MICROSEMI APTGV100H60BTPG

APTGV100H60BTPG
Boost chopper CoolMos™ + full bridge
NPT & Trench + Field Stop IGBT
Power module
VBUS1
K
Q3
G1
G3
CR1
E1
CR3
OUT1
OUT2
Q4
Q2
G5
G2
S5
E2
S
CR2
G4
NTC1
CR4
E4
0/VBUS1
NTC2
Full bridge top switches : Trench + Field Stop IGBT
Full bridge bottom switches : FAST NPT IGBT
Q5 boost chopper : CoolMOS™
NTC1
NTC2
VBUS 2
VBUS 1
G1
G5
S5
0/VBUS 1
Features
• Q2, Q4 (FAST Non Punch Through (NPT) IGBT)
- Switching frequency up to 100 kHz
- RBSOA & SCSOA rated
- Low tail current
0/VBUS2
NTC
K
Application
• Solar converter
E3
D
Q5
Fast NPT IGBT Q2, Q4:
VCES = 600V ; IC = 100A @ Tc = 80°C
CoolMOS™ Q5:
VCES = 600V ; IC = 95A @ Tc = 25°C
VBUS2
Q1
CR5
Trench & Field Stop IGBT Q1, Q3:
VCES = 600V ; IC = 100A @ Tc = 80°C
E1
G3
0/VBUS 2
• Q1, Q3 (Trench & Field Stop IGBT)
- Low voltage drop
- Switching frequency up to 20 kHz
- RBSOA & SCSOA rated
- Low tail current
Q5 (CoolMOS™)
- Ultra low RDSon
- Low Miller capacitance
- Ultra low gate charge
- Avalanche energy rated
E3
D
S
OUT 1
E2
E4
G2
G4
OUT2
•
•
•
•
Kelvin emitter for easy drive
Very low stray inductance
High level of integration
Internal thermistor for temperature monitoring
Optimized conduction & switching losses
Direct mounting to heatsink (isolated package)
Low junction to case thermal resistance
Solderable terminals both for power and signal
for easy PCB mounting
• Low profile
• Easy paralleling due to positive TC of VCEsat
• RoHS Compliant
These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note
APT0502 on www.microsemi.com
www.microsemi.com
1 - 15
APTGV100H60BTPG – Rev 0
•
•
•
•
September, 2007
Benefits
APTGV100H60BTPG
All ratings @ Tj = 25°C unless otherwise specified
1. Full bridge top switches
1.1 Top Trench + Field Stop IGBT characteristics
Absolute maximum ratings
Symbol
VCES
Parameter
Collector - Emitter Breakdown Voltage
IC
Continuous Collector Current
ICM
VGE
PD
Pulsed Collector Current
Gate – Emitter Voltage
Maximum Power Dissipation
RBSOA
TC = 25°C
Max ratings
600
150
100
200
±20
340
Tj = 150°C
200A @ 550V
TC = 25°C
TC = 80°C
TC = 25°C
Reverse Bias Safe Operating Area
Unit
V
A
V
W
Electrical Characteristics
Symbol Characteristic
ICES
Zero Gate Voltage Collector Current
VCE(sat)
Collector Emitter Saturation Voltage
VGE(th)
IGES
Gate Threshold Voltage
Gate – Emitter Leakage Current
Test Conditions
VGE = 0V, VCE = 600V
Tj = 25°C
VGE =15V
IC = 100A
Tj = 150°C
VGE = VCE , IC = 1.5 mA
VGE = 20V, VCE = 0V
Min
5.0
Typ
1.5
1.7
5.8
Max
Unit
250
1.9
µA
6.5
400
V
nA
Max
Unit
V
Dynamic Characteristics
Fall Time
Td(on)
Tr
Turn-on Delay Time
Rise Time
Td(off)
Turn-off Delay Time
Tf
Fall Time
Eon
Turn on Energy
Eoff
Turn off Energy
RthJC
Junction to Case Thermal resistance
Test Conditions
VGE = 0V
VCE = 25V
f = 1MHz
Inductive Switching (25°C)
VGE = ±15V
VBus = 300V
IC = 100A
