APTGV100H60BTPG Boost chopper CoolMos™ + full bridge NPT & Trench + Field Stop IGBT Power module VBUS1 K Q3 G1 G3 CR1 E1 CR3 OUT1 OUT2 Q4 Q2 G5 G2 S5 E2 S CR2 G4 NTC1 CR4 E4 0/VBUS1 NTC2 Full bridge top switches : Trench + Field Stop IGBT Full bridge bottom switches : FAST NPT IGBT Q5 boost chopper : CoolMOS™ NTC1 NTC2 VBUS 2 VBUS 1 G1 G5 S5 0/VBUS 1 Features • Q2, Q4 (FAST Non Punch Through (NPT) IGBT) - Switching frequency up to 100 kHz - RBSOA & SCSOA rated - Low tail current 0/VBUS2 NTC K Application • Solar converter E3 D Q5 Fast NPT IGBT Q2, Q4: VCES = 600V ; IC = 100A @ Tc = 80°C CoolMOS™ Q5: VCES = 600V ; IC = 95A @ Tc = 25°C VBUS2 Q1 CR5 Trench & Field Stop IGBT Q1, Q3: VCES = 600V ; IC = 100A @ Tc = 80°C E1 G3 0/VBUS 2 • Q1, Q3 (Trench & Field Stop IGBT) - Low voltage drop - Switching frequency up to 20 kHz - RBSOA & SCSOA rated - Low tail current Q5 (CoolMOS™) - Ultra low RDSon - Low Miller capacitance - Ultra low gate charge - Avalanche energy rated E3 D S OUT 1 E2 E4 G2 G4 OUT2 • • • • Kelvin emitter for easy drive Very low stray inductance High level of integration Internal thermistor for temperature monitoring Optimized conduction & switching losses Direct mounting to heatsink (isolated package) Low junction to case thermal resistance Solderable terminals both for power and signal for easy PCB mounting • Low profile • Easy paralleling due to positive TC of VCEsat • RoHS Compliant These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com www.microsemi.com 1 - 15 APTGV100H60BTPG – Rev 0 • • • • September, 2007 Benefits APTGV100H60BTPG All ratings @ Tj = 25°C unless otherwise specified 1. Full bridge top switches 1.1 Top Trench + Field Stop IGBT characteristics Absolute maximum ratings Symbol VCES Parameter Collector - Emitter Breakdown Voltage IC Continuous Collector Current ICM VGE PD Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation RBSOA TC = 25°C Max ratings 600 150 100 200 ±20 340 Tj = 150°C 200A @ 550V TC = 25°C TC = 80°C TC = 25°C Reverse Bias Safe Operating Area Unit V A V W Electrical Characteristics Symbol Characteristic ICES Zero Gate Voltage Collector Current VCE(sat) Collector Emitter Saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current Test Conditions VGE = 0V, VCE = 600V Tj = 25°C VGE =15V IC = 100A Tj = 150°C VGE = VCE , IC = 1.5 mA VGE = 20V, VCE = 0V Min 5.0 Typ 1.5 1.7 5.8 Max Unit 250 1.9 µA 6.5 400 V nA Max Unit V Dynamic Characteristics Fall Time Td(on) Tr Turn-on Delay Time Rise Time Td(off) Turn-off Delay Time Tf Fall Time Eon Turn on Energy Eoff Turn off Energy RthJC Junction to Case Thermal resistance Test Conditions VGE = 0V VCE = 25V f = 1MHz Inductive Switching (25°C) VGE = ±15V VBus = 300V IC = 100A RG = 3.3Ω Inductive Switching (150°C) VGE = ±15V VBus = 300V IC = 100A RG = 3.3Ω VGE = ±15V Tj = 25°C VBus = 300V Tj = 150°C IC = 100A Tj = 25°C RG = 3.3Ω Tj = 150°C Min Typ 6100 390 190 115 45 225 pF ns 55 130 50 ns 300 70 0.4 0.875 2.5 3.5 mJ mJ 0.44 www.microsemi.com °C/W 2 - 15 September, 2007 Tf Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-on Delay Time Rise Time Turn-off Delay Time APTGV100H60BTPG – Rev 0 Symbol Cies Coes Cres Td(on) Tr