Intel® Celeron® Mobile Processor Dual-Core on 45-nm Process Datasheet For Platforms Based on Mobile Intel® 4 Series Express Chipset Family September 2009 Document Number: 321111-003 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Legal Lines and Disclaimers UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality. Enhanced Intel SpeedStep® Technology for specified units of this processor is available. See the Processor Spec Finder at http:// processorfinder.intel.com or contact your Intel representative for more information. Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor. This device is protected by U.S. patent numbers 5,315,448 and 6,516,132, and other intellectual property rights. The use of Macrovision's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited. 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information. Intel, Pentium, Intel Core, Intel Core 2, Intel SpeedStep and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2008, Intel Corporation. All rights reserved. 2 Datasheet Contents 1 Introduction .............................................................................................................. 7 1.1 Terminology ....................................................................................................... 8 1.2 References ......................................................................................................... 9 2 Low Power Features ................................................................................................ 11 2.1 Clock Control and Low Power States .................................................................... 11 2.1.1 Core Low-Power States ........................................................................... 12 2.1.2 Package Low-Power States ...................................................................... 13 2.2 Low-Power FSB Features .................................................................................... 15 2.3 Processor Power Status Indicator (PSI#) Signal..................................................... 15 3 Electrical Specifications ........................................................................................... 17 3.1 Power and Ground Pins ...................................................................................... 17 3.2 FSB Clock (BCLK[1:0]) and Processor Clocking ...................................................... 17 3.3 Voltage Identification ......................................................................................... 17 3.4 Catastrophic Thermal Protection .......................................................................... 20 3.5 Reserved and Unused Pins.................................................................................. 20 3.6 FSB Frequency Select Signals (BSEL[2:0])............................................................ 21 3.7 FSB Signal Groups............................................................................................. 21 3.8 CMOS Signals ................................................................................................... 23 3.9 Maximum Ratings.............................................................................................. 23 3.10 Processor DC Specifications ................................................................................ 24 4 Package Mechanical Specifications and Pin Information .......................................... 29 4.1 Package Mechanical Specifications ....................................................................... 29 4.2 Processor Pinout and Pin List .............................................................................. 33 4.3 Alphabetical Signals Reference ............................................................................ 53 5 Thermal Specifications and Design Considerations .................................................. 61 5.1 Monitoring Die Temperature ............................................................................... 61 5.1.1 Thermal Diode ....................................................................................... 62 5.1.2 Thermal Diode Offset .............................................................................. 64 5.1.3 Intel® Thermal Monitor........................................................................... 65 5.1.4 Digital Thermal Sensor............................................................................ 66 5.1.5 Out of Specification Detection .................................................................. 67 5.1.6 PROCHOT# Signal Pin ............................................................................. 67 Datasheet 3 Figures 1 2 3 4 5 6 Package-Level Low-Power States ................................................................................11 Core Low-Power States .............................................................................................12 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) .................30 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) .................31 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ........................................32 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ........................................33 Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4 Coordination of Core-Level Low-Power States at the Package Level .................................11 Voltage Identification Definition ..................................................................................17 BSEL[2:0] Encoding for BCLK Frequency......................................................................21 FSB Pin Groups ........................................................................................................22 Processor Absolute Maximum Ratings..........................................................................23 DC Voltage and Current Specifications.........................................................................25 FSB Differential BCLK Specifications ............................................................................26 AGTL+ Signal Group DC Specifications ........................................................................27 CMOS Signal Group DC Specifications..........................................................................28 Open Drain Signal Group DC Specifications ..................................................................28 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 1 of 2) ..........................................................................................................34 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of 2) ..........................................................................................................35 Pin Listing by Pin Name .............................................................................................37 Pin Listing by Pin Number ..........................................................................................44 Signal Description.....................................................................................................53 Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage ............61 Thermal Diode Interface ............................................................................................62 Thermal Diode Parameters Using Diode Model ..............................................................63 Thermal Diode Parameters Using Transistor Model ........................................................64 Thermal Diode ntrim and Diode Correction Toffset ........................................................65 Datasheet Revision History Document Number Revision Number 321111 -001 • Initial Release November 2008 321111 -002 • Added T3000, T3100, T3300, and T3500 processors June 2009 Description Date • Added specifications for SFF processor SU2300 • Added C4 state support information for SU2300 SFF processor • Added Speedstep technology suppport information for SU2300 SFF processor • details: • Chapter 1: updated feature list for SFF processor • Section 2.1: added C4/deeper sleep state information • Figure 1: updated C4/deeper sleep state information 321111 -003 • Figure 2: updated C4/deeper sleep state information September 2009 • Table 1: Added C4/deeper sleep state information • Section Section 2.1.1.6, Section 2.1.2.6: Added C4/deeper sleep state information • Section 2.2: Added information on Intel speedstep technology description • Table 8: added table for SU2300 processor DC specifications • Table 25: added table for SU2300 thermal specifications • Figure 7, Table 19, Table 20, Table 17, Table 23 added SU2300 pin and package information § Datasheet 5 6 Datasheet Introduction 1 Introduction This document provides electrical, mechanical, and thermal specifications for the Intel® Celeron® Mobile Processor Dual-Core T1x00, Intel(R) Celeron Processors T3x00 and Intel(R) Celeron Dual-core SFF Processors. The processor supports the Mobile Intel® 4 Series Express Chipset and Intel® 82801IBM (ICH9M) Controller-Hub Based Systems. Note: In this document, the Celeron processor is referred to as the processor and Mobile Intel® 4 Series Express Chipset family is referred to as the (G)MCH. The following list provides some of the key features on this processor: • Dual-Core processor for mobile with enhanced performance • Intel architecture with Intel® Wide Dynamic Execution • L1 Cache to Cache (C2C) transfer • On-die, primary 32-KB instruction cache and 32-KB write-back data cache in each core • On-die, 1-MB second level shared cache with advanced transfer cache architecture • Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and Supplemental Streaming SIMD Extensions 3 (SSSE3) • 667-MHz Source-Synchronous Front Side Bus (FSB) for the T1x00 Series, and 800MHz Source-Synchronous Front Side Bus (FSB) for the T3x00 Series processors and SFF processors • Digital Thermal Sensor (DTS) • Intel® 64 Technology • PSI2 functionality • Execute Disable Bit support for enhanced security • Half ratio support (N/2) for Core to Bus ratio • Supports enhanced Intel® Virtualization Technology (SFF processor only) • Intel® Deeper Sleep low-power state with P_LVL4 I/O Support (SFF processor only) • Advanced power management feature includes Enhanced Intel SpeedStep® Technology (SFF processor only) Datasheet 7 Introduction 1.1 Terminology Term 8 Definition # A “#” symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the “#” symbol implies that the signal is inverted. For example, D[3:0] = “HLHL” refers to a hex ‘A’, and D[3:0]# = “LHLH” also refers to a hex “A” (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined. Front Side Bus (FSB) Refers to the interface between the processor and system core logic (also known as the chipset components). AGTL+ Advanced Gunning Transceiver Logic. Used to refer to Assisted GTL+ signaling technology on some Intel processors. Storage Conditions Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor landings should not be connected to any supply voltages, have any I/Os biased or receive any clocks. Upon exposure to “free air” (i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material. Enhanced Intel SpeedStep® Technology Technology that provides power management capabilities to laptops. Processor Core Processor core die with integrated L1 and L2 cache. All AC timing and signal integrity specifications are at the pads of the processor core. Intel® 64 Technology 64-bit memory extensions to the IA-32 architecture. Intel® Virtualization Technology Processor virtualization which when used in conjunction with Virtual Machine Monitor software enables multiple, robust independent software environments inside a single platform. TDP Thermal Design Power VCC The processor core power supply VSS The processor ground Datasheet Introduction 1.2 References Material and concepts available in the following documents may be beneficial when reading this document. Datasheet Document Document Number Intel® Celeron® Dual-Core T1x00 Processors Specification Update for Platforms Based on Mobile Intel® 4 Series Express Chipset Family See http:// www.intel.com/design/ mobile/specupdt/ 319734.htm Mobile Intel® 4 Series Express Chipset Family Datasheet 355969 Mobile Intel® 4 Series Express Chipset Family Specification Update 320123 Intel® I/O Controller Hub 9(ICH9)/ I/O Controller Hub 9M (ICH9M) Datasheet See http:// www.intel.com/Assets/ PDF/datasheet/ 316972.pdf Intel® I/O Controller Hub 8 (ICH8)/ I/O Controller Hub 8M (ICH8M) Specification Update See http:// www.intel.com/Assets/ PDF/specupdate/ 316973.pdf Intel® 64 and IA-32 Architectures Software Developer’s Manual See http:// www.intel.com/design/ pentium4/manuals/ index_new.htm Intel® 64 and IA-32 Architectures Software Developer's Manuals Documentation Change See http:// developer.intel.com/ design/processor/ specupdt/252046.htm Volume 1: Basic Architecture 253665 Volume 2A: Instruction Set Reference, A-M 253666 Volume 2B: Instruction Set Reference, N-Z 253667 Volume 3A: System Programming Guide 253668 Volume 3B: System Programming Guide 253669 9 Introduction 10 Datasheet Low Power Features 2 Low Power Features 2.1 Clock Control and Low Power States The processor supports the C1/AutoHALT, C1/MWAIT, C2, C3 and some support the C4 core low-power states, along with their corresponding package-level states for power management. See Chapter 3 to see if C4 is supported. These package states include Normal, Stop Grant, Stop Grant Snoop, Sleep, and Deep Sleep. The processor’s central power management logic enters a package low-power state by initiating a P_LVLx (P_LVL2, P_LVL3, P_LVL4) I/O read to the (G)MCH. Figure 1 shows the package-level low-power states and Figure 2 shows the core low-power states. Refer to Table 1 for a mapping of core low-power states to package low-power states. The processor implements two software interfaces for requesting low-power states: MWAIT instruction extensions with sub-state hints and P_LVLx reads to the ACPI P_BLK register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads on the processor FSB. The monitor address does not need to be setup before using the P_LVLx I/O read interface. The sub-state hints used for each P_LVLx read can be configured through the IA32_MISC_ENABLES Model Specific Register (MSR). If the processor encounters a chipset break event while STPCLK# is asserted, it asserts the PBE# output signal. Assertion of PBE# when STPCLK# is asserted indicates to system logic that the processor should return to the Normal state. Table 1. Coordination of Core-Level Low-Power States at the Package Level Core States Package States C0 Normal C1(1) Normal C2 Stop Grant C3 Deep Sleep C4 Deeper Sleep NOTE: AutoHALT or MWAIT/C1 Figure 1. Package-Level Low-Power States SLP# asserted STPCLK# asserted Stop Grant Normal STPCLK# deasserted DPSLP# asserted Sleep SLP# deasserted DPRSTP# asserted Deep Sleep DPSLP# deasserted Deeper Sleep† DPRSTP# deasserted Snoop Snoop serviced occurs Stop Grant Snoop † — Deeper Sleep includes the Deeper Sleep state and Deep C4 sub-state Datasheet 11 Low Power Features Figure 2. Core Low-Power States Stop Grant STPCLK# asserted STPCLK# deasserted C1/MWAIT STPCLK# deasserted STPCLK# STPCLK# asserted deasserted STPCLK# asserted Core state break HLT instruction MWAIT(C1) Halt break C0 P_LVL2 or MWAIT(C2) Core State break P_LVL4 MWAIT(C4) C4† ‡ C1/Auto Halt Core state break C2† P_LVL3 or Core MWAIT(C3) state break C3† break = A20M# transition, INIT#, INTR, NMI, PREQ#, RESET#, SMI#, or APIC interrupt e state break = (halt break OR Monitor event) AND STPCLK# high (not asserted) STPCLK# assertion and de-assertion have no effect if a core is in C2, C3, or C4. Core C4 state supports the package level Deep C4 sub-state. 2.1.1 Core Low-Power States 2.1.1.1 C0 State This is the normal operating state of the processor. 2.1.1.2 C1/AutoHALT Powerdown State C1/AutoHALT is a low-power state entered when the processor core executes the HALT instruction. The processor core transitions to the C0 state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# causes the processor to immediately initialize itself. A System Management Interrupt (SMI) A System Management Interrupt (SMI) handler returns execution to either Normal state or the C1/AutoHALT Powerdown state. See the Intel® 64 and IA-32 Intel® Architecture Software Developer's Manual, Volume 3A/3B: System Programmer's Guide for more information. The system can generate a STPCLK# while the processor is in the C1/AutoHALT Powerdown state. When the system deasserts the STPCLK# interrupt, the processor returns execution to the HALT state. The processor in C1/AutoHALT powerdown state process only the bus snoops. The processor enters a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C1/AutoHALT Powerdown state. 