internet server workloads, resulting in faster response times, support for more users, and improved scalability. § 8 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Introduction 1 Introduction The Dual-Core Intel® Xeon® Processor 5000 series are Intel dual core products for dual processor (DP) servers and workstations. The Dual-Core Intel Xeon Processor 5000 series are 64-bit server/workstation processors utilizing two physical Intel NetBurst® microarchitecture cores in one package. The Dual-Core Intel Xeon Processor 5000 series include enhancements to the Intel NetBurst microarchitecture while maintaining the tradition of compatibility with IA-32 software. Some key features include Hyper Pipelined Technology and an Execution Trace Cache. Hyper Pipelined Technology includes a multi-stage pipeline depth, allowing the processor to reach higher core frequencies. The Dual-Core Intel Xeon Processor 5000 series contain a total of 4 MB of L2 Advanced Transfer Cache, 2 MB per core. The 1066 MHz Front Side Bus (FSB) is a quad-pumped bus running off a 266 MHz system clock making 8.5 GBytes per second data transfer rates possible. The 667 MHz Front Side Bus (FSB) is a quad-pumped bus running off a 166 MHz system clock making 5.3 GBytes per second data transfer rates possible. In addition, enhanced thermal and power management capabilities are implemented including Thermal Monitor (TM1) and Enhanced Intel SpeedStep® technology. These technologies are targeted for dual processor (DP) systems in enterprise environments. TM1 provides efficient and effective cooling in high temperature situations. Enhanced Intel SpeedStep technology provides power management capabilities to servers and workstations. The Dual-Core Intel Xeon Processor 5000 series also include Hyper-Threading Technology (HT Technology) resulting in four logical processors per package. This feature allows multi-threaded applications to execute more than one thread per physical processor core, increasing the throughput of applications and enabling improved scaling for server and workstation workloads. More information on HyperThreading Technology can be found at http://www.intel.com/technology/hyperthread. Other features within the Intel NetBurst microarchitecture include Advanced Dynamic Execution, Advanced Transfer Cache, enhanced floating point and multi-media units, and Streaming SIMD Extensions 3 (SSE3). Advanced Dynamic Execution improves speculative execution and branch prediction internal to the processor. The Advanced Transfer Cache in each core is a 2 MB level 2 (L2) cache. The floating point and multimedia units include 128-bit wide registers and a separate register for data movement. Streaming SIMD3 (SSE3) instructions provide highly efficient double-precision floating point, SIMD integer, and memory management operations. Other processor enhancements include core frequency improvements and microarchitectural improvements. The Dual-Core Intel Xeon Processor 5000 series support Intel® Extended Memory 64 Technology (Intel® EM64T) as an enhancement to Intel's IA-32 architecture. This enhancement allows the processor to execute operating systems and applications written to take advantage of the 64-bit extension technology. Further details on Intel Extended Memory 64 Technology and its programming model can be found in the 64-bit Extension Technology Software Developer's Guide at http://developer.intel.com/ technology/64bitextensions/. In addition, the Dual-Core Intel Xeon Processor 5000 series support the Execute Disable Bit functionality. When used in conjunction with a supporting operating system, Execute Disable allows memory to be marked as executable or non executable. This feature can prevent some classes of viruses that exploit buffer overrun vulnerabilities Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 9 Introduction and can thus help improve the overall security of the system. For further information on Execute Disable Bit functionality see http://www.intel.com/cd/ids/developer/asmo-na/ eng/149308.htm. The Dual-Core Intel Xeon Processor 5000 series support Intel® Virtualization Technology, virtualization within the processor. Intel Virtualization Technology is a set of hardware enhancements that can improve virtualization solutions. Intel Virtualization Technology is used in conjunction with Virtual Machine Monitor software enabling multiple, independent software environments inside a single platform. More information on Intel Virtualization Technology can be found at http://www.intel.com/ technology/computing/vptech/index.htm. The Dual-Core Intel Xeon Processor 5000 series are intended for high performance workstation and server systems. The Dual-Core Intel Xeon Processor 5063 is a lower power version of the Dual-Core Intel Xeon Processor 5000 series. The Dual-Core Intel Xeon Processor 5000 series support a new Dual Independent Bus (DIB) architecture with one processor socket on each bus, up to two processor sockets in a system. The DIB architecture provides improved performance by allowing increased FSB speeds and bandwidth. The Dual-Core Intel Xeon Processor 5000 series will be packaged in an FCLGA6 Land Grid Array package with 771 lands for improved power delivery. It utilizes a surface mount LGA771 socket that supports Direct Socket Loading (DSL). Table 1-1. Dual-Core Intel® Xeon® Processor 5000 Series Features # Cores Per Package L2 Advanced Transfer Cache1 Hyper-Threading Technology Front Side Bus Frequency Package 2 2 MB per core 4 MB total Yes 667 MHz 1066 MHz FC-LGA6 771 Lands Notes: 1. Total accessible size of L2 caches may vary by one cache line pair (128 bytes) per core, depending on usage and operating environment. The Dual-Core Intel Xeon Processor 5000 series-based platforms implement independent core voltage (VCC) power planes for each processor. FSB termination voltage (VTT) is shared and must connect to all FSB agents. The processor core voltage utilizes power delivery guidelines specified by VRM/EVRD 11.0 and its associated load line. Refer to the appropriate platform design guidelines for implementation details. The Dual-Core Intel Xeon Processor 5000 series support a 1066/667 MHz Front Side Bus frequency. The FSB utilizes a split-transaction, deferred reply protocol and SourceSynchronous Transfer (SST) of address and data to improve performance. The processor transfers data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a ‘double-clocked’ or a 2X address bus. In addition, the Request Phase completes in one clock cycle. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 8.5 GBytes/second. (5.3 GBytes/ second for Dual-Core Intel Xeon Processor 5000 series 667) Finally, the FSB is also used to deliver interrupts. Signals on the FSB use Assisted Gunning Transceiver Logic (AGTL+) level voltages. Section 2.1 contains the electrical specifications of the FSB while implementation details are fully described in the appropriate platform design guidelines (refer to Section 1.3). 10 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Introduction 1.1 Terminology A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the asserted state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A’, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level). Commonly used terms are explained here for clarification: • Dual-Core Intel® Xeon® Processor 5000 Series – Processor in the FC-LGA6 package with two physical processor cores. Dual-Core Intel Xeon processor 5000 series refers to the “Full Power” Dual-Core Intel Xeon Processor 5000 series with 1066 MHz Front Side Bus. For this document, “processor” is used as the generic term for the “Dual-Core Intel® Xeon® Processor 5000 series”. • Dual-Core Intel® Xeon® Processor 5063 (MV) – This is a lower power version of the Dual-Core Intel Xeon Processor 5000 series. Dual-Core Intel Xeon Processor 5063 (MV) refers to the “Mid Power” Dual-Core Intel Xeon Processor 5000 series. Unless otherwise noted, the terms “Dual-Core Intel Xeon 5000 series” and “processor” also refer to the “Dual-Core Intel Xeon Processor 5063”. • FC-LGA6 (Flip Chip Land Grid Array) Package – The Dual-Core Intel Xeon Processor 5000 series package is a Land Grid Array, consisting of a processor core mounted on a pinless substrate with 771 lands, and includes an integrated heat spreader (IHS). • FSB (Front Side Bus) – The electrical interface that connects the processor to the chipset. Also referred to as the processor front side bus or the front side bus. All memory and I/O transactions as well as interrupt messages pass between the processor and chipset over the FSB. • Functional Operation – Refers to the normal operating conditions in which all processor specifications, including DC, AC, FSB, signal quality, mechanical and thermal are satisfied. • Storage Conditions – Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased or receive any clocks. Upon exposure to “free air” (that is, unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material. • Priority Agent – The priority agent is the host bridge to the processor and is typically known as the chipset. • Symmetric Agent – A symmetric agent is a processor which shares the same I/O subsystem and memory array, and runs the same operating system as another processor in a system. Systems using symmetric agents are known as Symmetric Multiprocessing (SMP) systems. • Integrated Heat Spreader (IHS) – A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface. • Enhanced Intel SpeedStep Technology – The next generation implementation of Intel SpeedStep technology which extends power management capabilities of servers and workstations. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 11 Introduction • Thermal Design Power – Processor thermal solutions should be designed to meet this target. It is the highest expected sustainable power while running known power intensive real applications. TDP is not the maximum power that the processor can dissipate. • LGA771 socket – The Dual-Core Intel Xeon Processor 5000 series interfaces to the baseboard through this surface mount, 771 Land socket. See the LGA771 Socket Design Guidelines for details regarding this socket. • Processor – A single package that contains one or more complete execution cores. • Processor core – Processor core die with integrated L2 cache. All AC timing and signal integrity specifications are at the pads of the processor core. • Intel® Virtualization Technology – Processor virtualization which when used in conjunction with Virtual Machine Monitor software enables multiple, robust independent software environments inside a single platform. • VRM (Voltage Regulator Module) – DC-DC converter built onto a module that interfaces with a card edge socket and supplies the correct voltage and current to the processor based on the logic state of the processor VID bits. • EVRD (Enterprise Voltage Regulator Down) – DC-DC converter integrated onto the system board that provides the correct voltage and current to the processor based on the logic state of the processor VID bits. • VCC – The processor core power supply. • VSS – The processor ground. • VTT – FSB termination voltage. 1.2 State of Data The data contained within this document is subject to change. It is the most accurate information available by the publication date of this document and is based on final silicon characterization. All specifications in this version of the Dual-Core Intel® Xeon® Processor 5000 Series Datasheet can be used for platform design purposes (layout studies, characterizing thermal capabilities, and so forth). 1.3 References Material and concepts available in the following documents may be beneficial when reading this document: Document Intel Order Number AP-485, Intel® Processor Identification and the CPUID Instruction 241618 IA-32 Intel® Architecture Software Developer's Manual • Volume 1: Basic Architecture 253665 253666 253667 253668 253669 • Volume 2A: Instruction Set Reference, A-M • Volume 2B: Instruction Set Reference, N-Z • Volume 3A: System Programming Guide • Volume 3B: System Programming Guide 64-bit Extension Technology Software Developer's Guide 300834 300835 • Volume 1 • Volume 2 IA-32 Intel® Architecture Optimization Reference Manual 12 248966 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Introduction Document Dual-Core Intel ® Xeon ® Intel Order Number Processor 5000 Series Specifications Update 313065 EPS12V Power Supply Design Guide: A Server system Infrastructure (SSI) Specification for Entry Chassis Power Supplies http:// www.ssiforum.org Entry-Level Electronics-Bay Specifications: A Server System Infrastructure (SSI) Specification for Entry Pedestal Servers and Workstations http:// www.ssiforum.org Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines 313062 Dual-Core Intel® Xeon® Processor 5000 Series Boundary Scan Descriptive Language (BSDL) Model 313064 Notes: Contact your Intel representative for the latest revision of those documents. § Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 13 Introduction 14 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications 2 Electrical Specifications 2.1 Front Side Bus and GTLREF Most Dual-Core Intel Xeon Processor 5000 series FSB signals use Assisted Gunning Transceiver Logic (AGTL+) signaling technology. This technology provides improved noise margins and reduced ringing through low voltage swings and controlled edge rates. AGTL+ buffers are open-drain and require pull-up resistors to provide the high logic level and termination. AGTL+ output buffers differ from GTL+ buffers with the addition of an active PMOS pull-up transistor to “assist” the pull-up resistors during the first clock of a low-to-high voltage transition. Platforms implement a termination voltage level for AGTL+ signals defined as VTT. Because platforms implement separate power planes for each processor (and chipset), separate VCC and VTT supplies are necessary. This configuration allows for improved noise tolerance as processor frequency increases. Speed enhancements to data and address buses have made signal integrity considerations and platform design methods even more critical than with previous processor families. The AGTL+ inputs require reference voltages (GTLREF), which are used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the baseboard. GTLREF is a generic name for GTLREF_DATA_C[1:0], the reference voltages for the 4X data bus and GTLREF_ADD_C[1:0], the reference voltages for the 2X address bus and common clock signals. Refer to the applicable platform design guidelines for details. Termination resistors (RTT) for AGTL+ signals are provided on the processor silicon and are terminated to VTT. The on-die termination resistors are always enabled on the Dual-Core Intel Xeon Processor 5000 series to control reflections on the transmission line. Intel chipsets also provide on-die termination, thus eliminating the need to terminate the bus on the baseboard for most AGTL+ signals. Some FSB signals do not include on-die termination (RTT) and must be terminated on the baseboard. See Table 2-7 for details regarding these signals. The AGTL+ bus depends on incident wave switching. Therefore, timing calculations for AGTL+ signals are based on flight time as opposed to capacitive deratings. Analog signal simulation of the FSB, including trace lengths, is highly recommended when designing a system. Contact your Intel Field Representative to obtain the processor signal integrity models, which includes buffer and package models. 2.2 Power and Ground Lands For clean on-chip processor core power distribution, the processor has 223 VCC (power) and 271 VSS (ground) inputs. All Vcc lands must be connected to the processor power plane, while all VSS lands must be connected to the system ground plane. The processor VCC lands must be supplied with the voltage determined by the processor Voltage IDentification (VID) signals. See Table 2-3 for VID definitions. Twenty two lands are specified as VTT, which provide termination for the FSB and power to the I/O buffers. The platform must implement a separate supply for these lands which meets the VTT specifications outlined in Table 2-10. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 15 Electrical Specifications 2.3 Decoupling Guidelines Due to its large number of transistors and high internal clock speeds, the Dual-Core Intel Xeon Processor 5000 series are capable of generating large average current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage (CBULK), such as electrolytic capacitors, supply current during longer lasting changes in current demand by the component, such as coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. Care must be taken in the baseboard design to ensure that the voltage provided to the processor remains within the specifications listed in Table 2-10. Failure to do so can result in timing violations or reduced lifetime of the component. For further information and guidelines, refer to the appropriate platform design guidelines. 2.3.1 VCC Decoupling Vcc regulator solutions need to provide bulk capacitance with a low Effective Series Resistance (ESR), and the baseboard designer must assure a low interconnect resistance from the regulator (EVRD or VRM pins) to the LGA771 socket. Bulk decoupling must be provided on the baseboard to handle large current swings. The power delivery solution must insure the voltage and current specifications are met (as defined in Table 2-10). For further information regarding power delivery, decoupling and layout guidelines, refer to the appropriate platform design guidelines. 2.3.2 VTT Decoupling Bulk decoupling must be provided on the baseboard. Decoupling solutions must be sized to meet the expected load. To insure optimal performance, various factors associated with the power delivery solution must be considered including regulator type, power plane and trace sizing, and component placement. A conservative decoupling solution consists of a combination of low ESR bulk capacitors and high frequency ceramic capacitors. For further information regarding power delivery, decoupling and layout guidelines, refer to the appropriate platform design guidelines. 2.3.3 Front Side Bus AGTL+ Decoupling The Dual-Core Intel Xeon Processor 5000 series integrate signal termination on the die, as well as a portion of the required high frequency decoupling capacitance on the processor package. However, additional high frequency capacitance must be added to the baseboard to properly decouple the return currents from the FSB. Bulk decoupling must also be provided by the baseboard for proper AGTL+ bus operation. Decoupling guidelines are described in the appropriate platform design guidelines. 2.4 Front Side Bus Clock (BCLK[1:0]) and Processor Clocking BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous processor generations, the Dual-Core Intel Xeon Processor 5000 series core frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier is set during manufacturing. The default setting is for the maximum speed of the processor. It is possible to override this setting using software (see the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A &3B). This permits operation at lower frequencies than the processor’s tested frequency. 16 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications The processor core frequency is configured during reset by using values stored internally during manufacturing. The stored value sets the highest bus fraction at which the particular processor can operate. If lower speeds are desired, the appropriate ratio can be configured via the IA32_FLEX_BRVID_SEL MSR. For details of operation at core frequencies lower than the maximum rated processor speed, refer to the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A &3B. Clock multiplying within the processor is provided by the internal phase locked loop (PLL), which requires a constant frequency BCLK[1:0] input, with exceptions for spread spectrum clocking. The Dual-Core Intel Xeon Processor 5000 series utilize differential clocks. Table 2-1 contains processor core frequency to FSB multipliers and their corresponding core frequencies. Table 2-1. Core Frequency to FSB Multiplier Configuration Core Frequency to FSB Multiplier Core Frequency with 166 MHz FSB Clock 1/16 2.67 GHz 5030 1, 2, 3, 4 1/18 3 GHz 5050 1, 2, 3, 4 Core Frequency to FSB Multiplier Core Frequency with 266 MHz FSB Clock 1/12 3.20 GHz 5063 1, 2, 3, 4 1/12 3.20 GHz 5060 1, 2, 3, 5 1/14 3.73 GHz 5080 1, 2, 3 Processor Number Notes Notes Notes: 1. Individual processors operate only at or below the frequency marked on the package. 2. Listed frequencies are not necessarily committed production frequencies. 3. For valid processor core frequencies, refer to the Dual-Core Intel® Xeon® Processor 5000 series Specification Update. 4. Mid-voltage (MV) processors only. 5. The lowest bus ratio supported by the Dual-Core Intel Xeon Processor 5000 series is 1/12. 2.4.1 Front Side Bus Frequency Select Signals (BSEL[2:0]) Upon power up, the FSB frequency is set to the maximum supported by the individual processor. BSEL[2:0] are open drain outputs which must be pulled up to VTT, and are used to select the FSB frequency. Please refer to Table 2-12 for DC specifications. Table 2-2 defines the possible combinations of the signals and the frequency associated with each combination. The frequency is determined by the processor(s), chipset, and clock synthesizer. All FSB agents must operate at the same core and FSB frequency. See the appropriate platform design guidelines for further details. Table 2-2. BSEL[2:0] Frequency Table BSEL2 BSEL1 BSEL0 Bus Clock Frequency 0 0 0 266.67 MHz 0 0 1 Reserved 0 1 0 Reserved 0 1 1 166.67 MHz 1 0 0 Reserved 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 17 Electrical Specifications 2.4.2 Phase Lock Loop (PLL) and Filter VCCA and VCCIOPLL are power sources required by the PLL clock generators on the DualCore Intel Xeon Processor 5000 series. Since these PLLs are analog in nature, they require low noise power supplies for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as well as internal core timings (that is, maximum frequency). To prevent this degradation, these supplies must be low pass filtered from VTT. The AC low-pass requirements are as follows: • < 0.2 dB gain in pass band • < 0.5 dB attenuation in pass band < 1 Hz • > 34 dB attenuation from 1 MHz to 66 MHz • > 28 dB attenuation from 66 MHz to core frequency The filter requirements are illustrated in Figure 2-1. For recommendations on implementing the filter, refer to the appropriate platform design guidelines. Figure 2-1. Phase Lock Loop (PLL) Filter Requirements 0.2 dB 0 dB -0.5 dB forbidden zone -28 dB forbidden zone -34 dB DC passband 1 Hz fpeak 1 MHz 66 MHz fcore high frequency band CS00141 Notes: 1. Diagram not to scale. 