Td(off) APTGV100H60BTPG 1.2 Top fast diode characteristics Symbol Characteristic VRRM IRM IF VF Min Maximum Reverse Leakage Current VR=600V DC Forward Current Reverse Recovery Time Qrr Reverse Recovery Charge Max IF = 100A VR = 400V di/dt =200A/µs Unit V Tj = 25°C Tj = 125°C 100 500 Tc = 80°C IF = 100A IF = 200A IF = 100A Diode Forward Voltage Typ 600 Maximum Peak Repetitive Reverse Voltage trr RthJC Test Conditions Tj = 125°C 100 1.6 2 1.3 Tj = 25°C 160 Tj = 125°C Tj = 25°C 220 290 Tj = 125°C 1530 Junction to Case Thermal resistance µA A 2 V ns nC 0.55 °C/W 2. Full bridge bottom switches 2.1 Bottom Fast NPT IGBT characteristics Absolute maximum ratings Symbol VCES Parameter Collector - Emitter Breakdown Voltage IC Continuous Collector Current ICM VGE PD Pulsed Collector Current Gate – Emitter Voltage Maximum Power Dissipation RBSOA Tc = 25°C Max ratings 600 110 90 315 ±20 416 Tj = 150°C 200A @ 600V Tc = 25°C Tc = 80°C Tc = 25°C Reverse Bias Safe Operating Area Unit V A V W Electrical Characteristics Zero Gate Voltage Collector Current VCE(sat) Collector Emitter saturation Voltage VGE(th) IGES Gate Threshold Voltage Gate – Emitter Leakage Current www.microsemi.com Min Typ 2.0 2.2 3 Max 250 500 2.5 Unit 5 ±150 V nA µA V September, 2007 ICES Test Conditions VGE = 0V Tj = 25°C VCE = 600V Tj = 125°C Tj = 25°C VGE =15V IC = 90A Tj = 125°C VGE = VCE, IC = 1mA VGE = 20 V, VCE = 0V 3 - 15 APTGV100H60BTPG – Rev 0 Symbol Characteristic APTGV100H60BTPG Dynamic Characteristics Symbol Cies Coes Cres Qg Qge Qgc Td(on) Tr Td(off) Tf Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total gate Charge Gate – Emitter Charge Gate – Collector Charge Turn-on Delay Time Rise Time Turn-off Delay Time Test Conditions VGE = 0V VCE = 25V f = 1MHz VGE = 15V VBus = 300V IC = 90A Inductive Switching (25°C) VGE = 15V VBus = 400V IC = 90A RG = 5 Ω Inductive Switching (125°C) VGE = 15V VBus = 400V IC = 90A RG = 5 Ω VGE = 15V Tj = 125°C VBus = 400V IC = 90A Tj = 125°C RG = 5 Ω Fall Time Td(on) Tr Turn-on Delay Time Rise Time Td(off) Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal resistance Min Typ 4300 470 400 330 290 200 26 25 150 Max Unit pF nC ns 30 26 25 ns 170 40 4.3 mJ 3.5 0.3 °C/W Max Unit 2.2 Bottom diode characteristics IRM Maximum Reverse Leakage Current DC Forward Current VF Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge Typ 600 Maximum Peak Repetitive Reverse Voltage IF RthJC Min VR=600V Tj = 25°C Tj = 125°C Tc = 80°C IF = 30A IF = 60A IF = 30A IF = 30A VR = 400V di/dt =200A/µs Junction to Case Thermal resistance V 250 500 Tj = 125°C 30 1.6 1.9 1.4 Tj = 25°C 85 Tj = 125°C Tj = 25°C 160 130 Tj = 125°C 700 A 1.8 V ns nC 1.2 www.microsemi.com µA °C/W 4 - 15 September, 2007 VRRM Test Conditions APTGV100H60BTPG – Rev 0 Symbol Characteristic APTGV100H60BTPG 3. Boost chopper switch 3.1 CoolMOS™ characteristics Absolute maximum ratings Symbol VDSS ID IDM VGS RDSon PD IAR EAR EAS Parameter Drain - Source Breakdown Voltage Tc = 25°C Tc = 80°C Continuous Drain Current Pulsed Drain current Gate - Source Voltage Drain - Source ON Resistance Maximum Power Dissipation Avalanche current (repetitive and non repetitive) Repetitive