RG = 3.3Ω
Inductive Switching (150°C)
VGE = ±15V
VBus = 300V
IC = 100A
RG = 3.3Ω
VGE = ±15V Tj = 25°C
VBus = 300V Tj = 150°C
IC = 100A
Tj = 25°C
RG = 3.3Ω
Tj = 150°C
Min
Typ
6100
390
190
115
45
225
pF
ns
55
130
50
ns
300
70
0.4
0.875
2.5
3.5
mJ
mJ
0.44
www.microsemi.com
°C/W
2 - 15
September, 2007
Tf
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-on Delay Time
Rise Time
Turn-off Delay Time
APTGV100H60BTPG – Rev 0
Symbol
Cies
Coes
Cres
Td(on)
Tr
Td(off)
APTGV100H60BTPG
1.2 Top fast diode characteristics
Symbol Characteristic
VRRM
IRM
IF
VF
Min
Maximum Reverse Leakage Current
VR=600V
DC Forward Current
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Max
IF = 100A
VR = 400V
di/dt =200A/µs
Unit
V
Tj = 25°C
Tj = 125°C
100
500
Tc = 80°C
IF = 100A
IF = 200A
IF = 100A
Diode Forward Voltage
Typ
600
Maximum Peak Repetitive Reverse Voltage
trr
RthJC
Test Conditions
Tj = 125°C
100
1.6
2
1.3
Tj = 25°C
160
Tj = 125°C
Tj = 25°C
220
290
Tj = 125°C
1530
Junction to Case Thermal resistance
µA
A
2
V
ns
nC
0.55
°C/W
2. Full bridge bottom switches
2.1 Bottom Fast NPT IGBT characteristics
Absolute maximum ratings
Symbol
VCES
Parameter
Collector - Emitter Breakdown Voltage
IC
Continuous Collector Current
ICM
VGE
PD
Pulsed Collector Current
Gate – Emitter Voltage
Maximum Power Dissipation
RBSOA
Tc = 25°C
Max ratings
600
110
90
315
±20
416
Tj = 150°C
200A @ 600V
Tc = 25°C
Tc = 80°C
Tc = 25°C
Reverse Bias Safe Operating Area
Unit
V
A
V
W
Electrical Characteristics
Zero Gate Voltage Collector Current
VCE(sat)
Collector Emitter saturation Voltage
VGE(th)
IGES
Gate Threshold Voltage
Gate – Emitter Leakage Current
www.microsemi.com
Min
Typ
2.0
2.2
3
Max
250
500
2.5
Unit
5
±150
V
nA
µA
V
September, 2007
ICES
Test Conditions
VGE = 0V
Tj = 25°C
VCE = 600V
Tj = 125°C
Tj = 25°C
VGE =15V
IC = 90A
Tj = 125°C
VGE = VCE, IC = 1mA
VGE = 20 V, VCE = 0V
3 - 15
APTGV100H60BTPG – Rev 0
Symbol Characteristic
APTGV100H60BTPG
Dynamic Characteristics
Symbol
Cies
Coes
Cres
Qg
Qge
Qgc
Td(on)
Tr
Td(off)
Tf
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total gate Charge
Gate – Emitter Charge
Gate – Collector Charge
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Test Conditions
VGE = 0V
VCE = 25V
f = 1MHz
VGE = 15V
VBus = 300V
IC = 90A
Inductive Switching (25°C)
VGE = 15V
VBus = 400V
IC = 90A
RG = 5 Ω
Inductive Switching (125°C)
VGE = 15V
VBus = 400V
IC = 90A
RG = 5 Ω
VGE = 15V
Tj = 125°C
VBus = 400V
IC = 90A
Tj = 125°C
RG = 5 Ω
Fall Time
Td(on)
Tr
Turn-on Delay Time
Rise Time
Td(off)
Turn-off Delay Time
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
Min
Typ
4300
470
400
330
290
200
26
25
150
Max
Unit
pF
nC
ns
30
26
25
ns
170
40
4.3
mJ
3.5
0.3
°C/W
Max
Unit
2.2 Bottom diode characteristics
IRM
Maximum Reverse Leakage Current
DC Forward Current
VF
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Typ
