DATA SHEET BIPOLAR ANALOG INTEGRATED CIRCUITS µPC2762TB,µPC2763TB,µPC2771TB 3 V, SUPER MINIMOLD SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER FOR MOBILE COMMUNICATIONS DESCRIPTION The µPC2762TB, µPC2763TB and µPC2771TB are silicon monolithic integrated circuits designed as amplifier for mobile communications. These ICs operate at 3 V. The medium output power is suitable for RF-TX of mobile communications system. These IC is manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process. This process uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability. FEATURES • Supply voltage : VCC = 2.7 to 3.3 V • Medium output power : µPC2762TB; PO(1 dB) = +8.0 dBm TYP. @ f = 0.9 GHz µPC2763TB; PO(1 dB) = +9.5 dBm TYP. @ f = 0.9 GHz µPC2771TB; PO(1 dB) = +11.5 dBm TYP. @ f = 0.9 GHz : µPC2762TB; GP = 13 dB TYP. @ f = 0.9 GHz • Power gain µPC2763TB; GP = 20 dB TYP. @ f = 0.9 GHz µPC2771TB; GP = 21 dB TYP. @ f = 0.9 GHz • Upper limit operating frequency : µPC2762TB; fu = 2.9 GHz TYP. @ 3dB Bandwidth µPC2763TB; fu = 2.7 GHz TYP. @ 3dB Bandwidth µPC2771TB; fu = 2.2 GHz TYP. @ 3dB Bandwidth • High-density surface mounting : 6-pin super minimold package (2.0 × 1.25 × 0.9 mm) APPLICATIONS • Buffer amplifiers for mobile telephones : µPC2762TB, µPC2763TB : µPC2771TB • PA driver for PDC800M ORDERING INFORMATION Part Number µPC2762TB-E3 Package Marking 6-pin super minimold C1Z µPC2763TB-E3 C2A µPC2771TB-E3 C2H Supplying Form Embossed tape 8 mm wide. 1, 2, 3 pins face the perforation side of the tape. Qty 3 kpcs/reel. Remark To order evaluation samples, please contact your local NEC sales office. Part number for sample order: µPC2762TB, µPB2763TB, µPC2771TB Caution Electro-static sensitive devices The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. P12710EJ3V0DS00 (3rd edition) Date Published February 2001 N CP(K) Printed in Japan The mark shows major revised points. © 1997, 2001 µPC2762TB, µPC2763TB, µPC2771TB PIN CONNECTIONS 3 2 1 (Bottom View) C1Z (Top View) Pin No. Pin Name 1 INPUT 4 4 3 2 GND 5 5 2 3 GND 6 6 1 4 OUTPUT 5 GND 6 VCC Marking is an example of µPC2762TB PRODUCT LINE-UP (TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω) Part No. µPC2762T fu (GHz) PO(1 dB) (dBm) GP (dB) ICC (mA) 2.9 +8.0 @ f = 0.9 GHz 13.0 @ f = 0.9 GHz 26.5 +7.0 @ f = 1.9 GHz 15.5 @ f = 1.9 GHz +9.5 @ f = 0.9 GHz 20.0 @ f = 0.9 GHz +6.5 @ f = 1.9 GHz 21.0 @ f = 1.9 GHz +11.5 @ f = 0.9 GHz 21.0 @ f = 0.9 GHz +9.5 @ f = 1.5 GHz 21.0 @ f = 1.5 GHz +8.0 @ f = 0.9 GHz 19.0 @ f = 0.9 GHz +7.0 @ f = 1.9 GHz 21.0 @ f = 1.9 GHz +7.0 @ f = 2.4 GHz 22.0 @ f = 2.4 GHz +9.5 @ f = 0.9 GHz 21.5 @ f = 0.9 GHz +9.0 @ f = 1.9 GHz 20.5 @ f = 1.9 GHz +8.0 @ f = 2.4 GHz 20.5 @ f = 2.4 GHz µPC2762TB µPC2763T 2.7 µPC2763TB µPC2771T 2.2 µPC2771TB µPC8181TB µPC8182TB 4.0 2.9 Package 6-pin minimold 27.0 6-pin minimold C2A 6-pin super minimold 36.0 6-pin minimold C2H 6-pin super minimold 23.0 6-pin super minimold C3E 30.0 6-pin super minimold C3F Caution The package size distinguishes between minimold and super minimold. Data Sheet P12710EJ3V0DS C1Z 6-pin super minimold Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail. 2 Marking µPC2762TB, µPC2763TB, µPC2771TB SYSTEM APPLICATION EXAMPLE Digital cellular telephone RX DEMOD. I Q ÷N PLL SW PLL I 0° Phase shifter TX 90° PA Q : µ PC2762TB, 2763TB, 2771TB applicable Caution The insertion point is different due to the specifications of conjunct devices. Data Sheet P12710EJ3V0DS 3 µPC2762TB, µPC2763TB, µPC2771TB PIN EXPLANATION Pin No. 1 Pin Name INPUT Applied Voltage (V) – Pin Voltage 1.31 1.01 0.97 2 3 5 4 6 GND OUTPUT VCC 0 Voltage as same as VCC through external inductor 2.7 to 3.3 Function and Applications Internal Equivalent Circuit Note (V) – – – Signal input pin. A internal matching circuit, configured with resistors, enables 50 Ω connection over a wide band. A multi-feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to signal source with capacitor for DC cut. Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference. Signal output pin. The inductor must be attached between VCC and output pins to supply current to the internal output transistors. 6 4 1 * 3 2 5 * µ PC2762TB does not have this capacitance. Power supply pin, which biases the internal input transistor. This pin should be externally equipped with bypass capacitor to minimize its impedance. Note Pin voltage is measured at VCC = 3.0 V. Above: µPC2762TB, Center: µPC2763TB, Below: µPC2771TB. 4 Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB ABSOLUTE MAXIMUM RATINGS Ratings Parameter Symbol µPC2762TB µPC2763TB Conditions Supply Voltage VCC TA = +25°C, pin 4 and pin 6 Total Circuit Current ICC TA = +25°C Power Dissipation PD Mounted on double copper clad 50 × 50 × 1.6 mm epoxy glass PWB, TA = +85°C Operating Ambient Temperature µPC2771TB 3.6 70 Unit V 77.7 mA 270 mW TA −40 to +85 °C Storage Temperature Tstg −55 to +150 °C Input Power Pin TA = +25°C +10 +13 dBm RECOMMENDED OPERATING RANGE Parameter Symbol MIN. TYP. MAX. Unit Remark Supply Voltage VCC 2.7 3.0 3.3 V Same voltage should be applied to pin 4 and pin 6. Operating Frequency fopt 0.8 − 1.9 GHz Data Sheet P12710EJ3V0DS Only for µPC2771TB 5 µPC2762TB, µPC2763TB, µPC2771TB ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω) µPC2762TB, µPC2763TB µPC2762TB Parameter Symbol µPC2763TB Unit Test Conditions MIN. TYP. MAX. MIN. TYP. MAX. − 26.5 35.0 − 27.0 35.0 mA Circuit Current ICC No signal Power Gain GP f = 0.9 GHz f = 1.9 GHz 11 11.5 13 15.5 16 17.5 18 18 20 21 23 24 dB Noise Figure NF f = 0.9 GHz f = 1.9 GHz − − 6.5 7.0 8.0 9.0 − − 5.5 5.5 7.0 7.5 dB 3 dB down below from gain at f = 0.1 GHz 2.7 2.9 − 2.3 2.7 − GHz Upper Limit Operating Frequency fu Isolation ISL f = 0.9 GHz f = 1.9 GHz 22 20 27 25 − − 25 24 30 29 − − dB Input Return Loss RLin f = 0.9 GHz f = 1.9 GHz 6.0 5.5 9.0 8.5 − − 8.0 8.0 11.0 11.0 − − dB Output Return Loss RLout f = 0.9 GHz f = 1.9 GHz 8.0 9.0 11.0 12.0 − − 5.0 6.0 7.0 9.0 − − dB PO (1 dB) f = 0.9 GHz f = 1.9 GHz +5.5 +4.5 +8.0 +7.0 − − +7.0 +4.0 +9.5 +6.5 − − dBm 1 dB Gain Compression Output Power µPC2771TB µPC2771TB Parameter Unit Test Conditions MIN. TYP. MAX. Circuit Current ICC No signal − 36.0 45.0 mA Power Gain GP f = 0.9 GHz f = 1.5 GHz 19 18 21 21 24 24 dB Noise Figure NF f = 0.9 GHz f = 1.5 GHz − − 6.0 6.0 7.5 7.5 dB 3 dB down below from gain at f = 0.1 GHz 1.8 2.2 − GHz Upper Limit Operating Frequency 6 Symbol fu Isolation ISL f = 0.9 GHz f = 1.5 GHz 25 25 30 30 − − dB Input Return Loss RLin f = 0.9 GHz f = 1.5 GHz 10 10 14 14 − − dB Output Return Loss RLout f = 0.9 GHz f = 1.5 GHz 6.5 5.5 9.0 8.5 − − dB 1 dB Gain Compression Output Power PO (1 dB) f = 0.9 GHz f = 1.5 GHz +9.0 +7.0 +11.5 +9.5 − − dBm Saturated Output Power PO (sat) f = 0.9 GHz f = 1.5 GHz − − +12.5 +11.0 − − dBm Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB STANDARD CHARACTERISTICS FOR REFERENCE (Unless otherwise specified, TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω) µPC2762TB, µPC2763TB Reference Parameter Saturated Output Power Adjacent Channel