Avalanche Energy Single Pulse Avalanche Energy Tc = 25°C Max ratings 600 95 70 240 ±20 23 460 15 3 1900 Unit V A V mΩ W A mJ Electrical Characteristics Symbol Characteristic IDSS RDS(on) VGS(th) IGSS Zero Gate Voltage Drain Current Drain – Source on Resistance Gate Threshold Voltage Gate – Source Leakage Current Test Conditions VGS = 0V,VDS = 600V VGS = 0V,VDS = 600V Min Typ Tj = 25°C Tj = 125°C VGS = 10V, ID = 47.5A VGS = VDS, ID = 6mA VGS = ±20 V, VDS = 0V 2.1 20 3 Max 350 600 23 3.9 200 Unit Max Unit µA mΩ V nA Dynamic Characteristics Total gate Charge Qgs Gate – Source Charge Qgd Gate – Drain Charge Td(on) Turn-on Delay Time Tr Td(off) Rise Time Turn-off Delay Time Tf Fall Time Eon Turn-on Switching Energy Eoff Turn-off Switching Energy Eon Turn-on Switching Energy Eoff Turn-off Switching Energy RthJC Junction to Case Thermal resistance VGS = 10V VBus = 300V ID = 95A Inductive Switching (125°C) VGS = 10V VBus = 400V ID = 95A RG = 2.5Ω Inductive switching @ 25°C VGS = 10V ; VBus = 400V ID = 95A ; RG = 2.5Ω Inductive switching @ 125°C VGS = 10V ; VBus = 400V ID = 95A ; RG = 2.5Ω Min Typ 14.4 0.58 nF 300 nC 68 102 21 30 ns 100 45 1350 µJ 1040 2192 µJ 1270 0.27 www.microsemi.com °C/W 5 - 15 September, 2007 Qg Test Conditions VGS = 0V ; VDS = 25V f = 1MHz APTGV100H60BTPG – Rev 0 Symbol Characteristic Input Capacitance Ciss Crss Reverse Transfer Capacitance APTGV100H60BTPG 3.2 Chopper diode characteristics Symbol Characteristic VRRM IRM IF VF Test Conditions Maximum Reverse Leakage Current VR=600V DC Forward Current Reverse Recovery Time Qrr Reverse Recovery Charge Max IF = 100A IF = 200A IF = 100A IF = 100A VR = 400V di/dt =200A/µs Unit V Tj = 25°C Tj = 125°C 100 500 Tc = 80°C Diode Forward Voltage Typ 600 Maximum Peak Repetitive Reverse Voltage trr RthJC Min Tj = 125°C 100 1.6 2 1.3 Tj = 25°C 160 Tj = 125°C Tj = 25°C 220 290 Tj = 125°C 1530 Junction to Case Thermal resistance µA A 2 V ns nC 0.55 °C/W Max Unit kΩ K 4. Temperature sensor NTC (see application note APT0406 on www.microsemi.com for more information). Symbol Characteristic R25 Resistance @ 25°C B 25/85 T25 = 298.15 K Typ 50 3952 September, 2007 R25 1 1 T: Thermistor temperature exp B25 / 85 − RT: Thermistor value at T T25 T www.microsemi.com 6 - 15 APTGV100H60BTPG – Rev 0 RT = Min APTGV100H60BTPG 5. Package characteristics Symbol Characteristic VISOL RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz TJ Operating junction temperature range TSTG Storage Temperature Range TC Operating Case Temperature Torque Mounting torque To heatsink M6 Wt Package Weight * Tj=175°C for Trench & Field Stop IGBT Min 2500 -40 -40 -40 2.5 Typ Max Unit V 150* 125 100 4.7 250 °C N.m g 6. SP6-P Package outline (dimensions in mm) 9 places (3:1) ALL DIMENSIONS MARKED " * " ARE TOLERENCED AS : See application note 1902 - Mounting Instructions for SP6-P (12mm) Power Modules on www.microsemi.com 7. Full bridge top switches curves 7.1 Top Trench + Field Stop IGBT typical performance curves Output Characteristics (VGE=15V) 125 IC (A) TJ=150°C 100 75 50 0.5 1 1.5 VCE (V) VGE=9V 25 TJ=25°C 0 VGE=15V 100 50 0 VGE=13V 125 75 25 VGE=19V 150 TJ=125°C 150 TJ = 150°C 175 