600
Maximum Peak Repetitive Reverse Voltage
IF
RthJC
Min
VR=600V
Tj = 25°C
Tj = 125°C
Tc = 80°C
IF = 30A
IF = 60A
IF = 30A
IF = 30A
VR = 400V
di/dt =200A/µs
Junction to Case Thermal resistance
V
250
500
Tj = 125°C
30
1.6
1.9
1.4
Tj = 25°C
85
Tj = 125°C
Tj = 25°C
160
130
Tj = 125°C
700
A
1.8
V
ns
nC
1.2
www.microsemi.com
µA
°C/W
4 - 15
September, 2007
VRRM
Test Conditions
APTGV100H60BTPG – Rev 0
Symbol Characteristic
APTGV100H60BTPG
3. Boost chopper switch
3.1 CoolMOS™ characteristics
Absolute maximum ratings
Symbol
VDSS
ID
IDM
VGS
RDSon
PD
IAR
EAR
EAS
Parameter
Drain - Source Breakdown Voltage
Tc = 25°C
Tc = 80°C
Continuous Drain Current
Pulsed Drain current
Gate - Source Voltage
Drain - Source ON Resistance
Maximum Power Dissipation
Avalanche current (repetitive and non repetitive)
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
Tc = 25°C
Max ratings
600
95
70
240
±20
23
460
15
3
1900
Unit
V
A
V
mΩ
W
A
mJ
Electrical Characteristics
Symbol Characteristic
IDSS
RDS(on)
VGS(th)
IGSS
Zero Gate Voltage Drain Current
Drain – Source on Resistance
Gate Threshold Voltage
Gate – Source Leakage Current
Test Conditions
VGS = 0V,VDS = 600V
VGS = 0V,VDS = 600V
Min
Typ
Tj = 25°C
Tj = 125°C
VGS = 10V, ID = 47.5A
VGS = VDS, ID = 6mA
VGS = ±20 V, VDS = 0V
2.1
20
3
Max
350
600
23
3.9
200
Unit
Max
Unit
µA
mΩ
V
nA
Dynamic Characteristics
Total gate Charge
Qgs
Gate – Source Charge
Qgd
Gate – Drain Charge
Td(on)
Turn-on Delay Time
Tr
Td(off)
Rise Time
Turn-off Delay Time
Tf
Fall Time
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
RthJC
Junction to Case Thermal resistance
VGS = 10V
VBus = 300V
ID = 95A
Inductive Switching (125°C)
VGS = 10V
VBus = 400V
ID = 95A
RG = 2.5Ω
Inductive switching @ 25°C
VGS = 10V ; VBus = 400V
ID = 95A ; RG = 2.5Ω
Inductive switching @ 125°C
VGS = 10V ; VBus = 400V
ID = 95A ; RG = 2.5Ω
Min
Typ
14.4
0.58
nF
300
nC
68
102
21
30
ns
100
45
1350
µJ
1040
2192
µJ
1270
0.27
www.microsemi.com
°C/W
5 - 15
September, 2007
Qg
Test Conditions
VGS = 0V ; VDS = 25V
f = 1MHz
APTGV100H60BTPG – Rev 0
Symbol Characteristic
Input Capacitance
Ciss
Crss
Reverse Transfer Capacitance
APTGV100H60BTPG
3.2 Chopper diode characteristics
Symbol Characteristic
VRRM
IRM
IF
VF
Test Conditions
Maximum Reverse Leakage Current
VR=600V
DC Forward Current
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Max
IF = 100A
IF = 200A
IF = 100A
IF = 100A
VR = 400V
di/dt =200A/µs
Unit
V
Tj = 25°C
Tj = 125°C
100
500
Tc = 80°C
Diode Forward Voltage
Typ
600
Maximum Peak Repetitive Reverse Voltage
trr
RthJC
Min
Tj = 125°C
100
1.6
2
1.3
Tj = 25°C
160
Tj = 125°C
Tj = 25°C
220
290
Tj = 125°C
1530
Junction to Case Thermal resistance
µA
A
2
V
ns
nC
0.55
°C/W
Max
Unit
kΩ
K
4. Temperature sensor
NTC (see application note APT0406 on www.microsemi.com for more information).