12 Datasheet Low Power Features 2.1.1.3 C1/MWAIT Powerdown State C1/MWAIT is a low-power state entered when the processor core executes the MWAIT instruction. Processor behavior in the C1/MWAIT state is identical to the C1/AutoHALT state except that there is an additional event that can cause the processor core to return to the C0 state: the Monitor event. See the Intel® 64 and IA-32 Intel® Architecture Software Developer's Manual, Volume 2A/2B: Instruction Set Reference for more information. 2.1.1.4 Core C2 State The core of the processor can enter the C2 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C2) instruction, but the processor does not issue a Stop Grant Acknowledge special bus cycle unless the STPCLK# pin is also asserted. The processor in C2 state processes only the bus snoops. The processor enters a snoopable sub-state (not shown in Figure 2) to process the snoop and then return to the C2 state. 2.1.1.5 Core C3 State Core C3 state is a very low-power state the processor core can enter while maintaining context. The core of the processor can enter the C3 state by initiating a P_LVL3 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering the C3 state, the processor core flushes the contents of its L1 cache into the processor’s L2 cache. Except for the caches, the processor core maintains all its architectural state in the C3 state. The Monitor remains armed if it is configured. All of the clocks in the processor core are stopped in the C3 state. Because the core’s caches are flushed, the processor keeps the core in the C3 state when the processor detects a snoop on the FSB. The processor core transitions to the C0 state upon the occurrence of a Monitor event, SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# causes the processor core to immediately initialize itself. 2.1.1.6 Core C4 State Individual cores of the dual-core processor that have C4 can enter the C4 state by initiating a P_LVL4 I/O read to the P_BLK or an MWAIT(C4) instruction. The processor core behavior in the C4 state is nearly identical to the behavior in the C3 state. The only difference is that if both processor cores are in C4, the central power management logic will request that the entire processor enter the Deeper Sleep package low-power state (see Section 2.1.2.6) 2.1.2 Package Low-Power States Package level low-power states are applicable to the processor. 2.1.2.1 Normal State This is the normal operating state for the processor. The processor enters the Normal state when the core is in the C0, C1/AutoHALT, or C1/MWAIT state. 2.1.2.2 Stop-Grant State When the STPCLK# pin is asserted the core of the processor enters the Stop-Grant state within 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle. When the STPCLK# pin is deasserted the core returns to the previous core low-power state. Datasheet 13 Low Power Features Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to VCCP) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state. RESET# causes the processor to immediately initialize itself, but the processor stays in Stop-Grant state. When RESET# is asserted by the system the STPCLK#, SLP#, and DPSLP# pins must be deasserted more than 480 µs prior to RESET# deassertion (AC Specification T45). When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the deassertion of SLP# (AC Specification T75). While in the Stop-Grant state, the processor services snoops and latch interrupts delivered on the FSB. The processor latches SMI#, INIT# and LINT[1:0] interrupts and services only upon return to the Normal state. The PBE# signal may be driven when the processor is in Stop-Grant state. PBE# is asserted if there is any pending interrupt or monitor event latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear still cause assertion of PBE#. Assertion of PBE# indicates to system logic that the processor should return to the Normal state. A transition to the Stop Grant Snoop state occurs when the processor detects a snoop on the FSB (see Section 2.1.2.3). A transition to the Sleep state (see Section 2.1.2.4) occurs with the assertion of the SLP# signal. 2.1.2.3 Stop Grant Snoop State The processor responds to snoop or interrupt transactions on the FSB while in StopGrant state by entering the Stop-Grant Snoop state. The processor stays in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. The processor returns to the StopGrant state once the snoop has been serviced or the interrupt has been latched. 2.1.2.4 Sleep State The Sleep state is a low-power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and stops all internal clocks. The Sleep state is entered through assertion of the SLP# signal while in the Stop-Grant state. The SLP# pin should only be asserted when the processor is in the Stop-Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation. In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Snoop events that occur while in Sleep state or during a transition into or out of Sleep state causes unpredictable behavior. Any transition on an input signal before the processor has returned to the Stop-Grant state results in unpredictable behavior. If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor resets itself, ignoring the transition through Stop-Grant state. If RESET# is driven active while the processor is in the Sleep state, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the Reset sequence. While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state, by asserting the DPSLP# pin. (See Section 2.1.2.5.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur. 14 Datasheet Low Power Features 2.1.2.5 Deep Sleep State Deep Sleep state is a very low-power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings. BCLK stop/restart timings on appropriate chipset based platforms with the CK505 clock chip are as follows: • Deep Sleep entry: the system clock chip may stop/tristate BCLK within 2 BCLKs of DPSLP# assertion. It is permissible to leave BCLK running during Deep Sleep. • Deep Sleep exit: the system clock chip must drive BCLK to differential DC levels within 2-3 ns of DPSLP# deassertion and start toggling BCLK within 10 BCLK periods. To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion as described above. A period of 15 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep state. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state. While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state results in unpredictable behavior. 2.1.2.6 Deeper Sleep State The Deeper Sleep state is similar to the Deep Sleep state but further reduces core voltage levels. One of the potential lower core voltage levels is achieved by entering the base Deeper Sleep state. The Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep state. The following lower core voltage level is achieved by entering the Intel Enhanced Deeper Sleep state which is a sub-state of Deeper Sleep state. Intel Enhanced Deeper Sleep state is entered through assertion of the DPRSTP# pin while in the Deep Sleep only when the L2 cache has been completely shut down. Exit from Deeper Sleep is initiated by DPRSTP# deassertion when either core requests a core state other than C4 or either core requests a processor performance state other than the lowest operating point. 2.2 Enhanced Intel SpeedStep® Technology Some processors feature Enhanced Intel SpeedStep Technology. See each processor’s DCL to see if it supports Enhanced Intel SpeedStep Technology. Following are the key features of Enhanced Intel SpeedStep Technology: • Multiple voltage and frequency operating points provide optimal performance at the lowest power. • Voltage and frequency selection is software-controlled by writing to processor MSRs: — If the target frequency is higher than the current frequency, VCC is ramped up in steps by placing new values on the VID pins, and the PLL then locks to the new frequency. — If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the VCC is changed through the VID pin mechanism. — Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until the previous transition completes. Datasheet 15 Low Power Features • The processor controls voltage ramp rates internally to ensure glitch-free transitions. • Low transition latency and large number of transitions possible per second: — Processor core (including L2 cache) is unavailable for up to 10 μs during the frequency transition. — The bus protocol (BNR# mechanism) is used to block snooping. • Improved Intel® Thermal Monitor mode: — When the on-die thermal sensor indicates that the die temperature is too high the processor can automatically perform a transition to a lower frequency and voltage specified in a software-programmable MSR. — The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up-transition to the previous frequency and voltage point occurs. — An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system-level thermal management. • Enhanced thermal management features: — Digital Thermal Sensor and Out of Specification detection. — Intel Thermal Monitor 1 (TM1) in addition to Intel Thermal Monitor 2 (TM2) in case of unsuccessful TM2 transition. — Dual core thermal management synchronization. Each core in the dual-core processor implements an independent MSR for controlling Enhanced Intel SpeedStep Technology, but both cores must operate at the same frequency and voltage. The processor has performance state coordination logic to resolve frequency and voltage requests from the two cores into a single frequency and voltage request for the package as a whole. If both cores request the same frequency and voltage, then the processor will transition to the requested common frequency and voltage. If the two cores have different frequency and voltage requests, then the processor will take the highest of the two frequencies and voltages as the resolved request and transition to that frequency and voltage. Caution: Enhanced Intel SpeedStep Technology transitions are multistep processes that require clocked control. These transitions cannot occur when the processor is in the Sleep or Deep Sleep package low-power states since processor clocks are not active in these states. 2.3 Low-Power FSB Features The processor incorporates FSB low-power enhancements: • Dynamic On Die Termination disabling • Low VCCP (I/O termination voltage) The On Die Termination on the processor FSB buffers is disabled when the signals are driven low, resulting in power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times. 16 Datasheet Low Power Features 2.4 Processor Power Status Indicator (PSI#) Signal The PSI# signal is asserted when the processor is in a reduced power consumption state. PSI# can be used to improve light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. The algorithm that the processor uses for determining when to assert PSI# is different from the algorithm used in previous processors. Datasheet 17 Low Power Features 18 Datasheet Electrical Specifications 3 Electrical Specifications 3.1 Power and Ground Pins For clean, on-chip power distribution, the processor has a large number of VCC (power) and VSS (ground) inputs. All power pins must be connected to VCC power planes while all VSS pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. The processor VCC pins must be supplied the voltage determined by the VID (Voltage ID) pins. 3.2 FSB Clock (BCLK[1:0]) and Processor Clocking BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the processor core frequency is a multiple of the BCLK[1:0] frequency. The processor uses a differential clocking implementation. 3.3 Voltage Identification The processor uses seven voltage identification pins,VID[6:0], to support automatic selection of power supply voltages. The VID pins for processor are CMOS outputs driven by the processor VID circuitry. Table 2 specifies the voltage level corresponding to the state of VID[6:0]. A 1 refers to a high-voltage level and a 0 refers to low-voltage level. Table 2. Datasheet Voltage Identification Definition (Sheet 1 of 4) VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 0 0 0 0 0 0 0 1.5000 0 0 0 0 0 0 1 1.4875 0 0 0 0 0 1 0 1.4750 0 0 0 0 0 1 1 1.4625 0 0 0 0 1 0 0 1.4500 0 0 0 0 1 0 1 1.4375 0 0 0 0 1 1 0 1.4250 0 0 0 0 1 1 1 1.4125 0 0 0 1 0 0 0 1.4000 0 0 0 1 0 0 1 1.3875 0 0 0 1 0 1 0 1.3750 0 0 0 1 0 1 1 1.3625 0 0 0 1 1 0 0 1.3500 0 0 0 1 1 0 1 1.3375 0 0 0 1 1 1 0 1.3250 0 0 0 1 1 1 1 1.3125 0 0 1 0 0 0 0 1.3000 0 0 1 0 0 0 1 1.2875 0 0 1 0 0 1 0 1.2750 0 0 1 0 0 1 1 1.2625 0 0 1 0 1 0 0 1.2500 0 0 1 0 1 0 1 1.2375 19 Electrical Specifications Table 2. 20 Voltage Identification Definition (Sheet 2 of 4) VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 0 0 1 0 1 1 0 1.2250 0 0 1 0 1 1 1 1.2125 0 0 1 1 0 0 0 1.2000 0 0 1 1 0 0 1 1.1875 0 0 1 1 0 1 0 1.1750 0 0 1 1 0 1 1 1.1625 0 0 1 1 1 0 0 1.1500 0 0 1 1 1 0 1 1.1375 0 0 1 1 1 1 0 1.1250 0 0 1 1 1 1 1 1.1125 0 1 0 0 0 0 0 1.1000 0 1 0 0 0 0 1 1.0875 0 1 0 0 0 1 0 1.0750 0 1 0 0 0 1 1 1.0625 0 1 0 0 1 0 0 1.0500 0 1 0 0 1 0 1 1.0375 0 1 0 0 1 1 0 1.0250 0 1 0 0 1 1 1 1.0125 0 1 0 1 0 0 0 1.0000 0 1 0 1 0 0 1 0.9875 0 1 0 1 0 1 0 0.9750 0 1 0 1 0 1 1 0.9625 0 1 0 1 1 0 0 0.9500 0 1 0 1 1 0 1 0.9375 0 1 0 1 1 1 0 0.9250 0 1 0 1 1 1 1 0.9125 0 1 1 0 0 0 0 0.9000 0 1 1 0 0 0 1 0.8875 0 1 1 0 0 1 0 0.8750 0 1 1 0 0 1 1 0.8625 0 1 1 0 1 0 0 0.8500 0 1 1 0 1 0 1 0.8375 0 1 1 0 1 1 0 0.8250 0 1 1 0 1 1 1 0.8125 0 1 1 1 0 0 0 0.8000 0 1 1 1 0 0 1 0.7875 0 1 1 1 0 1 0 0.7750 0 1 1 1 0 1 1 0.7625 0 1 1 1 1 0 0 0.7500 0 1 1 1 1 0 1 0.7375 0 1 1 1 1 1 0 0.7250 0 1 1 1 1 1 1 0.7125 1 0 0 0 0 0 0 0.7000 1 0 0 0 0 0 1 0.6875 1 0 0 0 0 1 0 0.6750 1 0 0 0 0 1 1 0.6625 1 0 0 0 1 0 0 0.6500 Datasheet Electrical Specifications Table 2. Datasheet Voltage Identification Definition (Sheet 3 of 4) VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 1 0 0 0 1 0 1 0.6375 1 0 0 0 1 1 0 0.6250 1 0 0 0 1 1 1 0.6125 1 0 0 1 0 0 0 0.6000 1 0 0 1 0 0 1 0.5875 1 0 0 1 0 1 0 0.5750 1 0 0 1 0 1 1 0.5625 1 0 0 1 1 0 0 0.5500 1 0 0 1 1 0 1 0.5375 1 0 0 1 1 1 0 0.5250 1 0 0 1 1 1 1 0.5125 1 0 1 0 0 0 0 0.5000 1 0 1 0 0 0 1 0.4875 1 0 1 0 0 1 0 0.4750 1 0 1 0 0 1 1 0.4625 1 0 1 0 1 0 0 0.4500 1 0 1 0 1 0 1 0.4375 1 0 1 0 1 1 0 0.4250 1 0 1 0 1 1 1 0.4125 1 0 1 1 0 0 0 0.4000 1 0 1 1 0 0 1 0.3875 1 0 1 1 0 1 0 0.3750 1 0 1 1 0 1 1 0.3625 1 0 1 1 1 0 0 0.3500 1 0 1 1 1 0 1 0.3375 1 0 1 1 1 1 0 0.3250 1 0 1 1 1 1 1 0.3125 1 1 0 0 0 0 0 0.3000 1 1 0 0 0 0 1 0.2875 1 1 0 0 0 1 0 0.2750 1 1 0 0 0 1 1 0.2625 1 1 0 0 1 0 0 0.2500 1 1 0 0 1 0 1 0.2375 1 1 0 0 1 1 0 0.2250 1 1 0 0 1 1 1 0.2125 1 1 0 1 0 0 0 0.2000 1 1 0 1 0 0 1 0.1875 1 1 0 1 0 1 0 0.1750 1 1 0 1 0 1 1 0.1625 1 1 0 1 1 0 0 0.1500 1 1 0 1 1 0 1 0.1375 1 1 0 1 1 1 0 0.1250 1 1 0 1 1 1 1 0.1125 1 1 1 0 0 0 0 0.1000 1 1 1 0 0 0 1 0.0875 1 1 1 0 0 1 0 0.0750 1 1 1 0 0 1 1 0.0625 21 Electrical Specifications Table 2. 3.4 Voltage Identification Definition (Sheet 4 of 4) VID6 VID5 VID4 VID3 VID2 VID1 VID0 VCC (V) 1 1 1 0 1 0 0 0.0500 1 1 1 0 1 0 1 0.0375 1 1 1 0 1 1 0 0.0250 1 1 1 0 1 1 1 0.0125 1 1 1 1 0 0 0 0.0000 1 1 1 1 0 0 1 0.0000 1 1 1 1 0 1 0 0.0000 1 1 1 1 0 1 1 0.0000 1 1 1 1 1 0 0 0.0000 1 1 1 1 1 0 1 0.0000 1 1 1 1 1 1 0 0.0000 1 1 1 1 1 1 1 0.0000 Catastrophic Thermal Protection The processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough that the processor cannot be protected in all conditions without power removal to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway of the processor. THERMTRIP# functionality is not guaranteed if the PWRGOOD signal is not asserted. 3.5 Reserved and Unused Pins All RESERVED (RSVD) pins must remain unconnected. Connection of these pins to VCC, VSS, or to any other signal (including each other) may result in component malfunction or incompatibility with future processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins. For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected. The TEST1 and TEST2 pins must have a stuffing option of separate pull-down resistors to VSS. For the purpose of testability, route the TEST3 and TEST5 signals through a groundreferenced Zo = 55-Ω trace that ends in a via that is near a GND via and is accessible through an oscilloscope connection. 22 Datasheet Electrical Specifications 3.6 FSB Frequency Select Signals (BSEL[2:0]) The BSEL[2:0] signals are used to select the frequency of the processor input clock (BCLK[1:0]). These signals should be connected to the clock chip and the appropriate chipset on the platform. The BSEL encoding for BCLK[1:0] is shown in Table 3. Table 3. 3.7 BSEL[2:0] Encoding for BCLK Frequency BSEL[2] BSEL[1] BSEL[0] BCLK Frequency L L L RESERVED L L H 133 MHz L H H RESERVED L H L 200 MHz H H L RESERVED H H H RESERVED H L H RESERVED H L L RESERVED FSB Signal Groups The FSB signals have been combined into groups by buffer type in the following sections. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term “AGTL+ Input” refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, “AGTL+ Output” refers to the AGTL+ output group as well as the AGTL+ I/O group when driving. With the implementation of a source synchronous data bus, two sets of timing parameters need to be specified. One set is for common clock signals, which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals, which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 4 identifies which signals are common clock, source synchronous, and asynchronous. Datasheet 23 Electrical Specifications Table 4. FSB Pin Groups Signal Group Signals1 Type AGTL+ Common Clock Input Synchronous to BCLK[1:0] BPRI#, DEFER#, PREQ#5, RESET#, RS[2:0]#, TRDY# AGTL+ Common Clock I/O Synchronous to BCLK[1:0] ADS#, BNR#, BPM[3:0]#3, BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#3, DPWR# Signals AGTL+ Source Synchronous I/O Synchronous to assoc. strobe Associated Strobe REQ[4:0]#, A[16:3]# ADSTB[0]# A[35:17]# ADSTB[1]# D[15:0]#, DINV0# DSTBP0#, DSTBN0# D[31:16]#, DINV1# DSTBP1#, DSTBN1# D[47:32]#, DINV2# DSTBP2#, DSTBN2# D[63:48]#, DINV3# DSTBP3#, DSTBN3# AGTL+ Strobes Synchronous to BCLK[1:0] ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]# CMOS Input Asynchronous A20M#, DPRSTP#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, PWRGOOD, SMI#, SLP#, STPCLK# Open Drain Output Asynchronous FERR#, IERR#, THERMTRIP# Open Drain I/O Asynchronous PROCHOT#4 CMOS Output Asynchronous PSI#, VID[6:0], BSEL[2:0] CMOS Input Synchronous to TCK TCK, TDI, TMS, TRST# Open Drain Output Synchronous to TCK FSB Clock Clock Power/Other TDO BCLK[1:0] COMP[3:0], DBR#2, GTLREF, RSVD, TEST2, TEST1, THERMDA, THERMDC, VCC, VCCA, VCCP, VCC_SENSE, VSS, VSS_SENSE NOTES: 1. Refer to Chapter 4 for signal descriptions and termination requirements. 2. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects. 3. BPM[2:1]# and PRDY# are AGTL+ output only signals. 4. PROCHOT# signal type is open drain output and CMOS input. 5. On die termination differs from other AGTL+ signals. 24 Datasheet Electrical Specifications 3.8 CMOS Signals CMOS input signals are shown in Table 4. Legacy output FERR#, IERR# and other nonAGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for more than four BCLKs in order for the processor to recognize them. See Section 3.10 for the DC specifications for the CMOS signal groups. 3.9 Maximum Ratings Table 5 specifies absolute maximum and minimum ratings. If the processor stays within functional operation limits, functionality and long-term reliability can be expected. Caution: At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long term reliability can be expected. Caution: Precautions should always be taken to avoid high-static voltages or electric fields. Table 5. Processor Absolute Maximum Ratings Symbol Parameter Min Max Unit Notes1 -40 85 °C 2, 3, 4 TSTORAGE Processor storage temperature VCC Any processor supply voltage with respect to VSS -0.3 1.55 V VinAGTL+ AGTL+ buffer DC input voltage with respect to VSS -0.1 1.55 V VinAsynch_CMOS CMOS buffer DC input voltage with respect to VSS -0.1 1.55 V NOTES: 1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied. 2. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits does not affect the long term reliability of the device. For functional operation, please refer to the processor case temperature specifications. 3. This rating applies to the processor and does not include any tray or packaging. 4. Failure to adhere to this specification can affect the long-term reliability of the processor. Datasheet 25 Electrical Specifications 3.10 Processor DC Specifications The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 4 for the pin signal definitions and signal pin assignments. Table 7 through Table 10 list the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Super Low Frequency Mode (SuperLFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line specifications apply in all states except in the Deep Sleep and Deeper Sleep states. VCC,BOOT is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the processor are at Tjunction = 100 °C. Care should be taken to read all notes associated with each parameter. 26 Datasheet Electrical Specifications Table 6. DC Voltage and Current Specifications for the T3x00 Celeron Processors Symbol Parameter Min VCC VCC of the Processor Core VCC,BOOT Default VCC Voltage for Initial Power Up VCCP AGTL+ Termination Voltage VCCA PLL Supply Voltage ICCDES Typ 0.8 ICC for processors Recommended Design Targets: Max Unit Notes 1.25 V 1, 2 V 2, 8 1.20 1.00 1.05 1.10 V 1.425 1.5 1.575 V 47 A ICC for processors Processor 5 A Frequency Die Variant T3000 1.8 GHz 1 MB 47 A 3, 4 T3100 1.9 GHz 1 MB 47 A 3, 4 ICC Auto-Halt & Stop-Grant 25.4 A 3, 4 ISLP ICC Sleep 24.7 A 3, 4 IDSLP ICC Deep Sleep 22.9 A 3, 4 dICC/DT VCC Power Supply Current Slew Rate at CPU Package Pin 600 A/µs 6, 7 ICCA ICC for VCCA Supply 130 mA ICC for VCCP Supply before VCC Stable 4.5 A 9 ICC for VCCP Supply after VCC Stable 2.5 A 10 ICC IAH, ISGNT ICCP Number NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing in such a way that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Intel Thermal Monitor 2, or Extended Halt State). 2. The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 105 °C Tj. 4. Specified at the nominal VCC. 5. 800-MHz FSB supported 6. Instantaneous current ICC_CORE_INST of 55 A has to be sustained for short time (tINST) of 10 µs. Average current is less than maximum specified ICCDES. VR OCP threshold should be high enough to support current levels described herein. 7. Measured at the bulk capacitors on the motherboard. 8. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal VCC. Not 100% tested. 9. This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low. 10. This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high. 1-MB L2 cache. Datasheet 27 Electrical Specifications Table 7. DC Voltage and Current Specifications for the T1x00 Celeron Mobile Processors Symbol Parameter VCC VCC of the Processor Core VCC,BOOT Default VCC Voltage for Initial Power Up VCCP AGTL+ Termination Voltage VCCA PLL Supply Voltage ICCDES ICC for processors Recommended Design Targets: Min Typ Max Unit Notes 0.95 1.15 1.30 V 1, 2 V 2, 8 1.20 1.00 1.05 1.10 V 1.425 1.5 1.575 V 36 A ICC for processors ICC IAH, ISGNT Processor 5 A Frequency Die Variant T1600 1.66 GHz 1 MB 41 A 3, 4 T1700 1.83 GHz 1 MB 41 A 3, 4 21 A 3, 4 Number ICC Auto-Halt & Stop-Grant ISLP ICC Sleep 20.5 A 3, 4 IDSLP ICC Deep Sleep 18.6 A 3, 4 dICC/DT VCC Power Supply Current Slew Rate at CPU Package Pin 600 A/µs 6, 7 ICCA ICC for VCCA Supply 130 mA ICC for VCCP Supply before VCC Stable 4.5 A 9 ICC for VCCP Supply after VCC Stable 2.5 A 10 ICCP NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and cannot be altered. Individual maximum VID values are calibrated during manufacturing in such a way that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (Intel Thermal Monitor 2, or Extended Halt State). 2. The voltage specifications are assumed to be measured across VCC_SENSE and VSS_SENSE pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 100 °C Tj. 4. Specified at the nominal VCC. 5. 667-MHz FSB supported 6. Instantaneous current ICC_CORE_INST of 55 A has to be sustained for short time (tINST) of 10 µs. Average current is less than maximum specified ICCDES. VR OCP threshold should be high enough to support current levels described herein. 7. Measured at the bulk capacitors on the motherboard. 8. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal VCC. Not 100% tested. 9. This is a power-up peak current specification, which is applicable when VCCP is high and VCC_CORE is low. 10. This is a steady-state ICC current specification, which is applicable when both VCCP and VCC_CORE are high. 11. 512-KB L2 cache. 28 Datasheet Electrical Specifications Table 8 lists the DC specifications for the processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency Mode (HFM) and Lowest Frequency Mode (LFM) refer to the highest and lowest core operating frequencies supported on the Genuine Intel Processor. Unless specified otherwise, all specifications for the processor are at Tjunction =100 ºC. Care should be taken to read all notes associated with each parameter. Table 8. Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron SFF Genuine Intel Processor Symbol Parameter Min VCC VCC of the Processor Core VCC,BOOT Default VCC Voltage for Initial Power Up VCCP AGTL+ Termination Voltage VCCA PLL Supply Voltage ICCDES ICC for Processors Recommended Design Target Typ 0.8 Max Unit Notes 1.1 V 1, 2 2, 8 — 1.20 — V 1.00 1.05 1.10 V 1.425 1.5 1.575 V — — 18 A ICC for processors ICC IAH, 5 A Processor Number Frequency Die Variant SU2300 1.2GHz 1MB 17.6 A 3, 4 A 3, 4 A 3, 4 ICC Auto-Halt & Stop-Grant — — ISLP ICC Sleep — — IDSLP ICC Deep Sleep — — 5.0 A 3, 4 IDPRSLP ICC Deeper Sleep — — 3.2 A 3, 4 — — 600 A/µs 7 — — 130 mA — — 4.5 2.5 A A ISGNT dICC/DT ICCA ICCP VCC Power Supply Current Slew Rate at Processor Package Pin ICC for VCCA Supply ICC for VCCP Supply before VCC Stable ICC for VCCPSupply after VCC Stable 6.3 5.9 8 9 NOTES: 1. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the processor during a power management event (ex: Extended Halt State). 2. The voltage specifications are assumed to be measured across VCCSENSE and VSSSENSE pins at socket with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-mΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe. 3. Specified at 100°C Tj. 4. Specified at nominal VCC. Datasheet 29 Electrical Specifications 5. 6. 7. 8. 9. 10. 800-MHz FSB supported Measured at the bulk capacitors on the motherboard. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal VCC. Not 100% tested. This is a power-up peak current specification, which is applicable when VCCP is high and VCC core is low. This is a steady-state Icc current specification, which is applicable when both VCCP and VCC core are high. SU2300 processor operates at same core frequency in HFM and LFM. Table 9. FSB Differential BCLK Specifications Symbol VCROSS Crossing Voltage ΔVCROSS Range of Crossing Points VSWING Differential Output Swing ILI Cpad 1. 2. 3. 4. 5. 6. 7. 8. 30 Parameter Input Leakage Current Pad Capacitance Min Typ 0.3 Max Unit Notes1 0.55 V 2, 7, 8 140 mV 2, 7, 5 mV 6 +5 µA 3 1.45 pF 4 300 -5 0.95 1.2 Unless otherwise noted, all specifications in this table apply to all processor frequencies. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1. For Vin between 0 V and VIH. Cpad includes die capacitance only. No package parasitics are included. ΔVCROSS is defined as the total variation of all crossing voltages as defined in Note 2. Measurement taken from differential waveform. Measurement taken from single-ended waveform. Only applies to the differential rising edge (Clock rising and Clock# falling). Datasheet Electrical Specifications Table 10. AGTL+ Signal Group DC Specifications Symbol VCCP GTLREF RCOMP RODT Parameter I/O Voltage Typ Max Unit 1.00 1.05 1.10 V V 6 27.78 Ω 10 Ω 11 Reference Voltage Compensation Resistor Notes1 Min 2/3 VCCP 27.23 Termination Resistor 27.5 55 VIH Input High Voltage GTLREF+0.10 VCCP VCCP+0.10 V 3,6 VIL Input Low Voltage -0.10 0 GTLREF-0.10 V 2,4 VOH Output High Voltage VCCP-0.10 VCCP VCCP Termination Resistance 50 55 61 Ω 7 Buffer On Resistance 22 25 28 Ω 5 ±100 µA 8 2.55 pF 9 RTT RON ILI Cpad Input Leakage Current Pad Capacitance 1.6 2.1 6 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. VIL is defined as the maximum voltage level at a receiving agent that is interpreted as a logical low value. 3. VIH is defined as the minimum voltage level at a receiving agent that is interpreted as a logical high value. 4. VIH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the signal quality specifications. 5. This is the pull-down driver resistance. Measured at 0.31*VCCP. RON (min) = 0.4*RTT, RON (typ) = 0.455*RTT, RON (max) = 0.51*RTT. RTT typical value of 55 Ω is used for RON typ/ min/max calculations. 6. GTLREF should be generated from VCCP with a 1%-tolerance resistor divider. The VCCP referred to in these specifications is the instantaneous VCCP. 7. RTT is the on-die termination resistance measured at VOL of the AGTL+ output driver. Measured at 0.31*VCCP. RTT is connected to VCCP on die. 8. Specified with on die RTT and RON turned off. Vin between 0 and VCCP. 9. Cpad includes die capacitance only. No package parasitics are included. 10. This is the external resistor on the comp pins. 11. On die termination resistance measured at 0.33*VCCP. Datasheet 31 Electrical Specifications Table 11. CMOS Signal Group DC Specifications Symbol VCCP Parameter I/O Voltage Min Typ Max Unit 1.00 1.05 1.10 V Notes1 VIH Input High Voltage 0.7*VCCP VCCP VCCP+0.1 V 2 VIL Input Low Voltage CMOS -0.10 0.00 0.3*VCCP V 2 VOH Output High Voltage 0.9*VCCP VCCP VCCP+0.1 V 2 VOL Output Low Voltage -0.10 0 0.1*VCCP V 2 IOH Output High Current 1.5 4.1 mA 5 IOL Output Low Current 1.5 4.1 mA 4 ILI Input Leakage Current Cpad1 Pad Capacitance Cpad2 Pad Capacitance for CMOS Input ±100 µA 6 1.6 2.1 2.55 pF 7 0.95 1.2 1.45 3 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. The VCCP referred to in these specifications refers to instantaneous VCCP. 3. Cpad2 includes die capacitance for all other CMOS input signals. No package parasitics are included. 4. Measured at 0.1*VCCP. 5. Measured at 0.9*VCCP. 6. For Vin between 0 V and VCCP. Measured when the driver is tristated. 7. Cpad1 includes die capacitance only for DPRSTP#, DPSLP#, PWRGOOD. No package parasitics are included. Table 12. Open Drain Signal Group DC Specifications Symbol Parameter Min Typ Max Unit Notes1 VCCP-5% VCCP VCCP+5% V 3 VOH Output High Voltage VOL Output Low Voltage 0 0.20 V IOL Output Low Current 16 50 mA 2 ILO Output Leakage Current ±200 µA 4 2.45 pF 5 Cpad Pad Capacitance 1.9 2.2 NOTES: 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies. 2. Measured at 0.2 V. 3. VOH is determined by value of the external pull-up resistor to VCCP. 4. For Vin between 0 V and VOH. 5. Cpad includes die capacitance only. No package parasitics are included. § 32 Datasheet Package Mechanical Specifications and Pin Information 4 Package Mechanical Specifications and Pin Information 4.1 Package Mechanical Specifications The processor is available in a 1-MB, 478-pin Micro-FCPGA package. The package mechanical dimensions, keep-out zones, processor mass specifications, and package loading specifications are shown in Figure 3 through Figure 6. The SFF processor (ULV DC) is available 956-ball Micro-FCBGA packages. The package mechanical dimensions are shown in Figure 7. The maximum outgoing co-planarity is 0.2 mm (8 mils) for SFF Package The mechanical package pressure specifications are in a direction normal to the surface of the processor. This requirement is to protect the processor die from fracture risk due to uneven die pressure distribution under tilt, stack-up tolerances and other similar conditions. These specifications assume that a mechanical attach is designed specifically to load one type of processor. Moreover, the processor package substrate should not be used as a mechanical reference or load-bearing surface for the thermal or mechanical solution. Please refer to the Santa Rosa Platform Mechanical Design Guide for more details. Note: Datasheet For M-step based processors refer to the 2-MB package drawings. 33 Package Mechanical Specifications and Pin Information Figure 3. 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) h Bottom View Top View Front View Side View &'%( ! "#$%$ ) P Detail A 34 + ,- 1--1.0.2 1/ * * * * 1 1 1 1 1 1 )1. * 6 ! 34! ,./0 ø0.356 M C A B ø0.254 M C 5 Datasheet Package Mechanical Specifications and Pin Information Figure 4. 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) "# $ %& ' Side View (( $ %& ' Top View ø0.305±0.25 ø0.406 M C A B ø0.254 M C ! ! Datasheet Bottom View 35 Package Mechanical Specifications and Pin Information Figure 5. 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) Bottom View Top View Front View Side View &'%( ! "#$%$ ) P Detail A 36 + , 1--1.0.2 1/ * * ,./0 * 1 1 1 1 1 1 )1. * 6 ! 34! ø0.356 M C A B ø0.254 M C 5 Datasheet Package Mechanical Specifications and Pin Information Figure 6. 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) "# $ %& ' Side View (( $ %& ' Top View ø0.305±0.25 ø0.406 M C A B ø0.254 M C ! ! ! ! Datasheet Bottom View 37 38 A /! DETAIL '()* +,-!&./00 : FRONT VIEW TOP VIEW ! "#$%&%! SIDE VIEW B 3 ; 4 : 1 3 ; 4 : 1 DETAIL 2 8 + 6 2 8 + 6 2 (Solder Resist Opening) ø0.39±0.02 (Metal Diameter) BOTTOM VIEW ø0.46±0.04 2 1 2 1 2 1 47 4 446 34 5 1 ø0.14 ø0.04 L A B C L A 544 Figure 7. 1 68 5 56565 5 5645 5 5 5 43 5 59 665+9 3 56 459 815+ 1 656 86 5 5 56565 Package Mechanical Specifications and Pin Information SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing Datasheet Package Mechanical Specifications and Pin Information 4.2 Processor Pinout and Pin List Table 13 shows the top view pinout of the Intel Celeron Dual-Core processor. The pin list, arranged in two different formats, is shown in the following pages. Table 13. 