Power Symbol PO (sat) Padj µPC2762TB Test Conditions µPC2763TB Unit MIN. TYP. MAX. MIN. TYP. MAX. − − +9.0 +8.5 − − − − +11.0 +8.0 − − dBm ∆f = ±50 kHz ∆f = ±100 kHz − − −64 −64 − − − − −61 −62 − − dBc 2 sine wave input. Output of each tone f1 = 0.900 GHz f2 = 0.902 GHz − −16 − − −27 − dBc PO (each) = +4 dBm f1 = 1.900 GHz f2 = 1.902 GHz − −10 − − −14 − dBc f = 0.9 GHz f = 1.9 GHz f = 0.9 GHz π/4 QPSK waveNote PO = +4 dBm 3rd Order Intermodulation IM3 Distortion Note π/4 DQPSK modulated wave input, data rate 42 kbps, Filter roll off α = 0.5, PN 9 µPC2771TB Reference Parameter Adjacent Channel Power 1 Symbol Padj1 Test Conditions Unit MIN. TYP. MAX. ∆f = ±50 kHz ∆f = ±100 kHz − − −61 −72 − − dBc ∆f = ±50 kHz ∆f = ±100 kHz − − −59 −71 − − dBc 2 sine wave input. Output of each tone f1 = 0.900 GHz f2 = 0.902 GHz − −18 − dBc PO (each) = +7 dBm f1 = 1.500 GHz f2 = 1.502 GHz − −12 − dBc f = 0.9 GHz π/4 QPSK waveNote PO = +7 dBm Adjacent Channel Power 2 Padj2 f = 1.5 GHz π/4 QPSK waveNote PO = +7 dBm 3rd Order Intermodulation Distortion IM3 Note π/4 DQPSK modulated wave input, data rate 42 kbps, Filter roll off α = 0.5, PN 9 Data Sheet P12710EJ3V0DS 7 µPC2762TB, µPC2763TB, µPC2771TB TEST CIRCUIT VCC 1 000 pF C3 L 6 50 Ω C1 IN C2 4 1 50 Ω OUT 1 000 pF 1 000 pF 2, 3, 5 COMPONENTS OF TEST CIRCUIT EXAMPLE OF ACTUAL APPLICATION COMPONENTS FOR MEASURING ELECTRICAL CHARACTERISTICS Type Value C1, C2 Bias Tee 1 000 pF C3 Capacitor 1 000 pF L Bias Tee 1 000 nH Type Value Operating Frequency C1 to C3 Chip capacitor 1 000 pF 100 MHz or higher L Chip inductor 100 nH 100 MHz or higher 10 nH 2.0 GHz or higher INDUCTOR FOR THE OUTPUT PIN The internal output transistor of this IC consumes 20 mA, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select large value inductance, as listed above. The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor make output-port-impedance higher to get enough gain. In this case, large inductance and Q is suitable. For above reason, select an inductance of 100 Ω or over impedance in the operating frequency. The gain is a peak in the operating frequency band, and suppressed at lower frequencies. The recommendable inductance can be chosen from example of actual application components list as shown above. CAPACITORS FOR THE VCC, INPUT, AND OUTPUT PINS Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins. The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation. The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitance are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC. To obtain a flat gain from 100 MHz upwards, 1 000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are determined by equation, C = 1/(2πRfc). 8 Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD AMP-2 3 Top View 1 2 IN OUT C C 6 L 5 4 C 1Z → Mounting direction (Marking is an example for µ PC2762TB) VCC C COMPONENT LIST Notes 1. 30 × 30 × 0.4 mm double sided copper clad polyimide board. Value 2. Back side: GND pattern C 1 000 pF 3. Solder plated on pattern L Example: 10 nH 4. : Through holes For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATIONS OF 6-PIN SUPER MINI-MOLD SILICON MEDIUM-POWER HIGH-FREQUENCY AMPLIFIER MMIC (P13252E). Data Sheet P12710EJ3V0DS 9 µPC2762TB, µPC2763TB, µPC2771TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C) − µPC2762TB − CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CIRCUIT CURRENT vs. SUPPLY VOLTAGE 50 50 No signal VCC = 3.0 V 40 Circuit Current ICC (mA) Circuit Current ICC (mA) No signal 30 20 10 0 1 2 3 Supply