2. No specifications for frequencies beyond fcore (core frequency). 3. fpeak, if existent, should be less than 0.05 MHz. 4. fcore represents the maximum core frequency supported by the platform. 18 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications 2.5 Voltage Identification (VID) The Voltage Identification (VID) specification for the Dual-Core Intel Xeon Processor 5000 series set by the VID signals is the reference VR output voltage to be delivered to the processor Vcc pins. VID signals are open drain outputs, which must be pulled up to VTT. Please refer to Table 2-12 for the DC specifications for these signals. A minimum voltage is provided in Table 2-10 and changes with frequency. This allows processors running at a higher frequency to have a relaxed minimum voltage specification. The specifications have been set such that one voltage regulator can operate with all supported frequencies. Individual processor VID values may be calibrated during manufacturing such that two devices at the same core frequency may have different default VID settings. This is reflected by the VID range values provided in Table 2-3. The Dual-Core Intel Xeon Processor 5000 series use six voltage identification signals, VID[5:0], to support automatic selection of power supply voltages. The processor uses the VTTPWRGD input to determine that the supply voltage for VID[5:0] is stable and within specification.Table 2-3 specifies the voltage level corresponding to the state of VID[5:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low voltage level. The definition provided in Table 2-3 is not related in any way to previous Intel® Xeon® processors or voltage regulator designs. If the processor socket is empty (VID[5:0] = x11111), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself. The Dual-Core Intel Xeon Processor 5000 series provide the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (VCC). This will represent a DC shift in the load line. It should be noted that a low-to-high or highto-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. Transitions above the specified VID are not permitted. Table 2-10 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 2-11 and Figure 2-4. The VRM or EVRD utilized must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 2-10 and Table 2-11. Power source characteristics must be guaranteed to be stable whenever the supply to the voltage regulator is stable. Table 2-3. Voltage Identification Definition (Sheet 1 of 2) VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX 0 1 0 1 0 0 0.8375 1 1 0 1 0 0 1.2125 0 1 0 0 1 1 0.8500 1 1 0 0 1 1 1.2250 0 1 0 0 1 0 0.8625 1 1 0 0 1 0 1.2375 0 1 0 0 0 1 0.8750 1 1 0 0 0 1 1.2500 0 1 0 0 0 0 0.8875 1 1 0 0 0 0 1.2625 0 0 1 1 1 1 0.9000 1 0 1 1 1 1 1.2750 0 0 1 1 1 0 0.9125 1 0 1 1 1 0 1.2875 0 0 1 1 0 1 0.9250 1 0 1 1 0 1 1.3000 0 0 1 1 0 0 0.9375 1 0 1 1 0 0 1.3125 0 0 1 0 1 1 0.9500 1 0 1 0 1 1 1.3250 0 0 1 0 1 0 0.9625 1 0 1 0 1 0 1.3375 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 19 Electrical Specifications Table 2-3. Voltage Identification Definition (Sheet 2 of 2) VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX VID4 VID3 VID2 VID1 VID0 VID5 VCC_MAX 0 0 1 0 0 1 0.9750 1 0 1 0 0 1 1.3500 0 0 1 0 0 0 0.9875 1 0 1 0 0 0 1.3625 0 0 0 1 1 1 1.0000 1 0 0 1 1 1 1.3750 0 0 0 1 1 0 1.0125 1 0 0 1 1 0 1.3875 0 0 0 1 0 1 1.0250 1 0 0 1 0 1 1.4000 0 0 0 1 0 0 1.0375 1 0 0 1 0 0 1.4125 0 0 0 0 1 1 1.0500 1 0 0 0 1 1 1.4250 0 0 0 0 1 0 1.0625 1 0 0 0 1 0 1.4375 0 0 0 0 0 1 1.0750 1 0 0 0 0 1 1.4500 0 0 0 0 0 0 1.0875 1 0 0 0 0 0 1.4625 1 1 1 1 1 1 1 OFF 0 1 1 1 1 1 1.4750 1 1 1 1 1 0 OFF1 0 1 1 1 1 0 1.4875 1 1 1 1 0 1 1.1000 0 1 1 1 0 1 1.5000 1 1 1 1 0 0 1.1125 0 1 1 1 0 0 1.5125 1 1 1 0 1 1 1.1250 0 1 1 0 1 1 1.5250 1 1 1 0 1 0 1.1375 0 1 1 0 1 0 1.5375 1 1 1 0 0 1 1.1500 0 1 1 0 0 1 1.5500 1 1 1 0 0 0 1.1625 0 1 1 0 0 0 1.5625 1 1 0 1 1 1 1.1750 0 1 0 1 1 1 1.5750 1 1 0 1 1 0 1.1875 0 1 0 1 1 0 1.5875 1 1 0 1 0 1 1.2000 0 1 0 1 0 1 1.6000 Notes: 1. When this VID pattern is observed, the voltage regulator output should be disabled. 2. Shading denotes the expected VID range of the Dual-Core Intel Xeon Processor 5000 series [1.0750 V 1.3500 V]. Table 2-4. Loadline Selection Truth Table for LL_ID[1:0] LL_ID1 LL_ID0 Description 0 0 Reserved 0 1 Dual-Core Intel Xeon Processor 5000 Series 1 0 Reserved 1 1 Reserved Note: 1. The LL_ID[1:0] signals are used to select the correct loadline slope for the processor. 2. These signals are not connected to the processor die. 3. A logic 0 is achieved by pulling the signal to ground on the package. 4. A logic 1 is achieved by leaving the signal as a no connect on the package. Table 2-5. 20 Market Segment Selection Truth Table for MS_ID[1:0] MS_ID1 MS_ID0 Description 0 0 Dual-Core Intel Xeon Processor 5000 Series 0 1 Reserved 1 0 Reserved 1 1 Reserved Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications Note: 1. The MS_ID[1:0] signals are provided to indicate the Market Segment for the processor and may be used for future processor compatibility or for keying. System management software may utilize these signals to identify the processor installed. 2. These signals are not connected to the processor die. 3. A logic 0 is achieved by pulling the signal to ground on the package. 4. A logic 1 is achieved by leaving the signal as a no connect on the package. 2.6 Reserved or Unused Signals All Reserved signals must remain unconnected. Connection of these signals to VCC, VTT, VSS, or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4, “Land Listing” for a land listing of the processor and the location of all Reserved signals. For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active high inputs, should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected; however, this may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. Resistor values should be within ± 20% of the impedance of the baseboard trace for FSB signals. For unused AGTL+ input or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (RTT). TAP, Asynchronous GTL+ inputs, and Asynchronous GTL+ outputs do not include on-die termination. Inputs and utilized outputs must be terminated on the baseboard. Unused outputs may be terminated on the baseboard or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. Signal termination for these signal types is discussed in the appropriate platform design guidelines. The TESTHI signals must be tied to the processor VTT using a matched resistor, where a matched resistor has a resistance value within +/-20% of the impedance of the board transmission line traces. For example, if the trace impedance is 50 Ω, then a value between 40 Ω and 60 Ω is required. The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group: • TESTHI[1:0] - can be grouped together with a single pull-up to VTT • TESTHI[7:2] - can be grouped together with a single pull-up to VTT • TESTHI8 – cannot be grouped with other TESTHI signals • TESTHI9 – cannot be grouped with other TESTHI signals • TESTHI10 – cannot be grouped with other TESTHI signals • TESTHI11 – cannot be grouped with other TESTHI signals 2.7 Front Side Bus Signal Groups The FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group as well as the AGTL+ I/O group when driving. AGTL+ asynchronous outputs can become active anytime and include an active PMOS pull-up transistor to assist the during the first clock of a low-to-high voltage transition. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 21 Electrical Specifications With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals whose timings are specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, and so forth) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as rising edge of BCLK0. Asynchronous signals are still present (A20M#, IGNNE#, and so forth) and can become active at any time during the clock cycle. Table 2-6 identifies which signals are common clock, source synchronous and asynchronous. Table 2-6. FSB Signal Groups Signal Group Signals1 Type AGTL+ Common Clock Input Synchronous to BCLK[1:0] BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY# AGTL+ Common Clock I/O Synchronous to BCLK[1:0] ADS#, AP[1:0]#, BINIT#2, BNR#2, BPM[5:0]#, BR[1:0]#, DBSY#, DP[3:0]#, DRDY#, HIT#2, HITM#2, LOCK#, MCERR#2 AGTL+ Source Synchronous I/O Synchronous to assoc. strobe Signals Associated Strobe REQ[4:0]#,A[16:3] # ADSTB0# A[35:17]# ADSTB1# D[15:0]#, DBI0# DSTBP0#, DSTBN0# D[31:16]#, DBI1# DSTBP1#, DSTBN1# D[47:32]#, DBI2# DSTBP2#, DSTBN2# D[63:48]#, DBI3# DSTBP3#, DSTBN3# AGTL+ Strobes I/O Synchronous to BCLK[1:0] ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]# AGTL+ Asynchronous Output Asynchronous FERR#/PBE#, IERR#, PROCHOT# GTL+ Asynchronous Input Asynchronous A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/ INTR, LINT1/NMI, SMI#, STPCLK# GTL+ Asynchronous Output Asynchronous THERMTRIP# FSB Clock Clock BCLK1, BCLK0 TAP Input Synchronous to TCK TCK, TDI, TMS TRST# TAP Output Synchronous to TCK TDO Power/Other Power/Other BSEL[2:0], COMP[7:0], GTLREF_ADD_C[1:0], GTLREF_DATA_C[1:0], LL_ID[1:0], MS_ID[1:0], PWRGOOD, Reserved, SKTOCC#, TEST_BUS, TESTHI[11:0], THERMDA, THEMRDA2, THERMDC, THERMDC2, VCC, VCCA, VCCIOPLL, VCC_DIE_SENSE, VCC_DIE_SENSE2, VID[5:0], VID_SELECT, VSS_DIE_SENSE, VSS_DIE_SENSE2, VSS, VSSA, VTT, VTTOUT, VTTPWRGD Notes: 1. Refer to Section 5 for signal descriptions. 2. These signals may be driven simultaneously by multiple agents (Wired-OR). 22 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications Table 2-7 outlines the signals which include on-die termination (RTT). Open drain signals are also included. Table 2-8 provides signal reference voltages. Table 2-7. Signal Description Table Signals with RTT Signals with no RTT A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BNR#, BPRI#, COMP[7:4], D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, FORCEPR#, HIT#, HITM#, LOCK#, MCERR#, PROCHOT#, REQ[4:0]#, RS[2:0]#, RSP#, TCK2, TDI2, TEST_BUS, TMS2, TRDY#, TRST#2 A20M#, BCLK[1:0], BPM[5:0]#, BR[1:0]#, BSEL[2:0], COMP[3:0], FERR#/PBE#, GTLREF_ADD_C[1:0], GTLREF_DATA_C[1:0], IERR#, IGNNE#, INIT#, LINT0/ INTR, LINT1/NMI, LL_ID[1:0], MS_ID[1:0], PWRGOOD, RESET#, SKTOCC#, SMI#, STPCLK#, TDO, TESTHI[11:0], THERMDA, THERMDA2, THERMDC, THERMDC2, THERMTRIP#, VCC_DIE_SENSE, VCC_DIE_SENSE2, VID[5:0], VID_SELECT, VSS_DIE_SENSE, VSS_DIE_SENSE2, VTTPWRGD Open Drain Signals1 BPM[5:0]#, BR0#, FERR#/PBE#, IERR#, PROCHOT#, TDO, THERMTRIP# Notes: 1. Signals that do not have RTT, nor are actively driven to their high voltage level. 2. The on-die termination for these signals is not RTT. TCK, TDI, and TMS have an approximately 150 KΩ pullup to VTT. Table 2-8. Signal Reference Voltages GTLREF VTT / 2 A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BNR#, BPM[5:0]#, BPRI#, BR[1:0]#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, FORCEPR#2, HIT#, HITM#, IERR#, LINT0/INTR, LINT1/NMI, LOCK#, MCERR#, RESET#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY# A20M#, IGNNE#, INIT#, PWRGOOD1, SMI#, STPCLK#, TCK1, TDI1, TMS1, TRST#1, VTTPWRGD Notes: 1. These signals also have hysteresis added to the reference voltage. See Table 2-14 for more information. 2. Use Table 2-15 for signal FORCEPR# specifications. 2.8 GTL+ Asynchronous and AGTL+ Asynchronous Signals Input signals such as A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI# and STPCLK# utilize GTL+ input buffers. Legacy output FERR#/PBE# and other non-AGTL+ signals IERR#, THERMTRIP# and PROCHOT# utilize GTL+ output buffers. All of these asynchronous GTL+ signals follow the same DC requirements as AGTL+ signals; however, the outputs are not driven high (during the electrical 0-to-1 transition) by the processor. FERR#/PBE#, IERR#, and IGNNE# have now been defined as AGTL+ asynchronous signals as they include an active p-MOS device. Asynchronous GTL+ and asynchronous AGTL+ signals do not have setup or hold time specifications in relation to BCLK[1:0]; however, all of the asynchronous GTL+ and asynchronous AGTL+ signals are required to be asserted/deasserted for at least six BCLKs in order for the processor to recognize them. See Table 2-15 for the DC specifications for the asynchronous GTL+ signal groups. 2.9 Test Access Port (TAP) Connection Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is recommended that the processor(s) be first in the TAP chain and followed by any other components within the system. A translation buffer should be used to Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 23 Electrical Specifications connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage. Similar considerations must be made for TCK, TMS, and TRST#. Two copies of each signal may be required with each driving a different voltage level. 2.10 Mixing Processors Intel supports and validates dual processor configurations only in which both processors operate with the same FSB frequency, core frequency, and have the same internal cache sizes. Mixing components operating at different internal clock frequencies is not supported and will not be validated by Intel [Note: Processors within a system must operate at the same frequency per bits [15:8] of the IA32_FLEX_BRVID_SEL MSR; however this does not apply to frequency transitions initiated due to thermal events, Enhanced HALT, Enhanced Intel SpeedStep® Technology transitions, or assertion of the FORCEPR# signal (See Chapter 6, “Thermal Specifications”)]. Low voltage (LV), mid-voltage (MV) and full-power 64-bit Intel Xeon processors should not be mixed within a system. Not all operating systems can support dual processors with mixed frequencies. Intel does not support or validate operation of processors with different cache sizes. Mixing processors of different steppings but the same model (as per CPUID instruction) is supported. Details regarding the CPUID instruction are provided in the AP-485 Intel® Processor Identification and the CPUID Instruction application note. 2.11 Absolute Maximum and Minimum Ratings Table 2-9 specifies absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected. At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits. At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded. Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields . Table 2-9. Processor Absolute Maximum Ratings Symbol 24 Parameter Min Max Unit VCC Core voltage with respect to VSS -0.30 1.55 V VTT FSB termination voltage with respect to VSS -0.30 1.55 V TCASE Processor case temperature See Section 6 See Section 6 °C TSTORAGE Storage temperature -40 85 °C Notes1, 2 3, 4, 5 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications Notes: 1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied. 2. Overshoot and undershoot voltage guidelines for input, output, and I/O signals are outlined in Section 3. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor. 3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, please refer to the processor case temperature specifications. 4. This rating applies to the processor and does not include any tray or packaging. 5. Failure to adhere to this specification can affect the long term reliability of the processor. 2.12 Processor DC Specifications The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Section 4.1 for the Dual-Core Intel Xeon Processor 5000 series land listings and Section 5.1 for signal definitions. Voltage and current specifications are detailed in Table 2-10. For platform planning refer to Table 2-11, which provides Voltage-Current projections. This same information is presented graphically in Figure 2-4. BSEL[2:0] and VID[5:0] signals are specified in Table 2-12. The DC specifications for the AGTL+ signals are listed in Table 2-13. Legacy signals and Test Access Port (TAP) signals follow DC specifications similar to GTL+. The DC specifications for the PWRGOOD input and TAP signal group are listed in Table 2-14 and the Asynchronous GTL+ signal group is listed in Table 2-15. The VTTPWRGD signal is detailed in Table 2-16. Table 2-10 through Table 2-16 list the DC specifications for the processor and are valid only while meeting specifications for case temperature (TCASE as specified in Table 6-1), clock frequency, and input voltages. Care should be taken to read all notes associated with each parameter. Table 2-10. Voltage and Current Specifications (Sheet 1 of 2) Symbol VID Parameter Min VID range 1.0750 Typ Max Unit 1.3500 V Notes 1,13 VCC VCC for Dual-Core Intel Xeon Processor 5000 series core. FMB processor. VVID_STEP VID step size during a transition ± 12.5 mV VVID_SHIFT Total allowable DC load line shift from VID steps 425 mV 12 VTT FSB termination voltage (DC + AC specification) 1.260 V 10, 14 ICC ICC for Dual-Core Intel Xeon Processor 5000 series with multiple VID (667 MHz) 115 A 4, 5, 6, 11 ICC ICC for Dual-Core Intel Xeon Processor 5000 series with multiple VID (1066 MHz) 150 A 4, 5, 6, 11 ICC ICC for Dual-Core Intel Xeon Processor 5063 (MV) with multiple VID 115 A 4, 5, 6, 11 ICC_RESET ICC_RESET for Dual-Core Intel Xeon Processor 5000 series with multiple VID (667 MHz) 115 A 18 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet See Table 2-11 and Figure 2-4 1.140 1.20 V 2, 3, 4, 6, 11 25 Electrical Specifications Table 2-10. Voltage and Current Specifications (Sheet 2 of 2) Symbol Parameter Min Typ Max Unit Notes 1,13 ICC_RESET ICC_RESET for Dual-Core Intel Xeon Processor 5000 series with multiple VID (1066 MHz) 150 A 18 ICC_RESET ICC_RESET for Dual-Core Intel Xeon Processor 5063 (MV) with multiple VID 115 A 18 ITT Steady-state FSB Termination Current 6.1 A 16 ITT_POWER-UP Power-up FSB Termination Current 8.0 A 19 ICC_TDC Thermal Design Current (TDC) for Dual-Core Intel Xeon Processor 5000 series (667 MHz) 100 A 6,15 ICC_TDC Thermal Design Current (TDC) for Dual-Core Intel Xeon Processor 5000 series (1066 MHz) 130 A 6,15 ICC_TDC Thermal Design Current (TDC) for Dual-Core Intel Xeon Processor 5063 (MV) 100 A 6,15 ICC_VTTOUT DC current that may be drawn from VTTOUT per land 580 mA 17 ICC_VCCA ICC for PLL power lands 120 mA 8 ICC_VCCIOPLL ICC for PLL power lands 100 mA 8 ICC_GTLREF ICC for GTLREF 200 µA 9 ITCC ICC during active thermal control circuit (TCC) for Dual-Core Intel Xeon Processor 5000 series 150 A ITCC ICC during active thermal control circuit (TCC) for Dual-Core Intel Xeon Processor 5063 (MV) 115 A ISGNT ICC Stop-Grant for Dual-Core Intel Xeon Processor 5000 series (667 MHz) 50 A 7 ISGNT ICC Stop-Grant for Dual-Core Intel Xeon Processor 5000 series (1066 MHz) 60 A 7 ISGNT ICC Stop-Grant for Dual-Core Intel Xeon Processor 5063 (MV) 40 A 7 Notes: 1. Unless otherwise noted, all specifications in this table apply to all processors and are based on final silicon validation/characterization. 2. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.5 for more information. 3. The voltage specification requirements are measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 4. The processor must not be subjected to any static VCC level that exceeds the VCC_MAX associated with any particular current. Failure to adhere to this specification can shorten processor lifetime. 5. ICC_MAX is specified at VCC_MAX. The processor is capable of drawing ICC_MAX for up to 10 ms. Refer to Figure 2-2 and Figure 2-3 for further details on the average processor current draw over various time durations. 6. FMB is the flexible motherboard guideline. These guidelines are for estimation purposes only. 7. The current specified is also for HALT and Enhanced HALT State. 8. These specifications apply to the PLL power lands VCCA, VCCIOPLL, and VSSA. See Section 2.4.2 for details. These parameters are based on design characterization and are not tested. 9. This specification represents the total current for GTLREF_DATA and GTLREF_ADD per core. 10. VTT must be provided via a separate voltage source and must not be connected to VCC. This specification is measured at the land. 26 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications 11. Minimum VCC and maximum ICC are specified at the maximum processor case temperature (TCASE) shown in Table 6-1. 12. This specification refers to the total reduction of the load line due to VID transitions below the specified VID. 13. Individual processor VID values may be calibrated during manufacturing such that two devices at the same frequency may have different VID settings. 14. Baseboard bandwidth is limited to 20 MHz. 15. ICC_TDC is the sustained (DC equivalent) current that the processor is capable of drawing indefinitely and should be used for the voltage regulator temperature assessment. The voltage regulator is responsible for monitoring its temperature and asserting the necessary signal to inform the processor of a thermal excursion. Please see the applicable design guidelines for further details. The processor is capable of drawing ICC_TDC indefinitely. Refer to Figure 2-2 and Figure 2-3 for further details on the average processor current draw over various time durations. This parameter is based on design characterization and is not tested. 16. This specification is per-processor. This is a steady-state ITT current specification, which is applicable when both VTT and VCC are high. This parameter is based on design characterization and is not tested. Please refer to the ITT Analysis of System Bus Components - Bensley Platform Whitepaper for platform implementation guidance. 17. ICC_VTTOUT is specified at 1.2 V. 18.ICC_RESET is specified while PWRGOOD and RESET# are asserted. 19. This specification is per-processor. This is a power-up peak current specification, which is applicable when VTT is powered up and VCC is not. This parameter is based on design characterization and is not tested. Figure 2-2. Dual-Core Intel® Xeon® Processor 5000 Series (1066 MHz) Load Current versus Time 155 Sustained Current (A) 150 145 140 135 130 125 0.01 0.1 1 10 100 1000 Time Duration (s) Notes: 1. Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than ICC_TDC. 2. Not 100% tested. Specified by design characterization. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 27 Electrical Specifications Figure 2-3. Dual-Core Intel® Xeon® Processor 5000 Series (667 MHz) and Dual-Core Intel® Xeon® Processor 5063 (MV) Load Current versus Time Notes: 1. Processor or Voltage Regulator thermal protection circuitry should not trip for load currents greater than ICC_TDC. 2. Not 100% tested. Specified by design characterization. Table 2-11. VCC Static and Transient Tolerance (Sheet 1 of 2) 28 ICC (A) VCC_Max (V) VCC_Typ (V) VCC_Min (V) Notes 0 VID - 0.000 VID - 0.015 VID - 0.030 1, 2, 3, 4 5 VID - 0.006 VID - 0.021 VID - 0.036 10 VID - 0.013 VID - 0.028 VID - 0.043 15 VID - 0.019 VID - 0.034 VID - 0.049 20 VID - 0.025 VID - 0.040 VID - 0.055 25 VID - 0.031 VID - 0.046 VID - 0.061 30 VID - 0.038 VID - 0.053 VID - 0.068 35 VID - 0.044 VID - 0.059 VID - 0.074 40 VID - 0.050 VID - 0.065 VID - 0.080 45 VID - 0.056 VID - 0.071 VID - 0.086 50 VID - 0.063 VID - 0.078 VID - 0.093 55 VID - 0.069 VID - 0.084 VID - 0.099 60 VID - 0.075 VID - 0.090 VID - 0.105 65 VID - 0.081 VID - 0.096 VID - 0.111 70 VID - 0.087 VID - 0.103 VID - 0.118 75 VID - 0.094 VID - 0.109 VID - 0.124 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications Table 2-11. VCC Static and Transient Tolerance (Sheet 2 of 2) ICC (A) VCC_Max (V) VCC_Typ (V) VCC_Min (V) 80 VID - 0.100 VID - 0.115 VID - 0.130 85 VID - 0.106 VID - 0.121 VID - 0.136 90 VID - 0.113 VID - 0.128 VID - 0.143 95 VID - 0.119 VID - 0.134 VID - 0.149 100 VID - 0.125 VID - 0.140 VID - 0.155 105 VID - 0.131 VID - 0.146 VID - 0.161 110 VID - 0.138 VID - 0.153 VID - 0.168 115 VID - 0.144 VID - 0.159 VID - 0.174 120 VID - 0.150 VID - 0.165 VID - 0.180 125 VID - 0.156 VID - 0.171 VID - 0.186 130 VID - 0.163 VID - 0.178 VID - 0.193 135 VID - 0.169 VID - 0.184 VID - 0.199 140 VID - 0.175 VID - 0.190 VID - 0.205 145 VID - 0.181 VID - 0.196 VID - 0.211 150 VID - 0.188 VID - 0.203 VID - 0.218 Notes Notes: 1. The VCC_MIN and VCC_MAX loadlines represent static and transient limits. Please see Section 2.12.1 for VCC overshoot specifications. 2. This table is intended to aid in reading discrete points on Figure 2-4. 3. The loadlines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE lands and at the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Please refer to the appropriate platform design guide for details on VR implementation. 4. Non-shading denotes the expected ICC range applies to both Dual-Core Intel Xeon Processor 5000 series (1066 MHz & 667 MHz) and Dual-Core Intel Xeon Processor 5063 (MV). Shading denotes the expected ICC range applies to Dual-Core Intel Xeon Processor 5000 series (1066 MHz) only. [120 A - 150 A] Figure 2-4. VCC Static and Transient Tolerance Load Lines Icc [A] 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 VID - 0.000 VID - 0.020 Vcc Maximum VID - 0.040 VID - 0.060 VID - 0.080 Vcc [V] VID - 0.100 VID - 0.120 VID - 0.140 Vcc Minimum VID - 0.160 VID - 0.180 Vcc Typical VID - 0.200 VID - 0.220 VID - 0.240 VID - 0.260 Notes: 1. The VCC_MIN and VCC_MAX loadlines represent static and transient limits. Please see Section 2.12.1 for VCC overshoot specifications. 2. Refer to Table 2-10 for processor VID information. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 29 Electrical Specifications 3. 4. Refer to Table 2-11 for processor VCC information. The load lines specify voltage limits at the die measured at the VCC_DIE_SENSE and VSS_DIE_SENSE lands and at the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Voltage regulation feedback for voltage regulator circuits must also be taken from processor VCC_DIE_SENSE and VSS_DIE_SENSE lands and VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Please refer to the appropriate platform design guide for details on VR implementation. Table 2-12. BSEL[2:0], VID[5:0] Signal Group DC Specifications Symbol Parameter RON BSEL[2:0], VID[5:0] Buffer On Resistance Min Max Units Notes1 N/A 120 Ω 2 IOL Output Low Current N/A 2.4 mA 2, 3 IOH Output High Current N/A 460 µA 2, 3 VTOL Voltage Tolerance 0.95 * VTT 1.05 * VTT V 4 Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. These parameters are based on design characterization and are not tested. 3. IOL is measured at 0.10*VTT, IOH is measured at 0.90*VTT. 4. Please refer to the appropriate platform design guide for implementation details. Table 2-13. AGTL+ Signal Group DC Specifications Symbol Parameter Min Max Unit Notes1 VIL Input Low Voltage 0.0 GTLREF - (0.10 * VTT) V 2 VIH Input High Voltage GTLREF + (0.10 * VTT) VTT V 3, 4 VOH Output High Voltage 0.90 * VTT VTT V 4 IOL Output Low Current N/A VTT / mA 4 ILI Input Leakage Current N/A ± 200 µA 5, 6 ILO Output Leakage Current N/A ± 200 µA 5, 6 RON Buffer On Resistance 7 11 Ω 7 (0.50 * RTT_MIN + RON_MIN) Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. VIL is defined as the voltage range at a receiving agent that will be interpreted as an electrical low value. 3. VIH is defined as the voltage range at a receiving agent that will be interpreted as an electrical high value. 4. VIH and VOH may experience excursions above VTT. However, input signal drivers must comply with the signal quality specifications in Section 3. 5. Leakage to VSS with land held at VTT. 6. Leakage to VTT with land held at 300 mV. 7. This parameter is based on design characterization and is not tested Table 2-14. PWRGOOD Input and TAP Signal Group DC Specifications (Sheet 1 of 2) Symbol Parameter VHYS Input Hysteresis Vt+ PWRGOOD Input Low to High Threshold Voltage TAP Input Low to High Threshold Voltage Vt- PWRGOOD Input High to Low Threshold Voltage TAP Input High to Low Threshold Voltage VOH 30 Output High Voltage Min Max Unit 120 396 mV 0.5 * (VTT + VHYS_MIN + 0.24) 0.5 * (VTT + VHYS_MAX + 0.24) V 0.5 * (VTT + VHYS_MIN) 0.5 * (VTT + VHYS_MAX) V 0.4 * VTT 0.6 * VTT V 0.5 * (VTT -VHYS_MAX) 0.5 * (VTT - VHYS_MIN) V N/A VTT V Notes 1, 2 3 4 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Electrical Specifications Table 2-14. PWRGOOD Input and TAP Signal Group DC Specifications (Sheet 2 of 2) Symbol Parameter Min Max Unit ILI Input Leakage Current N/A ± 200 µA ILO Output Leakage Current N/A ± 200 µA RON Buffer On Resistance 7 11 Ω Notes 1, 2 5 Notes: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. All outputs are open drain. 3. VHYS represents the amount of hysteresis, nominally centered about 0.5 * VTT for all PWRGOOD and TAP inputs. 4. PWRGOOD input and the TAP signal group must meet system signal quality specification in Section 3. 5. The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test load. Table 2-15. GTL+ Asynchronous and AGTL+ Asynchronous Signal Group DC Specifications Notes1 Symbol Parameter Min Max Unit VIL Input Low Voltage 0.0 (0.5 * VTT) - (0.10 * VTT) V 3, 11 VTT V 4, 5, 7, 11 VIH Input High Voltage (0.5 * VTT) + (0.10 * VTT) VOH Output High Voltage 0.90*VTT VTT V 2, 5, 7 A 8 IOL Output Low Current - VTT/ [(0.50*RTT_MIN)+(RON_MIN)] ILI Input Leakage Current N/A ± 200 µA 9 ILO Output Leakage Current N/A ± 200 µA 10 RON Buffer On Resistance 7 11 Ω 6 Notes: 1.Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2.All outputs are open drain. 3.VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low value. 4.VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high value. 5.VIH and VOH may experience excursions above VTT. However, input signal drivers must comply with the signal quality specifications in Section 3. 6.Refer to the processor HSPICE* I/O Buffer Models for I/V characteristics. 7.The VTT referred to in these specifications refers to instantaneous VTT. 8.The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test load. 9.Leakage to VSS with land held at VTT. 10.Leakage to VTT with land held at 300 mV. 11.LINT0/INTR and LINT1/NMI use GTLREF_ADD as a reference voltage. For these two signals VIH = GTLREF_ADD + (0.10 * VTT) and VIL= GTLREF_ADD - (0.10 * VTT). Table 2-16. VTTPWRGD DC Specifications Symbol 2.12.1 Parameter Min Max Unit VIL Input Low Voltage 0.0 0.30 V VIH Input High Voltage 0.90 VTT V VCC Overshoot Specification The Dual-Core Intel Xeon Processor 5000 series can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 31 Electrical Specifications maximum allowable overshoot above VID). These specifications apply to the processor die voltage as measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Table 2-17. VCC Overshoot Specifications Symbol Figure 2-5. Parameter Min Max Units Figure VOS_MAX Magnitude of VCC overshoot above VID 50 mV 2-5 TOS_MAX Time duration of VCC overshoot above VID 25 µs 2-5 Notes VCC Overshoot Example Waveform Example Overshoot Waveform VOS Voltage [V] VID + 0.050 VID - 0.000 TOS 0 5 10 15 20 25 Time [us] TOS: Overshoot time above VID VOS: Overshoot above VID Notes: 1. VOS is the measured overshoot voltage above VID. 2. TOS is the measured time duration above VID. 2.12.2 Die Voltage Validation Core voltage (VCC) overshoot events at the processor must meet the specifications in Table 2-17 when measured across the VCC_DIE_SENSE and VSS_DIE_SENSE lands and across the VCC_DIE_SENSE2 and VSS_DIE_SENSE2 lands. Overshoot events that are < 10 ns in duration may be ignored. These measurement of processor die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope. § 32 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Mechanical Specifications 3 Mechanical Specifications The Dual-Core Intel Xeon Processor 5000 series are packaged in a Flip Chip Land Grid Array (FC-LGA6) package that interfaces to the baseboard via a LGA771 socket. The package consists of a processor core mounted on a pinless substrate with 771 lands. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the interface for processor component thermal solutions such as a heatsink. Figure 3-1 shows a sketch of the processor package components and how they are assembled together. . The package components shown in Figure 3-1 include the following: 1. Integrated Heat Spreader (IHS) 2. Thermal Interface Material (TIM) 3. Processor Core (die) 4. Package Substrate 5. Landside capacitors 6. Package Lands Figure 3-1. Processor Package Assembly Sketch IHS Core (die) TIM Substrate Package Lands Capacitors LGA771 Socket System Board Note: 3.1 This drawing is not to scale and is for reference only. Package Mechanical Drawings The package mechanical drawings are shown in Figure 3-2 through Figure 3-4. The drawings include dimensions necessary to design a thermal solution for the processor including: 1. Package reference and tolerance dimensions (total height, length, width, an so forth) 2. IHS parallelism and tilt 3. Land dimensions 4. Top-side and back-side component keepout dimensions 5. Reference datums Note: All drawing dimensions are in mm [in.]. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 33 Mechanical Specifications Figure 3-2. Processor Package Drawing (Sheet 1 of 3) Note: 34 Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution is available in the processor Thermal/Mechanical Design Guidelines. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Mechanical Specifications Figure 3-3. Processor Package Drawing (Sheet 2 of 3) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 35 Mechanical Specifications Figure 3-4. 36 Processor Package Drawing (Sheet 3 of 3) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Mechanical Specifications 3.2 Processor Component Keepout Zones The processor may contain components on the substrate that define component keepout zone requirements. A thermal and mechanical solution design must not intrude into the required keepout zones. Decoupling capacitors are typically mounted to either the topside or land-side of the package substrate. See Figure 3-4 for keepout zones. 3.3 Package Loading Specifications Table 3-1 provides dynamic and static load specifications for the processor package. These mechanical load limits should not be exceeded during heatsink assembly, mechanical stress testing or standard drop and shipping conditions. The heatsink attach solutions must not include continuous stress onto the processor with the exception of a uniform load to maintain the heatsink-to-processor thermal interface. Also, any mechanical system or component testing should not exceed these limits. The processor package substrate should not be used as a mechanical reference or loadbearing surface for thermal or mechanical solutions. Please refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for further details. Table 3-1. Package Loading Specifications Parameter Static Compressive Load Dynamic Compressive Load Transient Bend Limits Board Thickness Apply for all board thickness from 1.57 mm (0.062”) to 2.54 mm (0.100”) R Min Max Unit Notes 25mm <R< 45mm 80 18 133 30 N lbf 1, 2, 3, 9, 10, 11, 12, 13 R>45mm 80 18 311 70 N lbf NA 311 N (max static compressive load) + 222 N dynamic loading 70 lbf (max static compressive load) + 50 lbf dynamic loading N lbf 750 µε NA 1.57 mm 0.062” NA NA NA 2.16 mm 0.085” 700 2.54 mm 0.100” 650 1, 3, 4, 5, 6 1,3,7,8 Notes: 1. These specifications apply to uniform compressive loading in a direction perpendicular to the IHS top surface. 2. This is the minimum and maximum static force that can be applied by the heatsink and retention solution to maintain the heatsink and processor interface. 3. Loading limits are for the LGA771 socket. 4. Dynamic compressive load applies to all board thickness. 5. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement. 6. Test condition used a heatsink mass of 1 lbm with 50 g acceleration measured at heatsink mass. The dynamic portion of this specification in the product application can have flexibility in specific values, but the ultimate product of mass times acceleration should not exceed this dynamic load. 7. Transient bend is defined as the transient board deflection during manufacturing such as board assembly and system integration. It is a relatively slow bending event compared to shock and vibration tests. 8. For more information on the transient bend limits, please refer to the MAS document entitled Manufacturing with Intel® Components using 771-land LGA Package that Interfaces with the Motherboard via a LGA771 Socket. 9. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for information on heatsink clip load metrology. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 37 Mechanical Specifications 10. R is defined as the radial distance from the center of the LGA771 socket ball array to the center of heatsink load reaction point closest to the socket. 11. Applies to populated sockets in fully populated and partially populated socket configurations. 12. Through life or product. Condition must be satisfied at the beginning of life and at the end of life. 13. Rigid back is not allowed. The board should flex in the enabled configuration. 3.4 Package Handling Guidelines Table 3-2 includes a list of guidelines on a package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal. Table 3-2. Package Handling Guidelines Parameter Maximum Recommended Units Notes Shear 311 70 N lbf 1,4,5 Tensile 111 25 N lbf 2,4,5 Torque 3.95 35 N-m LBF-in 3,4,5 Notes: 1. A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface. 2. A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface. 3. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface. 4. These guidelines are based on limited testing for design characterization and incidental applications (one time only). 5. Handling guidelines are for the package only and do not include the limits of the processor socket. 3.5 Package Insertion Specifications The Dual-Core Intel Xeon Processor 5000 Series can be inserted and removed 15 times from an LGA771 socket. 3.6 Processor Mass Specifications The typical mass of the Dual-Core Intel Xeon Processor 5000 series is 21.5 grams [0.76 oz.]. This includes all components which make up the entire processor product. 3.7 Processor Materials The Dual-Core Intel Xeon Processor 5000 series are assembled from several components. The basic material properties are described in Table 3-3. Table 3-3. Processor Materials Component 38 Material Integrated Heat Spreader (IHS) Nickel over copper Substrate Fiber-reinforced resin Substrate Lands Gold over nickel Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Mechanical Specifications 3.8 Processor Markings Figure 3-5 and Figure 3-6 shows the topside markings on the processor. This diagram aids in the identification of the Dual-Core Intel Xeon Processor 5000 series. Figure 3-5. Dual-Core Intel Xeon Processor 5000 Series Top-side Markings GROUP1LINE1 GROUP1LINE2 GROUP1LINE3 GROUP1LINE4 GROUP1LINE5 Legend: Mark Text (Production Mark): GROUP1LINE1 GROUP1LINE2 GROUP1LINE3 GROUP1LINE4 GROUP1LINE5 3733DP/4M/1066 Intel ® Xeon ® 5080 SXXX COO i (M) © ‘05 FPO ATPO S/N Figure 3-6. Dual-Core Intel Xeon Processor 5063 (MV) Top-side Markings GROUP1LINE1 GROUP1LINE2 GROUP1LINE3 GROUP1LINE4 GROUP1LINE5 Legend: Mark Text (Production Mark): GROUP1LINE1 GROUP1LINE2 GROUP1LINE3 GROUP1LINE4 GROUP1LINE5 3200DP/4M/1066/MV Intel ® Xeon ® 5063 SXXX COO i (M) © ‘05 FPO ATPO S/N Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 39 Mechanical Specifications 3.9 Processor Land Coordinates Figure 3-7 and Figure 3-8 show the top and bottom view of the processor land coordinates, respectively. The coordinates are referred to throughout the document to identify processor lands. Figure 3-7. Processor Land Coordinates, Top View VCC / VSS 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 AN AM AL AK AJ AH AG AF AE AD AC AB AA Y 6 5 4 3 2 1 AN AM AL AK AJ AH AG AF AE AD AC AB AA Y Socket 771 Quadrants Top View W V U T R P N M L K J W V U T R P N M L K J H G F H G F E D C B E D C B A A 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 VTT / Clocks 40 8 7 8 7 6 5 4 3 Address / Common Clock / Async 2 1 Data Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Mechanical Specifications Figure 3-8. Processor Land Coordinates, Bottom View VCC / VSS 1 Address / Common Clock / Async 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 AN AM AL AN AM AL AK AJ AH AG AF AE AD AC AK AJ AH AG AF AE AD AC AB AA Y AB AA Y Socket 771 Quadrants Bottom View W V U T R P N M W V U T R P N M L K J H L K J H G F E D C B A G F E D C B A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Data VTT / Clocks § Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 41 Mechanical Specifications 42 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing 4 Land Listing 4.1 Dual-Core Intel Xeon Processor 5000 Series Land Assignments This section provides sorted land list in Table 4-1 and Table 4-2. Table 4-1 is a listing of all processor lands ordered alphabetically by land name. Table 4-2 is a listing of all processor lands ordered by land number. 4.1.1 Land Listing by Land Name Table 4-1. Land Listing by Land Name (Sheet 1 of 9) Land Name Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type Direction A03# M5 Source Sync Input/Output A33# AH5 Source Sync A04# P6 Source Sync Input/Output A34# AJ5 Source Sync Input/Output Input/Output A05# L5 Source Sync Input/Output A35# AJ6 Source Sync Input/Output A06# L4 Source Sync Input/Output A20M# K3 ASync GTL+ Input A07# M4 Source Sync Input/Output ADS# D2 Common Clk Input/Output A08# R4 Source Sync Input/Output ADSTB0# R6 Source Sync Input/Output A09# T5 Source Sync Input/Output ADSTB1# AD5 Source Sync Input/Output A10# U6 Source Sync Input/Output AP0# U2 Common Clk Input/Output A11# T4 Source Sync Input/Output AP1# U3 Common Clk Input/Output A12# U5 Source Sync Input/Output BCLK0 F28 Clk Input A13# U4 Source Sync Input/Output BCLK1 G28 Clk Input A14# V5 Source Sync Input/Output BINIT# AD3 Common Clk Input/Output A15# V4 Source Sync Input/Output BNR# C2 Common Clk Input/Output Input/Output A16# W5 Source Sync Input/Output BPM0# AJ2 Common Clk A17# AB6 Source Sync Input/Output BPM1# AJ1 Common Clk Input/Output A18# W6 Source Sync Input/Output BPM2# AD2 Common Clk Input/Output A19# Y6 Source Sync Input/Output BPM3# AG2 Common Clk Input/Output A20# Y4 Source Sync Input/Output BPM4# AF2 Common Clk Input/Output A21# AA4 Source Sync Input/Output BPM5# AG3 Common Clk Input/Output A22# AD6 Source Sync Input/Output BPRI# G8 Common Clk Input A23# AA5 Source Sync Input/Output BR0# F3 Common Clk Input/Output A24# AB5 Source Sync Input/Output BR1# H5 Common Clk Input A25# AC5 Source Sync Input/Output BSEL0 G29 Power/Other Output A26# AB4 Source Sync Input/Output BSEL1 H30 Power/Other Output A27# AF5 Source Sync Input/Output BSEL2 G30 Power/Other Output A28# AF4 Source Sync Input/Output COMP0 A13 Power/Other Input A29# AG6 Source Sync Input/Output COMP1 T1 Power/Other Input A30# AG4 Source Sync Input/Output COMP2 G2 Power/Other Input A31# AG5 Source Sync Input/Output COMP3 R1 Power/Other Input A32# AH4 Source Sync Input/Output COMP4 J2 Power/Other Input COMP5 T2 Power/Other Input D40# E19 Source Sync Input/Output COMP6 Y3 Power/Other Input D41# F20 Source Sync Input/Output COMP7 AE3 Power/Other Input D42# E21 Source Sync Input/Output D00# B4 Source Sync Input/Output D43# F21 Source Sync Input/Output D01# C5 Source Sync Input/Output D44# G21 Source Sync Input/Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 43 Land Listing Table 4-1. Land Listing by Land Name (Sheet 2 of 9) Land Name 44 Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type Direction D02# A4 Source Sync Input/Output D45# E22 Source Sync D03# C6 Source Sync Input/Output D46# D22 Source Sync Input/Output Input/Output D04# A5 Source Sync Input/Output D47# G22 Source Sync Input/Output D05# B6 Source Sync Input/Output D48# D20 Source Sync Input/Output D06# B7 Source Sync Input/Output D49# D17 Source Sync Input/Output D07# A7 Source Sync Input/Output D50# A14 Source Sync Input/Output D08# A10 Source Sync Input/Output D51# C15 Source Sync Input/Output D09# A11 Source Sync Input/Output D52# C14 Source Sync Input/Output D10# B10 Source Sync Input/Output D53# B15 Source Sync Input/Output D11# C11 Source Sync Input/Output D54# C18 Source Sync Input/Output D12# D8 Source Sync Input/Output D55# B16 Source Sync Input/Output D13# B12 Source Sync Input/Output D56# A17 Source Sync Input/Output D14# C12 Source Sync Input/Output D57# B18 Source Sync Input/Output D15# D11 Source Sync Input/Output D58# C21 Source Sync Input/Output D16# G9 Source Sync Input/Output D59# B21 Source Sync Input/Output D17# F8 Source Sync Input/Output D60# B19 Source Sync Input/Output D18# F9 Source Sync Input/Output D61# A19 Source Sync Input/Output D19# E9 Source Sync Input/Output D62# A22 Source Sync Input/Output D20# D7 Source Sync Input/Output D63# B22 Source Sync Input/Output D21# E10 Source Sync Input/Output DBI0# A8 Source Sync Input/Output D22# D10 Source Sync Input/Output DBI1# G11 Source Sync Input/Output D23# F11 Source Sync Input/Output DBI2# D19 Source Sync Input/Output D24# F12 Source Sync Input/Output DBI3# C20 Source Sync Input/Output D25# D13 