Symbol Characteristic
R25
Resistance @ 25°C
B 25/85 T25 = 298.15 K
Typ
50
3952
September, 2007
R25

 1
1  T: Thermistor temperature
exp  B25 / 85 
−  RT: Thermistor value at T
 T25 T 

www.microsemi.com
6 - 15
APTGV100H60BTPG – Rev 0
RT =
Min
APTGV100H60BTPG
5. Package characteristics
Symbol Characteristic
VISOL RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz
TJ
Operating junction temperature range
TSTG
Storage Temperature Range
TC
Operating Case Temperature
Torque Mounting torque
To heatsink
M6
Wt
Package Weight
* Tj=175°C for Trench & Field Stop IGBT
Min
2500
-40
-40
-40
2.5
Typ
Max
Unit
V
150*
125
100
4.7
250
°C
N.m
g
6. SP6-P Package outline (dimensions in mm)
9 places (3:1)
ALL DIMENSIONS MARKED " * " ARE TOLERENCED AS :
See application note 1902 - Mounting Instructions for SP6-P (12mm) Power Modules on www.microsemi.com
7. Full bridge top switches curves
7.1 Top Trench + Field Stop IGBT typical performance curves
Output Characteristics (VGE=15V)
125
IC (A)
TJ=150°C
100
75
50
0.5
1
1.5
VCE (V)
VGE=9V
25
TJ=25°C
0
VGE=15V
100
50
0
VGE=13V
125
75
25
VGE=19V
150
TJ=125°C
150
TJ = 150°C
175
September, 2007
TJ=25°C
175
IC (A)
Output Characteristics
200
0
2
2.5
3
www.microsemi.com
0
0.5
1
1.5
2
VCE (V)
2.5
3
3.5
7 - 15
APTGV100H60BTPG – Rev 0
200
APTGV100H60BTPG
Energy losses vs Collector Current
Transfert Characteristics
200
7
175
6
TJ=25°C
150
5
E (mJ)
125
IC (A)
VCE = 300V
VGE = 15V
RG = 3.3Ω
TJ = 150°C
100
TJ=125°C
75
Eoff
4
3
2
50
TJ=150°C
TJ=25°C
0
0
5
6
7
Eon
1
25
8
9
10
11
0
12
25
50
75
Switching Energy Losses vs Gate Resistance
8
200
Eoff
IF (A)
E (mJ)
Reverse Bias Safe Operating Area
250
VCE = 300V
VGE =15V
IC = 100A
TJ = 150°C
6
100 125 150 175 200
IC (A)
VGE (V)
4
150
100
2
VGE=15V
TJ=150°C
RG=3.3Ω
50
Eon
0
0
0
5
10
15
20
25
Gate Resistance (ohms)
30
0
100
200
300 400
VCE (V)
500
600
700
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.5
0.4
0.9
0.7
0.3
0.5
0.2
0.3
0.1
0.1
Single Pulse
0.05
0
0.00001
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration in Seconds
7.2 Top Fast diode typical performance curves
IF, Forward Current (A)
Forw ard Current vs Forw ard Voltage
300
250
200
T J=125°C
150
T J=25°C
100
50
0
0.5
1.0
1.5
2.0
2.5
September, 2007
V F, Anode to Cathode Voltage (V)
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.6
0.5
0.4
0.3
0.9
0.7
0.5
0.2
0.3
0.1
0.1
0.05
0
0.00001
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
www.microsemi.com
8 - 15
APTGV100H60BTPG – Rev 0
0.0
APTGV100H60BTPG
8. Full bridge bottom switches curves
8.1 Bottom fast NPT IGBT typical performance curves
Output characteristics (VGE=15V)
Output Characteristics (VGE=10V)
300
250µs Pulse Test
< 0.5% Duty cycle
300
250
Ic, Collector Current (A)
TJ=25°C
200
150
TJ=125°C
100
50
250µs Pulse Test
< 0.5% Duty cycle
250
200
TJ=25°C
150
100
TJ=125°C
50
0
0
0
1
2
3
VCE, Collector to Emitter Voltage (V)
0
4
1
Transfer Characteristics
250µs Pulse Test
< 0.5% Duty cycle
200
150
100
50
TJ=125°C
TJ=25°C
0
1
2 3 4 5 6 7 8 9
VGE, Gate to Emitter Voltage (V)
On state Voltage vs Gate to Emitter Volt.