Voltage VCC (V) 40 30 20 10 0 – 60 – 40 – 20 0 +20 +40 +60 +80 +100 Operating Ambient Temperature TA (°C) 4 NOISE FIGURE, POWER GAIN vs. FREQUENCY POWER GAIN vs. FREQUENCY 20 18 10 8 6 Power Gain GP (dB) Noise Figure NF (dB) 16 GP 14 VCC = 2.7 V VCC = 3.3 V VCC = 3.0 V 16 Power Gain GP (dB) 18 12 10 8 6 NF 4 4 2 2 0.1 VCC = 3.3 V VCC = 3.0 V 0.3 1.0 Frequency f (GHz) TA = – 40°C 8 0.1 3.0 VCC = 3.0 V 0.3 1.0 Frequency f (GHz) 3.0 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY 0 Input Return Loss RLin (dB) Output Return Loss RLout (dB) VCC = 3.0 V Isolation ISL (dB) TA = +25°C 12 VCC = 2.7 V 0 10 14 10 ISOLATION vs. FREQUENCY – 10 – 20 – 30 – 40 0.1 TA = +85°C 1.0 0.3 Frequency f (GHz) 3.0 VCC = 3.0 V RLin – 10 – 20 RLout – 30 – 40 0.1 Data Sheet P12710EJ3V0DS 1.0 0.3 Frequency f (GHz) 3.0 µPC2762TB, µPC2763TB, µPC2771TB − µPC2762TB − OUTPUT POWER vs. INPUT POWER +15 VCC = 3.0 V f = 0.9 GHz VCC = 3.0 V Output Power Pout (dBm) Output Power Pout (dBm) f = 0.9 GHz +10 VCC = 3.3 V +5 VCC = 2.7 V 0 –5 –10 –20 –15 OUTPUT POWER vs. INPUT POWER +15 –10 –5 Input Power Pin (dBm) 0 +10 +5 0 –5 OUTPUT POWER vs. INPUT POWER –10 –5 Input Power Pin (dBm) 0 +5 OUTPUT POWER vs. INPUT POWER f = 1.9 GHz VCC = 3.0 V VCC = 3.0 V f = 1.9 GHz Output Power Pout (dBm) +10 VCC = 3.3 V +5 VCC = 2.7 V 0 –5 –10 –20 –15 –10 –5 Input Power Pin (dBm) TA = –40°C 0 –5 VCC = 3.3 V Pin = +3 dBm +11 VCC = 3.0 V +9 VCC = 2.7 V +7 +5 +3 0.1 1.0 0.3 Frequency f (GHz) 3.0 –15 –10 –5 Input Power Pin (dBm) 0 +5 SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO (sat) (dBm) +13 TA = +85°C TA = +25°C +5 –10 –20 +5 0 +10 SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO (sat) (dBm) –15 +15 +15 Output Power Pout (dBm) TA = –40°C –10 –20 +5 TA = +85°C TA = +25°C +13 TA = +25°C TA = +85°C +11 Pin = +3 dBm VCC = 3.0 V +9 TA = –40°C +7 +5 +3 0.1 Data Sheet P12710EJ3V0DS 1.0 0.3 Frequency f (GHz) 3.0 11 µPC2762TB, µPC2763TB, µPC2771TB − µPC2762TB − –60 f1 = 0.900 GHz f2 = 0.902 GHz –50 VCC = 3.3 V –40 –30 VCC = 3.0 V VCC = 2.7 V –20 –10 0 –15 –10 –5 0 +5 +10 Output Power of Each Tone PO (each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBc) 3rd Order Intermodulation Distortion IM3 (dBc) 3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE vs. OUTPUT POWER OF EACH TONE –60 f1 = 1.900 GHz f2 = 1.902 GHz –50 VCC = 3.3 V –40 VCC = 3.0 V –30 VCC = 2.7 V –20 –10 0 –15 –10 –5 0 +5 +10 Output Power of Each Tone PO (each) (dBm) Remark The graphs indicate nominal characteristics. 12 Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V) − µPC2762TB − S11-FREQUENCY 0.1 G 2.0 G 3.0 G S22-FREQUENCY 3.0 G 0.1G 2.0 G 1.0 G Data Sheet P12710EJ3V0DS 13 µPC2762TB, µPC2763TB, µPC2771TB TYPICAL S-PARAMETER VALUES (TA = +25°°C) µPC2762TB VCC = Vout = 3.0 V, ICC = 29 mA FREQUENCY MHz MAG. ANG. MAG. ANG. MAG. ANG. MAG. ANG. 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.338 0.346 0.348 0.340 0.329 0.324 0.341 0.359 0.378 0.375 0.363 0.353 0.357 0.377 0.402 0.414 0.426 0.434 0.448 0.463 0.483 0.492 0.492 0.486 0.489 0.500 0.511 0.511 0.494 0.465 0.441 −1.3 −2.0 −1.2 −1.9 −3.1 −6.2 −8.1 −7.6 −6.5 −5.1 −5.2 −6.7 −8.8 −11.7 −12.7 −13.2 −13.6 −16.1 −19.0 −21.7 −23.9 −25.8 −29.7 −34.6 −40.4 −44.6 −48.5 −50.4 −52.9 −55.9 −60.6 4.560 4.581 4.616 4.661 4.689 4.726 4.844 4.927 5.057 5.179 5.306 5.400 5.567 5.706 5.820 5.987 6.081 6.182 6.229 6.328 6.382 6.431 6.424 6.329 6.146 5.997 5.822 5.693 5.553 5.334 5.157 −3.4 −7.6 −11.3 −15.8 −19.5 −23.6 −27.4 −31.5 −35.8 −41.0 −45.9 −51.0 −56.5 −61.7 −68.0 −73.7 −80.1 −86.7 −93.2 −99.7 −106.7 −113.8 −121.2 −128.8 −136.1 −143.1 −149.9 −157.0 −163.0 −169.5 −175.5 0.039 0.039 0.039 0.040 0.040 0.041 0.042 0.043 0.044 0.045 0.047 0.047 0.048 0.049 0.052 0.052 0.055 0.056 0.057 0.057 0.058 0.058 0.060 0.060 0.062 0.061 0.064 0.066 0.065 0.065 0.066 1.0 2.7 6.8 8.1 11.6 13.7 15.8 18.1 19.3 20.3 22.1 23.7 26.1 24.5 26.7 26.8 29.0 28.2 28.5 28.0 28.5 29.0 30.1 30.2 31.1 32.1 31.4 34.0 33.8 35.5 35.5 0.310 0.311 0.302 0.296 0.290 0.292 0.291 0.292 0.284 0.280 0.285 0.288 0.288 0.285 0.282 0.285 0.288 0.291 0.286 0.282 0.282 0.282 0.278 0.268 0.260 0.251 0.248 0.237 0.222 0.203 0.189 −5.5 −9.5 −12.3 −16.2 −20.2 −24.1 −26.2 −28.3 −30.9 −35.3 −40.0 −43.4 −45.7 −47.9 −52.8 −58.1 −62.0 −66.1 −70.4 −76.2 −81.5 −86.9 −91.7 −98.4 −104.5 −111.3 −116.7 −121.5 −128.3 −134.5 −141.1 14 S11 S21 S12 Data Sheet P12710EJ3V0DS S22 K 2.23 2.20 2.20 2.18 2.20 2.12 2.01 1.90 1.77 1.72 1.64 1.62 1.54 1.44 1.32 1.27 1.18 1.14 1.09 1.07 1.01 0.99 0.99 1.01 1.02 1.05 1.03 1.04 1.11 1.20 1.27 µPC2762TB, µPC2763TB, µPC2771TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C) − µPC2763TB − CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CIRCUIT CURRENT vs. SUPPLY VOLTAGE 50 50 No signal VCC = 3.0 V 40 Circuit Current ICC (mA) Circuit Current ICC (mA) No signal 30 20 10 0 1 2 3 Supply Voltage VCC (V) 40 30 20 10 0 +20 +40 +60 +80 +100 – 60 – 40 – 20 0 Operating Ambient Temperature TA (°C) 4 NOISE FIGURE, POWER GAIN vs. FREQUENCY 24 18 V CC ==3.0 VCC 3.0V V CC ==2.7 VCC 2.7V 16 V CC ==3.3 VCC 3.3V 12 5 10 4 8 3 Power Gain GP (dB) 20 14 6 NF 0.1 A = TA =––40°C 40 °C T A = TA =+25°C +25 °C T 20 A = TA =+25°C +25 °C 18 T 16 T A = TA =––40°C 40 °C T A = TA =+85°C +85 °C 14 12 10 8 CC ==2.7 VCC 2.7V V CC ==3.0 VCC 3.0V V 1.0 0.3 Frequency f (GHz) 6 3.0 0 0 VCC = 3.0 V – 10 – 20 – 30 – 40 0.3 1.0 Frequency f (GHz) VCC = 3.0 V 0.1 1.0 0.3 Frequency f (GHz) 3.0 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY ISOLATION vs. FREQUENCY – 50 0.1 T A = TA =+85°C +85 °C 22 GP Input Return Loss RLin (dB) Output Return Loss RLout (dB) 6 Power Gain GP (dB) 7 Isolation ISL (dB) Noise Figure NF (dB) 22 POWER GAIN vs. FREQUENCY 24 V CC ==3.3 VCC 3.3V 3.0 RLRLo out VCC = 3.0 V – 10 – 20 RLin – 30 – 40 0.1 Data Sheet P12710EJ3V0DS 1.0 0.3 Frequency f (GHz) 3.0 15 µPC2762TB, µPC2763TB, µPC2771TB − µPC2763TB − OUTPUT POWER vs. INPUT POWER +15 OUTPUT POWER vs. INPUT POWER +15 VCC = 3.3 V f = 0.9 GHz VCC = 3.0 V +10 Output Power Pout (dBm) Output Power Pout (dBm) f = 0.9 GHz VCC = 3.0 V +5 VCC = 2.7 V 0 –5 – 10 – 25 – 20 – 15 – 10 –5 Input Power Pin (dBm) +10 TA = – 40°C +5 TA = +25°C 0 TA = +85°C –5 OUTPUT POWER vs. INPUT POWER – 20 – 15 – 10 –5 Input Power Pin (dBm) 0 OUTPUT POWER vs. INPUT POWER +15 +15 f = 1.9 GHz f = 1.9 GHz VCC = 3.0 V VCC = 3.3 V VCC = 3.0 V +10 Output Power Pout (dBm) Output Power Pout (dBm) TA = – 40°C – 10 – 25 0 TA = +85°C VCC = 2.7 V +5 0 –5 TA = +85°C +10 TA = – 40°C +5 TA = +25°C TA = – 40°C 0 TA = +85°C –5 TA = +25°C – 10 – 25 – 20 – 15 – 10 –5 Input Power Pin (dBm) – 10 – 25 0 16 +15 Pin = – 3 dBm VCC = 3.3 V +13 +11 VCC = 3.0 V +9 +7 VCC = 2.7 V +5 +3 0.1 1.0 0.3 Frequency f (GHz) 3.0 – 15 – 10 –5 Input Power Pin (dBm) 0 SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO (sat) (dBm) Saturated Output Power PO (sat) (dBm) SATURATED OUTPUT POWER vs. FREQUENCY – 20 +15 TA = +85°C +13 Pin = – 3 dBm VCC = 3.0 V +11 TA = +25°C +9 TA = – 40°C +7 +5 +3 0.1 Data Sheet P12710EJ3V0DS 1.0 0.3 Frequency f (GHz) 3.0 µPC2762TB, µPC2763TB, µPC2771TB − µPC2763TB − – 60 f1 = 0.900 GHz f2 = 0.902 GHz – 50 VCC = 3.3 V VCC = 3.0 V – 40 VCC = 2.7 V – 30 – 20 – 10 0 – 15 – 10 –5 0 +5 +10 Output Power of Each Tone PO (each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBc) 3rd Order Intermodulation Distortion IM3 (dBc) 3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE vs. OUTPUT POWER OF EACH TONE – 60 f1 = 1.900 GHz f2 = 1.902 GHz – 50 VCC = 3.3 V – 40 VCC = 3.0 V – 30 VCC = 2.7 V – 20 – 10 0 – 15 – 10 –5 0 +5 +10 Output Power of Each Tone PO (each) (dBm) Remark The graphs indicate nominal characteristics. Data Sheet P12710EJ3V0DS 17 µPC2762TB, µPC2763TB, µPC2771TB S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V) − µPC2763TB − S11-FREQUENCY 0.1 G 1.0 G 3.0 G 2.0 G S22-FREQUENCY 3.0 G 0.1 G 2.0 G 1.0 G 18 Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB TYPICAL S-PARAMETER VALUES (TA = +25°°C) µPC2763TB VCC = Vout = 3.0 V, ICC = 28 mA FREQUENCY MHz MAG. S11 ANG. MAG. S21 ANG. MAG. S12 ANG. MAG. ANG. 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.231 0.242 0.250 0.245 0.242 0.241 0.263 0.291 0.316 0.322 0.318 0.309 0.322 0.344 0.371 0.380 0.388 0.378 0.378 0.375 0.369 0.351 0.331 0.306 0.300 0.294 0.290 0.270 0.248 0.219 0.198 −1.4 −0.2 2.7 2.8 2.0 −2.2 −5.3 −5.6 −5.1 −4.0 −5.4 −9.0 −14.2 −20.6 −23.7 −27.5 −30.6 −36.4 −42.1 −46.6 −50.5 −53.8 −59.8 −66.4 −73.1 −75.8 −77.1 −77.7 −78.7 −82.3 −88.7 10.210 10.305 10.464 10.655 10.863 11.093 11.544 11.843 12.291 12.676 13.066 13.311 13.661 13.845 13.824 13.890 13.634 13.236 12.724 12.290 11.707 11.130 10.524 9.824 9.152 8.583 8.029 7.610 7.240 6.827 6.516 −3.8 −8.5 −12.9 −18.2 −22.8 −28.1 −33.2 −39.0 −45.1 −52.4 −59.8 −67.3 −75.8 −83.9 −93.0 −101.5 −110.5 −119.6 −127.9 −136.1 −144.0 −151.7 −159.1 −165.9 −172.3 −178.2 176.2 170.6 166.1 161.2 156.9 0.023 0.023 0.024 0.024 0.026 0.027 0.028 0.029 0.029 0.030 0.031 0.031 0.033 0.033 0.035 0.035 0.036 0.035 0.035 0.035 0.035 0.036 0.036 0.034 0.035 0.034 0.035 0.037 0.039 0.039 0.040 2.4 7.8 9.3 13.4 16.1 19.9 22.3 22.5 23.9 25.6 24.1 27.0 28.8 28.5 30.1 28.1 29.2 29.9 30.9 32.9 33.0 35.7 36.8 38.7 40.1 43.8 46.3 47.7 51.1 53.6 55.1 0.406 0.412 0.407 0.407 0.405 0.414 0.419 0.424 0.424 0.425 0.438 0.442 0.441 0.434 0.435 0.439 0.439 0.428 0.411 0.393 0.385 0.373 0.359 0.336 0.321 0.306 0.299 0.288 0.270 0.253 0.244 −4.1 −7.5 −9.9 −13.9 −17.6 −21.6 −24.6 −27.7 −31.9 −37.1 −42.5 −47.8 −51.2 −56.0 −62.2 −68.9 −74.6 −81.3 −87.0 −93.4 −99.6 −104.9 −110.3 −117.5 −123.3 −129.4 −133.9 −138.6 −143.6 −150.1 −156.2 Data Sheet P12710EJ3V0DS S22 K 1.68 1.66 1.58 1.55 1.44 1.37 1.25 1.16 1.09 1.02 0.96 0.96 0.90 0.87 0.82 0.80 0.78 0.84 0.89 0.94 0.99 1.06 1.13 1.31 1.41 1.55 1.58 1.63 1.67 1.79 1.88 19 µPC2762TB, µPC2763TB, µPC2771TB TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C) − µPC2771TB − CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE CIRCUIT CURRENT vs. SUPPLY VOLTAGE 50 50 No signal VCC = 3.0 V No signal Circuit Current ICC (mA) Circuit Current ICC (mA) 40 30 20 10 0 1 2 3 Supply Voltage VCC (V) 40 30 20 10 0 0 – 60 – 40 – 20 +20 +40 +60 +80 +100 Operating Ambient Temperature TA (°C) 4 NOISE FIGURE, POWER GAIN vs. FREQUENCY 24 VCC = 2.7 V VCC = 3.0 V 7 6 20 VCC = 3.3 V GP VCC = 3.3 V 18 VCC = 3.0 V 16 VCC = 2.7 V 14 VCC = 3.3 V 12 5 10 4 8 3 6 0.1 NF VCC = 3.0 V 0.3 1.0 Frequency f (GHz) 3.0 18 3.0 INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY 0 – 10 – 20 – 30 0.1 0.3 1.0 Frequency f (GHz) 3.0 Input Return Loss RLin (dB) Outpur Return Loss RLout (dB) VCC = 3.0 V