Source Sync Input/Output DBR# AC2 Power/Other Output D26# E13 Source Sync Input/Output DBSY# B2 Common Clk Input/Output D27# G13 Source Sync Input/Output DEFER# G7 Common Clk Input D28# F14 Source Sync Input/Output DP0# J16 Common Clk Input/Output D29# G14 Source Sync Input/Output DP1# H15 Common Clk Input/Output D30# F15 Source Sync Input/Output DP2# H16 Common Clk Input/Output D31# G15 Source Sync Input/Output DP3# J17 Common Clk Input/Output D32# G16 Source Sync Input/Output DRDY# C1 Common Clk Input/Output D33# E15 Source Sync Input/Output DSTBN0# C8 Source Sync Input/Output D34# E16 Source Sync Input/Output DSTBN1# G12 Source Sync Input/Output D35# G18 Source Sync Input/Output DSTBN2# G20 Source Sync Input/Output D36# G17 Source Sync Input/Output DSTBN3# A16 Source Sync Input/Output D37# F17 Source Sync Input/Output DSTBP0# B9 Source Sync Input/Output D38# F18 Source Sync Input/Output DSTBP1# E12 Source Sync Input/Output D39# E18 Source Sync Input/Output DSTBP2# G19 Source Sync Input/Output DSTBP3# C17 Source Sync Input/Output RESERVED E23 FERR#/PBE# R3 ASync GTL+ Output RESERVED E24 FORCEPR# AK6 ASync GTL+ Input RESERVED E5 GTLREF_ADD_C0 H1 Power/Other Input RESERVED E6 GTLREF_ADD_C1 H2 Power/Other Input RESERVED E7 GTLREF_DATA_C0 G10 Power/Other Input RESERVED F23 F29 GTLREF_DATA_C1 F2 Power/Other Input RESERVED HIT# D4 Common Clk Input/Output RESERVED F6 HITM# E4 Common Clk Input/Output RESERVED G5 IERR# AB2 ASync GTL+ Output RESERVED G6 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-1. Land Name Land Listing by Land Name (Sheet 3 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type Direction IGNNE# N2 ASync GTL+ Input RESERVED J3 INIT# P3 ASync GTL+ Input RESERVED N4 LINT0 K1 ASync GTL+ Input RESERVED N5 LINT1 L1 ASync GTL+ Input RESERVED P5 LL_ID0 V2 Power/Other Output RESERVED W2 LL_ID1 AA2 Power/Other Output RESERVED Y1 LOCK# C3 Common Clk Input/Output RESET# G23 Common Clk Input MCERR# AB3 Common Clk Input/Output RS0# B3 Common Clk Input MS_ID0 W1 Power/Other Output RS1# F5 Common Clk Input MS_ID1 V1 Power/Other Output RS2# A3 Common Clk Input PROCHOT# AL2 ASync GTL+ Output RSP# H4 Common Clk Input PWRGOOD N1 Power/Other Input SKTOCC# AE8 Power/Other Output REQ0# K4 Source Sync Input/Output SMI# P2 ASync GTL+ Input REQ1# J5 Source Sync Input/Output STPCLK# M3 ASync GTL+ Input REQ2# M6 Source Sync Input/Output TCK AE1 TAP Input REQ3# K6 Source Sync Input/Output TDI AD1 TAP Input REQ4# J6 Source Sync Input/Output TDO AF1 TAP Output I RESERVED A20 TEST_BUS AH2 Power/Other RESERVED AC4 TESTHI00 F26 Power/Other RESERVED AE4 TESTHI01 W3 Power/Other Input RESERVED AE6 TESTHI02 F25 Power/Other Input RESERVED AK3 TESTHI03 G25 Power/Other Input RESERVED AJ3 TESTHI04 G27 Power/Other Input RESERVED AM5 TESTHI05 G26 Power/Other Input RESERVED AN5 TESTHI06 G24 Power/Other Input RESERVED AN6 TESTHI07 F24 Power/Other Input RESERVED B13 TESTHI08 G3 Power/Other Input RESERVED C9 TESTHI09 G4 Power/Other Input RESERVED D1 TESTHI10 P1 Power/Other Input RESERVED D14 TESTHI11 L2 Power/Other Input RESERVED D16 THERMDA AL1 Power/Other Output RESERVED D23 THERMDA2 AJ7 Power/Other Output RESERVED E1 THERMDC AK1 Power/Other Output THERMDC2 AH7 Power/Other Output VCC AF8 Power/Other THERMTRIP# M2 ASync GTL+ Output VCC AF9 Power/Other TMS AC1 TAP Input VCC AG11 Power/Other TRDY# E3 Common Clk Input VCC AG12 Power/Other TRST# AG1 TAP Input VCC AG14 Power/Other VCC AA8 Power/Other VCC AG15 Power/Other VCC AB8 Power/Other VCC AG18 Power/Other VCC AC23 Power/Other VCC AG19 Power/Other VCC AC24 Power/Other VCC AG21 Power/Other VCC AC25 Power/Other VCC AG22 Power/Other VCC AC26 Power/Other VCC AG25 Power/Other VCC AC27 Power/Other VCC AG26 Power/Other VCC AC28 Power/Other VCC AG27 Power/Other VCC AC29 Power/Other VCC AG28 Power/Other VCC AC30 Power/Other VCC AG29 Power/Other Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Input 45 Land Listing Table 4-1. Land Name 46 Land Listing by Land Name (Sheet 4 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VCC AC8 Power/Other VCC AG30 Power/Other VCC AD23 Power/Other VCC AG8 Power/Other VCC AD24 Power/Other VCC AG9 Power/Other VCC AD25 Power/Other VCC AH11 Power/Other VCC AD26 Power/Other VCC AH12 Power/Other VCC AD27 Power/Other VCC AH14 Power/Other VCC AD28 Power/Other VCC AH15 Power/Other VCC AD29 Power/Other VCC AH18 Power/Other VCC AD30 Power/Other VCC AH19 Power/Other VCC AD8 Power/Other VCC AH21 Power/Other VCC AE11 Power/Other VCC AH22 Power/Other VCC AE12 Power/Other VCC AH25 Power/Other VCC AE14 Power/Other VCC AH26 Power/Other VCC AE15 Power/Other VCC AH27 Power/Other VCC AE18 Power/Other VCC AH28 Power/Other VCC AE19 Power/Other VCC AH29 Power/Other VCC AE21 Power/Other VCC AH30 Power/Other VCC AE22 Power/Other VCC AH8 Power/Other VCC AE23 Power/Other VCC AH9 Power/Other VCC AE9 Power/Other VCC AJ11 Power/Other VCC AF11 Power/Other VCC AJ12 Power/Other VCC AF12 Power/Other VCC AJ14 Power/Other VCC AF14 Power/Other VCC AJ15 Power/Other VCC AF15 Power/Other VCC AJ18 Power/Other VCC AF18 Power/Other VCC AJ19 Power/Other VCC AF19 Power/Other VCC AJ21 Power/Other VCC AF21 Power/Other VCC AJ22 Power/Other VCC AF22 Power/Other VCC AJ25 Power/Other VCC AJ26 Power/Other VCC AN12 Power/Other VCC AJ8 Power/Other VCC AN14 Power/Other VCC AJ9 Power/Other VCC AN15 Power/Other VCC AK11 Power/Other VCC AN18 Power/Other VCC AK12 Power/Other VCC AN19 Power/Other VCC AK14 Power/Other VCC AN21 Power/Other VCC AK15 Power/Other VCC AN22 Power/Other VCC AK18 Power/Other VCC AN25 Power/Other VCC AK19 Power/Other VCC AN26 Power/Other VCC AK21 Power/Other VCC AN8 Power/Other VCC AK22 Power/Other VCC AN9 Power/Other VCC AK25 Power/Other VCC J10 Power/Other VCC AK26 Power/Other VCC J11 Power/Other VCC AK8 Power/Other VCC J12 Power/Other VCC AK9 Power/Other VCC J13 Power/Other VCC AL11 Power/Other VCC J14 Power/Other VCC AL12 Power/Other VCC J15 Power/Other VCC AL14 Power/Other VCC J18 Power/Other VCC AL15 Power/Other VCC J19 Power/Other VCC AL18 Power/Other VCC J20 Power/Other Direction Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-1. Land Name Land Listing by Land Name (Sheet 5 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VCC AL19 Power/Other VCC J21 Power/Other VCC AL21 Power/Other VCC J22 Power/Other VCC AL22 Power/Other VCC J23 Power/Other VCC AL25 Power/Other VCC J24 Power/Other VCC AL26 Power/Other VCC J25 Power/Other VCC AL29 Power/Other VCC J26 Power/Other VCC AL30 Power/Other VCC J27 Power/Other VCC AL9 Power/Other VCC J28 Power/Other VCC AM11 Power/Other VCC J29 Power/Other VCC AM12 Power/Other VCC J30 Power/Other VCC AM14 Power/Other VCC J8 Power/Other VCC AM15 Power/Other VCC J9 Power/Other VCC AM18 Power/Other VCC K23 Power/Other VCC AM19 Power/Other VCC K24 Power/Other VCC AM21 Power/Other VCC K25 Power/Other VCC AM22 Power/Other VCC K26 Power/Other VCC AM25 Power/Other VCC K27 Power/Other VCC AM26 Power/Other VCC K28 Power/Other VCC AM29 Power/Other VCC K29 Power/Other VCC AM30 Power/Other VCC K30 Power/Other VCC AM8 Power/Other VCC K8 Power/Other VCC AM9 Power/Other VCC L8 Power/Other VCC AN11 Power/Other VCC M23 Power/Other VCC M24 Power/Other VCC W28 Power/Other VCC M25 Power/Other VCC W29 Power/Other VCC M26 Power/Other VCC W30 Power/Other Direction VCC M27 Power/Other VCC W8 Power/Other VCC M28 Power/Other VCC Y23 Power/Other VCC M29 Power/Other VCC Y24 Power/Other VCC M30 Power/Other VCC Y25 Power/Other VCC M8 Power/Other VCC Y26 Power/Other VCC N23 Power/Other VCC Y27 Power/Other VCC N24 Power/Other VCC Y28 Power/Other VCC N25 Power/Other VCC Y29 Power/Other VCC N26 Power/Other VCC Y30 Power/Other VCC N27 Power/Other VCC Y8 Power/Other VCC N28 Power/Other VCC_DIE_SENSE AN3 Power/Other Output VCC N29 Power/Other VCC_DIE_SENSE2 AL8 Power/Other Output VCC N30 Power/Other VCCA A23 Power/Other Input VCC N8 Power/Other VCCIOPLL C23 Power/Other Input VCC P8 Power/Other VID0 AM2 Power/Other Output VCC R8 Power/Other VID1 AL5 Power/Other Output VCC T23 Power/Other VID2 AM3 Power/Other Output VCC T24 Power/Other VID3 AL6 Power/Other Output VCC T25 Power/Other VID4 AK4 Power/Other Output VCC T26 Power/Other VID5 AL4 Power/Other Output VCC T27 Power/Other VID_SELECT AN7 Power/Other Output VCC T28 Power/Other VSS A12 Power/Other Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 47 Land Listing Table 4-1. Land Name 48 Land Listing by Land Name (Sheet 6 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VCC T29 Power/Other VSS A15 VCC T30 Power/Other VSS A18 Power/Other VCC T8 Power/Other VSS A2 Power/Other VCC U23 Power/Other VSS A21 Power/Other VCC U24 Power/Other VSS A24 Power/Other VCC U25 Power/Other VSS A6 Power/Other VCC U26 Power/Other VSS A9 Power/Other VCC U27 Power/Other VSS AA23 Power/Other VCC U28 Power/Other VSS AA24 Power/Other VCC U29 Power/Other VSS AA25 Power/Other VCC U30 Power/Other VSS AA26 Power/Other VCC U8 Power/Other VSS AA27 Power/Other Power/Other Direction Power/Other VCC V8 Power/Other VSS AA28 VCC W23 Power/Other VSS AA29 Power/Other VCC W24 Power/Other VSS AA3 Power/Other VCC W25 Power/Other VSS AA30 Power/Other VCC W26 Power/Other VSS AA6 Power/Other VCC W27 Power/Other VSS AA7 Power/Other VSS AB1 Power/Other VSS AF30 Power/Other VSS AB23 Power/Other VSS AF6 Power/Other VSS AB24 Power/Other VSS AF7 Power/Other VSS AB25 Power/Other VSS AG10 Power/Other VSS AB26 Power/Other VSS AG13 Power/Other VSS AB27 Power/Other VSS AG16 Power/Other VSS AB28 Power/Other VSS AG17 Power/Other VSS AB29 Power/Other VSS AG20 Power/Other VSS AB30 Power/Other VSS AG23 Power/Other VSS AB7 Power/Other VSS AG24 Power/Other VSS AC3 Power/Other VSS AG7 Power/Other VSS AC6 Power/Other VSS AH1 Power/Other VSS AC7 Power/Other VSS AH10 Power/Other VSS AD4 Power/Other VSS AH13 Power/Other VSS AD7 Power/Other VSS AH16 Power/Other VSS AE10 Power/Other VSS AH17 Power/Other VSS AE13 Power/Other VSS AH20 Power/Other VSS AE16 Power/Other VSS AH23 Power/Other VSS AE17 Power/Other VSS AH24 Power/Other VSS AE2 Power/Other VSS AH3 Power/Other VSS AE20 Power/Other VSS AH6 Power/Other VSS AE24 Power/Other VSS AJ10 Power/Other VSS AE25 Power/Other VSS AJ13 Power/Other VSS AE26 Power/Other VSS AJ16 Power/Other VSS AE27 Power/Other VSS AJ17 Power/Other VSS AE28 Power/Other VSS AJ20 Power/Other VSS AE29 Power/Other VSS AJ23 Power/Other VSS AE30 Power/Other VSS AJ24 Power/Other VSS AE5 Power/Other VSS AJ27 Power/Other VSS AE7 Power/Other VSS AJ28 Power/Other Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-1. Land Name Land Listing by Land Name (Sheet 7 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VSS AF10 Power/Other VSS AJ29 VSS AF13 Power/Other VSS AJ30 Power/Other VSS AF16 Power/Other VSS AJ4 Power/Other VSS AF17 Power/Other VSS AK10 Power/Other VSS AF20 Power/Other VSS AK13 Power/Other VSS AF23 Power/Other VSS AK16 Power/Other VSS AF24 Power/Other VSS AK17 Power/Other VSS AF25 Power/Other VSS AK2 Power/Other VSS AF26 Power/Other VSS AK20 Power/Other VSS AF27 Power/Other VSS AK23 Power/Other VSS AF28 Power/Other VSS AK24 Power/Other VSS AF29 Power/Other VSS AK27 Power/Other VSS AF3 Power/Other VSS AK28 Power/Other VSS AK29 Power/Other VSS C10 Power/Other VSS AK30 Power/Other VSS C13 Power/Other VSS AK5 Power/Other VSS C16 Power/Other VSS AK7 Power/Other VSS C19 Power/Other VSS AL10 Power/Other VSS C22 Power/Other Power/Other VSS AL13 Power/Other VSS C24 Power/Other VSS AL16 Power/Other VSS C4 Power/Other VSS AL17 Power/Other VSS C7 Power/Other VSS AL20 Power/Other VSS D12 Power/Other VSS AL23 Power/Other VSS D15 Power/Other VSS AL24 Power/Other VSS D18 Power/Other VSS AL27 Power/Other VSS D21 Power/Other VSS AL28 Power/Other VSS D24 Power/Other VSS AL3 Power/Other VSS D3 Power/Other VSS AM1 Power/Other VSS D5 Power/Other VSS AM10 Power/Other VSS D6 Power/Other VSS AM13 Power/Other VSS D9 Power/Other VSS AM16 Power/Other VSS E11 Power/Other VSS AM17 Power/Other VSS E14 Power/Other VSS AM20 Power/Other VSS E17 Power/Other VSS AM23 Power/Other VSS E2 Power/Other VSS AM24 Power/Other VSS E20 Power/Other VSS AM27 Power/Other VSS E25 Power/Other VSS AM28 Power/Other VSS E26 Power/Other VSS AM4 Power/Other VSS E27 Power/Other VSS AM7 Power/Other VSS E28 Power/Other VSS AN1 Power/Other VSS E29 Power/Other VSS AN10 Power/Other VSS E8 Power/Other VSS AN13 Power/Other VSS F1 Power/Other VSS AN16 Power/Other VSS F10 Power/Other VSS AN17 Power/Other VSS F13 Power/Other VSS AN2 Power/Other VSS F16 Power/Other VSS AN20 Power/Other VSS F19 Power/Other VSS AN23 Power/Other VSS F22 Power/Other VSS AN24 Power/Other VSS F4 Power/Other Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Direction 49 Land Listing Table 4-1. Land Name 50 Land Listing by Land Name (Sheet 8 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VSS B1 Power/Other VSS F7 Power/Other VSS B11 Power/Other VSS G1 Power/Other VSS B14 Power/Other VSS H10 Power/Other VSS B17 Power/Other VSS H11 Power/Other VSS B20 Power/Other VSS H12 Power/Other VSS B24 Power/Other VSS H13 Power/Other VSS B5 Power/Other VSS H14 Power/Other VSS B8 Power/Other VSS H17 Power/Other VSS H18 Power/Other VSS P28 Power/Other VSS H19 Power/Other VSS P29 Power/Other VSS H20 Power/Other VSS P30 Power/Other VSS H21 Power/Other VSS P4 Power/Other VSS H22 Power/Other VSS P7 Power/Other VSS H23 Power/Other VSS R2 Power/Other VSS H24 Power/Other VSS R23 Power/Other VSS H25 Power/Other VSS R24 Power/Other VSS H26 Power/Other VSS R25 Power/Other VSS H27 Power/Other VSS R26 Power/Other VSS H28 Power/Other VSS R27 Power/Other VSS H29 Power/Other VSS R28 Power/Other VSS H3 Power/Other VSS R29 Power/Other VSS H6 Power/Other VSS R30 Power/Other VSS H7 Power/Other VSS R5 Power/Other VSS H8 Power/Other VSS R7 Power/Other VSS H9 Power/Other VSS T3 Power/Other VSS J4 Power/Other VSS T6 Power/Other VSS J7 Power/Other VSS T7 Power/Other VSS K2 Power/Other VSS U1 Power/Other VSS K5 Power/Other VSS U7 Power/Other VSS K7 Power/Other VSS V23 Power/Other VSS L23 Power/Other VSS V24 Power/Other VSS L24 Power/Other VSS V25 Power/Other VSS L25 Power/Other VSS V26 Power/Other VSS L26 Power/Other VSS V27 Power/Other VSS L27 Power/Other VSS V28 Power/Other VSS L28 Power/Other VSS V29 Power/Other VSS L29 Power/Other VSS V3 Power/Other Direction VSS L3 Power/Other VSS V30 Power/Other VSS L30 Power/Other VSS V6 Power/Other VSS L6 Power/Other VSS V7 Power/Other VSS L7 Power/Other VSS W4 Power/Other VSS M1 Power/Other VSS W7 Power/Other VSS M7 Power/Other VSS Y2 Power/Other VSS N3 Power/Other VSS Y5 Power/Other VSS N6 Power/Other VSS Y7 Power/Other VSS N7 Power/Other VSS_DIE_SENSE AN4 Power/Other Output VSS P23 Power/Other VSS_DIE_SENSE2 AL7 Power/Other Output VSS P24 Power/Other VSSA B23 Power/Other Input Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-1. Land Name Land Listing by Land Name (Sheet 9 of 9) Land Signal Buffer No. Type Direction Land Name Land Signal Buffer No. Type VSS P25 Power/Other VTT A25 VSS P26 Power/Other VTT A26 Power/Other VSS P27 Power/Other VTT B25 Power/Other VTT B26 Power/Other VTT D26 Power/Other VTT B27 Power/Other VTT D27 Power/Other VTT B28 Power/Other VTT D28 Power/Other VTT B29 Power/Other VTT D29 Power/Other VTT B30 Power/Other VTT D30 Power/Other VTT C25 Power/Other VTT E30 Power/Other Direction Power/Other VTT C26 Power/Other VTT F30 Power/Other VTT C27 Power/Other VTT_OUT AA1 Power/Other Output VTT C28 Power/Other VTT_OUT J1 Power/Other Output VTT C29 Power/Other RESERVED F27 VTT C30 Power/Other VTTPWRGD AM6 Power/Other Input VTT D25 Power/Other Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 51 Land Listing 4.1.2 Land Listing by Land Number Table 4-2. Land Listing by Land Number (Sheet 1 of 9) Land No. Land Name Signal Buffer Type Direction Land No. Land Name Signal Buffer Type A10 D08# Source Sync Input/Output A11 D09# Source Sync Input/Output AB1 VSS Power/Other AB2 IERR# A12 VSS Power/Other ASync GTL+ AB23 VSS Power/Other A13 COMP0 Power/Other Input AB24 VSS Power/Other A14 D50# Source Sync Input/Output AB25 VSS Power/Other A15 VSS Power/Other AB26 VSS Power/Other A16 DSTBN3# Source Sync Input/Output AB27 VSS Power/Other A17 D56# Source Sync Input/Output AB28 VSS Power/Other A18 VSS Power/Other A19 D61# Source Sync A2 VSS Power/Other A20 RESERVED A21 VSS Power/Other A22 D62# Source Sync A23 VCCA Power/Other A24 VSS Power/Other A25 VTT A26 Direction Output AB29 VSS Power/Other AB3 MCERR# Common Clk AB30 VSS Power/Other AB4 A26# Source Sync AB5 A24# Source Sync Input/Output Input/Output AB6 A17# Source Sync Input/Output Input AB7 VSS Power/Other AB8 VCC Power/Other Power/Other AC1 TMS TAP Input VTT Power/Other AC2 DBR# Power/Other Output A3 RS2# Common Clk Input AC23 VCC Power/Other A4 D02# Source Sync Input/Output AC24 VCC Power/Other A5 D04# Source Sync Input/Output AC25 VCC Power/Other A6 VSS Power/Other AC26 VCC Power/Other A7 D07# Source Sync Input/Output AC27 VCC Power/Other A8 DBI0# Source Sync Input/Output AC28 VCC Power/Other A9 VSS Power/Other AC29 VCC Power/Other AA1 VTT_OUT Power/Other Output AC3 VSS Power/Other AA2 LL_ID1 Power/Other Output AC30 VCC Power/Other Input/Output AA23 VSS Power/Other AC4 RESERVED AA24 VSS Power/Other AC5 A25# Source Sync AA25 VSS Power/Other AC6 VSS Power/Other AA26 VSS Power/Other AC7 VSS Power/Other AA27 VSS Power/Other AC8 VCC Power/Other Input/Output Input/Output Input/Output AA28 VSS Power/Other AD1 TDI TAP Input AA29 VSS Power/Other AD2 BPM2# Common Clk Input/Output Power/Other AA3 VSS Power/Other AD23 VCC AA30 VSS Power/Other AD24 VCC Power/Other AA4 A21# Source Sync Input/Output AD25 VCC Power/Other AA5 A23# Source Sync Input/Output AD26 VCC Power/Other AA6 VSS Power/Other AD27 VCC Power/Other AA7 VSS Power/Other AD28 VCC Power/Other AA8 VCC Power/Other AD29 VCC Power/Other AD3 BINIT# Common Clk AF15 VCC Power/Other AD30 VCC Power/Other AF16 VSS Power/Other AD4 VSS Power/Other AF17 VSS Power/Other AD5 ADSTB1# Source Sync Input/Output AF18 VCC Power/Other AD6 A22# Source Sync Input/Output AF19 VCC Power/Other 52 Input/Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-2. Land No. Land Listing by Land Number (Sheet 2 of 9) Land Name Signal Buffer Type Direction Land No. Land Name Signal Buffer Type Direction Input/Output AD7 VSS Power/Other AF2 BPM4# Common Clk AD8 VCC Power/Other AF20 VSS Power/Other Power/Other AE1 TCK TAP AF21 VCC AE10 VSS Power/Other Input AF22 VCC Power/Other AE11 VCC Power/Other AF23 VSS Power/Other AE12 VCC Power/Other AF24 VSS Power/Other AE13 VSS Power/Other AF25 VSS Power/Other AE14 VCC Power/Other AF26 VSS Power/Other AE15 VCC Power/Other AF27 VSS Power/Other AE16 VSS Power/Other AF28 VSS Power/Other AE17 VSS Power/Other AF29 VSS Power/Other AE18 VCC Power/Other AF3 VSS Power/Other AE19 VCC Power/Other AF30 VSS Power/Other AE2 VSS Power/Other AF4 A28# Source Sync Input/Output AE20 VSS Power/Other AF5 A27# Source Sync Input/Output AE21 VCC Power/Other AF6 VSS Power/Other AE22 VCC Power/Other AF7 VSS Power/Other AE23 VCC Power/Other AF8 VCC Power/Other Power/Other AE24 VSS Power/Other AF9 VCC AE25 VSS Power/Other AG1 TRST# TAP AE26 VSS Power/Other AG10 VSS Power/Other AE27 VSS Power/Other AG11 VCC Power/Other AE28 VSS Power/Other AG12 VCC Power/Other AE29 VSS Power/Other AG13 VSS Power/Other AE3 COMP7 Power/Other AG14 VCC Power/Other AE30 VSS Power/Other AG15 VCC Power/Other AE4 RESERVED AG16 VSS Power/Other AE5 VSS AE6 RESERVED Input Power/Other AE7 VSS Power/Other AE8 SKTOCC# Power/Other AE9 VCC Power/Other Output Output AG17 VSS Power/Other AG18 VCC Power/Other AG19 VCC Power/Other AG2 BPM3# Common Clk AG20 VSS Power/Other Power/Other AF1 TDO TAP AG21 VCC AF10 VSS Power/Other AG22 VCC Power/Other AF11 VCC Power/Other AG23 VSS Power/Other AF12 VCC Power/Other AG24 VSS Power/Other AF13 VSS Power/Other AG25 VCC Power/Other AF14 VCC Power/Other AG26 VCC Power/Other AG27 VCC Power/Other AJ11 VCC Power/Other AG28 VCC Power/Other AJ12 VCC Power/Other AG29 VCC Power/Other AJ13 VSS Power/Other AG3 BPM5# Common Clk AJ14 VCC Power/Other AG30 VCC Power/Other AJ15 VCC Power/Other AG4 A30# Source Sync Input/Output AJ16 VSS Power/Other AG5 A31# Source Sync Input/Output AJ17 VSS Power/Other AG6 A29# Source Sync Input/Output AJ18 VCC Power/Other Input/Output AG7 VSS Power/Other AJ19 VCC Power/Other AG8 VCC Power/Other AJ2 BPM0# Common Clk Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Input Input/Output Input/Output 53 Land Listing Table 4-2. Land Listing by Land Number (Sheet 3 of 9) Land No. Signal Buffer Type Land No. Land Name Signal Buffer Type AG9 VCC Power/Other AJ20 VSS Power/Other AH1 VSS Power/Other AJ21 VCC Power/Other Direction Land Name AH10 VSS Power/Other AJ22 VCC Power/Other AH11 VCC Power/Other AJ23 VSS Power/Other AH12 VCC Power/Other AJ24 VSS Power/Other AH13 VSS Power/Other AJ25 VCC Power/Other AH14 VCC Power/Other AJ26 VCC Power/Other AH15 VCC Power/Other AJ27 VSS Power/Other AH16 VSS Power/Other AJ28 VSS Power/Other Power/Other Direction AH17 VSS Power/Other AJ29 VSS AH18 VCC Power/Other AJ3 RESERVED AH19 VCC Power/Other AJ30 VSS Power/Other AH2 TEST_BUS Power/Other AJ4 VSS Power/Other AH20 VSS Power/Other AJ5 A34# Source Sync Input/Output AH21 VCC Power/Other AJ6 A35# Source Sync Input/Output AH22 VCC Power/Other AJ7 THERMDA2 Power/Other Output AH23 VSS Power/Other AJ8 VCC Power/Other Power/Other AH24 VSS Power/Other AJ9 VCC AH25 VCC Power/Other AK1 THERMDC Power/Other AH26 VCC Power/Other AK10 VSS Power/Other AH27 VCC Power/Other AK11 VCC Power/Other AH28 VCC Power/Other AK12 VCC Power/Other AH29 VCC Power/Other AK13 VSS Power/Other AH3 VSS Power/Other AK14 VCC Power/Other AH30 VCC Power/Other AK15 VCC Power/Other AH4 A32# Source Sync Input/Output AK16 VSS Power/Other AH5 A33# Source Sync Input/Output AK17 VSS Power/Other AH6 VSS Power/Other AK18 VCC Power/Other AH7 THERMDC2 Power/Other AK19 VCC Power/Other AH8 VCC Power/Other AK2 VSS Power/Other AH9 VCC Power/Other AK20 VSS Power/Other AJ1 BPM1# Common Clk AK21 VCC Power/Other AJ10 VSS Power/Other AK22 VCC Power/Other AK23 VSS Power/Other AL8 VCC_DIE_SENSE2 Power/Other AK24 VSS Power/Other AL9 VCC Power/Other Power/Other Output Input/Output AK25 VCC Power/Other AM1 VSS AK26 VCC Power/Other AM10 VSS Power/Other AK27 VSS Power/Other AM11 VCC Power/Other Power/Other AK28 VSS Power/Other AM12 VCC AK29 VSS Power/Other AM13 VSS Power/Other AK3 RESERVED AM14 VCC Power/Other Power/Other AK30 VSS Power/Other AK4 VID4 Power/Other AK5 VSS Power/Other AK6 FORCEPR# ASync GTL+ AK7 VSS Power/Other AK8 VCC AK9 VCC 54 Output Input AM15 VCC AM16 VSS Power/Other AM17 VSS Power/Other AM18 VCC Power/Other AM19 VCC Power/Other Power/Other AM2 VID0 Power/Other Power/Other AM20 VSS Power/Other Output Output Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-2. Land Listing by Land