September, 2007 TJ=25°C 175 IC (A) Output Characteristics 200 0 2 2.5 3 www.microsemi.com 0 0.5 1 1.5 2 VCE (V) 2.5 3 3.5 7 - 15 APTGV100H60BTPG – Rev 0 200 APTGV100H60BTPG Energy losses vs Collector Current Transfert Characteristics 200 7 175 6 TJ=25°C 150 5 E (mJ) 125 IC (A) VCE = 300V VGE = 15V RG = 3.3Ω TJ = 150°C 100 TJ=125°C 75 Eoff 4 3 2 50 TJ=150°C TJ=25°C 0 0 5 6 7 Eon 1 25 8 9 10 11 0 12 25 50 75 Switching Energy Losses vs Gate Resistance 8 200 Eoff IF (A) E (mJ) Reverse Bias Safe Operating Area 250 VCE = 300V VGE =15V IC = 100A TJ = 150°C 6 100 125 150 175 200 IC (A) VGE (V) 4 150 100 2 VGE=15V TJ=150°C RG=3.3Ω 50 Eon 0 0 0 5 10 15 20 25 Gate Resistance (ohms) 30 0 100 200 300 400 VCE (V) 500 600 700 Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.5 0.4 0.9 0.7 0.3 0.5 0.2 0.3 0.1 0.1 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration in Seconds 7.2 Top Fast diode typical performance curves IF, Forward Current (A) Forw ard Current vs Forw ard Voltage 300 250 200 T J=125°C 150 T J=25°C 100 50 0 0.5 1.0 1.5 2.0 2.5 September, 2007 V F, Anode to Cathode Voltage (V) Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.6 0.5 0.4 0.3 0.9 0.7 0.5 0.2 0.3 0.1 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration (Seconds) www.microsemi.com 8 - 15 APTGV100H60BTPG – Rev 0 0.0 APTGV100H60BTPG 8. Full bridge bottom switches curves 8.1 Bottom fast NPT IGBT typical performance curves Output characteristics (VGE=15V) Output Characteristics (VGE=10V) 300 250µs Pulse Test < 0.5% Duty cycle 300 250 Ic, Collector Current (A) TJ=25°C 200 150 TJ=125°C 100 50 250µs Pulse Test < 0.5% Duty cycle 250 200 TJ=25°C 150 100 TJ=125°C 50 0 0 0 1 2 3 VCE, Collector to Emitter Voltage (V) 0 4 1 Transfer Characteristics 250µs Pulse Test < 0.5% Duty cycle 200 150 100 50 TJ=125°C TJ=25°C 0 1 2 3 4 5 6 7 8 9 VGE, Gate to Emitter Voltage (V) On state Voltage vs Gate to Emitter Volt. 8 TJ = 25°C 250µs Pulse Test < 0.5% Duty cycle 7 6 Ic=180A 5 4 3 Ic=90A 2 Ic=45A 1 0 6 8 10 12 14 VGE, Gate to Emitter Voltage (V) 14 VCE=300V 12 10 VCE=480V 8 6 4 2 0 0 50 100 150 200 250 Gate Charge (nC) 300 350 On state Voltage vs Junction Temperature 4 3.5 Ic=180A 3 2.5 Ic=90A 2 1.5 Ic=45A 1 250µs Pulse Test < 0.5% Duty cycle VGE = 15V 0.5 0 25 16 50 75 100 125 TJ, Junction Temperature (°C) Breakdown Voltage vs Junction Temp. DC Collector Current vs Case Temperature 120 1.20 Ic, DC Collector Current (A) Collector to Emitter Breakdown Voltage (Normalized) VCE=120V IC = 90A TJ = 25°C 16 10 VCE, Collector to Emitter Voltage (V) VCE, Collector to Emitter Voltage (V) 0 4 1.10 1.00 0.90 0.80 25 50 75 100 125 TJ, Junction Temperature (°C) September, 2007 250 3 Gate Charge 18 VGE, Gate to Emitter Voltage (V) Ic, Collector Current (A) 300 2 VCE, Collector to Emitter Voltage (V) 100 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) www.microsemi.com 9 - 15 APTGV100H60BTPG – Rev 0 Ic, Collector Current (A) 350 APTGV100H60BTPG Turn-Off Delay Time vs Collector Current VGE = 15V 30 25 Tj = 25°C VCE = 400V RG = 5Ω 20 15 25 50 75 100 125 150 td(off), Turn-Off Delay Time (ns) 250 VGE=15V, TJ=125°C 200 150 100 50 25 ICE, Collector to Emitter