Isolation ISL (dB) TA = +85°C 20 VCC = 3.0 V 14 0.1 0.3 1.0 Frequency f (GHz) 0 20 TA = – 40°C 16 VCC = 2.7 V ISOLATION vs. FREQUENCY – 40 TA = +25°C 22 Power Gain GP (dB) Power Gain GP (dB) Noise Figure NF (dB) 22 POWER GAIN vs. FREQUENCY 24 VCC = 3.0 V RLout – 10 – 20 RLin – 30 – 40 Data Sheet P12710EJ3V0DS 0.1 0.3 1.0 Frequency f (GHz) 3.0 µPC2762TB, µPC2763TB, µPC2771TB − µPC2771TB − OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER +15 +15 VCC = 3.3 V Output Power Pout (dBm) Output Power Pout (dBm) +10 VCC = 2.7 V +5 VCC = 3.0 V 0 TA = +85°C f = 0.9 GHz VCC = 3.0 V f = 0.9 GHz +10 TA = – 40°C TA = +25°C +5 TA = +25°C TA = – 40°C 0 TA = +85°C –5 –5 – 25 – 20 –5 – 15 – 10 Input Power Pin (dBm) 0 – 25 OUTPUT POWER vs. INPUT POWER 0 +15 f = 1.5 GHz VCC = 3.3 V +10 Output Power Pout (dBm) Output Power Pout (dBm) – 15 – 10 –5 Input Power Pin (dBm) OUTPUT POWER vs. INPUT POWER +15 VCC = 2.7 V +5 VCC = 3.0 V 0 –5 – 10 f = 1.5 GHz VCC = 3.0 V – 20 – 15 – 10 –5 Input Power Pin (dBm) TA = +85°C TA = +25°C +10 TA = – 40°C +5 TA = +25°C 0 TA = – 40°C TA = +85°C –5 – 25 – 25 0 OUTPUT POWER vs. INPUT POWER – 20 – 15 – 10 –5 Input Power Pin (dBm) 0 OUTPUT POWER vs. INPUT POWER +15 +15 f = 1.9 GHz f = 1.9 GHz VCC = 3.0 V VCC = 3.3 V +10 Output Power Pout (dBm) Output Power Pout (dBm) – 20 VCC = 3.0 V +5 VCC = 2.7 V 0 –5 – 10 TA = +85˚C +10 TA = +25˚C +5 TA = – 40˚C 0 –5 – 10 – 25 – 20 – 15 – 10 –5 Input Power Pin (dBm) 0 – 25 Data Sheet P12710EJ3V0DS – 20 – 15 – 10 –5 Input Power Pin (dBm) 0 21 µPC2762TB, µPC2763TB, µPC2771TB − µPC2771TB − +17 Pin = –3 dBm +15 VCC = 3.3 V +13 +11 VCC = 3.0 V VCC = 2.7 V +9 +7 +5 0.1 0.3 1.0 Frequency f (GHz) SATURATED OUTPUT POWER vs. FREQUENCY Saturated Output Power PO (sat) (dBm) Saturated Output Power PO (sat) (dBm) SATURATED OUTPUT POWER vs. FREQUENCY +17 Pin = –3 dBm VCC = 3.0 V TA= +25°C +15 TA= +85°C +13 +11 TA= –40°C +9 +7 +5 3.0 0.1 0.3 1.0 Frequency f (GHz) 3.0 –60 f1 = 0.900 GHz f2 = 0.902 GHz –50 VCC = 3.3 V –40 –30 VCC = 3.0 V VCC = 2.7 V –20 –10 0 –15 +5 –5 +10 –10 0 Output Power of Each Tone PO (each) (dBm) 3rd Order Intermodulation Distortion IM3 (dBc) 3rd Order Intermodulation Distortion IM3 (dBc) 3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE vs. OUTPUT POWER OF EACH TONE –60 –50 VCC = 3.3 V –40 –30 VCC = 3.0 V VCC = 2.7 V –20 –10 0 –15 +5 –10 –5 0 +10 Output Power of Each Tone PO (each) (dBm) Remark The graphs indicate nominal characteristics. 22 f1 = 1.500 GHz f2 = 1.502 GHz Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V) − µPC2771TB − S11-FREQUENCY 0.1 G 2.0 G 3.0 G S22-FREQUENCY 3.0 G 0.1G 2.0 G Data Sheet P12710EJ3V0DS 23 µPC2762TB, µPC2763TB, µPC2771TB TYPICAL S-PARAMETER VALUES (TA = +25°°C) µPC2771TB VCC = Vout = 3.0 V, ICC = 35 mA FREQUENCY MHz MAG. ANG. MAG. ANG. MAG. ANG. MAG. ANG. 100.0000 200.0000 300.0000 400.0000 500.0000 600.0000 700.0000 800.0000 900.0000 1000.0000 1100.0000 1200.0000 1300.0000 1400.0000 1500.0000 1600.0000 1700.0000 1800.0000 1900.0000 2000.0000 2100.0000 2200.0000 2300.0000 2400.0000 2500.0000 2600.0000 2700.0000 2800.0000 2900.0000 3000.0000 3100.0000 0.045 0.057 0.075 0.090 0.105 0.118 0.138 0.163 0.186 0.202 0.219 0.233 0.252 0.267 0.285 0.293 0.304 0.290 0.285 0.273 0.267 0.254 0.237 0.221 0.212 0.208 0.202 0.190 0.178 0.154 0.147 19.7 37.0 41.3 43.3 42.2 40.2 34.9 32.5 29.4 26.3 21.7 15.4 8.4 −0.1 −6.8 −13.9 −20.9 −28.1 −35.3 −41.8 −47.4 −51.6 −57.1 −61.1 −68.8 −72.2 −74.1 −76.3 −76.7 −82.3 −88.0 10.570 10.638 10.775 11.004 11.275 11.586 12.041 12.367 12.844 13.300 