1 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 1 of 2) 2 3 4 5 6 7 8 9 10 11 12 13 A VSS SMI# VSS FERR# A20M# VCC VSS VCC VCC VSS VCC VCC A B RSVD INIT# LINT1 DPSLP# VSS VCC VSS VCC VCC VSS VCC VSS B RSVD IGNNE # VSS LINT0 THERM TRIP# VSS VCC VCC VSS VCC VCC C VSS STPCLK # PWRGO OD SLP# VSS VCC VCC VSS VCC VSS D C D RESET# VSS VSS RSVD RSVD E DBSY# BNR# VSS HITM# DPRSTP # VSS VCC VSS VCC VCC VSS VCC VCC E F BR0# VSS RS[0]# RS[1]# VSS RSVD VCC VSS VCC VCC VSS VCC VSS F G VSS TRDY# RS[2]# VSS BPRI# HIT# G ADS# REQ[1] # VSS LOCK# DEFER# VSS H A[9]# VSS REQ[3] # A[3]# VSS VCCP J VSS REQ[2] # REQ[0] # VSS A[6]# VCCP K L REQ[4]# A[13]# VSS A[5]# A[4]# VSS L M ADSTB[0 ]# VSS A[7]# RSVD VSS VCCP M H J K N VSS A[8]# A[10]# VSS RSVD VCCP N P A[15]# A[12]# VSS A[14]# A[11]# VSS P R A[16]# VSS A[19]# A[24]# VSS VCCP R T VSS RSVD A[26]# VSS A[25]# VCCP T U A[23]# A[30]# VSS A[21]# A[18]# VSS U V ADSTB[1 ]# VSS RSVD A[31]# VSS VCCP V W VSS A[27]# A[32]# VSS A[28]# A[20]# W Y COMP[3] A[17]# VSS A[29]# A[22]# VSS Y AA COMP[2] VSS A[35]# A[33]# VSS TDI VCC VSS VCC VCC VSS VCC VCC AA AB VSS A[34]# TDO VSS TMS TRST# VCC VSS VCC VCC VSS VCC VSS AB PRDY# VSS BPM[3] # TCK VSS VCC VSS VCC VCC VSS VCC VCC AC VSS BPM[1] # BPM[0] # VSS VID[0] VCC VSS VCC VCC VSS VCC VSS AD PSI# VSS SENSE VSS VCC VCC VSS VCC VCC AE VSS VCC VCC VSS VCC VSS AF 8 9 10 11 12 13 AC AD AE AF PREQ# BPM[2]# VSS VID[6] VID[4] VSS VID[2] TEST5 VSS VID[5] VID[3] VID[1] VSS VCC SENSE 1 2 3 4 5 6 7 Datasheet 39 Package Mechanical Specifications and Pin Information Table 14. The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of 2) 14 15 16 17 18 19 20 21 22 23 24 25 26 A VSS VCC VSS VCC VCC VSS VCC BCLK[1] BCLK[0] VSS THRMDA VSS TEST6 A B VCC VCC VSS VCC VCC VSS VCC VSS BSEL[0] BSEL[1] VSS THRMDC VCCA B C VSS VCC VSS VCC VCC VSS DBR# BSEL[2] VSS TEST1 TEST3 VSS VCCA C IERR# PROCHO T# RSVD VSS DPWR# TEST2 VSS D D VCC VCC VSS VCC VCC VSS E VSS VCC VSS VCC VCC VSS VCC VSS D[0]# D[7]# VSS D[6]# D[2]# E F VCC VCC VSS VCC VCC VSS VCC DRDY# VSS D[4]# D[1]# VSS D[13]# F VCCP D[3]# VSS D[9]# D[5]# VSS G H G H VSS D[12]# D[15]# VSS DINV[0]# DSTBP[ 0]# J VCCP VSS D[11]# D[10]# VSS DSTBN[ 0]# J K VCCP D[14]# VSS D[8]# D[17]# VSS K D[29]# DSTBN[ 1]# L VSS DSTBP[ 1]# M L VSS D[22]# M VCCP VSS N VCCP P VSS R VCCP D[20]# VSS D[23]# D[21]# D[16]# VSS DINV[1]# D[31]# VSS N D[26]# D[25]# VSS D[24]# D[18]# P VSS COMP[0 ] R VSS D[19]# D[28]# T VCCP D[37]# VSS D[27]# D[30]# VSS T U VSS DINV[2]# D[39]# VSS D[38]# COMP[1 ] U V VCCP VSS D[36]# D[34]# VSS D[35]# V W VCCP D[41]# VSS D[43]# D[44]# VSS W D[40]# DSTBN[ 2]# Y A A Y VSS D[32]# D[42]# VSS AA VSS VCC VSS VCC VCC VSS VCC D[50]# VSS D[45]# D[46]# VSS DSTBP[ 2]# AB VCC VCC VSS VCC VCC VSS VCC D[52]# D[51]# VSS D[33]# D[47]# VSS A B AC VSS VCC VSS VCC VCC VSS DINV[3 ]# VSS D[60]# D[63]# VSS D[57]# D[53]# AC A D VCC VCC VSS VCC VCC VSS D[54]# D[59]# VSS D[61]# D[49]# VSS GTLREF A D AE VSS VCC VSS VCC VCC VSS VCC D[58]# D[55]# VSS D[48]# DSTBN[3] # VSS AE VSS TEST4 AF 25 26 AF 40 VCC VCC VSS VCC VCC VSS VCC VSS D[62]# D[56]# DSTBP[3] # 14 15 16 17 18 19 20 21 22 23 24 Datasheet Package Mechanical Specifications and Pin Information Table 15. SFF Processor Top View Upper Left Side BD BC BB 1 2 VSS VSS 5 6 VSS VID[0] 9 10 VSS VCC 15 16 18 VSS VCC Datasheet VSS VSS VSS VCC VCC VSS VSS VSS VSS VSS VCC VSS VCC VSS VSS VCC VSS VCC VSS VCC VCCP VCCP VCC VCC VSS VCC VCCP VSS VCC VCC VSS VCC VCC VCCP VSS VCCP VSS VSS VCC VCC VSS VCC VCC VCCP VSS VCCP VCCP VSS VSS VCC VCC VSS VCC VSS VSS VSS VSS VCC VSS VCCP VCCP VCCP VCCP VSS VCCP VCCP VCCP VCCP VSS VSS VSS A[10]# VCCP VCCP VCCP VCCP VSS VSS VCCP VCC VCC VCC VCCP VCCP VSS VCC VCC VSS VCC VCC VCCP VSS A[12]# A[14]# VCCP VSS VCC VSS VCC AC A[16]# VSS RSVD0 3 VSS AD A[11]# A[24]# VSS VCCP VSS VCC VSS VSS VCC VCCP VCCP VSS VCCP AE COMP[ 2] VSS VCCP VSS VSS VCCP VCC VCC VCC VSS VCC VCCP VSS VCC VCC VSS VCC VCC VCCP VCCP VSS AF COMP[ 3] A[26]# A[25]# VCCP AG A[19]# VSS RSVD0 4 VSS AH A[23]# A[18]# VSS VCCP VSS VCC VSS VSS VCC VCCP VSS VSS VCCP AJ A[30]# VSS VCCP VSS VSS VSS VCC VCC VCC 21 22 VSS VSS VSS VSS VSS AK A[21]# A[27]# ADSTB [1]# VCCP AL A[31]# VSS A[29]# VSS AM A[32]# A[28]# VSS PRDY# VSS VCC VCC 19 20 VSS VSS 17 VSS AN A[17]# VSS VSS TRST# TEST5 VSS VSSSE NSE 13 14 VSS VSS VCCS ENSE VSS AP A[34]# A[20]# A[33]# TDI AR A[35]# VSS TMS BPM[0] # AT A[22]# TCK VSS VID[2] AU TDO VSS BPM[1] # VID[3] PSI# 11 12 VSS AV PREQ# VID[6] BPM[2] # VID[1] AW VSS VSS VID[5] VID[4] 7 8 AY BPM[3] # VSS 3 4 BA VSS VSS VCC 41 Package Mechanical Specifications and Pin Information Table 16. SFF Processor Top View Upper Right Side AB 1 2 8 9 10 VCCP VCCP 13 14 16 VCCP VCC 19 20 42 VSS VCC VCC VCC VCC VCC VCC VSS VCC VCC VCC VSS VCC VSS VCC VSS VCC VSS VSS VSS VSS VCC VCC VCC VCCP VCCP VSS VSS VCC VCC VCCP VSS VSS VSS VCCP VCCP VCC VCC VSS VCCP VCCP VSS VSS VSS VCC VCC VSS THER MTRIP # SLP# VCCP VSS VSS VSS VSS VCC VCC LINT0 VCCP VCCP VSS DPSLP # INIT# VCCP VCCP VSS VSS VSS VSS VCC VCC VCC VCCP VCCP VSS VSS VSS VSS VCC VCC VCC VCCP VCCP VSS VSS A20M# VSS IGNNE # VCCP A VSS LINT1 PWRG OOD VSS VCCP VCCP VCCP VSS VSS VCC VCC VCCP VSS VSS VCCP B VSS VSS STPCL K# VSS C FERR# SMI# DPRST P# RSVD0 5 VCCP VSS VSS RSVD0 7 VSS VSS VCCP VCC VCC VCC VCCP VSS VSS VSS VCC VCC VCCP VSS D VSS RSVD0 6 RESET # DBR# E VSS VSS BNR# VCCP VSS VCCP VCCP VSS VSS VCC VCC 21 22 VSS VSS VCCP VCCP VSS F HITM# RS[1]# VSS VCCP G VSS VSS BPRI# VCCP VCCP VSS VCCP VCC VCC VCCP VCCP VSS VSS VCCP VCCP VSS 17 18 VCCP VSS H HIT# RS[2]# VSS VCCP J DBSY# VSS DEFER # VCCP K RS[0]# ADS# VSS VSS L TRDY# VSS VCCP VCCP VCCP VSS VCCP 15 VSS VSS VCCP VSS M BR0# REQ[3] # REQ[1] # VCCP N LOCK# VSS VSS VCCP P A[3]# A[6]# VSS VSS R REQ[0] # VSS VCCP VCCP 11 12 VSS T A[9]# A[4]# REQ[4] # VCCP U REQ[2] # VSS A[13]# VSS V RSVD0 1 ADSTB [0]# VSS 7 W A[5]# VSS A[8]# 5 6 Y RSVD0 2 A[15]# 3 4 AA A[7]# VSS VCC VSS VCC VSS VCC Datasheet Package Mechanical Specifications and Pin Information Table 17. SFF Processor Top View Lower Left Side BD 23 24 VCC 30 VSS VSS VCC 33 34 THRM DC 35 36 40 41 42 43 44 Datasheet THRM DA VSS VSS VSS VSS D[59]# VSS VSS VSS VSS GTLRE F VSS VSS VSS VSS VSS VSS D[46]# VSS D[33]# D[49]# VSS D[42]# VSS VSS DSTBP [2]# D[40]# VSS VCCP VSS VSS VSS D[26]# TEST4 VSS D[27]# VSS COMP[ 0] D[44]# D[39]# VSS D[35]# D[37]# D[36]# DSTBN [2]# VCCP VCCP VCCP VSS VCC VSS VCCP D[34]# DINV[2 ]# D[47]# D[41]# D[32]# VSS D[43]# VCC VCCP VCCP VSS VSS VCC VSS VSS VCCP VSS VCCP VCCP VSS VCC VCC VSS VCCP VCCP VSS D[45]# D[53]# D[63]# VSS VSS VCC VCCP VSS VCC VCC VCC VSS VSS VSS VCC VCCP VCCP VCCP D[57]# D[51]# VSS VCCP VSS VCC VSS VCC VCC VSS D[38]# AC VSS VCC VCC VCC AD VSS VSS VSS VCC VCCP VSS VSS D[52]# VSS VSS D[50]# VCC VCC VSS VSS D[48]# DSTBN [3]# D[60]# VCC VSS DSTBP [3]# VCC VCC VSS VSS VSS VSS VSS D[56]# D[61]# VCC VSS VCC VCC VSS AE VSS VSS VSS VCC AF VSS VCC VCC VSS AG VCC VCC VCC AH VSS VSS VSS AJ VSS VCC VCC VSS VSS VCC VSS D[54]# D[55]# VSS VCC VSS D[62]# DINV[3 ]# 39 VCC VSS VCC AK VSS VCC VCC VSS AL VSS VCC VCC VCC AM VSS VSS VSS AN VSS VCC VCC VSS VSS VSS D[58]# 37 38 VCC VSS VCC AP VSS VCC VCC VSS AR VSS VCC VCC VCC AT VSS VSS VSS VSS VCC VCC VSS AU VSS VSS VCC VCC AV VSS VSS VSS AW VCC VCC VCC AY VSS VCC VCC 31 32 VCC VCC 29 BA VSS VSS 27 28 BB VSS 25 26 BC TEST6 COMP[ 1] 43 Package Mechanical Specifications and Pin Information Table 18. SFF Processor Top View Lower Right Side AB 23 24 VCC 25 26 VCC 32 VSS 33 34 36 VCC VCCP 40 VCCP D[24]# 43 44 44 VSS D[19]# D[23]# DSTBP [1]# D[30]# VSS D[18]# D[10]# DINV[1 ]# D[31]# D[16]# VCCP DSTBN [0]# DSTBP [0]# VSS VSS D[15]# D[14]# VSS D[3]# D[9]# BSEL[0 ] BSEL[2 ] VSS TEST2 VSS IERR# DPWR # VSS D[2]# VSS VSS PROC HOT# VSS BCLK[ 0] BSEL[1 ] D[7]# D[1]# D[5]# BCLK[ 1] VSS D[13]# VCCP VCCA VSS D[0]# VSS VCCP VCCP TEST1 DRDY# D[4]# VSS VCCP D[6]# VSS VCC VCCA VCCP VSS VCC VCCP VCCP VSS VSS D[8]# D[22]# VCCP VSS VSS VCC VCCP VCCP VCCP VSS D[12]# VSS VCCP VSS VSS VCC VSS VCC VCC VCC VSS VCCP VSS DINV[0 ]# VCC VCCP VSS D[20]# DSTBN [1]# VSS VSS A VSS VSS VSS VCC VCC VSS VCCP VCCP VCCP D[11]# VSS VCCP VSS VSS VCC VCC B VCC VCC VSS VSS C VSS VSS VSS VCC D VCC VCC VCC VCC VSS VCCP VSS D[17]# VCC VCCP VSS D[21]# D[28]# VSS VSS E VSS VSS VSS VCC VCC VSS VCCP VCCP VCCP D[29]# VSS VCCP VSS VSS VCC VCC F VCC VCC VSS VSS G VSS VSS VSS VCC H VCC VCC VCC VCC VSS VCCP VSS D[25]# VCC VCCP VSS 41 42 VSS VSS J VSS VSS VSS VCC VCC VSS VCCP VCCP 39 VSS VCC VCC K VCC VCC VSS VSS L VSS VSS VSS VCC M VCC VCC VCC VCC VSS VCCP 37 38 VSS N VSS VSS VSS VCC VCC VSS 35 VCC P VCC VCC VSS VSS R VSS VSS VSS VCC T VCC VCC VCC VCC U VSS VSS VSS VCC V VCC VCC VSS 31 W VSS VSS 29 30 Y VCC VCC 27 28 AA VSS VSS VSS TEST3 VSS Datasheet Package Mechanical Specifications and Pin Information Table 19. Table 19. Pin Listing by Pin Name (Sheet 1 of 16) Pin Listing by Pin Name (Sheet 2 of 16) Pin Number Signal Buffer Type Direction A[24]# R4 Source Synch Input/ Output Pin Name Pin Number Signal Buffer Type Direction A[3]# J4 Source Synch Input/ Output A[25]# T5 Source Synch A[4]# L5 Source Synch Input/ Output Input/ Output A[26]# T3 Source Synch A[5]# L4 Source Synch Input/ Output Input/ Output A[27]# W2 Source Synch A[6]# K5 Source Synch Input/ Output Input/ Output A[28]# W5 Source Synch A[7]# M3 Source Synch Input/ Output Input/ Output A[29]# Y4 Source Synch A[8]# N2 Source Synch Input/ Output Input/ Output A[30]# U2 Source Synch A[9]# J1 Source Synch Input/ Output Input/ Output A[31]# V4 Source Synch A[10]# N3 Source Synch Input/ Output Input/ Output A[32]# W3 Source Synch A[11]# P5 Source Synch Input/ Output Input/ Output A[33]# AA4 Source Synch A[12]# P2 Source Synch Input/ Output Input/ Output A[34]# AB2 Source Synch A[13]# L2 Source Synch Input/ Output Input/ Output A[35]# AA3 Source Synch A[14]# P4 Source Synch Input/ Output Input/ Output A20M# A6 CMOS Input A[15]# P1 Source Synch Input/ Output ADS# H1 Common Clock Input/ Output A[16]# R1 Source Synch Input/ Output ADSTB[0]# M1 Source Synch Input/ Output A[17]# Y2 Source Synch Input/ Output ADSTB[1]# V1 Source Synch Input/ Output A[18]# U5 Source Synch Input/ Output BCLK[0] A22 Bus Clock Input BCLK[1] A21 Bus Clock Input BNR# E2 Common Clock Input/ Output Pin Name A[19]# R3 Source Synch Input/ Output A[20]# W6 Source Synch Input/ Output BPM[0]# AD4 Common Clock Input/ Output A[21]# U4 Source Synch Input/ Output BPM[1]# AD3 Common Clock Output AD1 Common Clock Output Y5 Source Synch Input/ Output BPM[2]# A[22]# BPM[3]# AC4 Common Clock A[23]# U1 Source Synch Input/ Output Input/ Output BPRI# G5 Common Clock Input Datasheet 45 Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 3 of 16) Pin Number Signal Buffer Type Direction BR0# F1 Common Clock Input/ Output BSEL[0] B22 CMOS Output BSEL[1] B23 CMOS Output BSEL[2] C21 CMOS COMP[0] R26 COMP[1] Table 19. Pin Listing by Pin Name (Sheet 4 of 16) Pin Number Signal Buffer Type Direction D[15]# H23 Source Synch Input/ Output D[16]# N22 Source Synch Input/ Output Output D[17]# K25 Source Synch Input/ Output Power/Other Input/ Output D[18]# P26 Source Synch Input/ Output U26 Power/Other Input/ Output D[19]# R23 Source Synch Input/ Output COMP[2] AA1 Power/Other Input/ Output D[20]# L23 Source Synch Input/ Output COMP[3] Y1 Power/Other Input/ Output D[21]# M24 Source Synch Input/ Output D[0]# E22 Source Synch Input/ Output D[22]# L22 Source Synch Input/ Output D[1]# F24 Source Synch Input/ Output D[23]# M23 Source Synch Input/ Output D[2]# E26 Source Synch Input/ Output D[24]# P25 Source Synch Input/ Output D[3]# G22 Source Synch Input/ Output D[25]# P23 Source Synch Input/ Output D[4]# F23 Source Synch Input/ Output D[26]# P22 Source Synch Input/ Output D[5]# G25 Source Synch Input/ Output D[27]# T24 Source Synch Input/ Output D[6]# E25 Source Synch Input/ Output D[28]# R24 Source Synch Input/ Output D[7]# E23 Source Synch Input/ Output D[29]# L25 Source Synch Input/ Output D[8]# K24 Source Synch Input/ Output D[30]# T25 Source Synch Input/ Output D[9]# G24 Source Synch Input/ Output D[31]# N25 Source Synch Input/ Output D[10]# J24 Source Synch Input/ Output D[32]# Y22 Source Synch Input/ Output D[11]# J23 Source Synch Input/ Output D[33]# AB24 Source Synch Input/ Output D[12]# H22 Source Synch Input/ Output D[34]# V24 Source Synch Input/ Output D[13]# F26 Source Synch Input/ Output D[35]# V26 Source Synch Input/ Output D[14]# K22 Source Synch Input/ Output D[36]# V23 Source Synch Input/ Output Pin Name 46 Pin Name Datasheet Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 5 of 16) Pin Number Signal Buffer Type Direction D[37]# T22 Source Synch Input/ Output D[38]# U25 Source Synch D[39]# U23 D[40]# Table 19. Pin Listing by Pin Name (Sheet 6 of 16) Pin Number Signal Buffer Type Direction D[59]# AD21 Source Synch Input/ Output Input/ Output D[60]# AC22 Source Synch Input/ Output Source Synch Input/ Output D[61]# AD23 Source Synch Input/ Output Y25 Source Synch Input/ Output D[62]# AF22 Source Synch Input/ Output D[41]# W22 Source Synch Input/ Output D[63]# AC23 Source Synch Input/ Output D[42]# Y23 Source Synch Input/ Output DBR# C20 CMOS Output Pin Name Pin Name DBSY# E1 Common Clock Input/ Output DEFER# H5 Common Clock Input DINV[0]# H25 Source Synch Input/ Output Input/ Output DINV[1]# N24 Source Synch Input/ Output Source Synch Input/ Output DINV[2]# U22 Source Synch Input/ Output AB25 Source Synch Input/ Output DINV[3]# AC20 Source Synch Input/ Output D[48]# AE24 Source Synch Input/ Output DPRSTP# E5 CMOS Input B5 CMOS Input AD24 Source Synch Input/ Output DPSLP# D[49]# DPWR# D24 Common Clock Input/ Output DRDY# F21 Common Clock Input/ Output DSTBN[0]# J26 Source Synch Input/ Output DSTBN[1]# L26 Source Synch Input/ Output DSTBN[2]# Y26 Source Synch Input/ Output DSTBN[3]# AE25 Source Synch Input/ Output DSTBP[0]# H26 Source Synch Input/ Output DSTBP[1]# M26 Source Synch Input/ Output DSTBP[2]# AA26 Source Synch Input/ Output D[43]# W24 Source Synch Input/ Output D[44]# W25 Source Synch Input/ Output D[45]# AA23 Source Synch D[46]# AA24 D[47]# D[50]# D[51]# D[52]# D[53]# D[54]# D[55]# D[56]# D[57]# D[58]# Datasheet AA21 AB22 AB21 AC26 AD20 AE22 AF23 AC25 AE21 Source Synch Source Synch Input/ Output Input/ Output Source Synch Input/ Output Source Synch Input/ Output Source Synch Source Synch Input/ Output Input/ Output Source Synch Input/ Output Source Synch Input/ Output Source Synch Input/ Output 47 Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 7 of 16) Table 19. Pin Listing by Pin Name (Sheet 8 of 16) Pin Number Signal Buffer Type Direction DSTBP[3]# AF24 Source Synch Input/ Output FERR# A5 Open Drain Output GTLREF AD26 Power/Other Input HIT# G6 Common Clock Input/ Output HITM# E4 Common Clock Input/ Output IERR# D20 Open Drain Output STPCLK# D5 CMOS Input IGNNE# C4 CMOS Input TCK AC5 CMOS Input INIT# B3 CMOS Input TDI AA6 CMOS Input LINT0 C6 CMOS Input TDO AB3 Open Drain Output LINT1 B4 CMOS Input TEST1 C23 Test TEST2 D25 Test TEST3 C24 Test TEST4 AF26 Test Pin Name Pin Number Signal Buffer Type RSVD F6 Reserved RSVD M4 Reserved RSVD N5 Reserved RSVD T2 Reserved RSVD V3 Reserved SLP# D7 CMOS Input SMI# A3 CMOS Input Pin Name LOCK# H4 Common Clock Input/ Output PRDY# AC2 Common Clock Output PREQ# AC1 Common Clock Input TEST5 AF1 Test PROCHOT# D21 Open Drain Input/ Output TEST6 A26 Test PSI# AE6 CMOS Output THERMTRIP # C7 Open Drain PWRGOOD D6 CMOS Input THRMDA A24 Power/Other THRMDC B25 Power/Other TMS AB5 CMOS REQ[0]# K3 Source Synch Input/ Output REQ[1]# H2 Source Synch Input/ Output Source Synch Input/ Output REQ[2]# K2 Output Input TRDY# G2 Common Clock Input TRST# AB6 CMOS Input VCC A7 Power/Other VCC A9 Power/Other VCC A10 Power/Other VCC A12 Power/Other REQ[3]# J3 Source Synch Input/ Output REQ[4]# L1 Source Synch Input/ Output RESET# C1 Common Clock Input VCC A13 Power/Other RS[0]# F3 Common Clock Input VCC A15 Power/Other RS[1]# F4 Common Clock Input VCC A17 Power/Other RS[2]# G3 Common Clock Input VCC A18 Power/Other RSVD B2 Reserved VCC A20 Power/Other RSVD C3 Reserved VCC AA7 Power/Other RSVD D2 Reserved VCC AA9 Power/Other RSVD D3 Reserved VCC AA10 Power/Other RSVD D22 Reserved VCC AA12 Power/Other 48 Direction Datasheet Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 9 of 16) Pin Number Signal Buffer Type VCC AA13 Power/Other VCC AA15 VCC Table 19. Pin Listing by Pin Name (Sheet 10 of 16) Pin Number Signal Buffer Type VCC AE18 Power/Other Power/Other VCC AE20 Power/Other AA17 Power/Other VCC AF9 Power/Other VCC AA18 Power/Other VCC AF10 Power/Other VCC AA20 Power/Other VCC AF12 Power/Other VCC AB7 Power/Other VCC AF14 Power/Other VCC AB9 Power/Other VCC AF15 Power/Other VCC AB10 Power/Other VCC AF17 Power/Other VCC AB12 Power/Other VCC AF18 Power/Other VCC AB14 Power/Other VCC AF20 Power/Other VCC AB15 Power/Other VCC B7 Power/Other VCC AB17 Power/Other VCC B9 Power/Other VCC AB18 Power/Other VCC B10 Power/Other VCC AB20 Power/Other VCC B12 Power/Other VCC AC7 Power/Other VCC B14 Power/Other VCC AC9 Power/Other VCC B15 Power/Other VCC AC10 Power/Other VCC B17 Power/Other VCC AC12 Power/Other VCC B18 Power/Other VCC AC13 Power/Other VCC B20 Power/Other VCC AC15 Power/Other VCC C9 Power/Other VCC AC17 Power/Other VCC C10 Power/Other VCC AC18 Power/Other VCC C12 Power/Other VCC AD7 Power/Other VCC C13 Power/Other Pin Name Direction Pin Name VCC AD9 Power/Other VCC C15 