Current (A) Current Rise Time vs Collector Current 100 125 150 VCE = 400V, VGE = 15V, RG = 5Ω VGE=15V, TJ=125°C tf, Fall Time (ns) tr, Rise Time (ns) VCE = 400V RG = 5Ω 40 20 60 TJ = 125°C 40 20 TJ = 25°C 0 25 50 75 100 125 ICE, Collector to Emitter Current (A) 150 25 Turn-On Energy Loss vs Collector Current Eoff, Turn-off Energy Loss (mJ) 8 Eon, Turn-On Energy Loss (mJ) 75 Current Fall Time vs Collector Current 80 0 VCE = 400V RG = 5Ω 6 TJ=125°C, VGE=15V 4 TJ=25°C, VGE=15V 2 0 0 25 50 75 100 125 6 VCE = 400V VGE = 15V RG = 5Ω 5 4 TJ = 25°C 2 1 0 0 75 100 125 150 Reverse Bias Safe Operating Area 250 Eoff, 90A Eoff, 45A 4 Eon, 45A 0 20 30 40 50 Gate Resistance (Ohms) www.microsemi.com September, 2007 Eoff, 180A Eon, 90A 10 50 Eon, 180A 8 0 25 ICE, Collector to Emitter Current (A) IC, Collector Current (A) 12 150 TJ = 125°C 3 150 Switching Energy Losses vs Gate Resistance 16 VCE = 400V VGE = 15V TJ= 125°C 50 75 100 125 ICE, Collector to Emitter Current (A) Turn-Off Energy Loss vs Collector Current ICE, Collector to Emitter Current (A) Switching Energy Losses (mJ) 50 ICE, Collector to Emitter Current (A) 80 60 VGE=15V, TJ=25°C VCE = 400V RG = 5Ω 200 150 100 50 0 0 200 400 600 800 VCE, Collector to Emitter Voltage (V) 10 - 15 APTGV100H60BTPG – Rev 0 td(on), Turn-On Delay Time (ns) Turn-On Delay Time vs Collector Current 35 APTGV100H60BTPG Capacitance vs Collector to Emitter Voltage Fmax, Operating Frequency (kHz) 10000 C, Capacitance (pF) Cies 1000 Coes Cres 100 0 10 20 30 40 50 Operating Frequency vs Collector Current 200 VCE = 400V D = 50% RG = 5Ω TJ = 125°C TC = 75°C ZVS 160 120 ZCS 80 40 Hard switching 0 20 40 60 80 100 IC, Collector Current (A) VCE, Collector to Emitter Voltage (V) 120 Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.35 0.3 0.9 0.25 0.7 0.2 0.5 0.15 0.3 0.1 0.1 0.05 0.05 Single Pulse 0 0.00001 0.0001 0.001 0.01 0.1 Rectangular Pulse Duration (Seconds) 1 10 8.2 Bottom diode typical performance curves Forw ard Current vs Forw ard Voltage IF, Forward Current (A) 80 70 60 T J=125°C 50 40 30 T J=25°C 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 V F, Anode to Cathode Voltage (V) Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration 1 0.8 0.9 0.7 September, 2007 1.2 0.5 0.6 0.4 0.2 0 0.00001 0.3 0.1 0.05 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Rectangular Pulse Duration (Seconds) www.microsemi.com 11 - 15 APTGV100H60BTPG – Rev 0 Thermal Impedance (°C/W) 1.4 APTGV100H60BTPG 9. Boost chopper switch curves 9.1 CoolMOS™ typical performance curves Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.3 0.9 0.25 0.7 0.2 0.5 0.15 0.3 0.1 0.1 0.05 Single Pulse 0.05 0 0.00001 0.0001 0.001 0.01 0.1 1 10 rectangular Pulse Duration (Seconds) Transfert Characteristics Low Voltage Output Characteristics 280 720 VGS=15&10V 6.5V 560 ID, Drain Current (A) 6V 480 400 5.5V 320 240 5V 160 4.5V 80 4V 0 200 160 120 80 TJ=125°C 40 TJ=25°C 0 0 5 10 15 20 VDS, Drain to Source Voltage (V) 25 0 Normalized to VGS=10V @ 95A 1.25 1.2 VGS=10V 1.15 1.1 1 2 3 4 5 6 VGS, Gate to Source Voltage (V) 7 DC Drain Current vs Case Temperature 100 RDS(on) vs Drain Current 1.3 VGS=20V 1.05 1 0.95 ID, DC Drain