Number (Sheet 4 of 9) Land No. Land Name Signal Buffer Type Direction Land No. Land Name Signal Buffer Type Output Power/Other AL1 THERMDA Power/Other AM21 VCC AL10 VSS Power/Other AM22 VCC Power/Other AL11 VCC Power/Other AM23 VSS Power/Other AL12 VCC Power/Other AM24 VSS Power/Other AL13 VSS Power/Other AM25 VCC Power/Other AL14 VCC Power/Other AM26 VCC Power/Other AL15 VCC Power/Other AM27 VSS Power/Other AL16 VSS Power/Other AM28 VSS Power/Other AL17 VSS Power/Other AM29 VCC Power/Other AL18 VCC Power/Other AM3 VID2 Power/Other AL19 VCC Power/Other AM30 VCC Power/Other AL2 PROCHOT# ASync GTL+ AM4 VSS Power/Other AL20 VSS Power/Other AM5 RESERVED Output AL21 VCC Power/Other AM6 VTTPWRGD Power/Other AL22 VCC Power/Other AM7 VSS Power/Other AL23 VSS Power/Other AM8 VCC Power/Other AL24 VSS Power/Other AM9 VCC Power/Other AL25 VCC Power/Other AN1 VSS Power/Other AL26 VCC Power/Other AN10 VSS Power/Other AL27 VSS Power/Other AN11 VCC Power/Other Power/Other AL28 VSS Power/Other AN12 VCC AL29 VCC Power/Other AN13 VSS Power/Other AL3 VSS Power/Other AN14 VCC Power/Other AL30 VCC Power/Other AN15 VCC Power/Other AL4 VID5 Power/Other Output AN16 VSS Power/Other AL5 VID1 Power/Other Output AN17 VSS Power/Other AL6 VID3 Power/Other Output AN18 VCC Power/Other Output Direction Output Input AL7 VSS_DIE_SENSE2 Power/Other AN19 VCC Power/Other AN2 VSS Power/Other B8 VSS Power/Other AN20 VSS Power/Other B9 DSTBP0# Source Sync Input/Output AN21 VCC Power/Other C1 DRDY# Common Clk Input/Output AN22 VCC Power/Other C10 VSS Power/Other AN23 VSS Power/Other C11 D11# Source Sync Input/Output AN24 VSS Power/Other C12 D14# Source Sync Input/Output AN25 VCC Power/Other C13 VSS Power/Other AN26 VCC Power/Other AN3 VCC_DIE_SENSE Power/Other Output AN4 VSS_DIE_SENSE Power/Other Output AN5 RESERVED AN6 RESERVED C18 AN7 VID_SELECT Power/Other C19 VSS Power/Other AN8 VCC Power/Other C2 BNR# Common Clk AN9 VCC Power/Other C20 DBI3# Source Sync Input/Output B1 VSS Power/Other C21 D58# Source Sync Input/Output B10 D10# Source Sync C22 VSS Power/Other B11 VSS Power/Other C23 VCCIOPLL Power/Other B12 D13# Source Sync C24 VSS Power/Other B13 RESERVED C25 VTT Power/Other Output Input/Output Input/Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet C14 D52# Source Sync Input/Output C15 D51# Source Sync Input/Output C16 VSS Power/Other C17 DSTBP3# Source Sync Input/Output D54# Source Sync Input/Output Input/Output Input 55 Land Listing Table 4-2. Land Listing by Land Number (Sheet 5 of 9) Direction Land No. Land Name Signal Buffer Type C26 VTT Power/Other Source Sync Input/Output C27 VTT Power/Other D55# Source Sync Input/Output C28 VTT Power/Other VSS Power/Other C29 VTT Power/Other Land Name Signal Buffer Type B14 VSS Power/Other B15 D53# B16 B17 Land No. B18 D57# Source Sync Input/Output C3 LOCK# Common Clk B19 D60# Source Sync Input/Output C30 VTT Power/Other Input/Output B2 DBSY# Common Clk B20 VSS Power/Other B21 D59# Source Sync B22 D63# B23 B24 Direction Input/Output C4 VSS Power/Other C5 D01# Source Sync Input/Output Input/Output C6 D03# Source Sync Input/Output Source Sync Input/Output C7 VSS Power/Other VSSA Power/Other Input Source Sync Input/Output VSS Power/Other B25 VTT B26 VTT B27 B28 C8 DSTBN0# C9 RESERVED Power/Other D1 RESERVED Power/Other D10 D22# Source Sync Input/Output VTT Power/Other D11 D15# Source Sync Input/Output VTT Power/Other D12 VSS Power/Other D13 D25# Source Sync D14 RESERVED B29 VTT Power/Other B3 RS0# Common Clk B30 VTT Power/Other B4 D00# Source Sync B5 VSS Power/Other B6 D05# Source Sync Input D15 VSS Input/Output D16 RESERVED D17 D49# Source Sync Input/Output D18 VSS Power/Other Input/Output Power/Other Input/Output B7 D06# Source Sync Input/Output D19 DBI2# Source Sync Input/Output D2 ADS# Common Clk Input/Output E4 HITM# Common Clk Input/Output D20 D48# Source Sync Input/Output D21 VSS Power/Other D22 D46# Source Sync D23 RESERVED D24 VSS D25 Input/Output E5 RESERVED E6 RESERVED E7 RESERVED E8 VSS Power/Other E9 D19# Power/Other Source Sync VTT Power/Other F1 VSS Power/Other D26 VTT Power/Other F10 VSS Power/Other D27 VTT Power/Other F11 D23# Source Sync Input/Output D28 VTT Power/Other F12 D24# Source Sync Input/Output D29 VTT Power/Other F13 VSS Power/Other Input/Output D3 VSS Power/Other F14 D28# Source Sync Input/Output D30 VTT Power/Other F15 D30# Source Sync Input/Output D4 HIT# Common Clk F16 VSS Power/Other D5 VSS Power/Other F17 D37# Source Sync Input/Output D6 VSS Power/Other F18 D38# Source Sync Input/Output D7 D20# Source Sync Input/Output F19 VSS Power/Other D8 D12# Source Sync Input/Output D9 VSS Power/Other E1 RESERVED E10 D21# Source Sync E11 VSS Power/Other E12 DSTBP1# Source Sync Input/Output F24 TESTHI07 Power/Other Input E13 D26# Source Sync Input/Output F25 TESTHI02 Power/Other Input E14 VSS Power/Other F26 TESTHI00 Power/Other Input 56 Input/Output Input/Output F2 GTLREF_DATA_C1 Power/Other Input F20 D41# Source Sync Input/Output F21 D43# Source Sync Input/Output F22 VSS Power/Other F23 RESERVED Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-2. Land Listing by Land Number (Sheet 6 of 9) Signal Buffer Type Direction Clk Input BR0# Common Clk Input/Output VTT Power/Other Land No. Land Name Signal Buffer Type Direction Land No. Land Name E15 D33# Source Sync Input/Output F27 RESERVED E16 D34# Source Sync Input/Output F28 BCLK0 E17 VSS Power/Other F29 RESERVED E18 D39# Source Sync Input/Output F3 E19 D40# Source Sync Input/Output F30 E2 VSS Power/Other F4 VSS Power/Other E20 VSS Power/Other F5 RS1# Common Clk E21 D42# Source Sync Input/Output F6 RESERVED E22 D45# Source Sync Input/Output F7 VSS Power/Other E23 RESERVED F8 D17# Source Sync Input/Output E24 RESERVED F9 D18# Source Sync Input/Output E25 VSS Power/Other G1 VSS Power/Other E26 VSS Power/Other G10 GTLREF_DATA_C0 Power/Other Input E27 VSS Power/Other G11 DBI1# Source Sync Input/Output E28 VSS Power/Other G12 DSTBN1# Source Sync Input/Output E29 VSS Power/Other G13 D27# Source Sync Input/Output E3 TRDY# Common Clk G14 D29# Source Sync Input/Output Input/Output Input Input E30 VTT Power/Other G15 D31# Source Sync G16 D32# Source Sync Input/Output H28 VSS Power/Other G17 D36# Source Sync Input/Output H29 VSS Power/Other G18 D35# Source Sync Input/Output H3 VSS Power/Other G19 DSTBP2# Source Sync Input/Output H30 BSEL1 Power/Other Output G2 COMP2 Power/Other Input H4 RSP# Common Clk Input G20 DSTBN2# Source Sync Input/Output H5 BR1# Common Clk Input G21 D44# Source Sync Input/Output H6 VSS Power/Other G22 D47# Source Sync Input/Output H7 VSS Power/Other G23 RESET# Common Clk Input H8 VSS Power/Other G24 TESTHI06 Power/Other Input H9 VSS Power/Other G25 TESTHI03 Power/Other Input J1 VTT_OUT Power/Other G26 TESTHI05 Power/Other Input J10 VCC Power/Other G27 TESTHI04 Power/Other Input J11 VCC Power/Other G28 BCLK1 Clk Input J12 VCC Power/Other G29 BSEL0 Power/Other Output J13 VCC Power/Other Power/Other Output G3 TESTHI08 Power/Other Input J14 VCC G30 BSEL2 Power/Other Output J15 VCC Power/Other G4 TESTHI09 Power/Other Input J16 DP0# Common Clk Input/Output G5 RESERVED J17 DP3# Common Clk Input/Output G6 RESERVED G7 DEFER# Common Clk G8 BPRI# Common Clk G9 D16# Source Sync Input J18 VCC Power/Other J19 VCC Power/Other Input J2 COMP4 Power/Other Input/Output J20 VCC Power/Other Input H1 GTLREF_ADD_C0 Power/Other J21 VCC Power/Other H10 VSS Power/Other J22 VCC Power/Other H11 VSS Power/Other J23 VCC Power/Other H12 VSS Power/Other J24 VCC Power/Other H13 VSS Power/Other J25 VCC Power/Other H14 VSS Power/Other J26 VCC Power/Other H15 DP1# Common Clk J27 VCC Power/Other Input/Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Input 57 Land Listing Table 4-2. Land Listing by Land Number (Sheet 7 of 9) Signal Buffer Type Land No. Land Name Signal Buffer Type Direction Land No. H16 DP2# Common Clk Input/Output J28 VCC Power/Other H17 VSS Power/Other J29 VCC Power/Other H18 VSS Power/Other J3 RESERVED H19 VSS Power/Other J30 VCC Power/Other H2 GTLREF_ADD_C1 Power/Other J4 VSS Power/Other H20 VSS Power/Other J5 REQ1# Source Sync Input/Output H21 VSS Power/Other J6 REQ4# Source Sync Input/Output H22 VSS Power/Other J7 VSS Power/Other H23 VSS Power/Other J8 VCC Power/Other H24 VSS Power/Other J9 VCC Power/Other H25 VSS Power/Other K1 LINT0 ASync GTL+ H26 VSS Power/Other K2 VSS Power/Other Input Land Name Direction Input H27 VSS Power/Other K23 VCC Power/Other K24 VCC Power/Other M7 VSS Power/Other K25 VCC Power/Other M8 VCC Power/Other K26 VCC Power/Other N1 PWRGOOD Power/Other Input K27 VCC Power/Other N2 IGNNE# ASync GTL+ Input K28 VCC Power/Other N23 VCC Power/Other K29 VCC Power/Other N24 VCC Power/Other K3 A20M# ASync GTL+ N25 VCC Power/Other K30 VCC Power/Other N26 VCC Power/Other K4 REQ0# Source Sync K5 VSS Power/Other K6 REQ3# Source Sync K7 VSS Power/Other K8 VCC Power/Other L1 LINT1 ASync GTL+ Input Input Input Input/Output Input/Output N27 VCC Power/Other N28 VCC Power/Other N29 VCC Power/Other N3 VSS Power/Other N30 VCC Power/Other N4 RESERVED L2 TESTHI11 ASync GTL+ N5 RESERVED L23 VSS Power/Other N6 VSS L24 VSS Power/Other N7 VSS Power/Other L25 VSS Power/Other N8 VCC Power/Other L26 VSS Power/Other P1 TESTHI10 Power/Other Input L27 VSS Power/Other P2 SMI# ASync GTL+ Input L28 VSS Power/Other P23 VSS Power/Other Power/Other L29 VSS Power/Other P24 VSS Power/Other L3 VSS Power/Other P25 VSS Power/Other L30 VSS Power/Other P26 VSS Power/Other L4 A06# Source Sync Input/Output P27 VSS Power/Other L5 A05# Source Sync Input/Output P28 VSS Power/Other L6 VSS Power/Other P29 VSS Power/Other L7 VSS Power/Other P3 INIT# ASync GTL+ L8 VCC Power/Other P30 VSS Power/Other M1 VSS Power/Other P4 VSS Power/Other M2 THERMTRIP# ASync GTL+ P5 RESERVED Output M23 VCC Power/Other P6 A04# Source Sync M24 VCC Power/Other P7 VSS Power/Other M25 VCC Power/Other P8 VCC Power/Other M26 VCC Power/Other R1 COMP3 Power/Other 58 Input Input/Output Input Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Land Listing Table 4-2. Land Listing by Land Number (Sheet 8 of 9) Land No. Land Name Signal Buffer Type Power/Other R2 VSS Power/Other Power/Other R23 VSS Power/Other R24 VSS Power/Other R25 VSS Power/Other R26 VSS Power/Other Input/Output R27 VSS Power/Other Input/Output R28 VSS Power/Other Source Sync Input/Output R29 VSS Power/Other FERR#/PBE# ASync GTL+ Output V24 VSS Power/Other R30 VSS Power/Other V25 VSS Power/Other R4 A08# Source Sync Input/Output V26 VSS Power/Other R5 VSS Power/Other V27 VSS Power/Other R6 ADSTB0# Source Sync Input/Output V28 VSS Power/Other R7 VSS Power/Other V29 VSS Power/Other R8 VCC Power/Other V3 VSS Power/Other T1 COMP1 Power/Other Input V30 VSS Power/Other Input Signal Buffer Type Land No. Land Name M27 VCC M28 VCC M29 VCC Power/Other M3 STPCLK# ASync GTL+ M30 VCC Power/Other M4 A07# Source Sync M5 A03# Source Sync M6 REQ2# R3 Direction Input Direction T2 COMP5 Power/Other V4 A15# Source Sync Input/Output T23 VCC Power/Other V5 A14# Source Sync Input/Output T24 VCC Power/Other V6 VSS Power/Other T25 VCC Power/Other V7 VSS Power/Other T26 VCC Power/Other V8 VCC Power/Other T27 VCC Power/Other W1 MS_ID0 Power/Other T28 VCC Power/Other W2 RESERVED T29 VCC Power/Other W23 VCC Power/Other T3 VSS Power/Other W24 VCC Power/Other T30 VCC Power/Other W25 VCC Power/Other T4 A11# Source Sync Input/Output W26 VCC Power/Other T5 A09# Source Sync Input/Output W27 VCC Power/Other T6 VSS Power/Other W28 VCC Power/Other Power/Other T7 VSS Power/Other W29 VCC T8 VCC Power/Other W3 TESTHI01 Power/Other U1 VSS Power/Other W30 VCC Power/Other Input/Output Output Input U2 AP0# Common Clk W4 VSS Power/Other U23 VCC Power/Other W5 A16# Source Sync Input/Output U24 VCC Power/Other W6 A18# Source Sync Input/Output U25 VCC Power/Other W7 VSS Power/Other U26 VCC Power/Other W8 VCC Power/Other U27 VCC Power/Other Y1 RESERVED U28 VCC Power/Other Y2 VSS U29 VCC Power/Other Y23 VCC Power/Other U3 AP1# Common Clk Input/Output Y24 VCC Power/Other U30 VCC Power/Other Y25 VCC Power/Other U4 A13# Source Sync Input/Output Y26 VCC Power/Other U5 A12# Source Sync Input/Output Y27 VCC Power/Other U6 A10# Source Sync Input/Output Y28 VCC Power/Other U7 VSS Power/Other Y29 VCC Power/Other U8 VCC Power/Other Y3 COMP6 Power/Other V1 MS_ID1 Power/Other Y30 VCC Power/Other I Output Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Power/Other Input 59 Land Listing Table 4-2. Land Listing by Land Number (Sheet 9 of 9) Land No. Land Name Signal Buffer Type Direction Output V2 LL_ID0 Power/Other V23 VSS Power/Other Y6 A19# Source Sync Y7 VSS Power/Other Y8 VCC Power/Other Signal Buffer Type Direction A20# Source Sync Input/Output VSS Power/Other Land No. Land Name Y4 Y5 Input/Output § 60 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Signal Definitions 5 Signal Definitions 5.1 Signal Definitions Table 5-1. Signal Definitions (Sheet 1 of 8) Name A[35:3]# Type Description Notes 36 I/O A[35:3]# (Address) define a 2 -byte physical memory address space. In sub-phase 1 of the address phase, these signals transmit the address of a transaction. In subphase 2, these signals transmit transaction type information. These signals must connect the appropriate pins of all agents on the FSB. A[35:3]# are protected by parity signals AP[1:0]#. A[35:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. On the active-to-inactive transition of RESET#, the processors sample a subset of the A[35:3]# lands to determine their power-on configuration. See Section 7.1. 3 I If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/ write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1 MB boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an I/O write instruction, it must be valid along with the TRDY# assertion of the corresponding I/O write bus transaction. 2 ADS# I/O ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[35:3]# lands. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction. This signal must connect the appropriate pins on all Dual-Core Intel Xeon Processor 5000 series FSB agents. 3 ADSTB[1:0]# I/O Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling edge. Strobes are associated with signals as shown below. 3 A20M# AP[1:0]# BCLK[1:0] I/O I Signals Associated Strobes REQ[4:0], A[16:3]# ADSTB0# A[35:17]# ADSTB1# AP[1:0]# (Address Parity) are driven by the request initiator along with ADS#, A[35:3]#, and the transaction type on the REQ[4:0]# signals. A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. This allows parity to be high when all the covered signals are high. AP[1:0]# should connect the appropriate pins of all Dual-Core Intel Xeon Processor 5000 series FSB agents. The following table defines the coverage model of these signals. Request Signals Subphase 1 Subphase 2 A[35:24]# AP0# AP1# A[23:3]# AP1# AP0# REQ[4:0]# AP1# AP0# The differential bus clock pair BCLK[1:0] (Bus Clock) determines the FSB frequency. All processor FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLK0 crossing VCROSS. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 3 3 61 Signal Definitions Table 5-1. Name Signal Definitions (Sheet 2 of 8) Type Description BINIT# I/O BINIT# (Bus Initialization) may be observed and driven by all processor FSB agents and if used, must connect the appropriate pins of all such agents. If the BINIT# driver is enabled during power on configuration, BINIT# is asserted to signal any bus condition that prevents reliable future operation. If BINIT# observation is enabled during power-on configuration (see Figure 7.1) and BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity and bus request arbitration state machines. The bus agents do not reset their I/O Queue (IOQ) and transaction tracking state machines upon observation of BINIT# assertion. Once the BINIT# assertion has been observed, the bus agents will re-arbitrate for the FSB and attempt completion of their bus queue and IOQ entries. If BINIT# observation is disabled during power-on configuration, a priority agent may handle an assertion of BINIT# as appropriate to the error handling architecture of the system. 3 BNR# I/O BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions. Since multiple agents might need to request a bus stall at the same time, BNR# is a wired-OR signal which must connect the appropriate pins of all processor FSB agents. In order to avoid wired-OR glitches associated with simultaneous edge transitions driven by multiple drivers, BNR# is activated on specific clock edges and sampled on specific clock edges. 3 BPM[5:0]# I/O BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[5:0]# should connect the appropriate pins of all FSB agents. BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a processor output used by debug tools to determine processor debug readiness. BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is used by debug tools to request debug operation of the processors. BPM[5:4]# must be bussed to all bus agents. Please refer to the appropriate platform design guidelines for more detailed information. 2 BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor FSB. It must connect the appropriate pins of all processor FSB agents. Observing BPRI# active (as asserted by the priority agent) causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#. 3 The BR[1:0]# signals are sampled on the active-to-inactive transition of RESET#. The signal which the agent samples asserted determines its agent ID. BR0# drives the BREQ0# signal in the system and is used by the processor to request the bus. These signals do not have on-die termination and must be terminated. 3 BPRI# I BR[1:0]# I/O BSEL[2:0] O The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the processor input clock frequency. Table 2-2 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processors, chipset, and clock synthesizer. All FSB agents must operate at the same frequency. The Dual-Core Intel Xeon Processor 5000 series currently operate at either 667 or 1066 MHz FSB frequency. For more information about these signals, including termination recommendations, refer to the appropriate platform design guideline. COMP[3:0] I COMP[3:0] must be terminated to VSS on the baseboard using precision resistors. These inputs configure the AGTL+ drivers of the processor. Refer to the appropriate platform design guidelines for implementation details. COMP[7:4] I COMP[7:4] must be terminated to VTT on the baseboard using precision resistors. These inputs configure the AGTL+ drivers of the processor. Refer to the appropriate platform design guidelines for implementation details. 62 Notes Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Signal Definitions Table 5-1. Name D[63:0]# Signal Definitions (Sheet 3 of 8) Type I/O Description D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the processor FSB agents, and must connect the appropriate pins on all such agents. The data driver asserts DRDY# to indicate a valid data transfer. Notes 3 D[63:0]# are quad-pumped signals, and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to strobes and DBI#. Data Group DSTBN#/ DSTBP# DBI# D[15:0]# 0 0 D[31:16]# 1 1 D[47:32]# 2 2 D[63:48]# 3 3 Furthermore, the DBI# signals determine the polarity of the data signals. Each group of 16 data signals corresponds to one DBI# signal. When the DBI# signal is active, the corresponding data group is inverted and therefore sampled active high. DBI[3:0]# I/O DBI[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DBI[3:0]# signals are activated when the data on the data bus is inverted. If more than half the data bits, within, within a 16-bit group, would have been asserted electronically low, the bus agent may invert the data bus signals for that particular sub-phase for that 16-bit group. 3 DBI[3:0]# Assignment to Data Bus Bus Signal DBR# Data Bus Signals DBI0# D[15:0]# DBI1# D[31:16]# DBI2# D[47:32]# DBI3# D[63:48]# O DBR# is used only in systems where no debug port connector is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port connector is implemented in the system, DBR# is treated as a no connect for the processor socket. DBR# is not a processor signal. DBSY# I/O DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the processor FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on all processor FSB agents. 3 DEFER# I DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or I/O agent. This signal must connect the appropriate pins of all processor FSB agents. 3 DP[3:0]# I/O DP[3:0]# (Data Parity) provide parity protection for the D[63:0]# signals. They are driven by the agent responsible for driving D[63:0]#, and must connect the appropriate pins of all processor FSB agents. 3 DRDY# I/O DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of all processor FSB agents. 3 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 63 Signal Definitions Table 5-1. Signal Definitions (Sheet 4 of 8) Name DSTBN[3:0]# DSTBP[3:0]# Type I/O I/O Description Data strobe used to latch in D[63:0]#. Signals Associated Strobes D[15:0]#, DBI0# DSTBN0# D[31:16]#, DBI1# DSTBN1# D[47:32]#, DBI2# DSTBN2# D[63:48]#, DBI3# DSTBN3# Data strobe used to latch in D[63:0]#. Signals Associated Strobes D[15:0]#, DBI0# DSTBP0# D[31:16]#, DBI1# DSTBP1# D[47:32]#, DBI2# DSTBP2# D[63:48]#, DBI3# DSTBP3# Notes 3 3 FERR#/PBE# O FERR#/PBE# (floating-point error/pending break event) is a multiplexed signal and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating-point error and will be asserted when the processor detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. For additional information on the pending break event functionality, including the identification of support of the feature and enable/disable information, refer to Vol. 3 of the Intel Architecture Software Developer’s Manual and the Intel Processor Identification and the CPUID Instruction application note. FORCEPR# I The FORCEPR# (force power reduction) input can be used by the platform to cause the Dual-Core Intel Xeon Processor 5000 series to activate the Thermal Control Circuit (TCC). GTLREF_ADD_C0 GTLREF_ADD_C1 I GTLREF_ADD_C0 and GTLREF_ADD_C1 determine the signal reference level for AGTL+ address and common clock input lands on processor core 0 and processor core 1 respectively. GTLREF_ADD is used by the AGTL+ receivers to determine if a signal is a logical 0 or a logical 1. Please refer to the appropriate platform design guidelines for additional details. GTLREF_DATA_C0 GTLREF_DATA_C1 I GTLREF_DATA_C0 AND GTLREF_DATA_C1 determine the signal reference level for AGTL+ data input lands on processor core 0 and processor core 1 respectively. GTLREF_DATA is used by the AGTL+ receivers to determine if a signal is a logical 0 or a logical 1. Please refer to the appropriate platform design guidelines for additional details. HIT# HITM# I/O I/O HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Any FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together. 