8
TJ = 25°C
250µs Pulse Test
< 0.5% Duty cycle
7
6
Ic=180A
5
4
3
Ic=90A
2
Ic=45A
1
0
6
8
10
12
14
VGE, Gate to Emitter Voltage (V)
14
VCE=300V
12
10
VCE=480V
8
6
4
2
0
0
50
100 150 200 250
Gate Charge (nC)
300
350
On state Voltage vs Junction Temperature
4
3.5
Ic=180A
3
2.5
Ic=90A
2
1.5
Ic=45A
1
250µs Pulse Test
< 0.5% Duty cycle
VGE = 15V
0.5
0
25
16
50
75
100
125
TJ, Junction Temperature (°C)
Breakdown Voltage vs Junction Temp.
DC Collector Current vs Case Temperature
120
1.20
Ic, DC Collector Current (A)
Collector to Emitter Breakdown
Voltage (Normalized)
VCE=120V
IC = 90A
TJ = 25°C
16
10
VCE, Collector to Emitter Voltage (V)
VCE, Collector to Emitter Voltage (V)
0
4
1.10
1.00
0.90
0.80
25
50
75
100
125
TJ, Junction Temperature (°C)
September, 2007
250
3
Gate Charge
18
VGE, Gate to Emitter Voltage (V)
Ic, Collector Current (A)
300
2
VCE, Collector to Emitter Voltage (V)
100
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
www.microsemi.com
9 - 15
APTGV100H60BTPG – Rev 0
Ic, Collector Current (A)
350
APTGV100H60BTPG
Turn-Off Delay Time vs Collector Current
VGE = 15V
30
25
Tj = 25°C
VCE = 400V
RG = 5Ω
20
15
25
50
75
100
125
150
td(off), Turn-Off Delay Time (ns)
250
VGE=15V,
TJ=125°C
200
150
100
50
25
ICE, Collector to Emitter Current (A)
Current Rise Time vs Collector Current
100
125
150
VCE = 400V, VGE = 15V, RG = 5Ω
VGE=15V,
TJ=125°C
tf, Fall Time (ns)
tr, Rise Time (ns)
VCE = 400V
RG = 5Ω
40
20
60
TJ = 125°C
40
20
TJ = 25°C
0
25
50
75
100
125
ICE, Collector to Emitter Current (A)
150
25
Turn-On Energy Loss vs Collector Current
Eoff, Turn-off Energy Loss (mJ)
8
Eon, Turn-On Energy Loss (mJ)
75
Current Fall Time vs Collector Current
80
0
VCE = 400V
RG = 5Ω
6
TJ=125°C,
VGE=15V
4
TJ=25°C,
VGE=15V
2
0
0
25
50
75
100
125
6
VCE = 400V
VGE = 15V
RG = 5Ω
5
4
TJ = 25°C
2
1
0
0
75
100
125
150
Reverse Bias Safe Operating Area
250
Eoff, 90A
Eoff, 45A
4
Eon, 45A
0
20
30
40
50
Gate Resistance (Ohms)
www.microsemi.com
September, 2007
Eoff, 180A
Eon, 90A
10
50
Eon, 180A
8
0
25
ICE, Collector to Emitter Current (A)
IC, Collector Current (A)
12
150
TJ = 125°C
3
150
Switching Energy Losses vs Gate Resistance
16
VCE = 400V
VGE = 15V
TJ= 125°C
50
75
100
125
ICE, Collector to Emitter Current (A)
Turn-Off Energy Loss vs Collector Current
ICE, Collector to Emitter Current (A)
Switching Energy Losses (mJ)
50
ICE, Collector to Emitter Current (A)
80
60
VGE=15V,
TJ=25°C
VCE = 400V
RG = 5Ω
200
150
100
50
0
0
200
400
600
800
VCE, Collector to Emitter Voltage (V)
10 - 15
APTGV100H60BTPG – Rev 0
td(on), Turn-On Delay Time (ns)