Current (A) 0.9 80 60 40 20 0 0 40 80 120 160 200 240 280 ID, Drain Current (A) www.microsemi.com 25 50 75 100 125 TC, Case Temperature (°C) September, 2007 RDS(on) Drain to Source ON Resistance VDS > ID(on)xRDS(on)MAX 250µs pulse test @ < 0.5 duty cycle 240 150 12 - 15 APTGV100H60BTPG – Rev 0 ID, Drain Current (A) 640 1.1 1.0 0.9 0.8 25 50 75 100 125 150 ON resistance vs Temperature 3.0 2.0 1.5 1.0 0.5 0.0 25 TJ, Junction Temperature (°C) 1000 1.0 ID, Drain Current (A) VGS(TH), Threshold Voltage (Normalized) 50 75 100 125 150 TJ, Junction Temperature (°C) Maximum Safe Operating Area Threshold Voltage vs Temperature 1.1 0.9 0.8 0.7 limited by RDSon 100 100 µs 1 ms Single pulse TJ=150°C TC=25°C 10 0.6 10 ms 1 25 50 75 100 125 150 1 Coss Ciss 10000 1000 Crss 100 10 1000 10 20 30 40 50 VDS, Drain to Source Voltage (V) 12 ID=95A TJ=25°C 10 VDS=120V VDS=300V 8 VDS=480V 6 4 2 0 0 40 80 120 160 200 240 280 320 Gate Charge (nC) September, 2007 0 100 Gate Charge vs Gate to Source Voltage VGS, Gate to Source Voltage (V) Capacitance vs Drain to Source Voltage 1000000 100000 10 VDS, Drain to Source Voltage (V) TC, Case Temperature (°C) C, Capacitance (pF) VGS=10V ID= 95A 2.5 www.microsemi.com 13 - 15 APTGV100H60BTPG – Rev 0 BVDSS, Drain to Source Breakdown Voltage (Normalized) Breakdown Voltage vs Temperature 1.2 RDS(on), Drain to Source ON resistance (Normalized) APTGV100H60BTPG APTGV100H60BTPG Delay Times vs Current 140 Rise and Fall times vs Current 70 td(off) 100 VDS=400V RG=2.5Ω TJ=125°C L=100µH 80 60 40 VDS=400V RG=2.5Ω TJ=125°C L=100µH 60 50 tr and tf (ns) 40 30 tr 20 td(on) 20 10 0 0 0 20 40 60 80 100 120 140 160 0 20 40 ID, Drain Current (A) Switching Energy vs Gate Resistance Switching Energy (mJ) Eoff 2 1 3 Eoff Eon 2 1 0 0 20 40 60 80 100 120 140 160 ID, Drain Current (A) 0 Operating Frequency vs Drain Current 250 ZVS 200 ZCS 150 VDS=400V D=50% RG=2.5Ω TJ=125°C TC=75°C 100 hard switching 50 0 10 20 30 40 50 60 70 ID, Drain Current (A) 80 10 15 20 25 Source to Drain Diode Forward Voltage 1000 IDR, Reverse Drain Current (A) 300 5 Gate Resistance (Ohms) 90 TJ=150°C 100 TJ=25°C 10 1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 VSD, Source to Drain Voltage (V) www.microsemi.com September, 2007 Switching Energy (mJ) Eon VDS=400V ID=95A TJ=125°C L=100µH 4 0 Frequency (kHz) 80 100 120 140 160 5 VDS=400V RG=2.5Ω TJ=125°C L=100µH 3 60 ID, Drain Current (A) Switching Energy vs Current 4 tf 14 - 15 APTGV100H60BTPG – Rev 0 td(on) and td(off) (ns) 120 APTGV100H60BTPG 9.2 Chopper diode typical performance curves IF, Forward Current (A) Forw ard Current vs Forw ard Voltage 300 250 200 T J=125°C 150 T J=25°C 100 50 0 0.0 0.5 1.0 1.5 2.0 2.5 V F, Anode to Cathode Voltage (V) Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration Thermal Impedance (°C/W) 0.6 0.5 0.4 0.3 0.9 0.7 0.5 0.2 0.3 0.1 0.1 0.05 0 0.00001 Single Pulse 0.0001 0.001 0.01 0.1 1 10 Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved. www.microsemi.com 15 - 15 APTGV100H60BTPG – Rev 0 Microsemi reserves the right to change, without notice, the specifications and information contained herein September, 2007 Rectangular Pulse Duration (Seconds)