3 IERR# O IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the processor FSB. This transaction may optionally be converted to an external error signal (for example, NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#. This signal does not have on-die termination. 2 64 2 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Signal Definitions Table 5-1. Name Signal Definitions (Sheet 5 of 8) Type Description Notes IGNNE# I IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an I/O write instruction, it must be valid along with the TRDY# assertion of the corresponding I/O write bus transaction. 2 INIT# I INIT# (Initialization), when asserted, resets integer registers inside all processors without affecting their internal caches or floating-point registers. Each processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal and must connect the appropriate pins of all processor FSB agents. 2 LINT[1:0] I LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all FSB agents. When the APIC functionality is disabled, the LINT0/INTR signal becomes INTR, a maskable interrupt request signal, and LINT1/NMI becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium® processor. Both signals are asynchronous. These signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration. 2 LL_ID[1:0] O The LL_ID[1:0] signals are used to select the correct loadline slope for the processor. The Dual-Core Intel Xeon Processor 5000 series pull these signals to ground on the package for a logic 0 as these signals are not connected to the processor die. A logic 1 is a no-connect on the Dual-Core Intel Xeon Processor 5000 series package. LOCK# I/O LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of all processor FSB agents. For a locked series of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the processor FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the processor FSB throughout the bus locked operation and ensure the atomicity of lock. MCERR# I/O MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error without a bus protocol violation. It may be driven by all processor FSB agents. MCERR# assertion conditions are configurable at a system level. Assertion options are defined by the following options: • Enabled or disabled. • Asserted, if configured, for internal errors along with IERR#. • Asserted, if configured, by the request initiator of a bus transaction after it observes an error. • Asserted by any bus agent when it observes an error in a bus transaction. 3 For more details regarding machine check architecture, refer to the IA-32 Software Developer’s Manual, Volume 3: System Programming Guide. MS_ID[1:0] O These signals are provided to indicate the Market Segment for the processor and may be used for future processor compatibility or for keying. The Dual-Core Intel Xeon Processor 5000 series pull these signals to ground on the package for a logic 0 as these signals are not connected to the processor die. A logic 1 is a no-connect on the Dual-Core Intel Xeon Processor 5000 series package. PROCHOT# O PROCHOT# (Processor Hot) will go active when the processor’s temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the Thermal Control Circuit (TCC) has been activated, if enabled. The TCC will remain active until shortly after the processor deasserts PROCHOT#. See Section 6.2.3 for more details. PROCHOT# from each processor socket should be kept separated and not tied together on platform designs. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 65 Signal Definitions Table 5-1. Name Signal Definitions (Sheet 6 of 8) Type Description PWRGOOD I PWRGOOD (Power Good) is an input. The processor requires this signal to be a clean indication that all processor clocks and power supplies are stable and within their specifications. “Clean” implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state.PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. It must also meet the minimum pulse width specification in Table 2-15, and be followed by a 1-10 ms RESET# pulse. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. 2 REQ[4:0]# I/O REQ[4:0]# (Request Command) must connect the appropriate pins of all processor FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[1:0]#. Refer to the AP[1:0]# signal description for details on parity checking of these signals. 3 RESET# I Asserting the RESET# signal resets all processors to known states and invalidates their internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least 1 ms after VCC and BCLK have reached their proper specifications. On observing active RESET#, all FSB agents will deassert their outputs within two clocks. RESET# must not be kept asserted for more than 10 ms while PWRGOOD is asserted. A number of bus signals are sampled at the active-to-inactive transition of RESET# for power-on configuration. These configuration options are described in the Section 7.1. This signal does not have on-die termination and must be terminated on the system board. 3 RS[2:0]# I RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of all processor FSB agents. 3 RSP# I RSP# (Response Parity) is driven by the response agent (the agent responsible for completion of the current transaction) during assertion of RS[2:0]#, the signals for which RSP# provides parity protection. It must connect to the appropriate pins of all processor FSB agents. A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also high, since this indicates it is not being driven by any agent guaranteeing correct parity. 3 SKTOCC# O SKTOCC# (Socket occupied) will be pulled to ground by the processor to indicate that the processor is present. There is no connection to the processor silicon for this signal. SMI# I SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, processors save the current state and enter System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the deassertion of RESET# the processor will tri-state its outputs. 2 STPCLK# I STPCLK# (Stop Clock), when asserted, causes processors to enter a low power StopGrant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input. 2 TCK I TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port). TDI I TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. TDO O TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. TEST_BUS 66 Other Notes Must be connected to all other processor TEST_BUS signals in the system. See the appropriate platform design guideline for termination details. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Signal Definitions Table 5-1. Signal Definitions (Sheet 7 of 8) Name Type Description I TESTHI[11:0] must be connected to a VTT power source through a resistor for proper processor operation. Refer to Section 2.6 for TESTHI grouping restrictions. THERMDA THERMDA2 Other Thermal Diode Anode. THERMDA connects to processor core 0, THERMDA2 connects to processor core 1. Refer to the appropriate platform design guidelines for implementation details. THERMDC THERMDC2 Other Thermal Diode Cathode. THERMDC connects to processor core 0. THERMDC2 connects to processor core 1. Refer to the appropriate platform design guidelines for implementation details. THERMTRIP# O Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction temperature has reached a temperature beyond which permanent silicon damage may occur. Measurement of the temperature is accomplished through an internal thermal sensor. Upon assertion of THERMTRIP#, the processor will shut off its internal clocks (thus halting program execution) in an attempt to reduce the processor junction temperature. To protect the processor its core voltage (VCC) must be removed following the assertion of THERMTRIP#. Intel is currently evaluating whether VTT must also be removed. Driving of the THERMTRIP# signals is enabled within 10 ms of the assertion of PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated, THERMTRIP# remains latched until PWRGOOD is de-asserted. While the de-assertion of the PWRGOOD signal will de-assert THERMTRIP#, if the processor’s junction temperature remains at or above the trip level, THERMTRIP# will again be asserted within 10 ms of the assertion of PWRGOOD. TMS I TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. See the eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms for further information. TRDY# I TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of all FSB agents. TRST# I TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. VCCA I VCCA provides isolated power for the analog portion of the internal processor core PLL’s. Refer to the appropriate platform design guidelines for complete implementation details. VCCIOPLL I VCCIOPLL provides isolated power for digital portion of the internal processor core PLL’s. Follow the guidelines for VCCA, and refer to the appropriate platform design guidelines for complete implementation details. VCC_DIE_SENSE VCC_DIE_SENSE2 O VCC_DIE_SENSE and VCC_DIE_SENSE2 provide an isolated, low impedance connection to each processor core power and ground. These signals should be connected to the voltage regulator feedback signal, which insures the output voltage (that is, processor voltage) remains within specification. Please see the applicable platform design guide for implementation details. VID[5:0] O VID[5:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (VCC). These are CMOS signals that are driven by the processor and must be pulled up through a resistor. Conversely, the voltage regulator output must be disabled prior to the voltage supply for these pins becomes invalid. The VID pins are needed to support processor voltage specification variations. See Table 2-3 for definitions of these pins. The VR must supply the voltage that is requested by these pins, or disable itself. VID_SELECT O VID_SELECT is an output from the processor which selects the appropriate VID table for the Voltage Regulator. Dual-Core Intel Xeon Processor 5000 series pull this signal to ground on the package as this signal is not connected to the processor die. VSS_DIE_SENSE VSS_DIE_SENSE2 O VSS_DIE_SENSE and VSS_DIE_SENSE2 provide an isolated, low impedance connection to each processor core power and ground. These signals should be connected to the voltage regulator feedback signal, which insures the output voltage (that is, processor voltage) remains within specification. Please see the applicable platform design guide for implementation details. VSSA I VSSA provides an isolated, internal ground for internal PLL’s. Do not connect directly to ground. This pin is to be connected to VCCA and VCCIOPLL through a discrete filter circuit. TESTHI[11:0] Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Notes 1 67 Signal Definitions Table 5-1. Name Signal Definitions (Sheet 8 of 8) Type Description VTT P The FSB termination voltage input pins. Refer to Table 2-10 for further details. VTT_OUT O The VTT_OUT signals are included in order to provide a local VTT for some signals that require termination to VTT on the motherboard. VTTPWRGD I The processor requires this input to determine that the supply voltage for BSEL[2:0] and VID[5:0] is stable and within specification. Notes Notes: 1. For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is one. Maximum number of priority agents is zero. 2. For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is two. Maximum number of priority agents is zero. 3. For this pin on Dual-Core Intel Xeon Processor 5000 series, the maximum number of symmetric agents is two. Maximum number of priority agents is one. § 68 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications 6 Thermal Specifications 6.1 Package Thermal Specifications The Dual-Core Intel Xeon Processor 5000 series require a thermal solution to maintain temperatures within its operating limits. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete solution includes both component and system level thermal management features. Component level thermal solutions can include active or passive heatsinks attached to the processor integrated heat spreader (IHS). Typical system level thermal solutions may consist of system fans combined with ducting and venting. This section provides data necessary for developing a complete thermal solution. For more information on designing a component level thermal solution, refer to the DualCore Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines. Note: The boxed processor will ship with a component thermal solution. Refer to Chapter 8, “Boxed Processor Specifications”for details on the boxed processor. 6.1.1 Thermal Specifications To allow the optimal operation and long-term reliability of Intel processor-based systems, the processor must remain within the minimum and maximum case temperature (TCASE) specifications as defined by the applicable thermal profile (refer to Table 6-1, Table 6-4 and Table 6-7; Figure 6-1, Figure 6-2 and Figure 6-3). Thermal solutions not designed to provide this level of thermal capability may affect the longterm reliability of the processor and system. For more details on thermal solution design, please refer to the processor thermal/mechanical design guidelines. The Dual-Core Intel Xeon Processor 5000 series implement a methodology for managing processor temperatures, which is intended to support acoustic noise reduction through fan speed control and to ensure processor reliability. Selection of the appropriate fan speed is based on the temperature reported by the processor’s Thermal Diode. If the diode temperature is greater than or equal to Tcontrol (refer to Section 6.2.6), then the processor case temperature must remain at or below the temperature specified by the thermal profile (refer to Figure 6-1, Figure 6-2 and Figure 6-3). If the diode temperature is less than Tcontrol, then the case temperature is permitted to exceed the thermal profile, but the diode temperature must remain at or below Tcontrol. Systems that implement fan speed control must be designed to take these conditions into account. Systems that do not alter the fan speed only need to guarantee the case temperature meets the thermal profile specifications. Intel has developed two thermal profiles, either of which can be implemented with the Dual-Core Intel Xeon Processor 5000 series. Both ensure adherence to Intel reliability requirements. Thermal Profile A (refer to Figure 6-1, Figure 6-2; Table 6-2 and Table 6-5) is representative of a volumetrically unconstrained thermal solution (that is, industry enabled 2U heatsink). In this scenario, it is expected that the Thermal Control Circuit (TCC) would only be activated for very brief periods of time when running the most power intensive applications. Thermal Profile B (refer to Figure 6-1 and Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 69 Thermal Specifications Figure 6-2; Table 6-3 and Table 6-6) is indicative of a constrained thermal environment (that is, 1U form factor). Because of the reduced cooling capability represented by this thermal solution, the probability of TCC activation and performance loss is increased. Additionally, utilization of a thermal solution that does not meet Thermal Profile B will violate the thermal specifications and may result in permanent damage to the processor. Intel has developed these thermal profiles to allow OEMs to choose the thermal solution and environmental parameters that best suit their platform implementation. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/ Mechanical Design Guidelines for details on system thermal solution design, thermal profiles and environmental considerations. The Dual-Core Intel Xeon Processor 5063 (MV) supports a single Thermal Profile targeted at volumetrically constrained thermal environments (for example, blades, 1U form factors.) With this Thermal Profile, it’s expected that the Thermal Control Circuit (TCC) would only be activated for very brief periods of time when running the most power-intensive applications. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for further details. The upper point of the thermal profile consists of the Thermal Design Power (TDP) defined in Table 6-1, Table 6-4, Table 6-7 and the associated TCASE value. It should be noted that the upper point associated with Thermal Profile B (x = TDP and y = TCASE_MAX_B @ TDP) represents a thermal solution design point. In actuality the processor case temperature will not reach this value due to TCC activation (refer to Figure 6-1 and Figure 6-2). The lower point of the thermal profile consists of x = P_profile_min and y = TCASE_MAX @ P_profile_min. P_profile_min is defined as the processor power at which TCASE , calculated from the thermal profile, is equal to 50 ° C. The case temperature is defined at the geometric top center of the processor IHS. Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the Thermal Design Power (TDP) indicated in Table 6-1, Table 6-4 and Table 6-7, instead of the maximum processor power consumption. The Thermal Monitor feature is intended to help protect the processor in the event that an application exceeds the TDP recommendation for a sustained time period. For more details on this feature, refer to Section 6.2. To ensure maximum flexibility for future requirements, systems should be designed to the Flexible Motherboard (FMB) guidelines, even if a processor with lower power dissipation is currently planned. The Thermal Monitor feature must be enabled for the processor to remain within its specifications. Table 6-1. Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Specifications Core Frequency Launch to FMB Thermal Design Power (W) Minimum TCASE (°C) Maximum TCASE (°C) Notes 130 5 Refer to Figure 6-1; Table 6-2; Table 6-3 1, 2, 3, 4, 5 Notes: 1. These values are specified at VCC_MAX for all processor frequencies. Systems must be designed to ensure the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds VCC_MAX at specified ICC. Please refer to the loadline specifications in Chapter 2, “Electrical Specifications”. 2. Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the maximum power that the processor can dissipate. TDP is measured at maximum TCASE. 3. These specifications are based on final silicon validation/characterization. 4. Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000 series may be shipped under multiple VIDs for each frequency. 5. FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor frequency requirements. 70 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications Figure 6-1. Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profiles A and B TCASE_M AX is a thermal solution design point. In actuality, units will not significantly exceed TCASE_M AX_A due to TCC activation. 85 TCASE_MAX_B@ TDP 80 75 TCASE_MAX_A@ TDP Tcase [C] 70 65 Thermal Profile B Y = 0.260*x + 44.2 Thermal Profile A Y = 0.203*x + 42.6 60 55 50 45 40 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Pow e r [W] Notes: 1. Thermal Profile A is representative of a volumetrically unconstrained platform. Please refer to Table 6-2 for discrete points that constitute the thermal profile. 2. Implementation of Thermal Profile A should result in virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet processor Thermal Profile A will result in increased probability of TCC activation and may incur measurable performance loss. (Refer to Section 6.2 for details on TCC activation.) 3. Thermal Profile B is representative of a volumetrically constrained platform. Please refer to Table 6-3 for discrete points that constitute the thermal profile. 4. Implementation of Thermal Profile B will result in increased probability of TCC activation and measurable performance loss. Furthermore, utilization of thermal solutions that do not meet Thermal Profile B do not meet the processor’s thermal specifications and may result in permanent damage to the processor. 5. Refer to the Dual-Core Intel® Xeon® processor 5000 Series Thermal/Mechanical Design Guidelines for system and environmental implementation details. Table 6-2. Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile A Table Power (W) TCASE_MAX (° C) Power (W) P_profile_min_A=36.5 50.0 85 59.9 40 50.7 90 60.9 45 51.7 95 61.9 50 52.8 100 62.9 55 53.8 105 63.9 60 54.8 110 64.9 65 55.8 115 65.9 70 56.8 120 67.0 75 57.8 125 68.0 80 58.8 130 69.0 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet TCASE_MAX (° C) 71 Thermal Specifications Table 6-3. Dual-Core Intel Xeon Processor 5000 Series (1066 MHz) Thermal Profile B Table Power (W) Table 6-4. TCASE_MAX (° C) Power (W) TCASE_MAX (° C) P_profile_min_B=22.3 50.0 80 65.0 30 52.0 85 66.3 35 53.3 90 67.6 40 54.6 95 68.9 45 55.9 100 70.2 50 57.2 105 71.5 55 58.5 110 72.8 60 59.8 115 74.1 65 61.1 120 75.4 70 62.4 125 76.7 75 63.7 130 78.0 Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Specifications Core Frequency Launch to FMB Thermal Design Power (W) Minimum TCASE (°C) 95 5 Maximum TCASE (°C) Notes Refer to Figure 6-2; Table 6-5; Table 6-6 1, 2, 3, 4, 5 Notes: 1. These values are specified at VCC_MAX for all processor frequencies. Systems must be designed to ensure the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds VCC_MAX at specified ICC. Please refer to the loadline specifications in Chapter 2, “Electrical Specifications.” 2. Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the maximum power that the processor can dissipate. TDP is measured at maximum TCASE. 3. These specifications are based on final silicon validation/characterization. 4. Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000 series may be shipped under multiple VIDs for each frequency. 5. FMB, or Flexible Motherboard, guidelines provide a design target for meeting all planned processor frequency requirements. 72 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications Figure 6-2. Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profiles TCASE_M AX is a thermal solution design point. In actuality, units w ill not significantly exceed TCASE_M AX_A due to TCC activation. 70 TCASE_MAX_B@ TDP 65 TCASE_MAX_A@ TDP Tcase [C] 60 Thermal Profile B Y = 0.260*x + 42.3 55 Thermal Profile A Y = 0.203*x + 41.7 50 45 40 0 10 20 30 40 50 60 70 80 90 100 Pow e r [W] Notes: 1. Thermal Profile A is representative of a volumetrically unconstrained platform. Please refer to Table 6-5 for discrete points that constitute the thermal profile. 