Power/Other VCC AD10 Power/Other VCC C17 Power/Other VCC AD12 Power/Other VCC C18 Power/Other VCC AD14 Power/Other VCC D9 Power/Other VCC AD15 Power/Other VCC D10 Power/Other VCC AD17 Power/Other VCC D12 Power/Other VCC AD18 Power/Other VCC D14 Power/Other VCC AE9 Power/Other VCC D15 Power/Other VCC AE10 Power/Other VCC D17 Power/Other VCC AE12 Power/Other VCC D18 Power/Other VCC AE13 Power/Other VCC E7 Power/Other VCC AE15 Power/Other VCC E9 Power/Other VCC AE17 Power/Other VCC E10 Power/Other Datasheet Direction 49 Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 11 of 16) Pin Number Signal Buffer Type VCC E12 Power/Other VCC E13 VCC Table 19. Pin Listing by Pin Name (Sheet 12 of 16) Pin Number Signal Buffer Type Direction VID[2] AE5 CMOS Output Power/Other VID[3] AF4 CMOS Output E15 Power/Other VID[4] AE3 CMOS Output VCC E17 Power/Other VID[5] AF3 CMOS Output VCC E18 Power/Other VID[6] AE2 CMOS Output VCC E20 Power/Other VSS A2 Power/Other VCC F7 Power/Other VSS A4 Power/Other VCC F9 Power/Other VSS A8 Power/Other VCC F10 Power/Other VSS A11 Power/Other VCC F12 Power/Other VSS A14 Power/Other VCC F14 Power/Other VSS A16 Power/Other VCC F15 Power/Other VSS A19 Power/Other VCC F17 Power/Other VSS A23 Power/Other VCC F18 Power/Other VSS A25 Power/Other VCC F20 Power/Other VSS AA2 Power/Other VCCA B26 Power/Other VSS AA5 Power/Other VCCA C26 Power/Other VSS AA8 Power/other VCCP G21 Power/Other VSS AA11 Power/Other VCCP J6 Power/Other VSS AA14 Power/Other VCCP J21 Power/Other VSS AA16 Power/Other VCCP K6 Power/Other VSS AA19 Power/Other VCCP K21 Power/Other VSS AA22 Power/Other VCCP M6 Power/Other VSS AA25 Power/Other VCCP M21 Power/Other VSS AB1 Power/Other VCCP N6 Power/Other VSS AB4 Power/Other VCCP N21 Power/Other VSS AB8 Power/Other VCCP R6 Power/Other VSS AB11 Power/Other VCCP R21 Power/Other VSS AB13 Power/Other VCCP T6 Power/Other VSS AB16 Power/Other VCCP T21 Power/Other VSS AB19 Power/Other VCCP V6 Power/Other VSS AB23 Power/Other VCCP V21 Power/Other VSS AB26 Power/Other VCCP W21 Power/Other VSS AC3 Power/Other VCCSENSE AF7 Power/Other VSS AC6 Power/Other VID[0] AD6 CMOS Output VSS AC8 Power/Other VID[1] AF5 CMOS Output VSS AC11 Power/Other Pin Name 50 Direction Pin Name Datasheet Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 13 of 16) Pin Number Signal Buffer Type VSS AC14 Power/Other VSS AC16 VSS Table 19. Pin Listing by Pin Name (Sheet 14 of 16) Pin Number Signal Buffer Type VSS B16 Power/Other Power/Other VSS B19 Power/Other AC19 Power/Other VSS B21 Power/Other VSS AC21 Power/Other VSS B24 Power/Other VSS AC24 Power/Other VSS C2 Power/Other VSS AD2 Power/Other VSS C5 Power/Other VSS AD5 Power/Other VSS C8 Power/Other Pin Name Direction Pin Name VSS AD8 Power/Other VSS C11 Power/Other VSS AD11 Power/Other VSS C14 Power/Other VSS AD13 Power/Other VSS C16 Power/Other VSS AD16 Power/Other VSS C19 Power/Other VSS AD19 Power/Other VSS C22 Power/Other VSS AD22 Power/Other VSS C25 Power/Other VSS AD25 Power/Other VSS D1 Power/Other VSS AE1 Power/Other VSS D4 Power/Other VSS AE4 Power/Other VSS D8 Power/Other VSS AE8 Power/Other VSS D11 Power/Other VSS AE11 Power/Other VSS D13 Power/Other VSS AE14 Power/Other VSS D16 Power/Other VSS AE16 Power/Other VSS D19 Power/Other VSS AE19 Power/Other VSS D23 Power/Other VSS AE23 Power/Other VSS D26 Power/Other VSS AE26 Power/Other VSS E3 Power/Other VSS AF2 Power/Other VSS E6 Power/Other VSS AF6 Power/Other VSS E8 Power/Other VSS AF8 Power/Other VSS E11 Power/Other VSS AF11 Power/Other VSS E14 Power/Other VSS AF13 Power/Other VSS E16 Power/Other VSS AF16 Power/Other VSS E19 Power/Other VSS AF19 Power/Other VSS E21 Power/Other VSS AF21 Power/Other VSS E24 Power/Other VSS AF25 Power/Other VSS F2 Power/Other VSS B6 Power/Other VSS F5 Power/Other VSS B8 Power/Other VSS F8 Power/Other VSS B11 Power/Other VSS F11 Power/Other VSS B13 Power/Other VSS F13 Power/Other Datasheet Direction 51 Package Mechanical Specifications and Pin Information Table 19. Pin Listing by Pin Name (Sheet 15 of 16) Pin Number Signal Buffer Type VSS F16 Power/Other VSS F19 VSS F22 Pin Name Table 19. Pin Listing by Pin Name (Sheet 16 of 16) Pin Number Signal Buffer Type VSS R2 Power/Other Power/Other VSS R5 Power/Other Power/Other VSS R22 Power/Other Direction Pin Name VSS F25 Power/Other VSS R25 Power/Other VSS G1 Power/Other VSS T1 Power/Other VSS G4 Power/Other VSS T4 Power/Other VSS G23 Power/Other VSS T23 Power/Other VSS G26 Power/Other VSS T26 Power/Other VSS H3 Power/Other VSS U3 Power/Other VSS H6 Power/Other VSS U6 Power/Other VSS H21 Power/Other VSS U21 Power/Other VSS H24 Power/Other VSS U24 Power/Other VSS J2 Power/Other VSS V2 Power/Other VSS J5 Power/Other VSS V5 Power/Other VSS J22 Power/Other VSS V22 Power/Other VSS J25 Power/Other VSS V25 Power/Other VSS K1 Power/Other VSS W1 Power/Other VSS K4 Power/Other VSS W4 Power/Other VSS K23 Power/Other VSS W23 Power/Other VSS K26 Power/Other VSS W26 Power/Other VSS L3 Power/Other VSS Y3 Power/Other VSS L6 Power/Other VSS Y6 Power/Other VSS L21 Power/Other VSS Y21 Power/Other VSS L24 Power/Other VSS Y24 Power/Other VSS M2 Power/Other VSSSENSE AE7 Power/Other VSS M5 Power/Other VSS M22 Power/Other VSS M25 Power/Other VSS N1 Power/Other VSS N4 Power/Other VSS N23 Power/Other VSS N26 Power/Other VSS P3 Power/Other VSS P6 Power/Other VSS P21 Power/Other VSS P24 Power/Other 52 Table 20. Direction Output Pin Listing by Pin Number (Sheet 1 of 17) Pin Number Signal Buffer Type VSS A2 Power/Other SMI# A3 CMOS VSS A4 Power/Other FERR# A5 Open Drain Output A20M# A6 CMOS Input VCC A7 Power/Other Pin Name Direction Input Datasheet Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 2 of 17) Pin Number Signal Buffer Type VSS A8 Power/Other VCC A9 VCC A10 Pin Name Table 20. Pin Listing by Pin Number (Sheet 3 of 17) Pin Number Signal Buffer Type VSS AA16 Power/Other Power/Other VCC AA17 Power/Other Power/Other VCC AA18 Power/Other Direction Pin Name Direction VSS A11 Power/Other VSS AA19 Power/Other VCC A12 Power/Other VCC AA20 Power/Other VCC A13 Power/Other D[50]# AA21 Source Synch VSS A14 Power/Other VCC A15 Power/Other VSS AA22 Power/Other VSS A16 Power/Other D[45]# AA23 Source Synch Input/ Output VCC A17 Power/Other VCC A18 Power/Other D[46]# AA24 Source Synch Input/ Output VSS AA25 Power/Other DSTBP[2]# AA26 Source Synch VSS AB1 Power/Other A[34]# AB2 Source Synch Input/ Output TDO AB3 Open Drain Output VSS AB4 Power/Other TMS AB5 CMOS Input TRST# AB6 CMOS Input VCC AB7 Power/Other VSS AB8 Power/Other VCC AB9 Power/Other VCC AB10 Power/Other VSS AB11 Power/Other VCC AB12 Power/Other VSS AB13 Power/Other VCC AB14 Power/Other VSS A19 Power/Other VCC A20 Power/Other BCLK[1] A21 Bus Clock Input BCLK[0] A22 Bus Clock Input VSS A23 Power/Other THRMDA A24 Power/Other VSS A25 Power/Other TEST6 A26 Test COMP[2] AA1 Power/Other VSS AA2 Power/Other Input/ Output A[35]# AA3 Source Synch Input/ Output A[33]# AA4 Source Synch Input/ Output VSS AA5 Power/Other TDI AA6 CMOS VCC AA7 Power/Other VSS AA8 Power/other VCC AA9 Power/Other VCC AA10 Power/Other VSS AA11 Power/Other VCC AA12 Power/Other VCC AA13 Power/Other VSS AA14 Power/Other VCC AA15 Power/Other Datasheet Input VCC AB15 Power/Other VSS AB16 Power/Other VCC AB17 Power/Other VCC AB18 Power/Other VSS AB19 Power/Other VCC AB20 Power/Other D[52]# AB21 Source Synch Input/ Output Input/ Output Input/ Output 53 Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 4 of 17) Pin Number Signal Buffer Type Direction D[51]# AB22 Source Synch Input/ Output VSS AB23 Power/Other Pin Name D[33]# AB24 Source Synch Input/ Output D[47]# AB25 Source Synch Input/ Output VSS AB26 Power/Other PREQ# AC1 Common Clock Input PRDY# AC2 Common Clock Output VSS AC3 Power/Other BPM[3]# AC4 Common Clock Input/ Output TCK AC5 CMOS Input VSS AC6 Power/Other VCC AC7 Power/Other VSS AC8 Power/Other VCC AC9 Power/Other VCC AC10 Power/Other VSS AC11 Power/Other VCC AC12 Power/Other VCC AC13 Power/Other VSS AC14 Power/Other VCC AC15 Power/Other VSS AC16 Power/Other VCC AC17 Power/Other VCC AC18 Power/Other VSS AC19 Power/Other DINV[3]# AC20 Source Synch Input/ Output VSS AC21 Power/Other D[60]# AC22 Source Synch Input/ Output D[63]# AC23 Source Synch Input/ Output VSS D[57]# 54 AC24 AC25 Power/Other Source Synch Input/ Output Table 20. Pin Listing by Pin Number (Sheet 5 of 17) Pin Number Signal Buffer Type Direction D[53]# AC26 Source Synch Input/ Output BPM[2]# AD1 Common Clock Output VSS AD2 Power/Other BPM[1]# AD3 Common Clock Output BPM[0]# AD4 Common Clock Input/ Output VSS AD5 Power/Other VID[0] AD6 CMOS VCC AD7 Power/Other VSS AD8 Power/Other VCC AD9 Power/Other VCC AD10 Power/Other Pin Name Output VSS AD11 Power/Other VCC AD12 Power/Other VSS AD13 Power/Other VCC AD14 Power/Other VCC AD15 Power/Other VSS AD16 Power/Other VCC AD17 Power/Other VCC AD18 Power/Other VSS AD19 Power/Other D[54]# AD20 Source Synch Input/ Output D[59]# AD21 Source Synch Input/ Output VSS AD22 Power/Other D[61]# AD23 Source Synch Input/ Output D[49]# AD24 Source Synch Input/ Output VSS AD25 Power/Other GTLREF AD26 Power/Other VSS AE1 Power/Other VID[6] AE2 CMOS Output VID[4] AE3 CMOS Output VSS AE4 Power/Other Input Datasheet Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 6 of 17) Pin Number Signal Buffer Type Direction VID[2] AE5 CMOS Output PSI# AE6 CMOS VSSSENSE AE7 Power/Other Pin Name Table 20. Pin Listing by Pin Number (Sheet 7 of 17) Pin Number Signal Buffer Type VSS AF13 Power/Other Output VCC AF14 Power/Other Output VCC AF15 Power/Other Pin Name Direction VSS AE8 Power/Other VSS AF16 Power/Other VCC AE9 Power/Other VCC AF17 Power/Other VCC AE10 Power/Other VCC AF18 Power/Other VSS AE11 Power/Other VSS AF19 Power/Other VCC AE12 Power/Other VCC AF20 Power/Other VCC AE13 Power/Other VSS AF21 Power/Other VSS AE14 Power/Other D[62]# AF22 Source Synch VCC AE15 Power/Other Input/ Output VSS AE16 Power/Other D[56]# AF23 Source Synch Input/ Output VCC AE17 Power/Other VCC AE18 Power/Other DSTBP[3]# AF24 Source Synch Input/ Output VSS AE19 Power/Other VSS AF25 Power/Other VCC AE20 Power/Other TEST4 AF26 Test RSVD B2 Reserved INIT# B3 CMOS Input LINT1 B4 CMOS Input DPSLP# B5 CMOS Input VSS B6 Power/Other VCC B7 Power/Other VSS B8 Power/Other D[58]# AE21 Source Synch Input/ Output Input/ Output D[55]# AE22 Source Synch VSS AE23 Power/Other D[48]# AE24 Source Synch Input/ Output DSTBN[3]# AE25 Source Synch Input/ Output VSS AE26 Power/Other TEST5 AF1 Test VSS AF2 Power/Other VID[5] AF3 CMOS Output VID[3] AF4 CMOS Output VID[1] AF5 CMOS Output VSS AF6 Power/Other VCCSENSE AF7 Power/Other VSS AF8 Power/Other VCC AF9 Power/Other VCC AF10 Power/Other VSS AF11 Power/Other VCC AF12 Power/Other Datasheet VCC B9 Power/Other VCC B10 Power/Other VSS B11 Power/Other VCC B12 Power/Other VSS B13 Power/Other VCC B14 Power/Other VCC B15 Power/Other VSS B16 Power/Other VCC B17 Power/Other VCC B18 Power/Other VSS B19 Power/Other VCC B20 Power/Other VSS B21 Power/Other 55 Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 8 of 17) Pin Number Signal Buffer Type Direction BSEL[0] B22 CMOS Output BSEL[1] B23 CMOS Output VSS B24 Pin Name Table 20. Pin Listing by Pin Number (Sheet 9 of 17) Pin Number Signal Buffer Type Direction STPCLK# D5 CMOS Input PWRGOOD D6 CMOS Input Power/Other SLP# D7 CMOS Input Pin Name THRMDC B25 Power/Other VSS D8 Power/Other VCCA B26 Power/Other VCC D9 Power/Other RESET# C1 Common Clock VCC D10 Power/Other VSS D11 Power/Other VSS C2 Power/Other VCC D12 Power/Other RSVD C3 Reserved VSS D13 Power/Other IGNNE# C4 CMOS VCC D14 Power/Other VSS C5 Power/Other VCC D15 Power/Other LINT0 C6 CMOS Input THERMTRIP # C7 Open Drain Output VSS C8 Power/Other VCC C9 Power/Other VCC C10 Power/Other VSS C11 Power/Other VCC C12 Power/Other VCC C13 Power/Other VSS C14 Power/Other VCC C15 Power/Other VSS C16 VCC Input Input VSS D16 Power/Other VCC D17 Power/Other VCC D18 Power/Other VSS D19 Power/Other IERR# D20 Open Drain Output Input/ Output PROCHOT# D21 Open Drain RSVD D22 Reserved VSS D23 Power/Other DPWR# D24 Common Clock Power/Other TEST2 D25 Test C17 Power/Other VSS D26 Power/Other VCC C18 Power/Other DBSY# E1 VSS C19 Power/Other Common Clock Input/ Output DBR# C20 CMOS Output BNR# E2 Common Clock Input/ Output BSEL[2] C21 CMOS Output VSS E3 Power/Other VSS C22 Power/Other TEST1 C23 Test HITM# E4 Common Clock Input/ Output TEST3 C24 Test DPRSTP# E5 CMOS Input VSS C25 Power/Other VSS E6 Power/Other VCCA C26 Power/Other VCC E7 Power/Other VSS D1 Power/Other VSS E8 Power/Other RSVD D2 Reserved VCC E9 Power/Other RSVD D3 Reserved VCC E10 Power/Other VSS D4 Power/Other VSS E11 Power/Other 56 Input/ Output Datasheet Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 10 of 17) Pin Number Signal Buffer Type VCC E12 Power/Other VCC E13 VSS Table 20. Pin Listing by Pin Number (Sheet 11 of 17) Pin Number Signal Buffer Type VCC F18 Power/Other Power/Other VSS F19 Power/Other E14 Power/Other VCC F20 Power/Other VCC E15 Power/Other DRDY# F21 VSS E16 Power/Other Common Clock VCC E17 Power/Other VSS F22 Power/Other VCC E18 Power/Other D[4]# F23 Source Synch Input/ Output D[1]# F24 Source Synch Input/ Output VSS F25 Power/Other D[13]# F26 Source Synch VSS G1 Power/Other TRDY# G2 Common Clock Input RS[2]# G3 Common Clock Input VSS G4 Power/Other BPRI# G5 Common Clock Input HIT# G6 Common Clock Input/ Output VCCP G21 Power/Other D[3]# G22 Source Synch VSS G23 Power/Other D[9]# G24 Source Synch Input/ Output D[5]# G25 Source Synch Input/ Output VSS G26 Power/Other ADS# H1 Common Clock Input/ Output REQ[1]# H2 Source Synch Input/ Output VSS H3 Power/Other LOCK# H4 Common Clock Input/ Output DEFER# H5 Common Clock Input Pin Name Direction VSS E19 Power/Other VCC E20 Power/Other VSS E21 Power/Other D[0]# E22 Source Synch Input/ Output D[7]# E23 Source Synch Input/ Output VSS E24 Power/Other D[6]# E25 Source Synch Input/ Output D[2]# E26 Source Synch Input/ Output BR0# F1 Common Clock Input/ Output VSS F2 Power/Other RS[0]# F3 Common Clock RS[1]# F4 Common Clock VSS F5 Power/Other RSVD F6 Reserved VCC F7 Power/Other VSS F8 Power/Other VCC F9 Power/Other VCC F10 Power/Other VSS F11 Power/Other VCC F12 Power/Other VSS F13 Power/Other VCC F14 Power/Other VCC F15 Power/Other VSS F16 Power/Other VCC F17 Power/Other Datasheet Input Pin Name Input Direction Input/ Output Input/ Output Input/ Output 57 Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 12 of 17) Pin Number Signal Buffer Type VSS H6 Power/Other VSS H21 Power/Other D[12]# H22 Source Synch Pin Name Direction Input/ Output Input/ Output D[15]# H23 Source Synch VSS H24 Power/Other DINV[0]# H25 Source Synch Input/ Output Table 20. Pin Listing by Pin Number (Sheet 13 of 17) Pin Number Signal Buffer Type VSS K23 Power/Other D[8]# K24 Source Synch Input/ Output D[17]# K25 Source Synch Input/ Output VSS K26 Power/Other REQ[4]# L1 Source Synch Input/ Output A[13]# L2 Source Synch Input/ Output VSS L3 Power/Other A[5]# L4 Source Synch Input/ Output A[4]# L5 Source Synch Input/ Output VSS L6 Power/Other VSS L21 Power/Other D[22]# L22 Source Synch Input/ Output D[20]# L23 Source Synch Input/ Output VSS L24 Power/Other Pin Name Direction DSTBP[0]# H26 Source Synch Input/ Output A[9]# J1 Source Synch Input/ Output VSS J2 Power/Other REQ[3]# J3 Source Synch Input/ Output A[3]# J4 Source Synch Input/ Output VSS J5 Power/Other VCCP J6 Power/Other VCCP J21 Power/Other VSS J22 Power/Other D[11]# J23 Source Synch Input/ Output D[29]# L25 Source Synch Input/ Output D[10]# J24 Source Synch Input/ Output DSTBN[1]# L26 Source Synch Input/ Output VSS J25 Power/Other ADSTB[0]# M1 Source Synch Input/ Output DSTBN[0]# J26 Source Synch VSS M2 Power/Other VSS K1 Power/Other A[7]# M3 Source Synch REQ[2]# K2 Source Synch RSVD M4 Reserved VSS M5 Power/Other VCCP M6 Power/Other VCCP M21 Power/Other VSS M22 Power/Other D[23]# M23 Source Synch Input/ Output D[21]# M24 Source Synch Input/ Output VSS M25 Power/Other REQ[0]# K3 Source Synch VSS K4 Power/Other A[6]# K5 Source Synch VCCP K6 Power/Other VCCP K21 Power/Other D[14]# 58 K22 Source Synch Input/ Output Input/ Output Input/ Output Input/ Output Input/ Output Input/ Output Datasheet Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 14 of 17) Pin Number Signal Buffer Type Direction DSTBP[1]# M26 Source Synch Input/ Output VSS N1 Power/Other A[8]# N2 Source Synch Input/ Output A[10]# N3 Source Synch Input/ Output Pin Name VSS N4 Power/Other RSVD N5 Reserved VCCP N6 Power/Other VCCP N21 Power/Other D[16]# N22 Source Synch VSS N23 Power/Other DINV[1]# N24 Source Synch Input/ Output D[31]# N25 Source Synch Input/ Output VSS N26 Power/Other A[15]# P1 Source Synch Input/ Output Input/ Output A[12]# P2 Source Synch VSS P3 Power/Other Input/ Output A[14]# P4 Source Synch Input/ Output A[11]# P5 Source Synch Input/ Output VSS P6 Power/Other VSS P21 Power/Other D[26]# P22 Source Synch Input/ Output D[25]# P23 Source Synch Input/ Output VSS P24 Power/Other D[24]# P25 Source Synch Input/ Output D[18]# P26 Source Synch Input/ Output A[16]# R1 Source Synch Input/ Output Datasheet Table 20. Pin Listing by Pin Number (Sheet 15 of 17) Pin