Turn-On Delay Time vs Collector Current
35
APTGV100H60BTPG
Capacitance vs Collector to Emitter Voltage
Fmax, Operating Frequency (kHz)
10000
C, Capacitance (pF)
Cies
1000
Coes
Cres
100
0
10
20
30
40
50
Operating Frequency vs Collector Current
200
VCE = 400V
D = 50%
RG = 5Ω
TJ = 125°C
TC = 75°C
ZVS
160
120
ZCS
80
40
Hard
switching
0
20
40
60
80
100
IC, Collector Current (A)
VCE, Collector to Emitter Voltage (V)
120
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.35
0.3
0.9
0.25
0.7
0.2
0.5
0.15
0.3
0.1
0.1
0.05
0.05
Single Pulse
0
0.00001
0.0001
0.001
0.01
0.1
Rectangular Pulse Duration (Seconds)
1
10
8.2 Bottom diode typical performance curves
Forw ard Current vs Forw ard Voltage
IF, Forward Current (A)
80
70
60
T J=125°C
50
40
30
T J=25°C
20
10
0
0.0
0.5
1.0
1.5
2.0
2.5
V F, Anode to Cathode Voltage (V)
Maxim um Effective Transient Therm al Im pedance, Junction to Case vs Pulse Duration
1
0.8
0.9
0.7
September, 2007
1.2
0.5
0.6
0.4
0.2
0
0.00001
0.3
0.1
0.05
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Rectangular Pulse Duration (Seconds)
www.microsemi.com
11 - 15
APTGV100H60BTPG – Rev 0
Thermal Impedance (°C/W)
1.4
APTGV100H60BTPG
9. Boost chopper switch curves
9.1 CoolMOS™ typical performance curves
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.3
0.9
0.25
0.7
0.2
0.5
0.15
0.3
0.1
0.1
0.05
Single Pulse
0.05
0
0.00001
0.0001
0.001
0.01
0.1
1
10
rectangular Pulse Duration (Seconds)
Transfert Characteristics
Low Voltage Output Characteristics
280
720
VGS=15&10V
6.5V
560
ID, Drain Current (A)
6V
480
400
5.5V
320
240
5V
160
4.5V
80
4V
0
200
160
120
80
TJ=125°C
40
TJ=25°C
0
0
5
10
15
20
VDS, Drain to Source Voltage (V)
25
0
Normalized to
VGS=10V @ 95A
1.25
1.2
VGS=10V
1.15
1.1
1
2
3
4
5
6
VGS, Gate to Source Voltage (V)
7
DC Drain Current vs Case Temperature
100
RDS(on) vs Drain Current
1.3
VGS=20V
1.05
1
0.95
ID, DC Drain Current (A)
0.9
80
60
40
20
0
0
40
80
120 160 200 240 280
ID, Drain Current (A)
www.microsemi.com
25
50
75
100
125
TC, Case Temperature (°C)
September, 2007
RDS(on) Drain to Source ON Resistance
VDS > ID(on)xRDS(on)MAX
250µs pulse test @ < 0.5 duty cycle
240
150
12 - 15
APTGV100H60BTPG – Rev 0
ID, Drain Current (A)
640
1.1
1.0
0.9
0.8
25
50
75
100
125
150
ON resistance vs Temperature
3.0
2.0
1.5
1.0
0.5
0.0
25
TJ, Junction Temperature (°C)
1000
1.0
ID, Drain Current (A)
VGS(TH), Threshold Voltage
(Normalized)
50
75
100
125
150
TJ, Junction Temperature (°C)
Maximum Safe Operating Area
Threshold Voltage vs Temperature
1.1
0.9
0.8
0.7
limited by RDSon
100
100 µs
1 ms