13.771 14.082 14.365 14.336 14.142 13.929 13.428 12.722 11.966 11.232 10.500 9.815 9.168 8.570 7.967 7.507 7.004 6.667 6.336 6.003 5.772 −4.7 −9.5 −14.1 −19.4 −24.4 −30.0 −35.9 −42.1 −48.8 −56.6 −64.6 −73.5 −83.2 −92.6 −102.4 −112.0 −121.6 −131.0 −139.6 −147.5 −154.8 −161.7 −168.0 −173.7 −179.7 174.9 170.0 164.7 160.7 155.6 151.3 0.028 0.028 0.029 0.030 0.030 0.031 0.031 0.032 0.032 0.032 0.033 0.033 0.036 0.036 0.036 0.037 0.039 0.038 0.038 0.038 0.039 0.040 0.041 0.041 0.042 0.043 0.045 0.047 0.051 0.051 0.054 0.8 5.0 8.6 11.1 14.9 15.8 19.8 20.1 23.2 23.9 24.9 26.6 28.8 30.0 32.0 31.6 32.5 34.7 36.1 37.4 39.1 41.4 43.7 48.3 48.3 50.8 53.7 54.2 57.7 56.5 59.3 0.327 0.325 0.323 0.326 0.331 0.342 0.350 0.359 0.361 0.371 0.389 0.400 0.405 0.402 0.406 0.413 0.414 0.401 0.387 0.378 0.366 0.356 0.342 0.325 0.322 0.314 0.309 0.303 0.292 0.287 0.279 −6.2 −11.5 −16.2 −20.9 −26.4 −32.0 −37.3 −42.8 −49.4 −56.1 −62.5 −69.3 −75.4 −83.6 −91.6 −99.3 −105.8 −113.7 −120.8 −127.6 −133.1 −138.0 −142.8 −148.3 −152.6 −156.7 −160.1 −164.0 −167.8 −172.8 −176.4 24 S11 S21 S12 Data Sheet P12710EJ3V0DS S22 K 1.65 1.63 1.58 1.49 1.45 1.37 1.29 1.20 1.15 1.11 1.03 0.99 0.92 0.91 0.90 0.89 0.88 0.96 1.03 1.09 1.14 1.20 1.28 1.37 1.44 1.49 1.53 1.56 1.55 1.62 1.61 µPC2762TB, µPC2763TB, µPC2771TB PACKAGE DIMENSIONS 6-PIN SUPER MINIMOLD (UNIT: mm) 2.1±0.1 0.2+0.1 –0.05 0.65 0.65 1.3 Data Sheet P12710EJ3V0DS 0.15+0.1 –0.05 0 to 0.1 0.7 0.1 MIN. 0.9±0.1 2.0±0.2 1.25±0.1 25 µPC2762TB, µPC2763TB, µPC2771TB NOTES ON CORRECT USE (1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference. (3) The bypass capacitor should be attached to the VCC pin. (4) The inductor must be attached between VCC and output pins. The inductance value should be determined in accordance with desired frequency. (5) The DC cut capacitor must be attached to input pin. RECOMMENDED SOLDERING CONDITIONS This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Soldering Method Soldering Conditions Recommended Condition Symbol Infrared Reflow Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: NoneNote IR35-00-3 VPS Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: NoneNote VP15-00-3 Wave Soldering Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limit: NoneNote WS60-00-1 Partial Heating Pin temperature: 300°C or below Time: 3 seconds or less (per side of device) Exposure limit: NoneNote – Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period. Caution Do not use different soldering methods together (except for partial heating). For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E). 26 Data Sheet P12710EJ3V0DS µPC2762TB, µPC2763TB, µPC2771TB [MEMO] Data Sheet P12710EJ3V0DS 27 µPC2762TB, µPC2763TB, µPC2771TB ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation. • The information in this document is current as of February, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information. • No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document. • NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others. • Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information. • While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features. • NEC semiconductor products are classified into the following three quality grades: "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application. "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc. The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application. (Note) (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above). M8E 00. 4