Number Signal Buffer Type VSS R2 Power/Other A[19]# R3 Source Synch Input/ Output A[24]# R4 Source Synch Input/ Output Pin Name Direction VSS R5 Power/Other VCCP R6 Power/Other VCCP R21 Power/Other VSS R22 Power/Other D[19]# R23 Source Synch Input/ Output D[28]# R24 Source Synch Input/ Output VSS R25 Power/Other COMP[0] R26 Power/Other VSS T1 Power/Other RSVD T2 Reserved A[26]# T3 Source Synch VSS T4 Power/Other A[25]# T5 Source Synch VCCP T6 Power/Other VCCP T21 Power/Other D[37]# T22 Source Synch VSS T23 Power/Other D[27]# T24 Source Synch Input/ Output D[30]# T25 Source Synch Input/ Output VSS T26 Power/Other A[23]# U1 Source Synch Input/ Output A[30]# U2 Source Synch Input/ Output VSS U3 Power/Other A[21]# U4 Source Synch Input/ Output Input/ Output Input/ Output Input/ Output Input/ Output 59 Package Mechanical Specifications and Pin Information Table 20. Pin Listing by Pin Number (Sheet 16 of 17) Pin Number Signal Buffer Type Direction U5 Source Synch Input/ Output VSS U6 Power/Other VSS U21 Power/Other DINV[2]# U22 Source Synch Input/ Output Input/ Output Pin Name A[18]# D[39]# U23 Source Synch VSS U24 Power/Other D[38]# U25 Source Synch Input/ Output COMP[1] U26 Power/Other Input/ Output ADSTB[1]# V1 Source Synch Input/ Output VSS V2 Power/Other RSVD V3 Reserved A[31]# V4 Source Synch VSS V5 Power/Other VCCP V6 Power/Other VCCP V21 Power/Other VSS V22 Power/Other Input/ Output D[36]# V23 Source Synch Input/ Output D[34]# V24 Source Synch Input/ Output VSS V25 Power/Other D[35]# V26 Source Synch VSS W1 Power/Other A[27]# W2 Source Synch Input/ Output A[32]# W3 Source Synch Input/ Output VSS W4 Power/Other A[28]# W5 Source Synch Input/ Output A[20]# W6 Source Synch Input/ Output VCCP W21 Power/Other 60 Table 20. Pin Listing by Pin Number (Sheet 17 of 17) Pin Number Signal Buffer Type Direction D[41]# W22 Source Synch Input/ Output VSS W23 Power/Other D[43]# W24 Source Synch Input/ Output D[44]# W25 Source Synch Input/ Output VSS W26 Power/Other COMP[3] Y1 Power/Other Input/ Output A[17]# Y2 Source Synch Input/ Output VSS Y3 Power/Other A[29]# Y4 Source Synch Input/ Output A[22]# Y5 Source Synch Input/ Output VSS Y6 Power/Other VSS Y21 Power/Other D[32]# Y22 Source Synch Input/ Output D[42]# Y23 Source Synch Input/ Output Pin Name VSS Y24 Power/Other D[40]# Y25 Source Synch Input/ Output DSTBN[2]# Y26 Source Synch Input/ Output Input/ Output Datasheet Package Mechanical Specifications and Pin Information Table 21. SFF Listing by Ball Name Signal Name Ball Number A[3]# P2 A[4]# V4 A[5]# W1 A[6]# T4 A[7]# AA1 A[8]# AB4 A[9]# T2 A[10]# AC5 A[11]# AD2 A[12]# AD4 A[13]# AA5 A[14]# AE5 A[15]# AB2 A[16]# AC1 A[17]# AN1 A[18]# AK4 A[19]# AG1 A[20]# AT4 A[21]# AK2 A[22]# AT2 A[23]# AH2 A[24]# AF4 A[25]# AJ5 A[26]# AH4 A[27]# AM4 A[28]# AP4 A[29]# AR5 A[30]# AJ1 A[31]# AL1 A[32]# AM2 A[33]# AU5 A[34]# AP2 A[35]# AR1 A20M# C7 ADS# M4 ADSTB[0]# Y4 Datasheet Signal Name Ball Number ADSTB[1]# AN5 BCLK[0] A35 BCLK[1] C35 BNR# J5 BPM[0]# AY8 BPM[1]# BA7 BPM[2]# BA5 BPM[3]# AY2 BPRI# L5 BR0# M2 BSEL[0] A37 BSEL[1] C37 BSEL[2] B38 COMP[0] AE43 COMP[1] AD44 COMP[2] AE1 COMP[3] AF2 D[0]# F40 D[1]# G43 D[2]# E43 D[3]# J43 D[4]# H40 D[5]# H44 D[6]# G39 D[7]# E41 D[8]# L41 D[9]# K44 D[10]# N41 D[11]# T40 D[12]# M40 D[13]# G41 D[14]# M44 D[15]# L43 D[16]# P44 D[17]# V40 D[18]# V44 D[19]# AB44 61 Package Mechanical Specifications and Pin Information Ball Number Signal Name Ball Number D[20]# R41 D[58]# BC35 D[21]# W41 D[59]# BC39 D[22]# N43 D[60]# BA41 D[23]# U41 D[61]# BB40 D[24]# AA41 D[62]# BA35 D[25]# AB40 D[63]# AU43 D[26]# AD40 DBR# J7 D[27]# AC41 DBSY# J1 D[28]# AA43 DEFER# N5 D[29]# Y40 DINV[0]# P40 D[30]# Y44 DINV[1]# R43 D[31]# T44 DINV[2]# AJ41 D[32]# AP44 DINV[3]# BC37 D[33]# AR43 DPRSTP# G7 D[34]# AH40 DPSLP# B8 D[35]# AF40 DPWR# C41 Signal Name 62 D[36]# AJ43 DRDY# F38 D[37]# AG41 DSTBN[0]# K40 D[38]# AF44 DSTBN[1]# U43 D[39]# AH44 DSTBN[2]# AK44 D[40]# AM44 DSTBN[3]# AY40 D[41]# AN43 DSTBP[0]# J41 D[42]# AM40 DSTBP[1]# W43 D[43]# AK40 DSTBP[2]# AL43 D[44]# AG43 DSTBP[3]# AY38 D[45]# AP40 FERR# D4 D[46]# AN41 GTLREF AW43 D[47]# AL41 HIT# H2 D[48]# AV38 HITM# F2 D[49]# AT44 IERR# B40 D[50]# AV40 IGNNE# F10 D[51]# AU41 INIT# D8 D[52]# AW41 LINT0 C9 D[53]# AR41 LINT1 C5 D[54]# BA37 LOCK# N1 D[55]# BB38 PRDY# AV10 D[56]# AY36 PREQ# AV2 D[57]# AT40 PROCHOT# D38 Datasheet Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number PSI# BD10 VCC AB18 PWRGOOD E7 VCC AB20 REQ[0]# R1 VCC AB22 REQ[1]# R5 VCC AB24 REQ[2]# U1 VCC AB26 REQ[3]# P4 VCC AB28 REQ[4]# W5 VCC AB30 RESET# G5 VCC AB32 RS[0]# K2 VCC AC33 RS[1]# H4 VCC AD16 RS[2]# K4 VCC AD18 RSVD01 V2 VCC AD20 RSVD02 Y2 VCC AD22 RSVD03 AG5 VCC AD24 RSVD04 AL5 VCC AD26 RSVD05 J9 VCC AD28 RSVD06 F4 VCC AD30 RSVD07 H8 VCC AD32 SLP# D10 VCC AE33 SMI# E5 VCC AF16 STPCLK# F8 VCC AF18 TCK AV4 VCC AF20 TDI AW7 VCC AF22 TDO AU1 VCC AF24 TEST1 E37 VCC AF26 TEST2 D40 VCC AF28 TEST3 C43 VCC AF30 TEST4 AE41 VCC AF32 TEST5 AY10 VCC AG33 TEST6 AC43 VCC AH16 THERMTRIP# B10 VCC AH18 THRMDA BB34 VCC AH20 THRMDC BD34 VCC AH22 TMS AW5 VCC AH24 TRDY# L1 VCC AH26 TRST# AV8 VCC AH28 VCC AA33 VCC AH30 VCC AB16 VCC AH32 Datasheet 63 Package Mechanical Specifications and Pin Information Ball Number Signal Name Ball Number VCC AJ33 VCC AT24 VCC AK16 VCC AT26 VCC AK18 VCC AT28 VCC AK20 VCC AT30 VCC AK22 VCC AT32 VCC AK24 VCC AT34 VCC AK26 VCC AU33 VCC AK28 VCC AV14 VCC AK30 VCC AV16 VCC AK32 VCC AV18 VCC AL33 VCC AV20 VCC AM14 VCC AV22 VCC AM16 VCC AV24 VCC AM18 VCC AV26 VCC AM20 VCC AV28 VCC AM22 VCC AV30 VCC AM24 VCC AV32 VCC AM26 VCC AY14 VCC AM28 VCC AY16 VCC AM30 VCC AY18 VCC AM32 VCC AY20 VCC AN33 VCC AY22 VCC AP14 VCC AY24 VCC AP16 VCC AY26 VCC AP18 VCC AY28 VCC AP20 VCC AY30 VCC AP22 VCC AY32 VCC AP24 VCC B16 VCC AP26 VCC B18 VCC AP28 VCC B20 VCC AP30 VCC B22 VCC AP32 VCC B24 VCC AR33 VCC B26 VCC AT14 VCC B28 VCC AT16 VCC B30 VCC AT18 VCC BB14 VCC AT20 VCC BB16 VCC AT22 VCC BB18 Signal Name 64 Datasheet Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VCC BB20 VCC H22 VCC BB22 VCC H24 VCC BB24 VCC H26 VCC BB26 VCC H28 VCC BB28 VCC H30 VCC BB30 VCC H32 VCC BB32 VCC J33 VCC BD14 VCC K16 VCC BD16 VCC K18 VCC BD18 VCC K20 VCC BD20 VCC K22 VCC BD22 VCC K24 VCC BD24 VCC K26 VCC BD26 VCC K28 VCC BD28 VCC K30 VCC BD30 VCC K32 VCC BD32 VCC L33 VCC D16 VCC M16 VCC D18 VCC M18 VCC D20 VCC M20 VCC D22 VCC M22 VCC D24 VCC M24 VCC D26 VCC M26 VCC D28 VCC M28 VCC D30 VCC M30 VCC F16 VCC M32 VCC F18 VCC N33 VCC F20 VCC P16 VCC F22 VCC P18 VCC F24 VCC P20 VCC F26 VCC P22 VCC F28 VCC P24 VCC F30 VCC P26 VCC F32 VCC P28 VCC G33 VCC P30 VCC H16 VCC P32 VCC H18 VCC R33 VCC H20 VCC T16 Datasheet 65 Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VCC T18 VCCP AB10 VCC T20 VCCP AB12 VCC T22 VCCP AB14 VCC T24 VCCP AB36 VCC T26 VCCP AB38 VCC T28 VCCP AC7 VCC T30 VCCP AC9 VCC T32 VCCP AC11 VCC U33 VCCP AC13 VCC V16 VCCP AC35 VCC V18 VCCP AC37 VCC V20 VCCP AD14 VCC V22 VCCP AE7 VCC V24 VCCP AE9 VCC V26 VCCP AE11 VCC V28 VCCP AE13 VCC V30 VCCP AE35 VCC V32 VCCP AE37 VCC W33 VCCP AF10 VCC Y16 VCCP AF12 VCC Y18 VCCP AF14 VCC Y20 VCCP AF36 VCC Y22 VCCP AF38 VCC Y24 VCCP AG7 VCC Y26 VCCP AG9 VCC Y28 VCCP AG11 VCC Y30 VCCP AG13 VCC Y32 VCCP AG35 VCCA B34 VCCP AG37 VCCA D34 VCCP AH14 VCCP A13 VCCP AJ7 VCCP A33 VCCP AJ9 VCCP AA7 VCCP AJ11 VCCP AA9 VCCP AJ13 VCCP AA11 VCCP AJ35 VCCP AA13 VCCP AJ37 VCCP AA35 VCCP AK10 VCCP AA37 VCCP AK12 66 Datasheet Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VCCP AK14 VCCP F14 VCCP AK36 VCCP F34 VCCP AK38 VCCP F36 VCCP AL7 VCCP G11 VCCP AL9 VCCP G13 VCCP AL11 VCCP G35 VCCP AL13 VCCP H12 VCCP AL35 VCCP H14 VCCP AL37 VCCP H36 VCCP AN7 VCCP J11 VCCP AN9 VCCP J13 VCCP AN11 VCCP J35 VCCP AN13 VCCP J37 VCCP AN35 VCCP K10 VCCP AN37 VCCP K12 VCCP AP10 VCCP K14 VCCP AP12 VCCP K36 VCCP AP36 VCCP K38 VCCP AP38 VCCP L7 VCCP AR7 VCCP L9 VCCP AR9 VCCP L11 VCCP AR11 VCCP L13 VCCP AR13 VCCP L35 VCCP AU11 VCCP L37 VCCP AU13 VCCP M14 VCCP B12 VCCP N7 VCCP B14 VCCP N9 VCCP B32 VCCP N11 VCCP C13 VCCP N13 VCCP C33 VCCP N35 VCCP D12 VCCP N37 VCCP D14 VCCP P10 VCCP D32 VCCP P12 VCCP E11 VCCP P14 VCCP E13 VCCP P36 VCCP E33 VCCP P38 VCCP E35 VCCP R7 VCCP F12 VCCP R9 Datasheet 67 Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VCCP R11 VSS A21 VCCP R13 VSS A23 VCCP R35 VSS A25 VCCP R37 VSS A27 VCCP T14 VSS A29 VCCP U7 VSS A31 VCCP U9 VSS A39 VCCP U11 VSS A41 VCCP U13 VSS AA3 VCCP U35 VSS AA15 VCCP U37 VSS AA17 VCCP V10 VSS AA19 VCCP V12 VSS AA21 VCCP V14 VSS AA23 VCCP V36 VSS AA25 VCCP V38 VSS AA27 VCCP W7 VSS AA29 VCCP W9 VSS AA31 VCCP W11 VSS AA39 VCCP W13 VSS AB6 VCCP W35 VSS AB8 VCCP W37 VSS AB34 VCCP Y14 VSS AB42 VCCSENSE BD12 VSS AC3 VID[0] BD8 VSS AC15 VID[1] BC7 VSS AC17 VID[2] BB10 VSS AC19 VID[3] BB8 VSS AC21 VID[4] BC5 VSS AC23 VID[5] BB4 VSS AC25 VID[6] AY4 VSS AC27 VSS A5 VSS AC29 VSS A7 VSS AC31 VSS A9 VSS AC39 VSS A11 VSS AD6 VSS A15 VSS AD8 VSS A17 VSS AD10 VSS A19 VSS AD12 68 Datasheet Package Mechanical Specifications and Pin Information Ball Number Signal Name Ball Number Signal Name VSS AD34 VSS AJ3 VSS AD36 VSS AJ15 VSS AD38 VSS AJ17 VSS AD42 VSS AJ19 VSS AE3 VSS AJ21 VSS AE15 VSS AJ23 VSS AE17 VSS AJ25 VSS AE19 VSS AJ27 VSS AE21 VSS AJ29 VSS AE23 VSS AJ31 VSS AE25 VSS AJ39 VSS AE27 VSS AK6 VSS AE29 VSS AK8 VSS AE31 VSS AK34 VSS AE39 VSS AK42 VSS AF6 VSS AL3 VSS AF8 VSS AL15 VSS AF34 VSS AL17 VSS AF42 VSS AL19 VSS AG3 VSS AL21 VSS AG15 VSS AL23 VSS AG17 VSS AL25 VSS AG19 VSS AL27 VSS AG21 VSS AL29 VSS AG23 VSS AL31 VSS AG25 VSS AL39 VSS AG27 VSS AM6 VSS AG29 VSS AM8 VSS AG31 VSS AM10 VSS AG39 VSS AM12 VSS AH6 VSS AM34 VSS AH8 VSS AM36 VSS AH10 VSS AM38 VSS AH12 VSS AM42 VSS AH34 VSS AN3 VSS AH36 VSS AN15 VSS AH38 VSS AN17 VSS AH42 VSS AN19 Datasheet 69 Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VSS AN21 VSS AU23 VSS AN23 VSS AU25 VSS AN25 VSS AU27 VSS AN27 VSS AU29 VSS AN29 VSS AU31 VSS AN31 VSS AU35 VSS AN39 VSS AU37 VSS AP6 VSS AU39 VSS AP8 VSS AV6 VSS AP34 VSS AV12 VSS AP42 VSS AV34 VSS AR3 VSS AV36 VSS AR15 VSS AV42 VSS AR17 VSS AV44 VSS AR19 VSS AW1 VSS AR21 VSS AW3 VSS AR23 VSS AW9 VSS AR25 VSS AW11 VSS AR27 VSS AW13 VSS AR29 VSS AW15 VSS AR31 VSS AW17 VSS AR35 VSS AW19 VSS AR37 VSS AW21 VSS AR39 VSS AW23 VSS AT6 VSS AW25 VSS AT8 VSS AW27 VSS AT10 VSS AW29 VSS AT12 VSS AW31 VSS AT36 VSS AW33 VSS AT38 VSS AW35 VSS AT42 VSS AW37 VSS AU3 VSS AW39 VSS AU7 VSS AY6 VSS AU9 VSS AY12 VSS AU15 VSS AY34 VSS AU17 VSS AY42 VSS AU19 VSS AY44 VSS AU21 VSS B4 70 Datasheet Package Mechanical Specifications and Pin Information Ball Number Signal Name Ball Number VSS B6 VSS BC41 VSS B36 VSS BD4 VSS B42 VSS BD6 VSS BA1 VSS BD36 VSS BA3 VSS BD38 VSS BA9 VSS BD40 VSS BA11 VSS C3 VSS BA13 VSS C11 VSS BA15 VSS C15 VSS BA17 VSS C17 VSS BA19 VSS C19 VSS BA21 VSS C21 VSS BA23 VSS C23 VSS BA25 VSS C25 VSS BA27 VSS C27 VSS BA29 VSS C29 VSS BA31 VSS C31 VSS BA33 VSS C39 VSS BA39 VSS D2 VSS BA43 VSS D6 VSS BB2 VSS D36 VSS BB6 VSS D42 VSS BB12 VSS D44 VSS BB36 VSS E1 VSS BB42 VSS E3 VSS BC3 VSS E9 VSS BC9 VSS E15 VSS BC11 VSS E17 VSS BC15 VSS E19 VSS BC17 VSS E21 VSS BC19 VSS E23 VSS BC21 VSS E25 VSS BC23 VSS E27 VSS BC25 VSS E29 VSS BC27 VSS E31 VSS BC29 VSS E39 VSS BC31 VSS F6 VSS BC33 VSS F42 Signal Name Datasheet 71 Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VSS F44 VSS L21 VSS G1 VSS L23 VSS G3 VSS L25 VSS G9 VSS L27 VSS G15 VSS L29 VSS G17 VSS L31 VSS G19 VSS L39 VSS G21 VSS M6 VSS G23 VSS M8 VSS G25 VSS M10 VSS G27 VSS M12 VSS G29 VSS M34 VSS G31 VSS M36 VSS G37 VSS M38 VSS H6 VSS M42 VSS H10 VSS N3 VSS H34 VSS N15 VSS H38 VSS N17 VSS H42 VSS N19 VSS J3 VSS N21 VSS J15 VSS N23 VSS J17 VSS N25 VSS J19 VSS N27 VSS J21 VSS N29 VSS J23 VSS N31 VSS J25 VSS N39 VSS J27 VSS P6 VSS J29 VSS P8 VSS J31 VSS P34 VSS J39 VSS P42 VSS K6 VSS R3 VSS K8 VSS R15 VSS K34 VSS R17 VSS K42 VSS R19 VSS L3 VSS R21 VSS L15 VSS R23 VSS L17 VSS R25 VSS L19 VSS R27 72 Datasheet Package Mechanical Specifications and Pin Information Signal Name Ball Number Signal Name Ball Number VSS R29 VSS Y6 VSS R31 VSS Y8 VSS R39 VSS Y10 VSS T6 VSS Y12 VSS T8 VSS Y34 VSS T10 VSS Y36 VSS T12 VSS Y38 VSS T34 VSS Y42 VSS T36 VSSSENSE BC13 VSS T38 VSS T42 VSS U3 VSS U5 VSS U15 VSS U17 VSS U19 VSS U21 VSS U23 VSS U25 VSS U27 VSS U29 VSS U31 VSS U39 VSS V6 VSS V8 VSS V34 VSS V42 VSS W3 VSS W15 VSS W17 VSS W19 VSS W21 VSS W23 VSS W25 VSS W27 VSS W29 VSS W31 VSS W39 Datasheet 73 Package Mechanical Specifications and Pin Information 74 Datasheet Package Mechanical Specifications and Pin Information 4.3 Alphabetical Signals Reference Table 22. Signal Description (Sheet 1 of 7) Name A[35:3]# A20M# Type Description Input/ Output A[35:3]# (Address) define a 236-byte physical memory address space. In subphase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the processor FSB. A[35:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted. Input If A20M# (Address-20 Mask) is asserted, the processor masks physical address bit 20 (A20#) before looking up a line in any internal cache and before driving a read/ write transaction on the bus. Asserting A20M# emulates the 8086 processor's address wrap-around at the 1-Mbyte boundary. Assertion of A20M# is only supported in real mode. A20M# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. ADS# Input/ Output ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[35:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction. Address strobes are used to latch A[35:3]# and REQ[4:0]# on their rising and falling edges. Strobes are associated with signals as shown below. ADSTB[1:0]# BCLK[1:0] BNR# BPM[2:1]# BPM[3,0]# Input/ Output Input Input/ Output Output Input/ Output Signals Associated Strobe REQ[4:0]#, A[16:3]# ADSTB[0]# A[35:17]# ADSTB[1]# The differential pair BCLK (Bus Clock) determines the FSB frequency. All FSB agents must receive these signals to drive their outputs and latch their inputs. All external timing parameters are specified with respect to the rising edge of BCLK0 crossing VCROSS. BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions. BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all processor FSB agents.This includes debug or performance monitoring tools. BPRI# Input BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by deasserting BPRI#. BR0# Input/ Output BR0# is used by the processor to request the bus. The arbitration is done between processor (Symmetric Agent) and (G)MCH (High Priority Agent). Datasheet 75 Package Mechanical Specifications and Pin Information Table 22. Name Signal Description (Sheet 2 of 7) Type Description BSEL[2:0] Output BSEL[2:0] (Bus Select) are used to select the processor input clock frequency. Table 3 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. COMP[3:0] Analog COMP[3:0] must be terminated on the system board using precision (1% tolerance) resistors. D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer. D[63:0]# are quad-pumped signals and are driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals corresponds to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#. Quad-Pumped Signal Groups D[63:0]# Input/ Output Data Group DSTBN#/ DSTBP# DINV# D[15:0]# 0 0 D[31:16]# 1 1 D[47:32]# 2 2 D[63:48]# 3 3 Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high. DBR# Output DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no-connect in the system. DBR# is not a processor signal. DBSY# Input/ Output DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents. DEFER# 76 Input DEFER# is asserted by an agent to indicate that a transaction cannot be guaranteed in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or Input/Output agent. This signal must connect the appropriate pins of both FSB agents. Datasheet Package Mechanical Specifications and Pin Information Table 22. Name Signal Description (Sheet 3 of 7) Type Description DINV[3:0]# (Data Bus Inversion) are source synchronous and indicate the polarity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the data on the data bus is inverted. The bus agent inverts the data bus signals if more than half the bits, within the covered group, would change level in the next cycle. DINV[3:0]# Assignment To Data Bus DINV[3:0]# Input/ Output Bus Signal Data Bus Signals DINV[3]# D[63:48]# DINV[2]# D[47:32]# DINV[1]# D[31:16]# DINV[0]# D[15:0]# DPRSTP# Input DPRSTP# when asserted on the platform causes the processor to transition from the Deep Sleep State to the Deeper Sleep state. In order to return to the Deep Sleep State, DPRSTP# must be deasserted. DPRSTP# is driven by the Intel 82801HBM ICH8M I/O Controller Hub-based chipset. DPSLP# Input DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep State, DPSLP# must be deasserted. DPSLP# is driven by the Intel 82801HBM ICH8M chipset. DPWR# Input/ Output DPWR# is a control signal used by the chipset to reduce power on the processor data bus input buffers. The processor drives this pin during dynamic FSB frequency switching. DRDY# Input/ Output DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents. Data strobe used to latch in D[63:0]#. DSTBN[3:0]# Input/ Output Signals Associated Strobe D[15:0]#, DINV[0]# DSTBN[0]# D[31:16]#, DINV[1]# DSTBN[1]# D[47:32]#, DINV[2]# DSTBN[2]# D[63:48]#, DINV[3]# DSTBN[3]# Data strobe used to latch in D[63:0]#. DSTBP[3:0]# Datasheet Input/ Output Signals Associated Strobe D[15:0]#, DINV[0]# DSTBP[0]# D[31:16]#, DINV[1]# DSTBP[1]# D[47:32]#, DINV[2]# DSTBP[2]# D[63:48]#, DINV[3]# DSTBP[3]# 77 Package Mechanical Specifications and Pin Information Table 22. Name FERR#/PBE# Signal Description (Sheet 4 of 7) Type Output Description FERR# (Floating-point Error)/PBE#(Pending Break Event) is a multiplexed signal and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/ PBE# indicates a floating point when the processor detects an unmasked floatingpoint error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it remains asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active also causes an FERR# break event. For additional information on the pending break event functionality, including identification of support of the feature and enable/disable information, refer to Volumes 3A and 3B of the Intel® 64 and IA-32 Architectures Software Developer’s Manual and the Intel® Processor Identification and CPUID Instruction application note. GTLREF Input HIT# Input/ Output HITM# Input/ Output IERR# IGNNE# Output Input GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should be set at 2/3 VCCP. GTLREF is used by the AGTL+ receivers to determine if a signal is a logical 0 or logical 1. HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and HITM# together. IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor keeps IERR# asserted until the assertion of RESET#, BINIT#, or INIT#. IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set. IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# Input INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents. If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST) 78 Datasheet Package Mechanical Specifications and Pin Information Table 22. Name LINT[1:0] Signal Description (Sheet 5 of 7) Type Description Input LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Intel® Pentium® processor. Both signals are asynchronous. Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is the default configuration. LOCK# Input/ Output PRDY# Output PREQ# Input PROCHOT# Input/ Output LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction. When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it waits until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock. Probe Ready signal used by debug tools to determine processor debug readiness. Probe Request signal used by debug tools to request debug operation of the processor. As an output, PROCHOT# (Processor Hot) goes active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system activates the TCC, if enabled. The TCC remains active until the system deasserts PROCHOT#. By default PROCHOT# is configured as an output. The processor must be enabled via the BIOS for PROCHOT# to be configured as bidirectional. This signal may require voltage translation on the motherboard. PSI# PWRGOOD Output Input Processor Power Status Indicator signal. This signal is asserted when the processor is in both in the Normal state (HFM to LFM) and in lower power states (Deep Sleep and Deeper Sleep). PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. ‘Clean’ implies that the signal remains low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation. REQ[4:0]# Datasheet Input/ Output REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#. 79 Package Mechanical Specifications and Pin Information Table 22. Name Signal Description (Sheet 6 of 7) Type Description RESET# Input Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after VCC and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents deasserts their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted. There is a 55-Ω (nominal) on die pull-up resistor on this signal. RS[2:0]# Input RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents. RSVD SLP# SMI# Reserved /No Connect These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. Input SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state does not recognize snoops or interrupts. The processor recognizes only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor exits the Sleep state and transition to the Deep Sleep state. Input SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enters System Management Mode (SMM). An SMI Acknowledge transaction is issued and the processor begins program execution from the SMM handler. If an SMI# is asserted during the deassertion of RESET#, then the processor tristates its outputs. STPCLK# Input STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input. TCK Input TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port). TDI Input TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support. TDO Output TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support. Input TEST1 and TEST2 must have a stuffing option of separate pulldown resistors to VSS. For the purpose of testability, route the TEST3 and TEST5 signals through a ground-referenced Zo=55 Ω trace that ends in a via that is near a GND via and is accessible through an oscilloscope connection. THRMDA Other Thermal Diode Anode. THRMDC Other Thermal Diode Cathode. TEST1, TEST2, TEST3, TEST4, TEST5, TEST6 80 Datasheet Package Mechanical Specifications and Pin Information Table 22. Name Signal Description (Sheet 7 of 7) Type Description Output The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor stops all execution when the junction temperature exceeds approximately 125 °C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin. TMS Input TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. TRDY# Input TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents. TRST# Input TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. VCC Input Processor core power supply. VSS Input Processor core ground node. VCCA Input VCCA provides isolated power for the internal processor core PLL’s. VCCP Input Processor I/O Power Supply. THERMTRIP# Output VCC_SENSE together with VSS_SENSE are voltage feedback signals to Intel® MVP-6 that control the 2.1-mΩ loadline at the processor die. It should be used to sense voltage near the silicon with little noise. VID[6:0] Output VID[6:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (VCC). Unlike some previous generations of processors, these are CMOS signals that are driven by the processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 2 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself. VSS_SENSE Output VSS_SENSE together with VCC_SENSE are voltage feedback signals to Intel MVP-6 that control the 2.1-mΩ loadline at the processor die. It should be used to sense ground near the silicon with little noise. VCC_SENSE § Datasheet 81 Package Mechanical Specifications and Pin Information 82 Datasheet Thermal Specifications and Design Considerations 5 Thermal Specifications and Design Considerations Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. The system/processor thermal solution should be designed so that the processor remains within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 24 through Table 26. Caution: Operating the processor outside these limits may result in permanent damage to the processor and potentially other components in the system. Table 23. Power Specifications for the 3x00 Celeron Processors Symbol Processor Number Core Frequency & Voltage Thermal Design Power Unit Notes TDP T1600 1.66 GHz 35 W 1, 4, 5, 6, 9 TDP T1700 1.83 GHz 35 W 1, 4, 5, 6, 9 Symbol Max Unit Auto Halt, Stop Grant Power at HFM VCC 13.9 W PSLP Sleep Power at VCC 13.1 W 2, 5, 7 PDSLP Deep Sleep Power at VCC 5.5 W 2, 5, 8 TJ Junction Temperature 105 °C 3, 4 PAH, PSGNT Table 24. Symbol Parameter Min Typ 0 2, 5, 7 Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage Processor Number Core Frequency & Voltage Thermal Design Power Unit Notes TDP T1600 1.66 GHz 35 W 1, 4, 5, 6, 9 TDP T1700 1.83 GHz 35 W 1, 4, 5, 6, 9 Symbol Max Unit Auto Halt, Stop Grant Power at HFM VCC 13.5 W 2, 5, 7 PSLP Sleep Power at VCC 12.9 W 2, 5, 7 PDSLP Deep Sleep Power at VCC 7.7 W 2, 5, 8 TJ Junction Temperature 100 °C 3, 4 PAH, PSGNT Parameter Min 0 Typ NOTES: 1. The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate. 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated. Datasheet 83 Thermal Specifications and Design Considerations 3. 4. 5. 6. 7. 8. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for details. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications. At Tj of 100 oC At Tj of 50 oC At Tj of 35 oC 512-KB L2 cache Table 25. Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron (SFF) Genuine Intel Processor Thermal Design Power Unit Notes 10 W 1, 4, 5 Max Unit Notes Auto Halt, Stop Grant Power 2.9 W 2, 6 PSLP Sleep Power 2.9 W 2, 6 PDSLP Deep Sleep Power 1.3 W 2,7 PDPRSLP Deeper Sleep Power 0.6 W 2, 7 TJ Junction Temperature 100 °C 3,4 Symbol TDP Processor Number SU2300 Core Frequency 1.2 GHz Symbol PAH, Parameter Min Typ PSGNT 1. 2. 3. 4. 5. 6. 5.1 0 NOTES: The TDP specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can generate. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated. As measured by the activation of the on-die Intel Thermal Monitor. The Intel Thermal Monitor’s automatic mode is used to indicate that the maximum TJ has been reached. Refer to Section 5.1 for more details. The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications. At Tj of 100 oC At Tj of 50 °C 7. At Tj of 35 oC Monitoring Die Temperature The processor incorporates three methods of monitoring die temperature: • Thermal Diode • Intel Thermal Monitor • Digital Thermal Sensor 84 Datasheet Thermal Specifications and Design Considerations 5.1.1 Thermal Diode The processor incorporates an on-die PNP transistor whose base emitter junction is used as a thermal diode, with its collector shorted to ground. The thermal diode can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but is not a reliable indication that the maximum operating temperature of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor MSR and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted. The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals does not reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time-based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the TJ temperature can change. Offset between the thermal diode-based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor’s Automatic mode activation of the thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events. This offset is different than the diode Toffset value programmed into the processor Model Specific Register (MSR). Table 26 to Table 29 provide the diode interface and specifications. The diode model parameters apply to the traditional thermal sensors that use the diode equation to determine the processor temperature. Transistor model parameters have been added to support thermal sensors that use the transistor equation method. The Transistor model may provide more accurate temperature measurements when the diode ideality factor is closer to the maximum or minimum limits. Contact your external sensor supplier for recommendations. The thermal diode is separate from the Intel Thermal Monitor’s thermal sensor and cannot be used to predict the behavior of the Intel Thermal Monitor. Table 26. Datasheet Thermal Diode Interface Signal Name Pin/Ball Number Signal Description THERMDA A24 Thermal diode anode THERMDC A25 Thermal diode cathode 85 Thermal Specifications and Design Considerations Table 27. Thermal Diode Parameters Using Diode Model Symbol IFW Parameter Min Typ Max Unit Notes 200 µA 1 Ω 2, 3, 5 Forward Bias Current 5 n Diode Ideality Factor 1.000 1.009 1.050 RT Series Resistance 2.79 4.52 6.24 2, 3, 4 NOTES: 1. Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range. 2. Characterized across a temperature range of 50-100°C. 3. Not 100% tested. Specified by design characterization. 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation: IFW = IS * (e 5. qV /nkT D –1) where IS = saturation current, q = electronic charge, VD = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin). The series resistance, RT, is provided to allow for a more accurate measurement of the junction temperature. RT, as defined, includes the lands of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation: Terror = [RT * (N-1) * IFWmin] / [nk/q * ln N] where Terror = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge. 86 Datasheet Thermal Specifications and Design Considerations Table 28. Thermal Diode Parameters Using Transistor Model Symbol Parameter Min IFW Forward Bias Current IE Emitter Current nQ Transistor Ideality 5 5 0.997 Beta RT Typ 1.001 0.3 Series Resistance 2.79 4.52 Max Unit Notes 200 μA 1,2 200 μA 1 1.005 3,4,5 0.760 3,4 6.24 Ω 3,6 NOTES: 1. Intel does not support or recommend operation of the thermal diode under reverse bias. 2. Same as IFW in Table 27. 3. Characterized across a temperature range of 50-100°C. 4. Not 100% tested. Specified by design characterization. 5. The ideality factor, nQ, represents the deviation from ideal transistor model behavior as exemplified by the equation for the collector current: IC = IS * (e 6. qV BE /n kT Q –1) where IS = saturation current, q = electronic charge, VBE = voltage across the transistor base emitter junction (same nodes as VD), k = Boltzmann Constant, and T = absolute temperature (Kelvin). The series resistance, RT, provided in the Diode Model Table (Table 27) can be used for more accurate readings as needed. When calculating a temperature based on the thermal diode measurements, a number of parameters must be either measured or assumed. Most devices measure the diode ideality and assume a series resistance and ideality trim value, although are capable of also measuring the series resistance. Calculating the temperature is then accomplished using the equations listed under Table 27. In most sensing devices, an expected value for the diode ideality is designed-in to the temperature calculation equation. If the designer of the temperature sensing device assumes a perfect diode, the ideality value (also called ntrim) is 1.000. Given that most diodes are not perfect, the designers usually select an ntrim value that more closely matches the behavior of the diodes in the processor. If the processor diode ideality deviates from that of the ntrim, each calculated temperature offsets by a fixed amount. This temperature offset can be calculated with the equation: Terror(nf) = Tmeasured * (1 - nactual/ntrim) where Terror(nf) is the offset in degrees C, Tmeasured is in Kelvin, nactual is the measured ideality of the diode, and ntrim is the diode ideality assumed by the temperature sensing device. 5.1.2 Thermal Diode Offset In order to improve the accuracy of the diode-based temperature measurements, a temperature offset value (specified as Toffset) is programmed in the processor MSR which contains thermal diode characterization data. During manufacturing each processor thermal diode is evaluated for its behavior relative to the theoretical diode. Using the equation above, the temperature error created by the difference ntrim and the actual ideality of the particular processor is calculated. Datasheet 87 Thermal Specifications and Design Considerations If the ntrim value used to calculate the Toffset differs from the ntrim value used to in a temperature sensing device, the Terror(nf) may not be accurate. If desired, the Toffset can be adjusted by calculating nactual and then recalculating the offset using the ntrim as defined in the temperature sensor manufacturer’s datasheet. The ntrim used to calculate the Diode Correction Toffset are listed in Table 29. Table 29. 