2. Implementation of Thermal Profile A should result in virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet processor Thermal Profile A will result in increased probability of TCC activation and may incur measurable performance loss. (Refer to Section 6.2 for details on TCC activation). 3. Thermal Profile B is representative of a volumetrically constrained platform. Please refer to Table 6-6 for discrete points that constitute the thermal profile. 4. Implementation of Thermal Profile B will result in increased probability of TCC activation and measurable performance loss. Furthermore, utilization of thermal solutions that do not meet Thermal Profile B do not meet the processor’s thermal specifications and may result in permanent damage to the processor. 5. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for system and environmental implementation details. Table 6-5. Dual-Core Intel Xeon Processor 5000 Series (667 MHz) Thermal Profile A Table Power (W) TCASE_MAX (° C) Power (W) TCASE_MAX (° C) P_profile_min_A=40.9 50.0 80 57.9 45 50.8 85 59.0 50 51.9 90 60.0 55 52.9 95 61.0 60 53.9 65 54.9 70 55.9 75 56.9 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 73 Thermal Specifications Table 6-6. Table 6-7. Dual-Core Intel Xeon 5000 Series (667 MHz) Thermal Profile B Table Power (W) TCASE_MAX (° C) Power (W) TCASE_MAX (° C) P_profile_min_B=29.6 50.0 75 61.8 35 51.4 80 63.1 40 52.7 85 64.4 45 54.0 90 65.7 50 55.3 95 67.0 55 56.6 60 57.9 65 59.2 70 60.5 Dual-Core Intel Xeon Processor 5063 (MV) Thermal Specifications Core Frequency Launch to FMB Thermal Design Power (W) Minimum TCASE (°C) 95 5 Maximum TCASE (°C) Notes Refer to Figure 6-3; Table 6-8 1, 2, 3, 4, 5 Notes: 1. These values are specified at VCC_MAX for all processor frequencies. Systems must be designed to ensure the processor is not to be subjected to any static VCC and ICC combination wherein VCC exceeds VCC_MAX at specified ICC. Please refer to the loadline specifications in Chapter 2, “Electrical Specifications.” 2. Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the maximum power that the processor can dissipate. TDP is measured at maximum TCASE. 3. These specifications are based on final silicon validation/characterization. 4. Power specifications are defined at all VIDs found in Table 2-10. The Dual-Core Intel Xeon Processor 5000 series may be shipped under multiple VIDs for each frequency. 5. FMB, or Flexible Motherboard, guideline provide a design target for meeting all planned processor frequency requirements. 74 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications Figure 6-3. Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile Thermal Profile 70 TCASE_MAX@TDP 65 Thermal Profile Y = 0.260*x + 42.3 Tcase [C] 60 55 50 45 40 0 10 20 30 40 50 60 70 80 90 100 Pow e r [W] Notes: 1. Thermal Profile is representative of a volumetrically constrained platform. Please refer to Table 6-8 for discrete points that constitute the thermal profile. 2. Implementation of Thermal Profile should result in virtually no TCC activation. Furthermore, utilization of thermal solutions that do not meet Thermal Profile will not meet the processor’s thermal specifications and may result in permanent damage to the processor. 3. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for system and environment implementation details. Table 6-8. 6.1.2 Dual-Core Intel Xeon Processor 5063 (MV) Thermal Profile Table Power (W) TCASE_MAX (° C) Power (W) TCASE_MAX (° C) P_profile_min_B=29.6 50.0 75 61.8 35 51.4 80 63.1 40 52.7 85 64.4 45 54.0 90 65.7 50 55.3 95 67.0 55 56.6 60 57.9 65 59.2 70 60.5 Thermal Metrology The minimum and maximum case temperatures (TCASE) specified in Table 6-2, Table 6-3, Table 6-5, and Table 6-6 are measured at the geometric top center of the processor integrated heat spreader (IHS). Figure 6-4 illustrates the location where Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 75 Thermal Specifications TCASE temperature measurements should be made. For detailed guidelines on temperature measurement methodology, refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines. Figure 6-4. Case Temperature (TCASE) Measurement Location Note: 76 Figure is not to scale and is for reference only. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications 6.2 Processor Thermal Features 6.2.1 Thermal Monitor The Thermal Monitor (TM1) feature helps control the processor temperature by activating the Thermal Control Circuit (TCC) when the processor silicon reaches its maximum operating temperature. The TCC reduces processor power consumption as needed by modulating (starting and stopping) the internal processor core clocks. The Thermal Monitor (TM1) must be enabled for the processor to be operating within specifications. The temperature at which Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active. When the Thermal Monitor is enabled and a high temperature situation exists (that is, TCC is active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle specific to the processor (typically 30 -50%). Cycle times are processor speed dependent and will decrease as processor core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases. With a thermal solution designed to meet Thermal Profile A, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable. A thermal solution that is designed to Thermal Profile B may cause a noticeable performance loss due to increased TCC activation. Thermal Solutions that exceed Thermal Profile B will exceed the maximum temperature specification and affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously. Refer to the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for information on designing a thermal solution. The duty cycle for the TCC, when activated by the TM1, is factory configured and cannot be modified. The TM1 does not require any additional hardware, software drivers, or interrupt handling routines. 6.2.2 On-Demand Mode The processor provides an auxiliary mechanism that allows system software to force the processor to reduce its power consumption. This mechanism is referred to as “OnDemand” mode and is distinct from the Thermal Monitor feature. On-Demand mode is intended as a means to reduce system level power consumption. Systems utilizing the Dual-Core Intel Xeon Processor 5000 series must not rely on software usage of this mechanism to limit the processor temperature. If bit 4 of the IA32_CLOCK_MODULATION MSR is set to a ‘1’, the processor will immediately reduce its power consumption via modulation (starting and stopping) of the internal core clock, independent of the processor temperature. When using On-Demand mode, the duty cycle of the clock modulation is programmable via bits 3:1 of the same IA32_CLOCK_MODULATION MSR. In On-Demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be used in conjunction with the Thermal Monitor; however, if Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 77 Thermal Specifications the system tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty cycle of the TCC will override the duty cycle selected by the OnDemand mode. 6.2.3 PROCHOT# Signal An external signal, PROCHOT# (processor hot) is asserted when the processor die temperature has reached its factory configured trip point. If Thermal Monitor is enabled (note that Thermal Monitor must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the Intel Architecture Software Developer’s Manual for specific register and programming details. PROCHOT# is designed to assert at or a few degrees higher than maximum TCASE (as specified by Thermal Profile A) when dissipating TDP power and cannot be interpreted as an indication of processor case temperature. This temperature delta accounts for processor package, lifetime and manufacturing variations and attempts to ensure the Thermal Control Circuit is not activated below maximum TCASE when dissipating TDP power. There is no defined or fixed correlation between the PROCHOT# trip temperature, the case temperature or the thermal diode temperature. Thermal solutions must be designed to the processor specifications and cannot be adjusted based on experimental measurements of TCASE, PROCHOT#, or Tdiode on random processor samples. 6.2.4 FORCEPR# Signal The FORCEPR# (force power reduction) input can be used by the platform to cause the Dual-Core Intel Xeon Processor 5000 series to activate the TCC. If the Thermal Monitor is enabled, the TCC will be activated upon the assertion of the FORCEPR# signal. Assertion of the FORCEPR# signal will activate TCC for both processor cores. The TCC will remain active until the system deasserts FORCEPR#. FORCEPR# is an asynchronous input. FORCEPR# can be used to thermally protect other system components. To use the VR as an example, when FORCEPR# is asserted, the TCC circuit in the processor will activate, reducing the current consumption of the processor and the corresponding temperature of the VR. It should be noted that assertion of FORCEPR# does not automatically assert PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high temperature situation is detected. A minimum pulse width of 500 µs is recommended when FORCEPR# is asserted by the system. Sustained activation of the FORCEPR# signal may cause noticeable platform performance degradation. Refer to the appropriate platform design guidelines for details on implementing the FORCEPR# signal feature. 6.2.5 THERMTRIP# Signal Regardless of whether or not Thermal Monitor is enabled, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in Table 5-1). At this point, the FSB signal THERMTRIP# will go active and stay active as described in Table 5-1. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. Intel also recommends the removal of VTT. 78 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications 6.2.6 Tcontrol and Fan Speed Reduction Tcontrol is a temperature specification based on a temperature reading from the thermal diode. The value for Tcontrol will be calibrated in manufacturing and configured for each processor. The Tcontrol value is set identically for both processor cores. The Tcontrol temperature for a given processor can be obtained by reading the IA32_TEMPERATURE_TARGET MSR in the processor. The Tcontrol value that is read from the IA32_TEMPERATURE_TARGET MSR must be converted from Hexadecimal to Decimal and added to a base value of 60° C. The value of Tcontrol may vary from 0x00h to 0x1Eh. When Tdiode is above Tcontrol, then TCASE must be at or below TCASE_MAX as defined by the thermal profile. (Refer to Figure 6-1, Figure 6-2 and Figure 6-3 ; Table 6-2, Table 6-3, Table 6-5, Table 6-6 and Table 6-8). Otherwise, the processor temperature can be maintained at or below Tcontrol. 6.2.7 Thermal Diode The Dual-Core Intel Xeon Processor 5000 series incorporates an on-die PNP transistor whose base emitter junction is used as a thermal “diode”, one per core, with its collector shorted to Ground. A thermal sensor located on the system board may monitor the die temperature of the processor for thermal management and fan speed control. Table 6-9, Table 6-11 and Table 6-12 provide the “diode” parameters and interface specifications. Two different sets of “diode” parameters are listed in Table 6-9 and Table 6-11. The Diode Model parameters (Table 6-9) apply to traditional thermal sensors that use the Diode Equation to determine the processor temperature. Transistor Model parameters (Table 6-11) have been added to support thermal sensors that use the transistor equation method. The Transistor Model may provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. This thermal “diode” is separate from the Thermal Monitor’s thermal sensor and cannot be used to predict the behavior of the Thermal Monitor. When calculating a temperature based on thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although some are capable of also measuring the series resistance. Calculating the temperature is then accomplished by using the equations listed under Table 6-9. In most temperature sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode, the ideality value (also called ntrim) will be 1.000. Given that most diodes are not perfect, the designers usually select an ntrim value that more closely matches the behavior of the diodes in the processor. If the processors diode ideality deviates from that of ntrim, each calculated temperature will be offset by a fixed amount. The temperature offset can be calculated with the equation: Terror(nf) = Tmeasured X (1- nactual/ntrim ) where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured ideality of the diode, and ntrim is the diode ideality assumed by the temperature sensing device. In order to improve the accuracy of diode based temperature measurements, a new register (Tdiode_Offset) has been added to Dual-Core Intel Xeon Processor 5000 series which will contain thermal diode characterization data. During manufacturing each processor’s thermal diode will be evaluated for its behavior relative to a theoretical diode. Using the equation above, the temperature error created by the difference Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 79 Thermal Specifications between ntrim and the actual ideality of the particular processor will be calculated. This value (Tdiode_Offset) will be programmed into the new diode correction MSR and then added to the Tdiode_Base value can be used to correct temperatures read by diode based temperature sensing devices. If the ntrim value used to calculating Tdiode_Offset differs from the ntrim value used in a temperature sensing device, the Terror(nf) may not be accurate. If desired, the Tdiode_Offset can be adjusted by calculating nactual and then recalculating the offset using the actual ntrim as defined in the temperature sensor manufacturers’ datasheet. The parameters used to calculate the Thermal Diode (Tdiode) Correction Factor are listed in Table 6-12. For Dual-Core Intel Xeon Processor 5000 series, the range of Tdiode Correction Factor is ±14°C. . Table 6-9. Thermal Diode Parameters using Diode Model Symbol Parameter Min Typ Max Unit IFW Forward Bias Current 5 n Diode Ideality Factor 1.000 RT Series Resistance 2.79 4.52 Notes - 200 µA 1 1.009 1.050 - 2, 3, 4 6.24 Ω 2, 3, 5 Notes: 1. Intel does not support or recommend operation of the thermal diode under reverse bias. 2. Characterized across a temperature range of 50-80°C. 3. Not 100% tested. Specified by design characterization. 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation: IFW = IS * (eqVD/nkT - 1) Where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin). 5. The series resistance, RT, is provided to allow for a more accurate measurement of the junction temperature. RT, as defined, includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket and external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation: Terror = [RT * (N-1) * IFWmin] / [nk/q *ln N] Where Terror=sensor temperature error, N=sensor current ratio, k=Boltzmann Constant, q=electronic charge. 80 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Thermal Specifications Table 6-10. Thermal Diode Interface Land Name Land Number Description THERMDA AL1 diode anode THERMDC AK1 diode cathode THERMDA2 AJ7 diode anode THERMDC2 AH7 diode cathode . Table 6-11. Thermal Diode Parameters using Transistor Model Symbol Parameter Min Typ Max Unit Notes IFW Forward Bias Current 5 - 200 µA 1, 2 IE Emitter Current 5 - 200 µA nQ Transistor Ideality 0.997 1.001 1.005 - 3, 4, 5 Beta - 0.391 - 0.760 - 3, 4 RT Series Resistance 2.79 4.52 6.24 Ω 3, 6 Notes: 1. Intel does not support or recommend operation of the thermal diode under reverse bias. 2. Same as IFW in the diode model in Table 6-9. 3. Characterized across a temperature range of 50-80°C. 4. Not 100% tested. Specified by design characterization. 5. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current: IC = IS * (eqVBE/nQkT - 1) Where IS = saturation current, q = electronic charge, VBE = voltage across the transistor based emitter junction (same nodes as VD ), k = Boltzmann Constant, and T = absolute temperature (Kelvin). 6. The series resistance, RT provided in Table 6-9 can be used for more accurate readings as needed. Table 6-12. Parameters for Tdiode Correction Factor Symbol Parameter Typ ntrim Diode Ideality used to calculate Tdiode_Offset 1.008 Tdiode_Base 0 Unit Notes 1 °C 1 Notes: 1. See the Dual-Core Intel® Xeon® Processor 5000 Series Thermal/Mechanical Design Guidelines for more information on how to use the Tdiode_Offset, Tdiode_Base and ntrim parameters for fan speed control. § Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 81 Thermal Specifications 82 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Features 7 Features 7.1 Power-On Configuration Options Several configuration options can be configured by hardware. The Dual-Core Intel Xeon Processor 5000 series samples its hardware configuration at reset, on the active-toinactive transition of RESET#. For specifics on these options, please refer to Table 7-1. The sampled information configures the processor for subsequent operation. These configuration options cannot be changed except by another reset. All resets reconfigure the processor, for reset configuration purposes, the processor does not distinguish between a “warm” reset (PWRGOOD signal remains asserted during reset) and a “power-on” reset. Table 7-1. Power-On Configuration Option Lands Configuration Option Land Name Notes SMI# 1,2 Execute BIST (Built-In Self Test) A3# 1,2 In Order Queue de-pipelining (set IOQ depth to 1) A7# 1,2 Output tri state Disable MCERR# observation A9# 1,2 Disable BINIT# observation A10# 1,2 Disable bus parking A15# 1,2 Symmetric agent arbitration ID Force single logical processor BR[1:0]# 1,2 A31# 1,2,3 Notes: 1. 2. 3. 7.2 Asserting this signal during RESET# will select the corresponding option. Address pins not identified in this table as configuration options should not be asserted during RESET#. This mode is not tested. Clock Control and Low Power States The Dual-Core Intel Xeon Processor 5000 series support the Enhanced HALT Powerdown state in addition to the HALT Powerdown state and Stop-Grant states to reduce power consumption by stopping the clock to internal sections of the processor, depending on each particular state. See Figure 7-1 for a visual representation of the processor low power states. The Enhanced HALT state is enabled by default in the Dual-Core Intel Xeon Processor 5000 series. The Enhanced HALT state must remain enabled via the BIOS for the processor to remain within its specifications. For processors that are already running at the lowest core to bus ratio for its nominal operating point, the processor will transition to the HALT Powerdown state instead of the Enhanced HALT state. The Stop Grant state requires chipset and BIOS support on multiprocessor systems. In a multiprocessor system, all the STPCLK# signals are bussed together, thus all processors are affected in unison. The Hyper-Threading Technology feature adds the conditions that all logical processors share the same STPCLK# signal internally. When the STPCLK# signal is asserted, the processor enters the Stop Grant state, issuing a Stop Grant Special Bus Cycle (SBC) for each processor or logical processor. The chipset Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 83 Features needs to account for a variable number of processors asserting the Stop Grant SBC on the bus before allowing the processor to be transitioned into one of the lower processor power states. Refer to the applicable chipset specification for more information. 7.2.1 Normal State This is the normal operating state for the processor. 7.2.2 HALT or Enhanced Powerdown States The Enhanced HALT power down state is enabled by default in the Dual-Core Intel Xeon Processor 5000 series. The Enhanced HALT power down state must remain enabled via the BIOS. The Enhanced HALT state requires support for dynamic VID transitions in the platform. 7.2.2.1 HALT Powerdown State HALT is a low power state entered when all logical processors have executed the HALT or MWAIT instruction. When one of the logical processors executes the HALT or MWAIT instruction, that logical processor is halted; however, the other processor continues normal operation. The processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, LINT[1:0] (NMI, INTR), or an interrupt delivered over the front side bus. RESET# will cause the processor to immediately initialize itself. The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or the HALT Power Down state. Refer to the IA-32 Intel® Architecture Software Developer's Manual, Volume III: System Programming Guide for more information. The system can generate a STPCLK# while the processor is in the HALT Power Down state. When the system deasserts the STPCLK#, the processor will return execution to the HALT state. While in HALT Power Down state, the processor will process front side bus snoops and interrupts. 7.2.2.2 Enhanced HALT Powerdown State Enhanced HALT state is a low power state entered when all logical processors have executed the HALT or MWAIT instructions. When one of the logical processors executes the HALT instruction, that logical processor is halted; however, the other processor continues normal operation. The Enhanced HALT state is generally a lower power state than the Stop Grant state. The processor will automatically transition to a lower core frequency and voltage operating point before entering the Enhanced HALT state. Note that the processor FSB frequency is not altered; only the internal core frequency is changed. When entering the low power state, the processor will first switch to the lower bus ratio and then transition to the lower VID. While in the Enhanced HALT state, the processor will process bus snoops. The processor exits the Enhanced HALT state when a break event occurs. When the processor exits the Enhanced HALT state, it will first transition the VID to the original value and then change the bus ratio back to the original value. 