Single pulse
TJ=150°C
TC=25°C
10
0.6
10 ms
1
25
50
75
100
125
150
1
Coss
Ciss
10000
1000
Crss
100
10
1000
10
20
30
40
50
VDS, Drain to Source Voltage (V)
12
ID=95A
TJ=25°C
10
VDS=120V
VDS=300V
8
VDS=480V
6
4
2
0
0
40
80 120 160 200 240 280 320
Gate Charge (nC)
September, 2007
0
100
Gate Charge vs Gate to Source Voltage
VGS, Gate to Source Voltage (V)
Capacitance vs Drain to Source Voltage
1000000
100000
10
VDS, Drain to Source Voltage (V)
TC, Case Temperature (°C)
C, Capacitance (pF)
VGS=10V
ID= 95A
2.5
www.microsemi.com
13 - 15
APTGV100H60BTPG – Rev 0
BVDSS, Drain to Source Breakdown
Voltage (Normalized)
Breakdown Voltage vs Temperature
1.2
RDS(on), Drain to Source ON resistance
(Normalized)
APTGV100H60BTPG
APTGV100H60BTPG
Delay Times vs Current
140
Rise and Fall times vs Current
70
td(off)
100
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
80
60
40
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
60
50
tr and tf (ns)
40
30
tr
20
td(on)
20
10
0
0
0
20 40 60 80 100 120 140 160
0
20
40
ID, Drain Current (A)
Switching Energy vs Gate Resistance
Switching Energy (mJ)
Eoff
2
1
3
Eoff
Eon
2
1
0
0
20
40 60 80 100 120 140 160
ID, Drain Current (A)
0
Operating Frequency vs Drain Current
250
ZVS
200
ZCS
150
VDS=400V
D=50%
RG=2.5Ω
TJ=125°C
TC=75°C
100
hard
switching
50
0
10
20
30 40 50 60 70
ID, Drain Current (A)
80
10
15
20
25
Source to Drain Diode Forward Voltage
1000
IDR, Reverse Drain Current (A)
300
5
Gate Resistance (Ohms)
90
TJ=150°C
100
TJ=25°C
10
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, Source to Drain Voltage (V)
www.microsemi.com
September, 2007
Switching Energy (mJ)
Eon
VDS=400V
ID=95A
TJ=125°C
L=100µH
4
0
Frequency (kHz)
80 100 120 140 160
5
VDS=400V
RG=2.5Ω
TJ=125°C
L=100µH
3
60
ID, Drain Current (A)
Switching Energy vs Current
4
tf
14 - 15
APTGV100H60BTPG – Rev 0
td(on) and td(off) (ns)
120
APTGV100H60BTPG
9.2 Chopper diode typical performance curves
IF, Forward Current (A)
Forw ard Current vs Forw ard Voltage
300
250
200
T J=125°C
150
T J=25°C
100
50
0
0.0
0.5
1.0
1.5
2.0
2.5
V F, Anode to Cathode Voltage (V)
Maximum Effective Transient Thermal Impedance, Junction to Case vs Pulse Duration
Thermal Impedance (°C/W)
0.6
0.5
0.4
0.3
0.9
0.7
0.5
0.2
0.3
0.1
0.1
0.05
0
0.00001
Single Pulse
0.0001
0.001
0.01
0.1
1
10
Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.
www.microsemi.com
15 - 15
APTGV100H60BTPG – Rev 0
Microsemi reserves the right to change, without notice, the specifications and information contained herein
September, 2007
Rectangular Pulse Duration (Seconds)