5.1.3 Thermal Diode ntrim and Diode Correction Toffset Symbol Parameter Value ntrim Diode Ideality used to calculate Toffset 1.01 Intel® Thermal Monitor The Intel Thermal Monitor helps control the processor temperature by activating the TCC (Thermal Control Circuit) when the processor silicon reaches its maximum operating temperature. The temperature at which the Intel Thermal Monitor activates the TCC is not user configurable. Bus traffic is snooped in the normal manner and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active. With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be minor and hence not detectable. An underdesigned thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously. The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: automatic mode and on-demand mode. If both modes are activated, automatic mode takes precedence. There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These modes are selected by writing values to the MSRs of the processor. After automatic mode is enabled, the TCC activates only when the internal die temperature reaches the maximum allowed value for operation. When Intel Thermal Monitor 1 is enabled and a high temperature situation exists, the clocks modulates by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and decreases linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance decreases by the same amount as the duty cycle when the TCC is active. Note: 88 Intel Thermal Monitor 1 and Intel Thermal Monitor 2 features are collectively referred to as Adaptive Thermal Monitoring features. Intel recommends Intel Thermal Monitor 1 and 2 be enabled on the processors. Datasheet Thermal Specifications and Design Considerations Intel Thermal Monitor 1 and 2 can co-exist within the processor. If both Intel Thermal Monitor 1 and 2 bits are enabled in the auto-throttle MSR, Intel Thermal Monitor 2 takes precedence over Intel Thermal Monitor 1. However, if Force Intel Thermal Monitor 1 over Intel Thermal Monitor 2 is enabled in MSRs via BIOS and Intel Thermal Monitor 2 is not sufficient to cool the processor below the maximum operating temperature, then Intel Thermal Monitor 1 also activates to help cool down the processor. The TCC may also be activated via on-demand mode. If Bit 4 of the ACPI Intel Thermal Monitor control register is written to a 1, the TCC activates immediately independent of the processor temperature. When using on-demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor control register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in on-demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-demand mode may be used at the same time automatic mode is enabled, however, if the system tries to enable the TCC via on-demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode takes precedence. An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active. Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor also includes one ACPI register, one performance counter register, three MSR, and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#. PROCHOT# is not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low power states, hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within maximum specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the low power state and the processor junction temperature drops below the thermal trip point. If Intel Thermal Monitor automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or on-demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125°C. At this point the THERMTRIP# signal will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3. In all cases, the Intel Thermal Monitor feature must be enabled for the processor to remain within specification. 5.1.4 Digital Thermal Sensor The processor also contains an on die Digital Thermal Sensor (DTS) that can be read via an MSR (no I/O interface). Each core of the processor will have a unique digital thermal sensor whose temperature is accessible via the processor MSRs. The DTS is the preferred method of reading the processor die temperature since it can be located much closer to the hottest portions of the die and can thus more accurately track the die temperature and potential activation of processor core clock modulation via the Intel Thermal Monitor. The DTS is only valid while the processor is in the normal operating state (the Normal package level low-power state). Datasheet 89 Thermal Specifications and Design Considerations Unlike traditional thermal devices, the DTS will output a temperature relative to the maximum supported operating temperature of the processor (TJ,max). It is the responsibility of software to convert the relative temperature to an absolute temperature. The temperature returned by the DTS will always be at or below TJ,max. Catastrophic temperature conditions are detectable via an Out Of Spec status bit. This bit is also part of the DTS MSR. When this bit is set, the processor is operating out of specification and immediate shutdown of the system should occur. The processor operation and code execution is not guaranteed once the activation of the Out of Spec status bit is set. The DTS-relative temperature readout corresponds to the Intel Thermal Monitor 1/Intel Thermal Monitor 2 trigger point. When the DTS indicates maximum processor core temperature has been reached, the Intel Thermal Monitor 1 or 2 hardware thermal control mechanism will activate. The DTS and Intel Thermal Monitor 1/Intel Thermal Monitor 2 temperature may not correspond to the thermal diode reading because the thermal diode is located in a separate portion of the die and thermal gradient between the individual core DTS. Additionally, the thermal gradient from DTS to thermal diode can vary substantially due to changes in processor power, mechanical and thermal attach, and software application. The system designer is required to use the DTS to guarantee proper operation of the processor within its temperature operating specifications. Changes to the temperature can be detected via two programmable thresholds located in the processor MSRs. These thresholds have the capability of generating interrupts via the core's local APIC. Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for specific register and programming details. 5.1.5 Out of Specification Detection Overheat detection is performed by monitoring the processor temperature and temperature gradient. This feature is intended for graceful shut down before the THERMTRIP# is activated. If the processor’s Intel Thermal Monitor 1 or 2 are triggered and the temperature remains high, an “Out Of Spec” status and sticky bit are latched in the status MSR register and generates thermal interrupt. 5.1.6 PROCHOT# Signal Pin An external signal, PROCHOT# (processor hot), is asserted when the processor die temperature has reached its maximum operating temperature. If Intel Thermal Monitor 1 or 2 is enabled, then the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#. Refer to the Intel® 64 and IA-32 Architectures Software Developer’s Manual for specific register and programming details. The processor implements a bi-directional PROCHOT# capability to allow system designs to protect various components from overheating situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components. Only a single PROCHOT# pin exists at a package level of the processor. When either core's thermal sensor trips, the PROCHOT# signal will be driven by the processor package. If only Intel Thermal Monitor 1 is enabled, PROCHOT# will be asserted and only the core that is above TCC temperature trip point will have its core clocks modulated. If Intel Thermal Monitor 2 is enabled, then regardless of which core(s) are above TCC temperature trip point, both cores will enter the lowest programmed Intel Thermal Monitor 2 performance state. It is important to note that Intel recommends both Intel Thermal Monitor 1 and 2 to be enabled. 90 Datasheet Thermal Specifications and Design Considerations When PROCHOT# is driven by an external agent, if only Intel Thermal Monitor 1 is enabled on both cores, then both processor cores will have their core clocks modulated. If Intel Thermal Monitor 2 is enabled on both cores, then both processor cores will enter the lowest programmed Intel Thermal Monitor 2 performance state. It should be noted that Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2, enabled via BIOS, does not have any effect on external PROCHOT#. If PROCHOT# is driven by an external agent when Intel Thermal Monitor 1, Intel Thermal Monitor 2, and Force Intel Thermal Monitor 1 on Intel Thermal Monitor 2 are all enabled, then the processor will still apply only Intel Thermal Monitor 2. PROCHOT# may be used for thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) and activating the TCC, the VR will cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its TDP. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss. § Datasheet 91 Thermal Specifications and Design Considerations 92 Datasheet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Coordination of Core-Level Low-Power States at the Package Level................................. 11 Voltage Identification Definition ................................................................................ 19 BSEL[2:0] Encoding for BCLK Frequency ..................................................................... 23 FSB Pin Groups........................................................................................................ 24 Processor Absolute Maximum Ratings ......................................................................... 25 DC Voltage and Current Specifications for the T3x00 Celeron Processors ......................... 27 DC Voltage and Current Specifications for the T1x00 Celeron Mobile Processors................ 28 Voltage and Current Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron SFF Genuine Intel Processor........................................................................... 29 FSB Differential BCLK Specifications ........................................................................... 30 AGTL+ Signal Group DC Specifications ........................................................................ 31 CMOS Signal Group DC Specifications ......................................................................... 32 Open Drain Signal Group DC Specifications.................................................................. 32 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 1 of 2).......................................................................................................... 39 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 2 of 2) .......................................................................................................................... 40 SFF Processor Top View Upper Left Side ...................................................................... 41 SFF Processor Top View Upper Right Side .................................................................... 42 SFF Processor Top View Lower Left Side ...................................................................... 43 SFF Processor Top View Lower Right Side .................................................................... 44 Pin Listing by Pin Name............................................................................................. 45 Pin Listing by Pin Number.......................................................................................... 52 SFF Listing by Ball Name........................................................................................... 61 Signal Description .................................................................................................... 75 Power Specifications for the 3x00 Celeron Processors.................................................... 83 Power Specifications for the Intel Celeron Dual-Core Processor - Standard Voltage............ 83 Power Specifications for the Ultra Low Voltage Dual-Core 1M Cache Intel Celeron (SFF) Genuine Intel Processor ............................................................................................ 84 Thermal Diode Interface ........................................................................................... 85 Thermal Diode Parameters Using Diode Model.............................................................. 86 Thermal Diode Parameters Using Transistor Model........................................................ 87 Thermal Diode ntrim and Diode Correction Toffset ........................................................ 88 Datasheet 1 2 Datasheet 1 2 3 4 5 6 7 Package-Level Low-Power States ............................................................................... 11 Core Low-Power States ............................................................................................. 12 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2) ................ 34 4-MB and Fused 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2) ................ 35 2-MB Micro-FCPGA Processor Package Drawing (Sheet 1 of 2)........................................ 36 2-MB Micro-FCPGA Processor Package Drawing (Sheet 2 of 2)........................................ 37 SFF (ULV DC) Die Micro-FCBGA Processor Package Drawing........................................... 38 Datasheet 1 2 Datasheet 1 Introduction .............................................................................................................. 7 1.1 Terminology ....................................................................................................... 8 1.2 References ......................................................................................................... 9 2 Low Power Features ................................................................................................ 11 2.1 Clock Control and Low Power States .................................................................... 11 2.1.1 Core Low-Power States ........................................................................... 12 2.1.1.1 C0 State .................................................................................. 12 2.1.1.2 C1/AutoHALT Powerdown State .................................................. 12 2.1.1.3 C1/MWAIT Powerdown State ...................................................... 13 2.1.1.4 Core C2 State........................................................................... 13 2.1.1.5 Core C3 State........................................................................... 13 2.1.1.6 Core C4 State........................................................................... 13 2.1.2 Package Low-Power States ...................................................................... 13 2.1.2.1 Normal State............................................................................ 13 2.1.2.2 Stop-Grant State ...................................................................... 13 2.1.2.3 Stop Grant Snoop State ............................................................. 14 2.1.2.4 Sleep State .............................................................................. 14 2.1.2.5 Deep Sleep State ...................................................................... 15 2.1.2.6 Deeper Sleep State ................................................................... 15 2.2 Enhanced Intel SpeedStep® Technology .............................................................. 15 2.3 Low-Power FSB Features .................................................................................... 16 2.4 Processor Power Status Indicator (PSI#) Signal..................................................... 17 3 Electrical Specifications ........................................................................................... 19 3.1 Power and Ground Pins ...................................................................................... 19 3.2 FSB Clock (BCLK[1:0]) and Processor Clocking ...................................................... 19 3.3 Voltage Identification ......................................................................................... 19 3.4 Catastrophic Thermal Protection .......................................................................... 22 3.5 Reserved and Unused Pins.................................................................................. 22 3.6 FSB Frequency Select Signals (BSEL[2:0])............................................................ 23 3.7 FSB Signal Groups............................................................................................. 23 3.8 CMOS Signals ................................................................................................... 25 3.9 Maximum Ratings.............................................................................................. 25 3.10 Processor DC Specifications ................................................................................ 26 4 Package Mechanical Specifications and Pin Information .......................................... 33 4.1 Package Mechanical Specifications ....................................................................... 33 4.2 Processor Pinout and Pin List .............................................................................. 39 4.3 Alphabetical Signals Reference ............................................................................ 75 5 Thermal Specifications and Design Considerations .................................................. 83 5.1 Monitoring Die Temperature ............................................................................... 84 5.1.1 Thermal Diode ....................................................................................... 85 5.1.2 Thermal Diode Offset .............................................................................. 87 5.1.3 Intel® Thermal Monitor........................................................................... 88 5.1.4 Digital Thermal Sensor............................................................................ 89 5.1.5 Out of Specification Detection .................................................................. 90 5.1.6 PROCHOT# Signal Pin ............................................................................. 90 Datasheet 1 2 Datasheet