84 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Features The Enhanced HALT state must be enabled by way of the BIOS for the processor to remain within its specifications. The Enhanced HALT state requires support for dynamic VID transitions in the platform. Figure 7-1. Stop Clock State Machine HALT or MWAIT Instruction and HALT Bus Cycle Generated Normal State Normal execution S De TPC -a LK ss # er te d STPCLK# De-asserted S As TPC se L rte K# d STPCLK# Asserted INIT#, BINIT#, INTR, NMI, SMI#, RESET#, FSB interrupts Enhanced HALT or HALT State BCLK running Snoops and interrupts allowed Snoop Event Occurs Snoop Event Serviced Enhanced HALT Snoop or HALT Snoop State BCLK running Service snoops to caches Stop Grant State BCLK running Snoops and interrupts allowed 7.2.3 Snoop Event Occurs Snoop Event Serviced Stop Grant Snoop State BCLK running Service snoops to caches Stop-Grant State When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. Once the STPCLK# pin has been asserted, it may only be deasserted once the processor is in the Stop Grant state. For the Dual-Core Intel Xeon Processor 5000 series, all logical processor cores will enter the Stop-Grant state once the STPCLK# pin is asserted. Additionally, all logical cores must be in the Stop Grant state before the deassertion of STPCLK#. Since the AGTL+ signal pins receive power from the front side bus, these pins should not be driven (allowing the level to return to VTT) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the front side bus should be driven to the inactive state. BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched and can be serviced by software upon exit from the Stop Grant state. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 85 Features RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the deassertion of the STPCLK# signal. A transition to the Grant Snoop state will occur when the processor detects a snoop on the front side bus (see Section 7.2.4.1). While in the Stop-Grant state, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal state. Only one occurrence of each event will be recognized upon return to the Normal state. While in Stop-Grant state, the processor will process snoops on the front side bus and it will latch interrupts delivered on the front side bus. The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that it should return the processor to the Normal state. 7.2.4 Enhanced HALT Snoop or HALT Snoop State, Stop Grant Snoop State The Enhanced HALT Snoop state is used in conjunction with the Enhanced HALT state. If the Enhanced HALT state is not enabled in the BIOS, the default Snoop state entered will be the HALT Snoop state. Refer to the sections below for details on HALT Snoop state, Stop Grant Snoop state and Enhanced HALT Snoop state. 7.2.4.1 HALT Snoop State, Stop Grant Snoop State The processor will respond to snoop or interrupt transactions on the front side bus while in Stop-Grant state or in HALT Power Down state. During a snoop or interrupt transaction, the processor enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the front side bus has been serviced (whether by the processor or another agent on the front side bus) or the interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant state or HALT Power Down state, as appropriate. 7.2.4.2 Enhanced HALT Snoop State The Enhanced HALT Snoop state is the default Snoop state when the Enhanced HALT state is enabled via the BIOS. The processor will remain in the lower bus ratio and VID operating point of the Enhanced HALT state. While in the Enhanced HALT Snoop state, snoops and interrupt transactions are handled the same way as in the HALT Snoop state. After the snoop is serviced or the interrupt is latched, the processor will return to the Enhanced HALT state. 7.3 Enhanced Intel SpeedStep® Technology The Dual-Core Intel Xeon Processor 5000 series support Enhanced Intel SpeedStep Technology. This technology enables the processor to switch between multiple frequency and voltage points, which results in platform power savings. Enhanced Intel SpeedStep Technology requires support for dynamic VID transitions in the platform. Switching between voltage/frequency states is software controlled. 86 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Features Note: Not all Dual-Core Intel Xeon Processor 5000 series are capable of supporting Enhanced Intel SpeedStep Technology. More details on which processor frequencies will support this feature will be provided in future releases of the Dual-Core Intel® Xeon® Processor 5000 Series Specification Update when available. Enhanced Intel SpeedStep Technology creates processor performance states (P-states) or voltage/frequency operating points. P-states are lower power capability states within the Normal state as shown in Figure 7-1. Enhanced Intel SpeedStep Technology enables real-time dynamic switching between frequency and voltage points. It alters the performance of the processor by changing the bus to core frequency ratio and voltage. This allows the processor to run at different core frequencies and voltages to best serve the performance and power requirements of the processor and system. The Dual-Core Intel Xeon Processor 5000 series have hardware logic that coordinates the requested processor voltage between the processor cores. The highest voltage that is requested for either of the processor cores is selected for that processor. Note that the front side bus is not altered; only the internal core frequency is changed. In order to run at reduced power consumption, the voltage is altered in step with the bus ratio. The following are key features of Enhanced Intel SpeedStep Technology: • Multiple voltage/frequency operating points provide optimal performance at reduced power consumption. • Voltage/frequency selection is software controlled by writing to processor MSR’s (Model Specific Registers), thus eliminating chipset dependency. — If the target frequency is higher than the current frequency, VCC is incremented in steps (+12.5 mV) by placing a new value on the VID signals and the processor shifts to the new frequency. Note that the top frequency for the processor can not be exceeded. — If the target frequency is lower than the current frequency, the processor shifts to the new frequency and VCC is then decremented in steps (-12.5 mV) by changing the target VID through the VID signals. § Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 87 Features 88 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications 8 Boxed Processor Specifications 8.1 Introduction Intel boxed processors are intended for system integrators who build systems from components available through distribution channels. The Dual-Core Intel® Xeon® Processor 5000 series will be offered as an Intel boxed processor. Intel will offer the Dual-Core Intel Xeon Processor 5000 series boxed processor with two heat sink configurations available for each processor frequency: 1U passive/2U active combination solution and a 2U passive only solution. The 1U passive/2U active combination solution is based on a 1U passive heat sink with a removable fan that will be pre-attached at shipping. This heat sink solution is intended to be used as either a 1U passive heat sink or a 2U+ active heat sink. Although the active combination solution with removable fan mechanically fits into a 2U keepout, additional design considerations may need to be addressed to provide sufficient airflow to the fan inlet. The 1U passive/2U active combination solution in the active fan configuration is primarily designed to be used in a pedestal chassis where sufficient air inlet space is present and strong side directional airflow is not an issue. The 1U passive/active combination solution with the fan removed and the 2U passive thermal solution require the use of chassis ducting and are targeted for use in rack mount servers. The retention solution used for these products is called the Common Enabling Kit, or CEK. The CEK base is compatible with both thermal solutions and uses the same hole locations as the Intel® Xeon® processor with 800 MHz FSB. The 1U passive/active combination solution will utilize a removable fan with a 4-pin pulse width modulated (PWM) T-diode control. Use of a 4-pin PWM T-diode controlled active thermal solution helps customers meet acoustic targets in pedestal platforms through the motherboards’s ability to directly control the RPM of the processor heat sink fan. Please see Section 8.3 for more details. Figure 8-1 through Figure 8-3 are representations of the two heat sink solutions. Figure 8-1. Boxed Dual-Core Intel Xeon Processor 5000 Series 1U Passive/2U Active Combination Heat Sink (With Removable Fan) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 89 Boxed Processor Specifications Figure 8-2. Boxed Dual-Core Intel Xeon Processor 5000 Series 2U Passive Heat Sink Figure 8-3. 2U Passive Dual-Core Intel Xeon Processor 5000 Series Thermal Solution (Exploded View) Heat sink screw springs Heat sink screws Heat sink Heat sink standoffs Thermal Interface Material Motherboard and processor Protective Tape CEK spring Chassis pan Notes: 1. The heat sinks represented in these images are for reference only, and may not represent the final boxed processor heat sinks. 2. The screws, springs, and standoffs will be captive to the heat sink. This image shows all of the components in an exploded view. 3. It is intended that the CEK spring will ship with the base board and be pre-attached prior to shipping. 8.2 Mechanical Specifications This section documents the mechanical specifications of the boxed processor. 90 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications 8.2.1 Boxed Processor Heat Sink Dimensions (CEK) The boxed processor will be shipped with an unattached thermal solution. Clearance is required around the thermal solution to ensure unimpeded airflow for proper cooling. The physical space requirements and dimensions for the boxed processor and assembled heat sink are shown in Figure 8-4 through Figure 8-8. Figure 8-9 through Figure 8-10 are the mechanical drawings for the 4-pin board fan header and 4-pin connector used for the active CEK fan heat sink solution. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 91 Boxed Processor Specifications Figure 8-4. 92 Top Side Board Keep-Out Zones (Part 1) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications Figure 8-5. Top Side Board Keep-Out Zones (Part 2) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 93 Boxed Processor Specifications Figure 8-6. 94 Bottom Side Board Keep-Out Zones Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications Figure 8-7. Board Mounting Hole Keep-Out Zones Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 95 Boxed Processor Specifications Figure 8-8. 96 Volumetric Height Keep-Ins Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications Figure 8-9. 4-Pin Fan Cable Connector (For Active CEK Heat Sink) Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 97 Boxed Processor Specifications Figure 8-10. 4-Pin Base Board Fan Header (For Active CEK Heat Sink) 98 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications 8.2.2 Boxed Processor Heat Sink Weight 8.2.2.1 Thermal Solution Weight The 1U passive/2U active combination heat sink solution and the 2U passive heat sink solution will not exceed a mass of 1050 grams. Note that this is per processor, so a dual processor system will have up to 2100 grams total mass in the heat sinks. This large mass will require a minimum chassis stiffness to be met in order to withstand force during shock and vibration. See Section 3 for details on the processor weight. 8.2.3 Boxed Processor Retention Mechanism and Heat Sink Support (CEK) Baseboards and chassis designed for use by a system integrator should include holes that are in proper alignment with each other to support the boxed processor. Refer to the Server System Infrastructure Specification (SSI-EEB 3.6, TEB 2.1 or CEB 1.1). These specification can be found at: http://www.ssiforum.org. Figure 8-3 illustrates the Common Enabling Kit (CEK) retention solution. The CEK is designed to extend air-cooling capability through the use of larger heat sinks with minimal airflow blockage and bypass. CEK retention mechanisms can allow the use of much heavier heat sink masses compared to legacy limits by using a load path directly attached to the chassis pan. The CEK spring on the secondary side of the baseboard provides the necessary compressive load for the thermal interface material. The baseboard is intended to be isolated such that the dynamic loads from the heat sink are transferred to the chassis pan via the stiff screws and standoffs. The retention scheme reduces the risk of package pullout and solder joint failures. All components of the CEK heat sink solution will be captive to the heat sink and will only require a Phillips screwdriver to attach to the chassis pan. When installing the CEK, the CEK screws should be tightened until they will no longer turn easily. This should represent approximately 8 inch-pounds of torque. Avoid applying more than 10 inch-pounds of torque; otherwise, damage may occur to retention mechanism components. 8.3 Electrical Requirements 8.3.1 Fan Power Supply (Active CEK) The 4-pin PWM/T-diode controlled active thermal solution is being offered to help provide better control over pedestal chassis acoustics. This is achieved though more accurate measurement of processor die temperature through the processor’s temperature diode (T-diode). Fan RPM is modulated through the use of an ASIC located on the baseboard that sends out a PWM control signal to the 4th pin of the connector labeled as Control. This thermal solution requires a constant +12 V supplied to pin 2 of the active thermal solution and does not support variable voltage control or 3-pin PWM control. See Table 8-2 for details on the 4-pin active heat sink solution connectors. If the 4-pin active fan heat sink solution is connected to an older 3-pin baseboard CPU fan header it will default back to a thermistor controlled mode, allowing compatibility with legacy 3-wire designs. When operating in thermistor controlled mode, fan RPM is automatically varied based on the TINLET temperature measured by a thermistor located at the fan inlet of the heat sink solution. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 99 Boxed Processor Specifications The fan power header on the baseboard must be positioned to allow the fan heat sink power cable to reach it. The fan power header identification and location must be documented in the suppliers platform documentation, or on the baseboard itself. The baseboard fan power header should be positioned within 177.8 mm [7 in.] from the center of the processor socket. Table 8-1. Table 8-2. PWM Fan Frequency Specifications for 4-Pin Active CEK Thermal Solution Description Min Frequency Nominal Frequency Max Frequency Unit PWM Control Frequency Range 21,000 25,000 28,000 Hz Fan Specifications for 4-pin Active CEK Thermal Solution Min Typ Steady +12 V: 12 volt fan power supply 10.8 IC: Fan Current Draw N/A 2 Description SENSE: SENSE frequency Max Steady Max Startup 12 12 13.2 V 1 1.25 1.5 A 2 2 2 Pulses per fan revolution Unit Figure 8-11. Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution Table 8-3. 8.3.2 Fan Cable Connector Pin Out for 4-Pin Active CEK Thermal Solution Pin Number Signal Color 1 Ground Black 2 Power: (+12 V) Yellow 3 Sense: 2 pulses per revolution Green 4 Control: 21 KHz-28 KHz Blue Boxed Processor Cooling Requirements As previously stated the boxed processor will be available in two product configurations. Each configuration will require unique design considerations. Meeting the processor’s temperature specifications is also the function of the thermal design of the entire system, and ultimately the responsibility of the system integrator. The processor temperature specifications are found in Chapter 6, “Thermal Specifications” of this document. 100 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Boxed Processor Specifications 8.3.2.1 1U Passive/2U Active Combination Heat Sink Solution (1U Rack Passive) In the 1U configuration it is assumed that a chassis duct will be implemented to provide sufficient airflow to pass through the heat sink fins. Currently the actual airflow target is within the range of 15-27 CFM. The duct should be designed as precisely as possible and should not allow any air to bypass the heat sink (0” bypass) and a back pressure of 0.38 in. H2O. It is assumed that a 40°C TLA is met. This requires a superior chassis design to limit the TRISE at or below 5°C with an external ambient temperature of 35°C. Following these guidelines will allow the designer to meet Thermal Profile B and conform to the thermal requirements of the processor. 8.3.2.2 1U Passive/2U Active Combination Heat Sink Solution (Pedestal Active) The active configuration of the combination solution is designed to help pedestal chassis users to meet the thermal processor requirements without the use of chassis ducting. It may be still be necessary to implement some form of chassis air guide or air duct to meet the TLA temperature of 40°C depending on the pedestal chassis layout. Also, while the active thermal solution is designed to mechanically fit into a 2U volumetric, it may require additional space at the top of the thermal solution to allow sufficient airflow into the heat sink fan. Therefore, additional design criteria may need to be considered if this thermal solution is used in a 2U rack mount chassis, or in a chassis that has drive bay obstructions above the inlet to the fan heat sink. Use of the active configuration in rackmount chassis is not recommended. It is recommended that the ambient air temperature outside of the chassis be kept at or below 35°C. The air passing directly over the processor thermal solution should not be preheated by other system components. Meeting the processor’s temperature specification is the responsibility of the system integrator. 8.3.2.3 2U Passive Heat Sink Solution (2U+ Rack or Pedestal) A chassis duct is required for the 2U passive heat sink. In this configuration the thermal profile (see Section 6) should be followed by supplying 27 CFM of airflow through the fins of the heat sink with a 0” or no duct bypass and a back pressure of 0.182 in. H2O. The TLA temperature of 40°C should be met. This may require the use of superior design techniques to keep TRISE at or below 5°C based on an ambient external temperature of 35°C. 8.4 Boxed Processor Contents A direct chassis attach method must be used to avoid problems related to shock and vibration, due to the weight of the thermal solution required to cool the processor. The board must not bend beyond specification in order to avoid damage. The boxed processor contains the components necessary to solve both issues. The boxed processor will include the following items: • Dual-Core Intel Xeon Processor 5000 series • Unattached Heat Sink Solution • 4 screws, 4 springs, and 4 heat sink standoffs (all captive to the heat sink) • Thermal Interface Material (pre-applied on heat sink) • Installation Manual • Intel Branding Logo Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 101 Boxed Processor Specifications The other items listed in Figure 8-3 that are required to compete this solution will be shipped with either the chassis or boards. They are as follows: • CEK Spring (supplied by baseboard vendors) • Heat sink standoffs (supplied by chassis vendors) § 102 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet Debug Tools Specifications 9 Debug Tools Specifications Please refer to the eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms and the appropriate platform design guidelines for information regarding debug tool specifications. Section 1.3 provides collateral details. 9.1 Debug Port System Requirements The Dual-Core Intel Xeon Processor 5000 series debug port is the command and control interface for the In-Target Probe (ITP) debugger. The ITP enables run-time control of the processors for system debug. The debug port, which is connected to the FSB, is a combination of the system, JTAG and execution signals. There are several mechanical, electrical and functional constraints on the debug port that must be followed. The mechanical constraint requires the debug port connector to be installed in the system with adequate physical clearance. Electrical constraints exist due to the mixed high and low speed signals of the debug port for the processor. While the JTAG signals operate at a maximum of 75 MHz, the execution signals operate at the common clock FSB frequency. The functional constraint requires the debug port to use the JTAG system via a handshake and multiplexing scheme. In general, the information in this chapter may be used as a basis for including all runcontrol tools in Dual-Core Intel Xeon Processor 5000 series-based system designs, including tools from vendors other than Intel. Note: The debug port and JTAG signal chain must be designed into the processor board to utilize the XDP for debug purposes except for interposer solutions. 9.2 Target System Implementation 9.2.1 System Implementation Specific connectivity and layout guidelines for the Debug Port are provided in the eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms and the appropriate platform design guidelines. 9.3 Logic Analyzer Interface (LAI) Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging Dual-Core Intel Xeon Processor 5000 series systems. Tektronix and Agilent should be contacted to obtain specific information about their logic analyzer interfaces. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor. Due to the complexity of Dual-Core Intel Xeon Processor 5000 series-based multiprocessor systems, the LAI is critical in providing the ability to probe and capture FSB signals. There are two sets of considerations to keep in mind when designing a Dual-Core Intel Xeon Processor 5000 series-based system that can make use of an LAI: mechanical and electrical. Dual-Core Intel® Xeon® Processor 5000 Series Datasheet 103 Debug Tools Specifications 9.3.1 Mechanical Considerations The LAI is installed between the processor socket and the processor. The LAI plugs into the socket, while the processor plugs into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keepout volume remains unobstructed inside the system. Note that it is possible that the keepout volume reserved for the LAI may include differerent requirements from the space normally occupied by the heatsink. If this is the case, the logic analyzer vendor will provide a cooling solution as part of the LAI. 9.3.2 Electrical Considerations The LAI will also affect the electrical performance of the FSB, therefore it is critical to obtain electrical load models from each of the logic analyzer vendors to be able to run system level simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution they provide. § 104 Dual-Core Intel® Xeon® Processor 5000 Series Datasheet